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Abstract: Previous research has found that milk is associated with a decreased risk of colorectal
cancer (CRC). However, it is unclear whether the milk digestion by the enzyme lactase-phlorizin
hydrolase (LPH) plays a role in CRC susceptibility. Our study aims to investigate the direct causal
relationship of CRC risk with LPH levels by applying a two-sample Mendelian Randomization (MR)
strategy. Genetic instruments for LPH were derived from the Fenland Study, and CRC-associated
summary statistics for these instruments were extracted from the FinnGen Study, PLCO Atlas Project,
and Pan-UK Biobank. Primary MR analyses focused on a cis-variant (rs4988235) for LPH levels, with
results integrated via meta-analysis. MR analyses using all variants were also undertaken. This
analytical approach was further extended to assess CRC subtypes (colon and rectal). Meta-analysis
across the three datasets illustrated an inverse association between genetically predicted LPH levels
and CRC risk (OR: 0.92 [95% CI, 0.89–0.95]). Subtype analyses revealed associations of elevated LPH
levels with reduced risks for both colon (OR: 0.92 [95% CI, 0.89–0.96]) and rectal cancer (OR: 0.92 [95%
CI, 0.87, 0.98]). Consistency was observed across varied analytical methods and datasets. Further
exploration is warranted to unveil the underlying mechanisms and validate LPH’s potential role in
CRC prevention.

Keywords: colorectal cancer; lactase/phlorizin hydrolase; lactose non-persistence; milk digestion;
Mendelian randomization

1. Introduction

Colorectal cancer (CRC) is one of the most common forms of cancer in the digestive
system. There are estimated to be over 1.9 million incident cases and 93,500 CRC-related
deaths in 2020, making CRC the third most common cancer and the second leading cause
of cancer-related death worldwide [1]. The complex etiology of CRC points to a confluence
of genetic, dietary, and lifestyle determinants of risk [2–4].
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Lactase-phlorizin hydrolase (LPH) is a pivotal enzyme in the human body that helps
hydrolyze lactose, the main carbohydrate in milk, into glucose and galactose [5,6]. The
reduced expression or activity of LPH, known as lactase non-persistence (LNP), leads
to a clinical condition called lactose intolerance, in which milk and other dairy products
cannot be properly digested. Individuals with lactose intolerance experience symptoms
such as abdominal pain, bloating, diarrhea, nausea, and vomiting after consumption of
milk and other dairy products [5,6]. Genetically, LPH is encoded by the lactase gene (LCT)
on chromosome 2. Genetic expression of LCT has been found to be regulated by single
nucleotide polymorphisms (SNPs) located on the gene MCM6, a regulatory region 14 kb
upstream from the LCT gene [6–8]. Specifically, the SNP rs4988235 on MCM6 confers the
LNP phenotype.

Diminished LPH levels or activity, leading to lactose maldigestion, are linked to
decreased calcium [9] and vitamin D intake [10], along with a reduced abundance of
beneficial gut bacteria, Bifidobacterium [11]. Observational studies have reported that
reduced calcium [12,13] and vitamin D [14,15] intake are associated with increased CRC
risk, suggesting protective roles of calcium and vitamin D in CRC development. In ad-
dition, clinical studies have shown that dietary intake of Bifidobacterium modulates gut
microbiota towards CRC prevention [16]. Given LPH’s pivotal role in milk digestion and
its downstream influence on crucial nutrient absorption and gut microbiota composition, it
may also have a significant impact on CRC susceptibility. In addition, LPH could poten-
tially serve as a potential candidate biomarker for CRC risk stratification or a druggable
target for CRC treatment, as several other circulating proteins associated with CRC risk
have been implemented for these purposes [17–20]. Yet, the specific role of LPH in the
development of CRC remains unclear, highlighting the need for detailed studies exploring
this potential association.

There has been no research directly studying the relationship between LPH levels
and CRC risk in the medical literature. Instead, previous epidemiologic studies have
investigated this relationship using LNP status, LPH-related SNPs, and dietary milk intake
as proxies for LPH levels [21–27]. However, these studies have several limitations, includ-
ing exposure misclassification, residual confounding, and reverse causality. For instance,
lactase persistence/non-persistence status was often binarily defined by individual geno-
type. However, the negative impacts of lactose maldigestion among lactase-non-persistent
individuals are actually determined by continuous residual LPH expression levels [6,28,29].
In addition, CRC patients undergoing adjuvant 5-fluorouracil chemotherapy can develop
secondary lactose intolerance due to gastrointestinal damage [30,31], disrupting small
intestine enzyme and transporter functions [32]. Consequently, the potential for reverse
causation (i.e., CRC leading to reduced LPH levels and thus milk intake) remains plausible.

