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Qingping Xu,a,b Polat Abdubek,a,c

Tamara Astakhova,a,d Herbert L.
Axelrod,a,b Constantina Bakolitsa,a,e

Xiaohui Cai,a,f Dennis Carlton,a,g

Connie Chen,a,c Hsiu-Ju Chiu,a,b

Michelle Chiu,a,c Thomas Clayton,a,g

Debanu Das,a,b Marc C. Deller,a,g Lian
Duan,a,d Kyle Ellrott,a,f Carol L. Farr,a,g

Julie Feuerhelm,a,c Joanna C. Grant,a,c

Anna Grzechnik,a,g Gye Won Han,a,g

Lukasz Jaroszewski,a,d,e Kevin K. Jin,a,b

Heath E. Klock,a,c Mark W. Knuth,a,c

Piotr Kozbial,a,e S. Sri Krishna,a,d,e

Abhinav Kumar,a,b David Marciano,a,g

Daniel McMullan,a,c Mitchell D.
Miller,a,b Andrew T. Morse,a,d Edward
Nigoghossian,a,c Amanda Nopakun,a,g

Linda Okach,a,c Christina Puckett,a,c

Ron Reyes,a,b Natasha Sefcovic,a,e

Henry J. Tien,a,g Christine B. Trame,a,b

Henry van den Bedem,a,b Dana
Weekes,a,e Tiffany Wooten,a,c

Andrew Yeh,a,b Jiadong Zhou,a,c

Keith O. Hodgson,a,h John Wooley,a,d

Marc-Andre Elsliger,a,g Ashley M.
Deacon,a,b Adam Godzik,a,d,e

Scott A. Lesleya,c,g and Ian A.
Wilsona,g*

aJoint Center for Structural Genomics,

http://www.jcsg.org, USA, bStanford

Synchrotron Radiation Lightsource, SLAC

National Accelerator Laboratory, Menlo Park,

CA, USA, cProtein Sciences Department,

Genomics Institute of the Novartis Research

Foundation, San Diego, CA, USA, dCenter for

Research in Biological Systems, University of

California, San Diego, La Jolla, CA, USA,
eProgram on Bioinformatics and Systems

Biology, Burnham Institute for Medical

Research, La Jolla, CA, USA, fUniversity of

California, San Diego, La Jolla, CA, USA,
gDepartment of Molecular Biology, The Scripps

Research Institute, La Jolla, CA, USA, and
hPhoton Science, SLAC National Accelerator

Laboratory, Menlo Park, CA, USA

Correspondence e-mail: wilson@scripps.edu

Received 2 February 2010

Accepted 19 February 2010

PDB Reference: BT1062, 3gf8.

BT1062 from Bacteroides thetaiotaomicron is a homolog of Mfa2 (PGN0288 or

PG0179), which is a component of the minor fimbriae in Porphyromonas

gingivalis. The crystal structure of BT1062 revealed a conserved fold that is

widely adopted by fimbrial components.

1. Introduction

The Gram-negative anaerobic bacterium Bacteroides thetaiotaomi-

cron is a predominant member of the mammalian intestinal micro-

biota. It is important for the study of the symbiotic relationship

between bacteria and humans, as well as for its abilities to digest

complex plant polysaccharides and host-derived polysaccharides (Xu

et al., 2003). It is also an opportunistic pathogen and can cause serious

infections. Extracellular proteins are expected to be crucial for such

functions in B. thetaiotaomicron and other gut microbes. Therefore,

we initiated a project to characterize the structures of proteins that

are specific to the gut environment from the bacterial secretome of

human gut microbiota, in order to gain further insights into the

molecular mechanisms of bacteria–host symbiosis as well as of

bacterial pathogenesis.

Here, we report the 2.2 Å crystal structure of a putative fimbrial

assembly protein BT1062 from B. thetaiotaomicron, which was

determined using the high-throughput pipeline of the Joint Center for

Structural Genomics (JCSG; Lesley et al., 2002) as part of the

National Institute of General Medical Sciences Protein Structure

Initiative (PSI; http://www.nigms.nih.gov/Initiatives/PSI/). The BT1062

gene of B. thetaiotaomicron encodes a predicted lipoprotein with a

molecular weight of 36 535 Da (residues 1–317) and a calculated

isoelectric point of 4.8.

