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Abstract

Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents 

one of the important interactions between anthropogenic emissions related to combustion and 

natural emissions from the biosphere. This interaction has been recognized for more than 3 

decades, during which time a large body of research has emerged from laboratory, field, and 

modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through 

regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic 

aerosol. Despite its long history of research and the significance of this topic in atmospheric 

chemistry, a number of important uncertainties remain. These include an incomplete 

understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack 

of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, 

the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed 

nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and 
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non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–

climate models.

This review is the result of a workshop of the same title held at the Georgia Institute of 

Technology in June 2015. The first half of the review summarizes the current literature on NO3-

BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in 

organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current 

understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air 

quality and climate, and suggests critical research needs to better constrain this interaction to 

improve the predictive capabilities of atmospheric models.

1 Introduction

The emission of hydrocarbons from the terrestrial biosphere represents a large natural input 

of chemically reactive compounds to Earth’s atmosphere (Guenther et al., 1995; Goldstein 

and Galbally, 2007). Understanding the atmospheric degradation of these species is a critical 

area of current research that influences models of oxidants and aerosols on regional and 

global scales. Nitrogen oxides (NOx = NO + NO2) arising from combustion and microbial 

action on fertilizer are one of the major anthropogenic inputs that perturb the chemistry of 

the atmosphere (Crutzen, 1973). Nitrogen oxides have long been understood to influence 

oxidation cycles of biogenic volatile organic compounds (BVOC), especially through 

photochemical reactions of organic and hydroperoxy radical intermediates (RO2 and HO2) 

with nitric oxide (NO) (Chameides, 1978).

The nitrate radical (NO3) arises from the oxidation of nitrogen dioxide (NO2) by ozone (O3) 

and occurs principally in the nighttime atmosphere due to its rapid photolysis in sunlight and 

its reaction with NO (Wayne et al., 1991; Brown and Stutz, 2012). The nitrate radical is a 

strong oxidant, reacting with a wide variety of volatile organic compounds, including 

alkenes, aromatics, and oxygenates as well as with reduced sulfur compounds. Reactions of 

NO3 are particularly rapid with unsaturated compounds (alkenes) (Atkinson and Arey, 

2003). BVOC such as isoprene, monoterpenes, and sesquiterpenes typically have one or 

more unsaturated functionalities such that they are particularly susceptible to oxidation by 

O3 and NO3.

The potential for NO3 to serve as a large sink for BVOC was recognized more than 3 

decades ago (Winer et al., 1984). Field studies since that time have shown that in any 

environment with moderate to large BVOC concentrations, a majority of the NO3 radical 

oxidative reactions are with BVOC rather than VOC of anthropogenic origin (Brown and 

Stutz, 2012). This interaction gives rise to a mechanism that couples anthropogenic NOx 

emissions with natural BVOC emissions (Fry et al., 2009; Xu et al., 2015a). Although it is 

one of several such anthropogenic–biogenic interactions (Hoyle et al., 2011), reactions of 

NO3 with BVOC are an area of intense current interest and one whose study has proven 

challenging. These challenges arise from the more limited current database of laboratory 

data for NO3 oxidation reactions relative to those of other common atmospheric oxidants 

such as hydroxyl radical (OH) and O3. The mixing state of the night-time atmosphere and 

the limitations it imposes for characterization of nocturnal oxidation chemistry during field 
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measurements and within atmospheric models present a second challenge to this field of 

research. Figure 1 illustrates these features of nighttime NO3-BVOC chemistry.

Reactions of NO3 with BVOC have received increased attention in the recent literature as a 

potential source of secondary organic aerosol (SOA) (Pye et al., 2010; Fry et al., 2014; Boyd 

et al., 2015). This SOA source is intriguing for several reasons. First, although organics are 

now understood to comprise a large fraction of total aerosol mass, and although much of 

these organics are secondary, sources of SOA remain difficult to characterize, in part due to 

a large number of emission sources and potential chemical mechanisms (Zhang et al., 2007; 

Hallquist et al., 2009; Jimenez et al., 2009; Ng et al., 2010). Analysis of aerosol organic 

carbon shows that a large fraction is modern, arising either from biogenic hydrocarbon 

emissions or biomass burning sources (e.g., Schichtel et al., 2008; Hodzic et al., 2010). 

Conversely, field data in regionally polluted areas indicate strong correlations between 

tracers of anthropogenic emissions and SOA, which suggests that anthropogenic influences 

can lead to production of SOA from modern (i.e., non-fossil) carbon (e.g., Weber et al., 

2007). Model studies confirm that global observations are best simulated with a biogenic 

carbon source in the presence of anthropogenic pollutants (Spracklen et al., 2011). Reactions 

of NO3 with BVOC are one such mechanism that may lead to anthropogenically influenced 

biogenic SOA (Hoyle et al., 2007), and it is important to quantify the extent to which such 

reactions can explain sources of SOA.

Second, some laboratory and chamber studies suggest that SOA yields from NO3 oxidation 

of common BVOC, such as isoprene and selected monoterpenes, are greater than that for 

OH or O3 oxidation (Hallquist et al., 1997b; Griffin et al., 1999; Spittler et al., 2006; Ng et 

al., 2008; Fry et al., 2009, 2011, 2014;; Rollins et al., 2009; Boyd et al., 2015). However, 

among the monoterpenes, the SOA yields may be much more variable for NO3 oxidation 

than for other oxidants, with anomalously low SOA yields in some cases and high SOA 

yields in others (Draper et al., 2015; Nah et al., 2016b).