To circumvent these challenges, we utilize Mendelian Randomization (MR) analysis,
an innovative method that employs genetic variants as instrumental variables (IVs) for
LPH levels [33]. The random assignment of these variants during meiosis helps miti-
gate confounding bias and reverse causality issues, offering a robust means to explore
potential causality [33–35]. While conventional genome-wide MR studies encompass both
cis-variants (i.e., located near the gene of interest) and trans-variants (i.e., often located
on different chromosomes), there is a rising trend in cis-MR studies that exclusively use
cis-variants as IVs, especially in contexts where protein expression is a key considera-
tion [36–40]. The appeal of cis-MR studies has grown due to their potential for drug target
identification and validation [38,40]. In our study, we focus on continuous LPH levels
as the exposure, selecting both cis- and trans-variants associated with LPH levels from a
large-scale genome-wide association study (GWAS). We then use sets of (1) only cis-variants
and (2) combined cis- and trans-variants as separate IVs in our MR analyses.

This study leverages MR to probe the potential causal influence of genetically deter-
mined elevated LPH levels on the risk of CRC and its subtypes, namely colon and rectal
cancer. Utilizing publicly accessible summary-level GWAS data from three large-scale,
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independent cohorts of European ancestry, we seek to enhance our understanding of the
genetic underpinnings of CRC and inform future preventive strategies.

2. Materials and Methods
2.1. Study Design

Our study utilized a two-sample MR approach, using genetic variants as IVs, to
investigate whether there is a causal relationship between elevated LPH levels and the
risk of CRC. The MR analyses rest on three fundamental assumptions: (1) the Relevance
assumption establishes that the genetic IVs are associated with the exposure (e.g., LPH
levels); (2) the Independence assumption states that the genetic IVs have no correlation
with potential confounders; and (3) the Exclusion restriction assumption dictates that the
genetic IVs could only affect the outcome of interest (e.g., CRC) via the exposure (i.e., no
horizontal pleiotropy where genetic IVs can affect multiple outcomes) [41].

The schematic overview of our study design is presented in Figure 1. Our process
commenced with the selection of genetic instruments for LPH levels from the GWAS
Catalog [42], followed by the extraction of summary statistics of these selected genetic
instruments from prior GWAS of CRC risk performed in three independent cohorts: the
FinnGen Study, the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO)
Atlas Project, and the Pan-UK Biobank. Each cohort had prior ethical approvals, negating
the need for additional approvals for this study.

To assess the causal effect of elevated LPH levels on CRC risk, we primarily conducted
two-sample MR analyses in each cohort using a cis-variant for LPH levels. The results from
the three cohorts were subsequently integrated using meta-analysis. For validation, MR
analyses incorporating all variants (cis- + trans-) were also performed. Further, this identical
workflow was used for the analysis of CRC subtypes (i.e., colon and rectal cancer). Our
study followed the Strengthening the Reporting of Observational Studies in Epidemiology
Using Mendelian Randomization (STROBE-MR) reporting guidelines [43].

2.2. Genetic Instruments

Genetic instruments for LPH levels were retrieved from the NHGRI-EBI GWAS Cata-
log, a large-scale open GWAS database collaboratively developed by the European Bioin-
formatics Institute (EBI) and the Human Genome Research Institute (NHGRI) with over
24,000 traits (www.ebi.ac.uk/gwas, accessed on 2 May 2023) [42]. Our focus was on the Fen-
land Study data from the GWAS Catalog, which offers the largest and most recent GWAS
of LPH levels (GWAS Catalog accession ID: GCST90248315). Summaries of the study are
listed in Table 1. The Fenland Study consisted of 10,708 genotyped participants of Euro-
pean ancestry who were recruited from general practice surgeries in the Cambridgeshire
region of the UK from 2005 to 2015 [44]. Genotyping was conducted using three different
arrays (Affymetrix UK Biobank Axiom array [Affymetrix, Santa Clara, CA, USA], Illu-
mina Infinium Core Exome 24v1 [Illumina, San Diego, CA, USA], and Affymetrix SNP5.0
[Affymetrix, Santa Clara, CA, USA]), and levels for each protein target were measured
using the rank-based inverse normal-transformed aptamer abundance method [44]. GWAS
analysis was then performed using the transformed protein levels, with the residuals used
as input for the genetic association analyses [45]. The beta coefficients for each protein
target, representing one standard deviation (SD) change in normalized plasma abundance
of protein per effect allele of the SNPs, were estimated, adjusting for age, sex, sample
collection site, and the first ten principal components [44].

www.ebi.ac.uk/gwas
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Figure 1. Schematic overview of the study design for the primary Mendelian Randomization analyses. Abbreviations: SNP, single nucleotide polymorphism; LPH, 
lactase-phlorizin hydrolase; CRC, colorectal cancer; GWAS, genome-wide association study; MR, Mendelian Randomization. 
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Figure 1. Schematic overview of the study design for the primary Mendelian Randomization analyses. Abbreviations: SNP, single nucleotide polymorphism; LPH,
lactase-phlorizin hydrolase; CRC, colorectal cancer; GWAS, genome-wide association study; MR, Mendelian Randomization.