2. Materials and methods

2.1. Protein production and crystallization

Clones were generated using the Polymerase Incomplete Primer

Extension (PIPE) cloning method (Klock et al., 2008). The gene

encoding BT1062 (Swiss-Prot Q8A8V5) was amplified by polymerase

chain reaction (PCR) from B. thetaiotaomicron VPI-5482 genomic

DNA using PfuTurbo DNA polymerase (Stratagene) and I-PIPE

(Insert) primers (forward primer 50-ctgtacttccagggcGCTTCATGCG-

ACAGCTTTAATGAAGACC-30, reverse primer 50-aattaagtcgcgtta-

TTGATTCTCTTCCTGAATGCGATGCACC-30; target sequence in

upper case) that included sequences for the predicted 50 and 30 ends.

The expression vector pSpeedET, which encodes an amino-terminal

tobacco etch virus (TEV) protease-cleavable expression and purifi-

cation tag (MGSDKIHHHHHHENLYFQ/G), was PCR-amplified

with V-PIPE (Vector) primers (forward primer 50-taacgcgacttaatta-

actcgtttaaacggtctccagc-30, reverse primer 50-gccctggaagtacaggttttcgt-

gatgatgatgatgatg-30). V-PIPE and I-PIPE PCR products were mixed

to anneal the amplified DNA fragments together. Escherichia coli

GeneHogs (Invitrogen) competent cells were transformed with the

I-PIPE/V-PIPE mixture and dispensed onto selective LB–agar plates.



The cloning junctions were confirmed by DNA sequencing. Using the

PIPE method, the gene segment encoding residues Met1–Glu22 was

deleted as it was predicted to code for a signal peptide at the start

of the protein. Expression was performed in a selenomethionine-

containing medium at 310 K with suppression of normal methionine

synthesis. At the end of fermentation, lysozyme was added to the

culture to a final concentration of 250 mg ml�1 and the cells were

harvested and frozen. After one freeze–thaw cycle, the cells were

sonicated in lysis buffer [50 mM HEPES pH 8.0, 50 mM NaCl, 10 mM

imidazole, 1 mM tris(2-carboxyethyl)phosphine–HCl (TCEP)] and

the lysate was clarified by centrifugation at 32 500g for 30 min. The

soluble fraction was passed over nickel-chelating resin (GE Health-

care) pre-equilibrated with lysis buffer, the resin was washed with

wash buffer [50 mM HEPES pH 8.0, 300 mM NaCl, 40 mM imidazole,

10%(v/v) glycerol, 1 mM TCEP] and the protein was eluted with

elution buffer [20 mM HEPES pH 8.0, 300 mM imidazole, 10%(v/v)

glycerol, 1 mM TCEP]. The eluate was buffer-exchanged with TEV

buffer (20 mM HEPES pH 8.0, 200 mM NaCl, 40 mM imidazole,

1 mM TCEP) using a PD-10 column (GE Healthcare) and incubated

with 1 mg TEV protease per 15 mg of eluted protein. The protease-

treated eluate was run over nickel-chelating resin (GE Healthcare)

pre-equilibrated with HEPES crystallization buffer (20 mM HEPES

pH 8.0, 200 mM NaCl, 40 mM imidazole, 1 mM TCEP) and the resin

was washed with the same buffer. The flowthrough and wash fractions

were combined and concentrated to 19.1 mg ml�1 by centrifugal

ultrafiltration (Millipore) for crystallization trials. BT1062 was crys-

tallized by mixing 100 nl protein solution with 100 nl crystallization

solution above a 50 ml reservoir volume using the nanodroplet vapor-

diffusion method (Santarsiero et al., 2002) with standard JCSG

crystallization protocols (Lesley et al., 2002). The crystallization

reagent consisted of 1.4 M sodium citrate, 0.1 M HEPES pH 7.5. A

cube-shaped crystal of approximate dimensions 40� 40� 30 mm was

harvested after 23 d at 277 K for data collection. Ethylene glycol was

added to the crystal as a cryoprotectant to a final concentration of

10%(v/v). Initial screening for diffraction was carried out using the

Stanford Automated Mounting (SAM) system (Cohen et al., 2002)

and an X-ray microsource at Stanford Synchrotron Radiation

Lightsource (SSRL, Menlo Park, California, USA).