Third, not only is NO3-BVOC chemistry a potentially efficient SOA formation mechanism, 

it is also a major pathway for the production of organic nitrates (von Kuhlmann et al., 2004; 

Horowitz et al., 2007), a large component of oxidized reactive nitrogen that may serve as 

either a NOx reservoir or NOx sink. Results from recent field measurements have shown that 

organic nitrates are important components of ambient OA (Day et al., 2010; Rollins et al., 

2012; Fry et al., 2013; Ayres et al., 2015; Xu et al., 2015a, b; Kiendler-Scharr et al., 2016; 

Lee et al., 2016). Furthermore, within the last several years, the capability to measure both 

total and speciated gas-phase and particle-phase organic nitrates has been demonstrated (Fry 

et al., 2009, 2013, 2014; Rollins et al., 2010, 2013; Lee et al., 2016; Nah et al., 2016b). The 

life-times of organic nitrates derived from BVOC-NO3 reaction with respect to hydrolysis, 

photooxidation, and deposition play an important role in the NOx budget and formation of 

O3 and SOA. These processes appear to depend strongly on the parent VOC and oxidation 

conditions and must be better constrained for understanding organic nitrate lifetimes in the 

atmosphere (Darer et al., 2011; Hu et al., 2011; Liu et al., 2012b; Boyd et al., 2015; Pye et 

al., 2015; Rindelaub et al., 2015; Lee et al., 2016; Nah et al., 2016b).
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Fourth, incorporation of SOA yields for NO3-BVOC reactions into regional and global 

models indicates that these reactions could be a significant, or in some regions even 

dominant, SOA contributor (Hoyle et al., 2007; Pye et al., 2010, 2015; Chung et al., 2012; 

Fry and Sackinger, 2012; Kiendler-Scharr et al., 2016). Model predictions of organic aerosol 

formation from NO3-BVOC until recently have been difficult to verify directly from field 

measurements. Recent progress in laboratory and field studies have provided some of the 

first opportunities to develop coupled gas and particle systems to describe mechanistically 

and predict SOA and organic nitrate formation from NO3-BVOC reactions (Pye et al., 2015).

Finally, analyses from several recent field studies examining diurnal variation in the organic 

and/or nitrate content of aerosols conclude that nighttime BVOC oxidation through NO3 

radicals constitutes a large organic aerosol source (Rollins et al., 2012; Fry et al., 2013; Xu 

et al., 2015a, b; Kiendler-Scharr et al., 2016). Although such analyses may correct their 

estimates of aerosol production for the variation in boundary layer depth, field 

measurements at surface level are necessarily limited in their ability to accurately assess the 

atmospheric chemistry in the overlying residual layer or even the gradients that may exist 

within the relatively shallow nocturnal boundary layer (Stutz et al., 2004; Brown et al., 

2007b). Thus, although there is apparent consistency between recent results from both 

modeling and field studies, the vertically stratified structure of the nighttime atmosphere 

makes such comparisons difficult to evaluate critically. There is a limited database of 

nighttime aircraft measurements that has probed this vertical structure with sufficient 

chemical detail to assess NO3-BVOC reactions (Brown et al., 2007a; Brown et al., 2009), 

and some of these data show evidence for an OA source related to this chemistry, especially 

at low altitude (Brown et al., 2013). A larger database of aircraft and/or vertically resolved 

measurements is required, however, for comprehensive comparisons to model predictions.

The purpose of this article is to review the current literature on the chemistry of NO3 and 

BVOC to critically assess the current state of the science. The review focuses on BVOC 

emitted from terrestrial vegetation. The importance of NO3 reactions with reduced sulfur 

compounds, such as dimethyl sulfide in marine ecosystems, is well known (Platt et al., 1990; 

Yvon et al., 1996; Allan et al., 1999, 2000; Vrekoussis et al., 2004; Stark et al., 2007; 

Osthoff et al., 2009) but is outside of the scope of this review. Key uncertainties include 

chemical mechanisms, yields of major reaction products such as SOA and organic nitrogen, 

the potential for NO3 and BVOC to interact in the ambient atmosphere, and the implications 

of that interaction for current understanding of air quality and climate. The review stems 

from an International Global Atmospheric Chemistry (IGAC) and US National Science 

Foundation (NSF) sponsored workshop of the same name held in June 2015 at the Georgia 

Institute of Technology (Atlanta, GA, USA). Following this introduction, Sect. 2 of this 

article reviews the current literature in several areas relevant to the understanding of NO3-

BVOC atmospheric chemistry. Section 3 outlines perspectives on the implications of this 

chemistry for understanding climate and air quality, its response to current emission trends, 

and its relevance to implementation of control strategies. Finally, the review concludes with 

an assessment of the impacts of NO3-BVOC reactions on air quality, visibility, and climate.
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2 Review of current literature

This section contains a literature review of the current state of knowledge of NO3-BVOC 

chemistry with respect to (1) reaction rate constants and mechanisms from laboratory and 

chamber studies; (2) secondary organic aerosol yields, speciation, and particle-phase 

chemistry; (3) heterogeneous reactions of NO3 and their implications for NO3-BVOC 

chemistry; (4) instrumental methods for analysis of reactive nitrogen compounds, including 

NO3, organic nitrates, and nitrogen-containing particulate matter; (5) field observations 

relevant to the understanding of NO3 and BVOC chemistry; and (6) models of NO3-BVOC 

chemistry.