Table 1. Summary of GWAS datasets used for LPH levels and CRC.

LPH GWAS CRC GWAS Colon Cancer
GWAS

Rectal Cancer
GWAS

Study
First

Author
(Year)

Sample
Size Population Sex Study N

Cases
N

Controls Population Sex CRC Ascertainment N
Cases

N
Controls

N
Cases

N
Controls

Fenland
Study

Pietzner
(2021)
[44]

10,708
100%

European
53%

Female

FinnGen
Study 6509 287,137 100%

European
42%

Female ICD10: C18–C20 3935 287,137 2361 287,137

PLCO
Atlas 2065 67,500 100%

European
45%

Female
ICD-O-2 Site: 180/182–
189/199/209/212/218 1611 65,142 320 65,142

Pan-UK
Biobank 592 419,881 100%

European
44%

Female

Self-reported
diagnosis of large

bowel
cancer/colorectal

caner

1384 419,089 301 420,172

Abbreviations: GWAS: genome-wide association studies; LPH: lactase-phlorizin hydrolase; CRC: colorectal cancer.
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Our study selected SNPs associated with LPH levels at the genome-wide significant
threshold of p < 5 × 10−8 [46]. Correlated SNPs were excluded according to measures of
linkage disequilibrium (LD) r2 < 0.1 and minor allele frequency (MAF) > 0.01 based on the
European populations from the 1000 Genomes phase 3 reference panel using the SNPclip
online tool (https://ldlink.nih.gov/, accessed on 4 May 2023) [47].

Following exclusions, our analysis included four variants, one cis-variant (rs4988235)
and three trans-variants (rs516246, rs532436, and rs641476), that were used as genetic
instruments to genetically predict LPH levels. The characteristics of the genetic instruments
for elevated LPH levels included in our study are presented in Table 2. Four independent
SNPs associated with MCM6 (rs4988235), FUT2 (rs516246), ABO (rs532436), and GAREM1
(rs641476) were selected based on the genome-wide significance level (p < 5 × 10−8) and
LD-based pruning (r2 < 0.1). Overall, the four selected SNPs accounted for 36.42% of the
observed variance in elevated LPH levels, with the cis-variant rs4988235 contributing the
majority of the variance.

Table 2. Characteristics of genetic instruments for elevated LPH levels from the GWAS identified in
the GWAS Catalog.

RSID Position
(GRCh38)

Effect
Allele

Other
Allele EAF R2 F Beta SE p-Value Associated

Gene

cis/trans
Variant for
LPH Levels

rs4988235 chr2:135851076 A G 0.31 33.28% 5340.06 0.882 0.011 3 × 10−1451 MCM6 cis
rs516246 chr19:48702915 C T 0.49 0.81% 87.01 0.127 0.013 2 × 10−22 FUT2 trans
rs532436 chr9:133274414 G A 0.20 1.27% 137.41 0.199 0.016 3 × 10−35 ABO trans
rs641476 chr18:32225445 C T 0.61 1.07% 115.85 0.150 0.013 5 × 10−30 GAREM1 trans

Abbreviations: LPH, lactase-phlorizin hydrolase; GWAS: genome-wide association studies; EAF: effect allele
frequency; SE: standard error.

To assess the strength of the genetic instruments selected, we calculated R2 (the percent
variation in LPH levels explained by the genetic instrument) and the Cragg–Donald F-
statistics (the strength of the association between the genetic instrument and LPH levels)
for each LPH-associated SNP using the formula: R2 = β2 × 2 × EAF × (1 − EAF) and
F = R2 × (N − 2)/(1 − R2), where EAF denotes the effect allele frequency of the SNP
and N represents the sample size of the exposure GWAS [48,49]. A F-statistic greater than
10 indicates strong genetic instruments for the MR analyses [50]. The F-statistics for the
four SNPs ranged from 87.01 to 5340.06, underscoring their strength as genetic instruments
for MR analyses.