The oligomeric state of BT1062 in solution was determined using

a 1 � 30 cm Superdex 200 column (GE Healthcare) coupled with

miniDAWN static light-scattering (SEC/SLS) and Optilab differential

refractive-index detectors (Wyatt Technology). The mobile phase

consisted of 20 mM Tris–HCl pH 8.0, 150 mM NaCl and 0.02%(w/v)

sodium azide. The molecular weight was calculated using ASTRA

v.5.1.5 software (Wyatt Technology).

2.2. Data collection, structure solution and refinement

Multi-wavelength anomalous diffraction (MAD) data were

collected on beamline 9-2 at the SSRL at wavelengths corresponding

to the inflection (�1), high-energy remote (�2) and peak (�3) of a

selenium MAD experiment. The data sets were collected at 100 K

using an MAR CCD 325 detector. The MAD data were integrated

and reduced using MOSFLM and scaled with SCALA. Selenium sites

were located using SHELXD (Sheldrick, 2008) and refined using

autoSHARP (mean figure of merit of 0.46 with ten selenium sites;

Bricogne et al., 2003). Phase refinement and automatic model

building were performed with RESOLVE (Terwilliger, 2003). Model

completion and refinement were performed with Coot (Emsley &

Cowtan, 2004) and REFMAC (Winn et al., 2003). The refinement

included experimental phase restraints in the form of Hendrickson–

Lattman coefficients and TLS refinement with one TLS group per

chain. CCP4 programs were used for data conversion and other

calculations (Collaborative Computational Project, Number 4, 1994).

Data-processing and refinement statistics are summarized in Table 1.

2.3. Validation, deposition and figures

The quality of the crystal structure was analyzed using the JCSG

Quality Control server, which verifies the stereochemical quality of

the model using AutoDepInputTool (Yang et al., 2004), MolProbity

(Lovell et al., 2003) and WHAT IF v.5.0 (Vriend, 1990), the agree-

ment between the atomic model and the data using SFCHECK

v.4.0 (Collaborative Computational Project, Number 4, 1994) and

RESOLVE (Terwilliger, 2003), the protein sequence using ClustalW

(Thompson et al., 1994), the atomic occupancies using MOLEMAN2

(Kleywegt, 2000) and the consistency of NCS pairs. It also evaluates

the differences in Rcryst/Rfree, expected Rfree/Rcryst and maximum/

minimum B values by parsing the refinement log file and PDB

header. All molecular graphics were prepared with PyMOL (DeLano

Scientific). Sequence alignments were rendered using TEXshade

(Beitz, 2000).

3. Results and discussion

3.1. Sequence analysis and functional assignment

BT1062 is a member of a functionally uncharacterized protein

family [Pfam PF08842 or DUF1812 (domain of unknown function

family 1812)] consisting of�80 Bacteroidetes proteins of around 300–

structural communications
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Table 1
Summary of crystal parameters, data-collection and refinement statistics for
BT1062 (PDB code 3gf8).

Values in parentheses are for the highest resolution shell.

�1 MAD-Se �2 MAD-Se �3 MAD-Se

Space group P41212
Unit-cell parameters (Å) a = 106.9, c = 79.1
Data collection

Wavelength (Å) 0.9793 0.9116 0.9792
Resolution range (Å) 29.7–2.2

(2.26–2.20)
29.6–2.2

(2.26–2.20)
29.7–2.2

(2.26–2.20)
No. of observations 98494 94479 94046
No. of reflections 23880 23862 23868
Completeness (%) 99.9 (99.9) 99.9 (100) 99.9 (99.8)
Mean I/�(I) 10.8 (1.8) 11.6 (2.2) 10.5 (1.6)
Rmerge on I† 0.11 (0.72) 0.10 (0.65) 0.11 (0.80)
Rmeas on I‡ 0.13 (0.82) 0.11 (0.75) 0.13 (0.93)

Model and refinement statistics
Resolution range (Å) 29.2–2.2
No. of reflections (total) 23827
No. of reflections (test) 1220
Completeness (%) 99.8
Data set used in refinement �2 MAD-Se
Cutoff criterion |F | > 0
Rcryst§ 0.191
Rfree} 0.229

Stereochemical parameters
Restraints (r.m.s. observed)