2.1 NO3-BVOC reaction rates and chemical mechanisms

2.1.1 Reaction rates—Among the numerous BVOC emitted into the troposphere, kinetic 

data for NO3 oxidation have been provided for more than 40 compounds. The most emitted/

important BVOC have been subject to several kinetic studies, using both absolute and 

relative methods, which are evaluated to determine rate constants by IUPAC (Table 1). This 

is the case for isoprene, α-pinene, β-pinene, and 2-methyl-3-buten-2-ol (MBO). However, 

for isoprene, β-pinene, and MBO, rate constants obtained by different studies range over a 

factor of 2. For some other terpenes, only few kinetic studies have been carried out, with at 

least one absolute rate determination. This is the case for sabinene, 2-carene, camphene, d-

limonene, α-phellandrene, myrcene, γ -terpinene, and terpinolene. For these compounds, 

experimental data agree within 30–40 %, except α-phellandrene and terpinolene for which 

discrepancies are larger. For other BVOC, including other terpenes, sesquiterpenes, and 

oxygenated species, rate constants are mostly based on a single determination and highly 

uncertain. For these compounds, further rate constant determinations and end-product 

measurements are essential to better evaluate the role of NO3 in their degradation. The 

ability to predict the NO3-BVOC rate constants using structure–activity relationships 

(SARs) has been improved. A recent study (Kerdouci et al., 2010; Kerdouci, 2014) 

presented a new SAR parameterization based on 180 NO3-VOC reactions. The method is 

capable of predicting 90 % of the rate constants within a factor of 2.

2.1.2 Mechanisms—In general, NO3 reacts with unsaturated VOC by addition to a double 

bond (Wayne et al., 1991), though hydrogen abstraction may occur, most favorably for 

aldehydic species (Zhang and Morris, 2015). The location and likelihood of the NO3 

addition to a double bond depends on the substitution on each end of the double bond, with 

the favored NO3 addition position being the one resulting in the most substituted carbon 

radical. In both cases, molecular oxygen adds to the resulting radical to form a peroxy 

radical (RO2). For example, the major RO2 isomers produced from isoprene and β-pinene 

oxidation via NO3 are shown in Fig. 2. The RO2 distribution for isoprene oxidation by OH 

has been shown to be dependent on the RO2 lifetime (Peeters et al., 2009, 2014), but no 

similar theoretical studies have been conducted on the NO3 system. Schwantes et al. (2015) 

determined the RO2 isomer distribution at an RO2 lifetime of ~ 30 s for isoprene oxidation 

via NO3. More theoretical and experimental studies are needed to understand the influence 

of RO2 lifetime, which is long at night (~ 50–200 s for isoprene; Schwantes et al., 2015), on 
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the RO2 isomer distribution, as this distribution influences the formation of all subsequent 

products (Fig. 2).

The fate of RO2 determines the subsequent chemistry. During the nighttime in the ambient 

atmosphere, RO2 will isomerize or react with another RO2, NO3, or HO2. In order to 

monitor RO2 isomerization reaction products, RO2 life-times must be long in laboratory 

studies similar to the ambient atmosphere (e.g., Peeters et al., 2009; Crounse et al., 2011). 

The NO3 plus BVOC (NO3+ BVOC) reaction can be a source of nighttime HO2 and OH 

radicals (Platt et al., 1990). Reaction with NO is a minor peroxy radical fate at night (Pye et 

al., 2015; Xiong et al., 2015). Few laboratory studies have contrasted the fates of RO2 and 

their impacts on gas-phase oxidation and aerosol formation (Ng et al., 2008; Boyd et al., 

2015; Schwantes et al., 2015). Boyd et al. (2015) examined how RO2 fate influences SOA 

formation and yields, and studied the competition between the RO2-NO3 and RO2-HO2 

channels for β-pinene. Boyd et al. (2015) determined that the SOA yields for both channels 

are comparable, indicating that the volatility distribution of products may not be very 

different for the different RO2 fates. In contrast, the results from NO3 oxidation of smaller 

BVOC, such as isoprene, show large differences in SOA yields depending on the RO2 fate 

(Ng et al., 2008), with larger SOA yields for second-generation NO3 oxidation (Rollins et 

al., 2009).

The well-established gas-phase first-generation products from the major β- and δ-RO2 

isomers formed from isoprene oxidation are shown in Fig. 2 (adapted from Schwantes et al., 

2015). Some of the products are common between all the pathways, such as methyl vinyl 

ketone for the dominant β-RO2 isomer. However, some products are unique to only one 

channel (e.g., hydroxy nitrates form from RO2-RO2 reactions and nitrooxy hydroperoxides 

form from RO2-HO2 reactions). In this case, the overall nitrate yield and the specific nitrates 

formed from isoprene depend on the initial RO2 isomer distribution and the fate of the RO2. 

Furthermore, the distribution of gas-phase products will then influence the formation of 

SOA. For isoprene, the SOA yields from RO2-RO2 reactions are ~ 2 times greater than the 

yield from RO2-NO3 reactions (Ng et al., 2008). The less well-established first-generation 

products from β-pinene oxidation are also shown in Fig. 2 (adapted from Boyd et al., 2015). 

There are still lingering uncertainties (shown in red) in the first-generation products formed 

from β-pinene oxidation. The product yields from the RO2+ HO2 channel are not well 

constrained, largely due to the unavailability of authentic standards. In Fig. 2, a carbonyl 

product is assumed to form directly from the RO2 + HO2 reaction instead of proceeding 

through an alkoxy intermediate consistent with theoretical calculations from different 

compounds (Hou et al., 2005a, b; Praske et al., 2015). This is also uncertain, as few 

theoretical studies have been conducted on large molecules like β-pinene. The identification 

of the carbonyl compound(s) produced from RO2 reaction with NO3, RO2, or HO2 is 

unknown. Hallquist et al. (1999) detected a low molar yield (0–2 %; Table 2) of nopinone 

from β-pinene NO3 oxidation. Further laboratory studies identifying other carbonyl products 

are recommended.