2.3. Outcome Data Sources

A summary of the GWAS datasets for CRC is presented in Table 1. Summary-level data
pertaining to the association of SNPs with CRC were obtained from three publicly available
GWAS: (1) the FinnGen Study (available at https://www.finngen.fi/en/access_results,
accessed on 2 May 2023); (2) the PLCO Atlas Project (available at https://exploregwas.
cancer.gov/plco-atlas/#/gwas/summary, accessed on 2 May 2023); and (3) the Pan-UK
Biobank (available at https://pan.ukbb.broadinstitute.org/, accessed on 2 May 2023).
Detailed information for these studies was reported in the original publications [51–53].
CRC cases were identified by: (1) ICD-10 codes C18–C20 in the FinnGen Study; (2) ICD-
O-2 codes 180, 182–189, 199, 209, 212, and 218 in the PLCO Atlas; and (3) self-report
through verbal interview with a trained nurse in the Pan-UK Biobank [51–53]. To minimize
population stratification bias, only GWAS results from individuals of European ancestry
were included.

All genetic association estimates between the SNPs and CRC were calculated using
logistic regression comparing cases and controls, adjusting for age, sex, and genetic prin-
cipal components (the first ten in the FinnGen consortium and Pan-UK Biobank, and the
first twenty in the PLCO Atlas). In addition, some studies also included study-relevant

https://ldlink.nih.gov/
https://www.finngen.fi/en/access_results
https://exploregwas.cancer.gov/plco-atlas/#/gwas/summary
https://exploregwas.cancer.gov/plco-atlas/#/gwas/summary
https://pan.ukbb.broadinstitute.org/
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covariates in their logistic regression models, such as age2 (in the Pan-UK Biobank), study
center (in the PLCO Atlas), and genotyping batch (in the FinnGen Study).

We extracted estimates (e.g., effective alleles, beta coefficients, standard errors, and
p-values) for the associations between the selected genetic instruments and the risk of CRC
and CRC subtypes (colon and rectal cancer) from the FinnGen, PLCO Atlas, and Pan-UK
Biobank GWAS. For SNPs not available in these GWAS, we identified proxy SNPs in linkage
disequilibrium (r2 > 0.7 within a ±500,000 base pairs window) based on the European
populations from the 1000 Genomes phase 3 reference panel utilizing the LDProxy online
tool (https://ldlink.nih.gov/, accessed on 4 May 2023) [47]. All four genetic instruments
were found in the PLCO and Pan-UK Biobank datasets. Rs532436 was not available in the
FinnGen dataset, and thus we used the proxy SNP rs635634, which was in high linkage
disequilibrium with rs532436 (r2 = 0.99). Details of the genetic association between the
SNPs and the risk of CRC are presented in Table 3.

Table 3. Summary of four genetic instruments and their proxies (where necessary) from the FinnGen,
PLCO, and Pan-UK Biobank GWAS on CRC.

SNP Selected Effect Allele Beta SE p-Value

FinnGen
rs4988235 A −0.081 0.020 0.001
rs516246 C −0.024 0.020 0.291

rs635634 (proxy) a G 0.006 0.025 0.386
rs641476 C 0.004 0.020 0.967

PLCO
rs4988235 A −0.072 0.039 0.063
rs516246 C −0.034 0.032 0.292
rs532436 G 0.047 0.040 0.237
rs641476 C 0.020 0.033 0.537

Pan-UK Biobank
rs4988235 A −0.002 0.061 0.971
rs516246 C −0.072 0.051 0.162
rs532436 G 0.144 0.066 0.030
rs641476 C 0.061 0.053 0.245

a rs635634 at chr9:133279427 (effect allele G) was used as a proxy for rs532436 (r2 = 0.99) in the FinnGen study.
Abbreviations: CRC: colorectal cancer; GWAS: Genome-wide association studies; SNP: single nucleotide polymor-
phism; SE: standard error.

2.4. Statistical Power Calculation

The statistical power of our MR analyses was calculated using an online tool (https:
//sb452.shinyapps.io/power/, accessed on 15 May 2023) with several parameters, includ-
ing the total sample size, the percent variance in the exposure explained by the genetic
instruments (R2), and the ratio of cases to controls [54]. Calculations were performed
separately for each cohort. The significance level for the power calculation was set at
α = 0.05. Results from the power calculation indicated that our study has an 80% power to
detect a 6% change in the odds of CRC per SD increase in normalized plasma LPH levels.

2.5. Statistical Analysis

Effect alleles were defined for each SNP as the allele contributing to increased LPH
levels. We performed strand alignment to harmonize the relationships between genetic
instruments and CRC, as well as between LPH levels and CRC for the same allele. We
primarily performed the Wald ratio two-sample cis-MR using rs4988235 as the genetic
instrument. For validation, we then employed the inverse-variance weighted (IVW) two-
sample MR across all four genetic instruments. The IVW method assumes that all SNPs are
valid instruments and that horizontal pleiotropic effects are absent or balanced, constraining
the intercepts to zero [55]. The Cochran’s Q statistic and I2 index were used to test for the
presence of heterogeneity, which is an indicator of whether the IVW estimates on LPH
levels and CRC risk are different across different genetic variants [56].