Bond lengths (Å) 0.016
Bond angles (�) 1.52

Average isotropic B value†† (Å2) 37.6
ESU‡‡ based on Rfree value (Å) 0.17
Protein residues/atoms 284/2321
Solvent molecules 175

† Rmerge =
P

hkl

P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ. ‡ Rmeas is the redundancy-

independent Rmerge (Diederichs & Karplus, 1997; Weiss & Hilgenfeld, 1997). § Rcryst =P
hkl

�
�jFobsj � jFcalcj

�
�=
P

hkl jFobsj, where Fcalc and Fobs are the calculated and observed
structure-factor amplitudes, respectively. } Rfree is the same as Rcryst but for 5% of the
total reflections chosen at random and omitted from refinement. †† This value
represents the total B that includes TLS and residual B components. ‡‡ Estimated
overall coordinate error (Collaborative Computational Project, Number 4, 1994;
Cruickshank, 1999).



400 residues. Homologous proteins are abundant in Bacteroidetes

genomes. For example, at least four paralogs are found in B. theta-

iotaomicron VPI-5482 (BT1062, BT2657, BT4225 and BT4226;

sequence identity of >20%), three in Porphyromonas gingivalis

(PGN0185, PGN0288 and PGN0289) and eight in B. fragilis NCTC

9343 (BF1578, BF1851, BF1976, BF2185, BF2264, BF2871, BF3328

and BF4229). The genomic context is conserved for BT1062 homo-

logs, which involves a cluster of four associated genes: BT1066,

BT1065, BT1063 and BT1062 (Fig. 1). BT1062 and BF2185 of

B. fragilis have almost identical genomic environments. A cluster of

genes BT1062–BT1068, which are likely to be an operon, all contain

signal peptides and are predicted to encode lipoproteins (with the

exception of BT1064). This putative operon may be under the control

of BT1069, which encodes a putative transcription regulator.

Downstream of the operon is a putative histidine kinase (BT1058).

BT1062 is homologous to Mfa2 (PGN0288, also previously known

as PG0179) of P. gingivalis strain ATCC 33277 (19% sequence

identity; Fig. 2a). Mfa2 co-transcribes with the minor fimbrial antigen

(mfa1) and is involved in the assembly of Mfa1 fimbriae (Chung et al.,

2000; Hasegawa et al., 2009). BT1063 is a remote homolog of Mfa1

(PGN0287; 15% identity; Fig. 1), which is the structural subunit of

P. gingivalis minor fimbriae (Yoshimura et al., 2009). P. gingivalis also

contains homologous proteins to BT1064 and BT1066 (PGN0128 and

PGN0179; PGN0129 and PGN0178). BT1065 matches the N-terminal

domain of PGN0128, indicating that PGN0128 is a fusion product of

BT1065-like and BT1064-like proteins. Therefore, the BT1062–

BT1068 genes are most likely to encode a fimbriae (or pili) system

similar to that of the minor fimbriae of P. gingivalis, with BT1062

being equivalent to mfa2. P. gingivalis has at least two types of

fimbriae: major (long) fimbriae with FimA as the main structural

subunit (Yoshimura et al., 1984) and minor (short) Mfa1 fimbriae

(Hamada et al., 1996; Park et al., 2005). Fimbriae were also observed

in strains of B. thetaiotaomicron and B. fragilis (Shinjo & Kiyoyama,

1984); however, the fimbriae-assembly machinery are currently

uncharacterized at the molecular level. The similarity of the potential

fimbriae proteins to those of P. gingivalis could suggest a similar

fimbriae-assembly system in B. thetaiotaomicron and B. fragilis. The

fimbriae in gut bacteria, such as B. thetaiotaomicron and B. fragilis,

may be required for adhesion to host tissues (Pumbwe et al., 2006),

formation of biofilms with other bacteria in the gut, or play other as

yet unknown functional roles.