Given the limited number of studies that have considered the fate of the peroxy radical, 

generalizations cannot yet be made for all VOC. Indeed, more studies are needed to 

determine systematically how gas-phase products and SOA yields are influenced by 
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reactions of RO2. More specifically, for all chamber experiments, constraining the fate and 

lifetime of RO2 is required to attribute product and SOA yields to a specific pathway. As 

shown in Table 2 in Sect. 2.2, the nitrate yields and SOA yields for NO3-induced 

degradation of many VOC vary significantly between different studies. This is likely, in part, 

a result of each experiment having a different distribution of RO2 fates, but may also arise 

from vapor wall losses.

In general, there are very few mechanistic studies for NO3 relative to other oxidants. 

Furthermore, the elucidation of mechanisms is limited by the fact that most studies provide 

overall yields of organic nitrates (without individual identification of the species) and/or 

identification (without quantification) due to the lack of standards.

2.2 Organic aerosol yields, speciation, and particle-phase chemistry

Several papers have reported chamber studies to measure the organic aerosol yield and/or 

gaseous and aerosol-phase oxidation product distribution from NO3-BVOC reactions. These 

are summarized in Table 2. In general, these experimental results show that monoterpenes 

are efficient sources of SOA, with reported yields variable but consistently above 20 %, with 

the notable exception of α-pinene (yields 0–15 %). This anomalous monoterpene also has a 

much larger product yield of carbonyls instead of organic nitrates compared to the others. 

This difference among monoterpenes was investigated in the context of the competition 

between O3 and NO3 oxidation (Draper et al., 2015), in which shifting from O3-dominated 

to NO3-dominated oxidation was observed to suppress SOA formation from α-pinene, but 

not from β-pinene, Δ-carene, or limonene. The smaller isoprene has substantially lower SOA 

yields (2–24 %), and the only sesquiterpene studied, β-caryophyllene, has a much larger 

yield (86–150 %) than the monoterpenes.

In general, these chamber experiments are conducted under conditions that focus on first-

generation oxidation only, but further oxidation can continue to change SOA loadings in the 

real atmosphere (e.g., Rollins et al., 2009; Chacon-Madrid et al., 2013). Recent experiments 

showed that particulate organic nitrates formed from β-pinene-NO3 are resilient to 

photochemical aging, while those formed from α-pinene-NO3 evaporate more readily (Nah 

et al., 2016b).

Other chamber studies have not reported SOA mass yields or gas-phase product 

measurements but have otherwise demonstrated the importance of NO3-BVOC reactions to 

SOA production. These studies have identified β-pinene and Δ-carene as particularly 

efficient sources of SOA upon NO3 oxidation (Hoffmann et al., 1997), confirmed the greater 

aerosol-forming potential from β-pinene versus α-pinene (Bonn and Moortgat, 2002), and 

reported Fourier transform infrared spectroscopy (FTIR) and aerosol mass spectrometry 

(AMS) measurements of the composition of organic nitrates detected in aerosol formed from 

NO3-isoprene, α-pinene, β-pinene, Δ-carene, and limonene reactions (Bruns et al., 2010).

Relative humidity (RH) can be an important parameter, as it affects the competition between 

NO3-BVOC reactions and heterogeneous uptake of N2O5. Among existing laboratory 

studies, only a few have focused on the effect of RH on SOA formation from NO3-initiated 

oxidation (Bonn and Moortgat, 2002; Spittler et al., 2006; Fry et al., 2009; Boyd et al., 
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2015). The impact of RH might be important, especially at night and during the early 

morning when RH near the surface is high and NO3 radical chemistry is competitive with O3 

and OH reactions. However, observations of the effect of water on SOA formation 

originating from NO3 oxidation hint at a varied role. Spittler et al. (2006) reported lower 

SOA yields under humid conditions, but other studies did not observe a significant effect 

(Bonn and Moortgat, 2002; Fry et al., 2009; Boyd et al., 2015). Among the important effects 

of water is its role as a medium for hydrolysis. In laboratory studies, primary and secondary 

organic nitrates were found to be less prone to aqueous hydrolysis than tertiary organic 

nitrates (Darer et al., 2011; Hu et al., 2011). First-generation organic nitrates retaining 

double bonds may also hydrolyze relatively quickly, especially in the presence of acidity 

(Jacobs et al., 2014; Rindelaub et al., 2015). Depending on the relative amount of these 

different types of organic nitrates, the overall hydrolysis rate could be different for organic 

nitrates formed from NO3 oxidation and photooxidation in the presence of NOx (Boyd et al., 

2015). Recently, there has been increasing evidence from field measurements that organic 

nitrates hydrolyze in the particle phase, producing HNO3 (Liu et al., 2012b; Browne et al., 

2013). This has been only a limited focus of chamber experiments to date (Boyd et al., 

2015). In addition to the effect of RH, particle-phase acidity is known to affect SOA 

formation from ozonolysis and OH reaction (e.g., Gao et al., 2004; Tolocka et al., 2004). 