https://ldlink.nih.gov/
https://sb452.shinyapps.io/power/
https://sb452.shinyapps.io/power/
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Further enhancing the robustness of our investigation, we performed a series of
sensitivity MR analyses, including penalized IVW, robust IVW, penalized robust IVW,
MR–Egger, weighted median, mode-based estimation, and MR–Lasso. The robust IVW
method uses robust regression to downweight outliers, while the penalized IVW method
improves the robustness of the estimates by penalizing the weights of genetic instruments
with heterogeneous causal estimates for the outcome [57,58]. The penalized robust IVW
method further provides robustness both to outliers and to data points with high leverage
through robust regression [57]. The MR–Egger method allows the inclusion of horizontal
pleiotropic SNPs and provides a bias-corrected exposure-outcome effect estimate, with a
deviating intercept indicating mean pleiotropic effects [59]. Despite relaxing the exclusion
restriction assumption, MR–Egger mandates the InSIDE (Instrument Strength Independent
of Direct Effect) assumption, which requires that the associations of the genetic instruments
with the exposure and the direct effects of the genetic instruments on the outcome are
independent [60]. Consequently, we also incorporated MR analyses that do not require
the InSIDE assumption (e.g., weighted median and the mode-based estimation) [59,61]. To
assess the distortions of the IVW estimate from any heterogeneity or horizontal pleiotropy,
MR–Lasso was used to detect and remove pleiotropic outliers [62].

The effect estimates of genetically predicted LPH on CRC and its subtypes were
reported as odds ratios (ORs), along with their 95% confidence intervals (CIs), per one SD
increase in normalized plasma abundance of LPH. Each SNP’s association was plotted
against its corresponding effect on CRC risk. To evaluate the potential influence of a single
SNP on MR results, iterative leave-one-out analyses were executed [60].

All of the primary and sensitivity MR analyses were conducted separately within each
of the three outcome data sources (i.e., FinnGenn, PLCO Atlas, and Pan-UK Biobank). For
comparison and consolidation of effect estimates from varying data sources, we utilized
meta-analysis with fixed effects models to integrate the IVW estimates across the three
cohorts. The degree of heterogeneity between the IVW estimates was quantified using the
I2 index and Cochran Q statistics [63].

All statistical tests were two-sided, with the level of significance predetermined at
p < 0.05. We performed all analyses using R version 4.1.2 (The R Foundation for Statistical
Computing) [64]. We used the “MendelianRandomization” package [65] for MR analyses
and the “meta” package for meta-analyses [66].

3. Results
3.1. FinnGen Dataset

The FinnGen GWAS summary statistics on CRC consisted of 6509 CRC cases and
287,137 controls. Using only the cis-variant rs4988235 as the genetic instrument, the FinnGen
dataset showed that genetically determined higher levels of LPH were associated with
decreased odds of CRC (OR per SD higher normalized plasma abundance of LPH: 0.91
[95% CI, 0.88–0.95], p < 0.001) (Table S1). The IVW estimate from the MR analysis using all
LPH-associated genetic variants showed similar results as the cis-MR analysis (OR: 0.92
[95% CI, 0.88–0.95], p < 0.001) (Table S1, Figure S1A). Results for sensitivity analyses were
presented in Table S1 and Figures S1–S3. Little heterogeneity across SNPs was evidenced
by Cochran’s Q statistics (Q = 2.5, p = 0.482), and sensitivity analyses produced consistent
results. There was no evidence of horizontal pleiotropy according to the MR–Egger results
(PEgger-intercept = 0.552). Based on the leave-one-out analysis (Figure S3A), the primary
influence on the effect came from the SNP rs4988235 on MCM6, which is the most well-
characterized SNP responsible for LPH synthesis and the only cis-variant selected in the
GWAS for LPH levels [4,6].

3.2. PLCO Dataset

The PLCO GWAS dataset included 2065 CRC participants and 67,500 controls. The
PLCO dataset illustrated a non-significant association between genetically determined
elevated LPH levels and CRC risk in the cis-MR (OR: 0.92 [95% CI, 0.85–1.00], p = 0.063)
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(Table S1). Similar results were found in the MR analysis including all genetic instruments
(OR: 0.94 [95% CI, 0.85–1.03], p = 0.170), whereas the confidence interval was slightly
wider than that in the cis-MR (Table S1, Figure S1B). Table S1 and Figures S1–S3 show the
results from the sensitivity analyses. With penalized robust IVW, the association became
significant (OR: 0.94 [95% CI, 0.90–0.98], p = 0.002), indicating the presence of potential
outliers. Results from the MR–Egger, weighted median, and mode-based estimation
analyses did not provide strong evidence for horizontal pleiotropic effects among the SNPs
(Table S1). The leave-one-out analysis plot suggested that the MR IVW estimates were
largely influenced by rs4988235, which was consistent with results in the FinnGen dataset
(Figure S3B).