3.2. Overall structure

The selenomethionine derivative of BT1062 (residues 23–317) with

an N-terminal His tag was expressed in E. coli and purified by metal-

affinity chromatography. The predicted N-terminal signal peptide

(residues 1–22) was not included in the construct. The crystal struc-

ture of BT1062 was determined in the tetragonal space group P41212

at 2.2 Å resolution using the MAD method. The final BT1062 model

includes a monomer (residues 34–317; Fig. 2b), one ethylene glycol

and 174 water molecules in the asymmetric unit. The Matthews co-

efficient (VM; Matthews, 1968) for BT1062 is 3.25 Å3 Da�1 and the

estimated solvent content is 62%. The Ramachandran plot produced

by MolProbity shows that 96.8 and 100% of the residues are in the

favored and allowed regions, respectively. BT1062 is composed of 21

�-strands (�1–�21), three �-helices (�1–�3) and five 310-helices. The

total �-sheet, �-helical and 310-helical contents are 43.0, 6 and 5.3%,

respectively. BT1062 is likely to exist as a monomer in solution, which

is consistent with crystal-packing analysis and analytical size-exclu-

sion chromatography.

3.3. Structural comparisons

The structure of BT1062 consists of a tandem repeat of two

domains: I (34–170) and II (171–317). Using individual domains, the

DALI structural similarity search server (Holm & Sander, 1995)

indicated that both domains have transthyretin-like (previously

known as prealbumin-like) folds with seven core �-strands (A–G)

arranged in two sheets (DAG and CBEF; Fig. 2). The top hit for

domain I is the C-terminal transthyretin subdomain of the carboxy-

peptidase D domain II (Aloy et al., 2001; PDB code 1h8l; Z = 7.0,

r.m.s.d. of 2.1 Å for 78 aligned C� atoms, 13% sequence identity). The

best match for domain II is human transthyretin (Karlsson & Sauer-

Eriksson, 2007; PDB code 2qel; Z = 6.1, r.m.s.d. of 3.6 Å for 96 aligned

C� atoms, 7% sequence identity). For the entire structure, the minor

pilin GBS52 of the Gram-positive bacterium Streptococcus agalactiae

(Krishnan et al., 2007) is among the top hits (fifth), with an r.m.s.d. of

5.7 Å for 145 aligned C� atoms (PDB code 2pz4; Z = 4.1, 10%

structural communications
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Figure 1
Gene context for representative BT1062 homologs in B. thetaiotaomicron (Bth), B. fragilis NCTC 9343 (Bfs), B. vulgatus ATCC 8482 (Bvu), Parabacteroides distasonis
ATCC 8503 (Bdi) and Porphyromonas gingivalis strain ATCC 33277 (Pgn). The lengths of the genes are not drawn to scale. Each homologous set of sequences is represented
by one color.



sequence identity). TM-align (Zhang & Skolnick, 2005) aligned

BT1062 to GBS52 with an r.m.s.d. of 4.8 Å for 175 C� atoms. Despite

the large r.m.s.d. value, this match is significant since both proteins

are fimbrial components. The two domains of both proteins have an

identical fold (i.e. the same topology of the seven core strands).

GBS52 does not have long inserts between core �-strands in its two

domains, except for the BC loop of the first domain, while BT1062

contains several significant insertions between core strands in both

domains (Fig. 2). The most significant additional structural feature of

BT1062 is a small �-sheet at the domain boundary formed by the EF

loop of domain I and the BC loop of domain II (Fig. 3). Domain II

contains a three-helix insertion between strands F and G as well as a

�-hairpin attachment (�20–�21) at the C-terminus. Thus, domain II

of BT1062 deviates more significantly from the prototypical seven-

stranded core domain, although some members of the transthyretin

family have an additional �-strand that would correspond to �20. A

similar two-domain arrangement is also observed for the S. pyogenes

major pilin Spy0128 (TM-align r.m.s.d. of 5.3 Å for 178 aligned C�

atoms; Kang et al., 2007; Fig. 3). Given the overall structural similarity

and functional overlap, it seems possible that these pilin components

might be derived from a common ancestral fold through divergent

evolution. The basic fold of the seven core strands in these proteins

has previously been described as IgG-like (Krishnan et al., 2007). We

have avoided such a description here owing to a lack of clear

evidence to establish an evolutionary relationship between the IgG-

like fold (SCOP ID 48725) and the transthyretin-like fold (SCOP ID

49451) (Andreeva et al., 2004).