Thus far, only one study has examined the effect of acidity on NO3-initiated SOA formation 

and found a negligible effect (Boyd et al., 2015). Notably, an effect of acidity was observed 

for the hydrolysis of organic nitrates produced in photochemical reactions (Szmigielski et 

al., 2010; Rindelaub et al., 2015). While much organic nitrate aerosol is formed via NO3+ 

BVOC reactions, some fraction can also form from RO2+ NO chemistry. Rollins et al. 

(2010) observed the organic nitrate moiety in 6–15 % of total SOA mass generated from 

high-NOx photooxidation of limonene, α-pinene, Δ3-carene, and tridecane. A very recent 

study of Berkemeier et al. (2016) showed that organic nitrates accounted for ~ 40 % of SOA 

mass during initial particle formation in α-pinene oxidation by O3 in the presence of NO, 

decreasing to ~ 15 % upon particle growth to the accumulation-mode size range. They also 

observed a tight correlation (R2 = 0.98) between organic nitrate content and SOA particle 

number concentrations. This implies that organic nitrates may be among the extremely low 

volatility organic compounds (ELVOC) (Ehn et al., 2014; Tröstl et al., 2016) that play a 

critical role in nucleation and nanoparticle growth.

2.3 Heterogeneous and aqueous-phase NO3 processes

The NO3 radical is not only a key nighttime oxidant of organic (and especially biogenic) 

trace gases but it can also play an important role in the aqueous phase of tropospheric clouds 

and deliquesced particles (Chameides, 1978; Wayne et al., 1991; Herrmann and Zellner, 

1998; Rudich et al., 1998). Whilst the reaction of NO3 with organic particles and aqueous 

droplets in the atmosphere is believed to represent only an insignificant fraction of the 

overall loss rate for NO3, it can have a substantial impact on the chemical and physical 

properties of the particle by modifying its lifetime, oxidation state, viscosity, and 

hygroscopic properties and thus its propensity to act as a cloud condensation nucleus 

(Rudich, 2003).
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Biogenic VOC include, but are not limited to the isoprenoids (isoprene, mono-, and 

sesquiterpenes) as well as alkanes, alkenes, carbonyls, alcohols, esters, ethers, and acids 

(Kesselmeier and Staudt, 1999). Recent measurements indicate that biogenic emissions of 

aromatic trace gases are also significant (Misztal et al., 2015). The gas-phase degradation of 

BVOC leads to the formation of a complex mixture of organic trace gases including 

hydroxyl- and nitrate-substituted oxygenates which can transfer to the particle phase by 

condensation or dissolution. Our present understanding is that non-anthropogenic SOA has a 

large contribution from isoprenoid degradation.

As is generally the case for laboratory studies of heterogeneous processes, most of the 

experimental investigations on heterogeneous uptake of NO3 to organic surfaces have dealt 

with single-component systems that act as surrogates for the considerably more complex 

mixtures found in atmospheric SOA. A further level of complexity arises when we consider 

that initially reactive systems, e.g., containing condensed or dissolved unsaturated 

hydrocarbons, can become deactivated as SOA ages, single bonds replace double bonds, and 

the oxygen-to-carbon ratio increases.

We summarize the results of the laboratory studies to provide a rough guide to NO3 

reactivity on different classes of organics which may be present in SOA and note that further 

studies of NO3 uptake to biogenic SOA which was either generated and aged under well-

defined conditions (Fry et al., 2011) or sampled from the atmosphere are required to confirm 

predictions of uptake efficiency based on the presently available database.

2.3.1 Heterogeneous processes—For some particle-phase organics, the reaction with 

NO3 is at least as important as other atmospheric oxidants such as O3 and OH (Shiraiwa et 

al., 2009; Kaiser et al., 2011). The lifetime (τ) of a single component, liquid organic particle 

with respect to loss by reaction with NO3 at concentration [NO3] is partially governed by the 

uptake coefficient (γ) (Robinson et al., 2006; Gross et al., 2009):

τliquid =
2ρorgNADp

3Morgcγ[NO3] , (1)

where Dp is the particle diameter, ρorg and Morg are the density and molecular weight of the 

organic component, respectively, c̄ is the mean molecular velocity of gas-phase NO3, and 

NA is Avogadro number. Thus, defined, τ is the time required for all the organic molecules 

in a spherical (i.e., liquid) particle to undergo a single reaction with NO3.

Recent studies have shown that organic aerosols can adopt semi-solid (highly viscous) or 

amorphous solid (crystalline or glass) phase states, depending on the composition and 

ambient conditions (Virtanen et al., 2010; Koop et al., 2011; Renbaum-Wolff et al., 2013). 

Typically, the bulk phase diffusion coefficients of NO3 are ~ 10−7–10−9 cm2 s−1 in semi-

solid and ~ 10−10 cm2 s−1 in solids (Shiraiwa et al., 2011). Slow bulk diffusion of NO3 in a 

viscous organic matrix can effectively limit the rate of uptake (Xiao and Bertram, 2011; 

Shiraiwa et al., 2012). Similarly, the solubility may be different in a concentrated, organic 

medium. If bulk diffusion is slow, the reaction may be confined to the near-surface layers of 
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the particle or bulk substrate. The presence of organic coatings on aqueous aerosols was 

found to suppress heterogeneous N2O5 hydrolysis by providing a barrier through which 

N2O5 needs to diffuse to undergo hydrolysis (Alvarado et al., 1998; Cosman et al., 2008; 

Grifiths et al., 2009). Reactive uptake by organic aerosols is expected to exhibit a 

pronounced decrease at low RH and temperature, owing to a phase transition from viscous 

liquid to semi-solid or amorphous solid (Arangio et al., 2015). Therefore, the presence of a 

semi-solid matrix may effectively shield reactive organic compounds from chemical 

degradation in long-range transport in the free troposphere.