3.3. Pan-UK Biobank Dataset

There were 592 CRC cases and 419,881 controls in the Pan-UK Biobank. The cis-
MR Wald ratio did not provide evidence supporting the effect of genetically determined
elevated LPH levels on CRC risk in the Pan-UK Biobank dataset (OR: 1.00 [95% CI, 0.87–
1.14], p = 0.971), and this result was similar with the IVW estimate including both cis-
and trans-variants (OR: 1.03 [95% CI, 0.83–1.27], p = 0.812) (Table S1, Figure S1C). In
addition, the intercept for the MR–Egger analysis was not significantly different from zero
(PEgger-intercept = 0.712), indicating little evidence of horizontal pleiotropic effects in the
selected genetic instruments. Sensitivity analyses mirrored the IVW estimate, with the
leave-one-out analysis affirming rs4988235’s substantial impact (Figure S3C).

3.4. Meta-Analysis Combining FinnGen, PLCO, and Pan-UK Biobank Results

Meta-analysis combining the cis-MR estimates from FinnGen, PLCO, and Pan-UK
Biobank showed an inverse association between genetically predicted elevated LPH and
CRC risk (OR: 0.92 [95% CI, 0.89–0.95], p < 0.001), with no discernible heterogeneity in
the effect across the three datasets (I2 = 0%, Pcochran-Q = 0.470) (Figure 2). Similarly, the
combined IVW estimate for MR studies utilizing all four genetic variants showed a sightly
attenuated association (OR: 0.93 [95% CI, 0.89–0.96], p < 0.001). We did not find strong
evidence indicating heterogeneity across the three datasets (I2 = 0%, Pcochran-Q = 0.554)
(Figure 2).
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MR estimates. Diamonds represent meta-analyzed MR estimates using fixed and random effects
models. Detailed results from the MR analyses and sensitivities analyses for each CRC GWAS study
are presented in Table S1. Abbreviations: LPH, lactase-phlorizin hydrolase; CRC, colorectal cancer;
MR, Mendelian Randomization.

3.5. CRC Subtype-Specific MR Analyses

CRC subtype-specific MR analyses are reported in Tables S2–S4, and sensitivity analy-
sis results are presented in Figures S4–S6 and S8–S10. The cis-MR analysis of the FinnGen
dataset revealed an inverse association between genetically predicted elevated LPH levels
and colon cancer risk (OR: 0.92 [95% CI, 0.87–0.97], p = 0.001, Table S2). Although similar
Wald ratio estimates were observed in the PLCO and Pan-UK Biobank datasets, statistical
significance was not reached, potentially due to small sample sizes (PLCO: OR 0.93 [95%
CI, 0.85–1.02], p = 0.144; Pan-UK Biobank: OR 0.95 [95% CI, 0.86–1.05], p = 0.285, Table S2).
Combining the cis-MR results from the three datasets, the meta-analyzed estimate (Table
S4, Figure S7) suggested a significant association between genetically predicted higher
LPH levels and decreased risk of colon cancer (OR: 0.92 [95% CI, 0.89–0.96], p < 0.001).
Results from the MR analyses utilizing all four genetic instruments further confirmed the
association with similar estimates but wider confidence intervals (meta-analyzed OR: 0.93
[95% CI, 0.89–0.97], p < 0.001) (Tables S2 and S4, Figure S7).

With respect to rectal cancer, the FinnGen dataset indicated an inverse association
between genetically predicted elevated LPH levels and rectal cancer susceptibility when
using the single cis-variant rs4988235 (OR: 0.91 [95% CI, 0.85–0.97], p = 0.005, Table S3). The
PLCO dataset suggested a negative but non-significant estimate (OR: 0.86 [95% CI, 0.70–
1.06], p = 0.172, Table S3). Results from the Pan-UK Biobank dataset, however, demonstrated
an incongruous positive, albeit non-significant, estimate (OR: 1.13 [95% CI, 0.91–1.40],
p = 0.267, Table S3). The subsequent meta-analysis (Table S4, Figure S11) suggested an
inverse association between elevated LPH levels and rectal cancer risk (OR: 0.92 [95%
CI, 0.87, 0.98], p = 0.0083), and moderate heterogeneity was observed across the datasets
(I2 = 50%, Pcochran-Q = 0.136). Further MR analyses including both cis- and trans-variants
showed consistent results (Tables S3 and S4, Figure S11), indicating the robustness of our
cis-MR estimates.