3.4. A conserved fold for fimbrial components

A sequence-similarity search using PSI-BLAST against the non-

redundant (nr) database at the National Center for Biotechnology

Information (NCBI) indicated that the family size of DUF1812 can

be significantly expanded, with >1000 hits almost exclusively from

structural communications
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Figure 2
Crystal structure of BT1062. (a) Sequence alignment of BT1062, BF2185 and PGN0288 (Mfa2). The secondary-structural elements, residue numbering of BT1062 and
consensus are shown at the top. The seven conserved �-strands (A–G) of the two transthyretin-like domains are highlighted. The potential membrane-attachment site and
Mfa1-interaction site are labeled by stars at the bottom. (b) Stereo ribbon diagram of BT1062 monomer color coded from the N-terminus (blue) to the C-terminus (red).



Bacteroidetes. There are 35 potential homologs from B. thetaiota-

omicron alone, indicating the popularity of this fold in this bacterium.

Interestingly, the identified homologs include components of both the

major fimbriae and the minor fimbriae of P. gingivalis. In addition

to the BT1062 homologs in minor fimbriae discussed above, major

fimbrial components, such as FimA and the accessory proteins FimC,

FimD and FimE, are expected to adopt a similar fold to BT1062.

Thus, DUF1812 is a collection of diverse proteins that are likely to be

fimbrial components. These proteins are likely to be adapted from

a single fold to serve different functions. Many of these remote

homologs also contain the highly conserved tryptophan (Trp308 in

BT1062) described above.

The details of the biogenesis of Mfa1-like fimbriae are still unclear.

A recent study suggested that P. gingivalis Mfa2 is likely to anchor

the Mfa1 fimbriae to the outer membrane and to regulate the length

of the Mfa1 filament (Hasegawa et al., 2009). Mfa2 is present in the

outer membrane and may directly interact with Mfa1. Most sequence

homologs of BT1062 and Mfa2 contain two highly conserved

cysteines at the N-terminus (Cys25 and Cys35) located near the tip of

the bilobal molecule. The first invariant cysteine was predicted to be

the lipoprotein signal-peptide cleavage site (between 24 and 25) by

the LipoP server (Juncker et al., 2003). This cysteine is likely to be the

last residue of the lipoprotein signal-sequence motif [lipobox motif

(L/V)XXC, X = A/S/G/T] and is directly involved in membrane

attachment of the matured lipoprotein via a thioether bond (Braun &

Wu, 1994). The role of the second conserved cysteine is currently not

clear. It may also be involved in membrane attachment owing to its

close proximity to the first cysteine. The conformation of the peptide

between the two conserved cysteines is likely to be flexible since

residues 24–33 are exposed to solvent and disordered in the crystal

with no interpretable electron density. The most conserved surface

residues of BT1062 homologs correspond to a short sequence motif
306N(G/D)W308 located in the �20–�21 loop. This exposed site is

likely to be involved in interaction with Mfa1 and thus to be impor-

tant for the function of BT1062. The spatial arrangement of the

potential membrane-attachment site and protein–protein interaction

site may be functionally significant as the location of the potential

membrane-attachment site would allow more freedom and accessi-

bility of a membrane-attached elongated molecule.

4. Conclusions

Bioinformatics studies, combined with experimental evidence from

the related bacteria P. gingivalis, allow us to identify at least one

structural communications
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Figure 3
Structural comparisons of (a) BT1062, (b) the minor pilin of GBS52 (PDB code 2pz4) and (c) the major pilin Spy0128 (PDB code 3b2m). All molecules are shown in a similar
orientation with the same scale. The conserved core strands are labeled from A to G.



putative operon that is likely to be involved in fimbrial assembly in

B. thetaiotaomicron and other related bacteria. Our structural studies

of the BT1062 protein in this operon revealed surprising structural

similarities to the minor pilin GBS52 of S. agalactiae and the major

pilin Spy0128 of S. pyogenes, both of which are Gram-positive

bacteria. We demonstrated that a tandem repeat of the transthyretin-

like fold is also likely to be adopted by other components of

Bacteroides fimbriae, such as the major pili subunit FimA of

P. gingivalis. These results may suggest a common evolutionary origin

for this type of fimbrial component in both Gram-negative and Gram-

positive bacteria. Thus, our studies contribute new insights into the

evolution of fimbriae (pili).

Additional information about BT1062 is available from TOPSAN

(Krishna et al., 2010) at http://www.topsan.org/explore?pdbID=3gf8.
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