To get an estimate of the processing rate of BVOC-derived SOA, we have summarized the 

results of several laboratory studies to provide a rough guide to NO3 reactivity on different 

classes of organics that may be present in SOA (Fig. 3). A rough estimate of the reactivity of 

NO3 to freshly generated, isoprenoid-derived SOA, which still contains organics with double 

bonds (e.g., from diolefinic monoterpenes such as limonene), may be obtained by 

considering the data on alkenes and unsaturated acids, where the uptake coefficient is 

generally close to 0.1.

The classes of organics for which heterogeneous reactions with NO3 have been examined 

are alkanoic/alkenoic acids, alkanes and alkenes, alcohols, aldehydes, polyaromatic 

hydrocarbons (PAHs), and secondary organic aerosols. Laboratory studies have used either 

pure organic substrates, with the organic of interest internally mixed in an aqueous particle; 

as a surface coating, with the reactive organic mixed in a nonreactive organic matrix; or in 

the form of self-assembling monolayers. The surrogate surface may be available as a 

macroscopic bulk liquid (or frozen liquid) or in particulate form and both gas-phase and 

particle-phase analyses have been used to derive kinetic parameters and investigate products 

formed.

In the gas phase, the NO3 radical reacts slowly (by H-abstraction) with alkanes, more rapidly 

with aldehydes due to the weaker C-H bond of the carbonyl group, and most readily with 

alkenes and aromatics via electrophilic addition. This trend in reactivity is also observed in 

the condensed-phase reactions of NO3 with organics so that long-chain organics, for which 

non-sterically hindered addition to a double bond is possible, and aromatics are the most 

reactive. In very general terms, uptake coefficients are in the range of 1–10 × 10−3 for 

alkanes, alcohols, and acids without double bonds, 2–200 × 10−3 for alkenes with varying 

numbers of double bonds, 3–1000 × 10−3 for acids with double bonds again depending on 

the number of double bonds, and 100–500 × 10−3 for aromatics. These trends are illustrated 

in Fig. 3 which plots the experimental data for the uptake of NO3 to single-component 

organic surfaces belonging to different classes of condensable organics. Condensed-phase 

organic nitrates have been frequently observed following interaction of NO3 with organic 

surfaces (see below).

Saturated hydrocarbons: Uptake of NO3 to saturated hydrocarbons is relatively slow, with 

uptake coefficients close to 10−3. Moise et al. (2002) found that (for a solid sample) uptake 

to a branched-chain alkane was more efficient than for a straight-chain alkane, which is 

consistent with known trends in gas-phase reactivity of NO3. The slow surface reaction with 

alkanes enables both surface and bulk components of the reaction to operate in parallel. The 
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observation of RONO2 as product is explained (Knopf et al., 2006; Gross and Bertram, 

2009) by processes similar to those proceeding in the gas phase, i.e., abstraction followed by 

formation of peroxy and alkoxy intermediates which react with NO2 and NO3 to form the 

organic nitrate.

Unsaturated hydrocarbons: With exception of the data of Moise et al. (2002), the up-take 

of NO3 to an unsaturated organic surface is found to be much more efficient than to the 

saturated analogue. The NO3 uptake coefficient for, e.g., squalene, is at least an order of 

magnitude more efficient than for squalane (Xiao and Bertram, 2011; Lee et al., 2013). The 

location of the double bond is also important and the larger value for γ found for a self-

assembling monolayer of NO3+ undec-10-ene-1-thiol compared to liquid, long-chain 

alkenes is due to the fact that the terminal double bond is located at the interface and is thus 

more accessible for a gas-phase reactant (Gross and Bertram, 2009). NO3 uptake to mixtures 

of unsaturated methyl oleate in a matrix of saturated organic was found to be consistent with 

either a surface or bulk reaction (Xiao and Bertram, 2011). The formation of condensed-

phase organic nitrates and simultaneous loss of the vinyl group indicates that the reaction 

proceeds, as in the gas phase, by addition of NO3 to the double bond followed by reaction of 

NO3 (or NO2) with the resulting alkyl and peroxy radicals formed (Zhang et al., 2014b).

Saturated alcohols and carbonyls: Consistent with reactivity trends for NO3 in the gas 

phase, the weakening of some C-H bonds in oxidized, saturated organics results in a more 

efficient interaction of NO3 than for the non-oxidized counterparts although, as far as the 

limited dataset allows trends to be deduced, the gas-phase reactivity trend of polyalcohol 

being greater than alkanoate appears to be reversed in the liquid phase (Gross et al., 2009). 

For multicomponent liquid particles, the uptake coefficient will also depend on the particle 

viscosity (Iannone et al., 2011) though it has not been clearly established if the reaction 

proceeds predominantly at the surface or throughout the particle (Iannone et al., 2011). The 

reaction products are expected to be formed via similar pathways as seen in the gas phase, 

i.e., abstraction of the aldehydic-H atom for aldehydes and abstraction of an H atom from 

either the O-H or adjacent α-CH2 group for alcohols prior to reaction of NO2 and NO3 with 

the ensuing alkyl and peroxy radicals (Zhang and Morris, 2015).