4. Discussion

In this study, we leveraged summary-level statistics from three large-scale GWAS of
European ancestry and employed a two-sample MR framework to investigate the potential
causal relationship between LPH levels and CRC risk using both cis-variants and all genetic
instruments (cis- + trans-). The results from the cis-MR analysis provided genetic evidence
suggesting an inverse causal association between elevated LPH levels and CRC risk. This
finding was consistent and validated by MR analyses using both cis- and trans-variants.
Further MR analyses by CRC subtypes indicated that this causal relationship seemed
applicable to both colon cancer and rectal cancer.

While the FinnGen dataset showed a significant inverse association between geneti-
cally predicted elevated LPH levels and CRC risk, the findings from the PLCO and Pan-UK
Biobank datasets were not statistically significant, likely due to insufficient statistical power
attributed to smaller sample sizes and lower case-to-control ratios. We confirmed this
hypothesis through power calculations, revealing 85% power in the FinnGen dataset to
detect a 6% change in the odds of CRC, compared with just 39% and 15% power in the
PLCO and Pan-UK Biobank datasets, respectively. Therefore, to bolster statistical power,
we conducted a meta-analysis of the separate MR analyses within each of the three cohorts.
Subgroup analyses for colon and rectal cancer revealed similar trends. With a relatively
small number of rectal cancer cases in both the PLCO (320 cases) and Pan-UK Biobank
(301 cases) datasets, these analyses were likely hindered by limited statistical power.

It is worth noting that the Pan-UK Biobank dataset showed a higher number of colon
cancer cases compared to overall CRC cases. This discrepancy might be explained by the
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case identification method in the Pan-UK Biobank, which is reliant on self-reported cancer
diagnoses and therefore subject to potential measurement error. Although more accurate
cancer case ascertainment methods might be employed in individual-level UK Biobank
datasets, such information was not available in the publicly accessible summary statistic
data that we utilized.

The potential underlying biological mechanisms linking elevated LPH levels with re-
duced CRC risk warrant further exploration. Evidence suggests that lactase persistent indi-
viduals typically consume more milk than their lactase-non-persistent counterparts [67,68].
Given the known impact of milk consumption on CRC risk [26,27,69–74], it is plausible that
the protective effect of LPH on CRC risk is partially mediated through catalyzed products
of milk [75–77] and key milk components, namely calcium [12,13,78] and vitamin D [14,79].
Other milk-derived compounds, such as butyric acid, conjugated linoleic acid, sphingolipids,
and lactoferrin [80–82], also contribute to the protective effect of LPH. Moreover, the effect of
LPH on gut microbiota diversity could also play a role in modifying CRC risk [11].

Calcium and vitamin D, abundant components of milk, have been recognized for
their multifaceted roles in CRC prevention. Calcium’s protective effects can be attributed
to its capacity to bind secondary bile acids and ionized fatty acids, thereby reducing
their toxicity on colonocytes and inhibiting mucosal proliferation [6]. In addition, it may
activate certain signaling pathways via the calcium-sensing receptor (CaSR), including
E-cadherin expression promotion, beta-catenin/T cell factor activation suppression, and
p38 mitogen-activated protein kinase cascade activation [78]. There is also evidence linking
calcium to a lower risk of mutations in the KRAS gene, a significant determinant in the
carcinogenesis of CRC [6]. Vitamin D modulates molecular pathways relevant to CRC
development, including the downregulation of the COX-2 gene and the upregulation
of 15-hydroxyprostaglandin dehydrogenase (15-PDGH), leading to a reduction in local
prostaglandin levels and hence inhibiting cancer cell survival [14]. Moreover, it interferes
with β-catenin-mediated gene transcription, primarily by promoting Vitamin D receptor
(VDR) binding to β-catenin, emphasizing its suppressive role on tumor growth [79].

Other milk compounds, such as butyric acid, conjugated linoleic acid, and lactoferrin,
may also contribute to CRC prevention [80–82]. These components have shown various anti-
carcinogenic effects in in vitro and animal studies, ranging from suppressing proliferation
to enhancing immune function [80–85]. Additionally, LPH levels might impact CRC risk
by modifying the gut microbiota. For instance, studies have linked increased LPH levels
to a greater abundance of Bifidobacterium [11], which is known for augmenting antitumor
immunity and facilitating the efficacy of immunotherapy [86]. In this context, our MR
findings provide genetic support for this biological rationale, underscoring the relevance of
LPH metabolism in CRC prevention.

While no study has directly investigated the effects of LPH on CRC risk, our findings
are comparable to prior epidemiologic studies investigating CRC risk associated with LNP
status or genetic instruments for milk consumption. Two studies conducted in Finnish
and Hungarian populations observed a statistically significant increased risk of CRC risk
among LNP individuals, with ORs reported at 1.40 and 4.04, respectively [22,24]. Although
other studies conducted in British, Spanish, and Italian populations observed no association
between LNP and CRC, these had limited statistical power due to small sample sizes (44-283
CRC cases) [22,25]. Furthermore, two other studies using rs4988235 as a genetic instrument
for milk consumption found that genetically predicted milk intake was associated with a
reduced risk of CRC (reported ORs of 0.89 and 0.95) [26,27]. This is similar to the effect size
observed in our current analysis for genetically predicted LPH levels and CRC risk (OR
0.92) using the same cis-variant (rs4988235).

Our findings on the protective effect of LPH against CRC development highlight its
potential role in CRC prevention and treatment. Specifically, LNP individuals identified
through screening methods, such as lactose breath tests or genetic testing of the rs4988235
polymorphism, could benefit from specific dietary recommendations (e.g., calcium or
vitamin D supplements) to mitigate CRC risk. Such targeted interventions could not
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only enhance individual health outcomes, but also contribute to more personalized and
potentially cost-effective approaches to CRC risk management. Furthermore, LPH can
perhaps serve as a novel therapeutic target for CRC, providing potential avenues for CRC
treatment strategies.

Our study has several notable strengths. We implemented a cis-MR approach as our
primary analysis, which not only mitigates biases such as residual confounding and reverse
causation that typically complicate observational studies, but also minimizes potential hor-
izontal pleiotropy. The use of the cis-variant (rs4988235), located within the MCM6 gene
and in close proximity of the LPH-encoded gene LCT, ensures that the observed effects on
CRC can be attributed solely to variations in LPH expression, given the regulatory role of
rs4988235 [6–8]. This study’s findings suggest the potential therapeutic role of LPH for CRC,
underscoring its clinical significance. Furthermore, the utilization of all genetic variants (cis- +
trans-) served as a validation of the cis-MR approach and allowed for a series of sensitivity
analyses. These included various MR methods, such as weighted median, mode-based esti-
mation, and MR–Egger, which helped to examine the potential effects of horizontal pleiotropy
from selected genetic instruments. Previous studies may have also been subject to several
limitations, such as binary definitions of lactase persistence status and potential violations
of the relevance assumption of MR [21–27]. Our study addressed these issues by using ge-
netically predicted continuous LPH levels as the exposure and selecting genetic instruments
directly associated with LPH levels from large-scale GWAS datasets. By our calculations, the
SNPs selected in our study explained 36.43% of the variance in LPH levels, with rs4988235
displaying a strong association with LPH levels (variance explained: 33.28%). In addition,
by using distinct GWAS datasets for LPH levels (exposure) and CRC (outcome) in our two
sample MR analyses, we also reduced the potential inflation of bias associated with weak
instrument variables [87]. Furthermore, we accounted for heterogeneity introduced by specific
SNPs with outlier causal estimates by employing penalized IVW and MR–Lasso estimations.
The application of leave-one-out analyses also helped us verify the consistency of estimates
across genetic instruments and determine whether specific SNPs substantially influenced our
causal estimates. We further integrated three large-scale, independent GWAS datasets into
our MR analyses and meta-analyses, ensuring sufficient sample sizes for the outcome. Lastly,
by conducting MR analyses across different CRC subtypes, we offered a comprehensive view
of LPH’s potential biological role in various tumor locations.

However, our study has some limitations. We acknowledge that the limited number of
CRC cases in the Pan-UK Biobank, and especially the smaller number of rectal cancer cases
across all three cohorts, could have constrained our study’s statistical power. To mitigate
this limitation, we employed meta-analysis techniques, maximizing data utilization to yield
more robust results and inferences. A further limitation of our study lies in our exclusive
inclusion of individuals of European descent. It is worth noting that the prevalence of lac-
tase non-persistence significantly varies across populations; it is highest in East Asians (for
example, 85% in Chinese and 100% in South Koreans) and lowest in individuals of North-
ern European descent (for instance, 8% in Finns and 7.8% in Swedes) [8]. Consequently,
these variations in LPH levels among different populations restrict the generalizability of
our findings to individuals of European ancestry. Future research should include other
populations and delve into sex-specific causal estimates for a more nuanced understanding
of LPH and CRC.

This study, to our knowledge, is the first to explore the causal relationships between
LPH levels and the risk of CRC using MR analyses with large-scale GWAS datasets. The
findings underscore the importance of LPH and its downstream effects in influencing CRC risk.
Moreover, it may provide new insights into preventive strategies and a potential drug target
for interventions aimed at reducing the burden of CRC. Further studies are necessary to better
delineate these mechanisms and validate the potential of LPH as a biomarker for CRC risk.
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5. Conclusions

Our study suggests that there is an inverse causal relationship between LPH levels
and CRC risk. These findings, consistent across cohorts for both colon and rectal cancers,
highlight a potential causal role for LPH as a preventative biomarker. Further study is
needed to clarify the mechanisms and extend these findings to other populations.
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