Organic acids: The efficiency of uptake of NO3 to unsaturated acids is comparable to that 

found with other oxidized, saturated organics (Moise et al., 2002) suggesting that the 

reaction proceeds, as in the gas phase, via abstraction rather than addition. Significantly 

larger uptake coefficients have been observed for a range of unsaturated, long-chain acids, 

with γ often between 0.1 and 1 (Gross et al., 2009; Knopf et al., 2011; Zhao et al., 2011a). γ 
depends on the number and position (steric factors) of the double bond. For example, the 

uptake coefficient for abietic acid is a factor of 100 lower than for linoleic acid (Knopf et al., 

2011). The condensed-phase products formed in the interaction of NO3 with unsaturated 

acids are substituted carboxylic acids, including hydroxy nitrates, carbonyl nitrates, 

dinitrates, and hydroxy dinitrates (Hung et al., 2005; Docherty and Ziemann, 2006; McNeill 

et al., 2007; Zhao et al., 2011a).
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Aromatics: The interaction of NO3 with condensed-phase aromatics and PAHs results in the 

formation of a large number of nitrated aromatics and nitro PAHs. Similar to the gas-phase 

mechanism, the reaction is initiated by addition of NO3 to the aromatic ring, followed by 

breaking of an N-O bond to release NO2 to the gas phase and forming a nitrooxy-

cyclohexadienyl-type radical which can further react with O2, NO2, or undergo internal 

rearrangement to form hydroxyl species (Gross and Bertram, 2008; Lu et al., 2011). The 

uptake coefficients are large and comparable to those derived for the unsaturated fatty acids.

The literature results on the interaction of NO3 with organic substrates are tabulated in Table 

S1 in the Supplement, in which the uptake coefficient is listed (if available) along with the 

observed condensed- and gas-phase products.

2.3.2 Aqueous-phase reactions—The in situ formation of NO3 (e.g., electron transfer 

reactions between nitrate anions and other aqueous radical anions such as SOx
−, sulfur-

containing radical anions, or Cl2
−) is generally of minor importance and the presence of NO3 

in aqueous particles is largely a result of transfer from the gas phase (Herrmann et al., 2005; 

Tilgner et al., 2013). Concentrations of NO3 in tropospheric aqueous solutions cannot be 

measured in situ, and literature values are based on multiphase model predictions (Herrmann 

et al., 2010). Model studies with the chemical aqueous-phase radical mechanism 

(CAPRAM; Herrmann et al., 2005; Tilgner et al., 2013) predict [NO3] between 1 × 6 × 

10−16 and 2.7 × 10−13 mol L−1. High NO3 concentration levels are associated with urban 

clouds, while in rural and marine clouds these levels are an order of magnitude lower. Since 

the NO3 concentrations are related to the NOx budget, typically higher NO3 concentrations 

are present under urban cloud conditions compared to rural and marine cloud regimes.

NO3 radicals react with dissolved organic species via three different pathways: (i) by H-

atom abstraction from saturated organic compounds, (ii) by electrophilic addition to double 

bonds within unsaturated organic compounds, and (iii) by electron transfer from dissociated 

organic acids (Huie, 1994; Herrmann and Zellner, 1998). For a detailed overview on 

aqueous-phase NO3 radical kinetics, the reader is referred to several recent summaries (Neta 

et al., 1988; Herrmann and Zellner, 1998; Ross et al., 1998; Herrmann, 2003; Herrmann et 

al., 2010, 2015). Compared to the highly reactive and non-selective OH radical, the NO3 

radical is characterized by a lower reactivity and represents a more selective aqueous-phase 

oxidant. The available kinetic data indicate that the reactivity of NO3 radicals with organic 

compounds in comparison to the two other key radicals (OH, SO4
−) is as follows: 

OH > SO4
− ≫ NO3 (Herrmann et al., 2015).

In Table S2, we list kinetic parameters for reaction of NO3 with aliphatic organic 

compounds as presently incorporated in the CAPRAM database (Bräuer et al., 2017). 

Typical ranges of rate constants (in M−1 s−1) for reactions of NO3 in the aqueous phase are 

106–107 for saturated alcohols, carbonyls, and sugars; 104–106 for protonated aliphatic 

mono- and dicarboxylic acids, with higher values for oxygenated acids; 106–108 for 

deprotonated aliphatic mono- and dicarboxylic acids (higher values typically for oxygenated 

acids); 107–109 for unsaturated aliphatic compounds; and 108–2 × 109 for aromatic 
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compounds (without nitro/acid functionality). The somewhat larger rate constants for 

deprotonated aliphatic mono- and dicarboxylic acids, unsaturated aliphatic compounds and 

aromatic compounds is related to the occurrence of electron transfer reactions and addition 

reaction pathways, which are often faster than H-abstraction reactions.

Many aqueous-phase NO3 reaction rate constants, even for small oxygenated organic 

compounds, are not available in the literature and have to be estimated. In the absence of 

SARs for NO3 radical reactions with organic compounds, Evans–Polanyi-type reactivity 

correlations are used to predict kinetic data for H-abstraction NO3 radical reactions. The 

latest correlation for NO3 reactions in aqueous solution based on 38 H-abstraction reactions 

of aliphatic alcohols, carbonyl compounds and carboxylic acids was published by Hoffmann 

et al. (2009):

log (kH) = (39.9 ± 5.4) − (0.087 ± 0.014) × BDE, (2)

where BDE is the bond dissociation energy (in kJ mol−1). The correlation is quite tight, with 

a correlation coefficient of R = 0.9.

A direct comparison of the aqueous-phase OH and NO3 radical rate constants (k298 K) of 

organic compounds from different compound classes is presented in Fig. 4, which shows 

that the NO3 radical reaction rate constants for many organic compounds are about 2 orders 

of magnitude smaller than respective OH rate constants. In contrast, deprotonated 

dicarboxylic acids can react with NO3 via electron transfer and have similar rate constants 

for OH reaction. Rate constants for OH and NO3 with alcohols and diols/polyols are well 

correlated (R2 values are given in Table S3), whereas those rate constants for carbonyl 

compounds and diacids have a lower degree of correlation.

Figure 4b shows a comparison of the modeled chemical turnovers of reactions of organic 

compounds with OH versus NO3 radicals distinguished for different compound classes. The 

simulations were performed with the SPACCIM model (Wolke et al., 2005) for the urban 

summer CAPRAM scenario (see Tilgner et al., 2013 for details) using the master chemical 

mechanism (MCM) 3.2/CAPRAM 4.0 mechanism (Rickard, 2015; Bräuer et al., 2017) 

which has in total 862 NO3 radical reactions with organic compounds.

Most of the data lie under the 1 : 1 line, indicating that, for most of the organic compounds 

considered, chemical degradation by OH is more important than by NO3, with a significant 

fraction of the data lying close to a 10 : 1 line, though OH fluxes sometimes exceed NO3 

fluxes by a factor of 103 – 104. Approximate relative flux ratios (NO3 / OH) for different 

classes of organic are 10−1 – 10−2 for alcohols (including diols and polyols) and carbonyl 

compounds, 10−1 – 10−4 for undissociated monoacids and diacids, ~ 1 (or larger) for 

dissociated monoacids, 10−2 – > 10 for dissociated diacids, and 10−2–1 for organic nitrates. 

For carboxylate ions, NO3-initiated electron transfer is thus the dominant oxidation pathway. 

As OH-initiated oxidation proceeds via an H-abstraction, high NO3-OH flux ratios can be 

observed for carboxylate ions but not for protonated carboxylic acids.
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Overall, Fig. 4b shows that, over a 4-day summer cycle, NO3 radical reactions can compete 

with OH radical reactions in particular for protonated carboxylic acids and multifunctional 

compounds. Nevertheless, aqueous NO3 radical reactions with organics will become more 

important during winter or at higher latitudes, where photochemistry as the main source of 

OH is less important. Finally, it should be noted that NO3 aqueous-phase nighttime 

chemistry will influence the concentration levels of many aqueous-phase reactants available 

for reaction during the next day.

2.4 Instrumental methods

Atmospheric models of the interaction of NO3 with BVOC rely on experimental data 

gathered in both the laboratory and the field. These experimental data are used to define 

model parameters and to evaluate model performance by comparison to observed quantities. 

Instrumentation for measurements of nitrogen-containing species, oxidants, and organic 

compounds, including NOx, O3, NO3, BVOC, and oxidized reactive nitrogen compounds, 

are all important to understand the processes at work. Of particular importance to the subject 

of this review is the characterization of organic nitrates, which are now known to exist in 

both the gas and particle phases and whose atmospheric chemistry is complex. This section 

reviews historical and current experimental methods used for elucidating NO3-BVOC 

atmospheric chemistry.

2.4.1 Nitrate radical measurements—Optical absorption spectroscopy has been the 

primary measurement technique for NO3. It usually makes use of two prominent absorption 

features of NO3 near 623 and 662 nm. Note that the dissociation limit of the NO3 molecule 

lies between the two absorption lines (Johnston et al., 1996); thus, illumination by 

measurement radiation at the longer wave-length band does not lead to photolysis of NO3. 

The room temperature absorption cross section of NO3 at 662 nm is ~ 2 × 10−17 cm2 molec
−1 and increases at lower temperature (Yokelson et al., 1994; Osthoff et al., 2007). Thus, at a 

typical minimum detectable optical density (reduction of the intensity compared to no 

absorption) and a light-path length of 5 km, a detection limit of 107 molec cm−3 or ~ 0.4 ppt 

(under standard conditions) is achieved.

Initial measurements of NO3 in the atmosphere were long-path averages using light paths 

between either the sun or the moon (e.g., Noxon et al., 1978) and the receiving spectrometer 

(also called passive techniques because natural light sources were used) or between an 

artificial light source and spectrometer over a distance of several kilometers (active 

techniques; e.g., Platt et al., 1980). Passive techniques were later extended to yield NO3 

vertical profiles (e.g., Weaver et al., 1996). In recent years, resonator cavity techniques 

allowed construction of very compact instruments capable of performing in situ 

measurements of NO3 with absorption spectroscopy (see in situ measurement techniques 

below).

An important distinction between the techniques is whether NO3 can be deliberately or 

inadvertently removed from the absorption path as part of the observing strategy. Long-path 

absorption spectroscopy does not allow control over the sample for obtaining a zero 

background by removing NO3 (Category 1). Resonator techniques (at least as long as the 
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resonator is encased) allow deliberate removal of NO3 from the absorption path as part of 

the measurement sequence and may also result in inadvertent removal during sampling 

(Category 2).

For instruments of Category 1, the intensity without absorber (I0) cannot be easily detected. 

Therefore, the information about the absorption due to NO3 (and any other trace gas) has to 

be determined from the structure of the absorption, which is usually done by using 

differential optical absorption spectroscopy (DOAS) (Platt and Stutz, 2008), which relies on 

the characteristic fingerprint of the NO3 absorption structure in a finite wavelength range 

(about several 10 nm wide). Thus, a spectrometer of sufficient spectral range and resolution 

(around 0.5 nm) is required.

Instruments of Category 2 can determine the NO3 concentration from the difference (or 

rather log of the ratio) of the intensity with and without NO3 in the measurement volume. In 

this case, only an intensity measurement at a single wavelength (typically of a laser) is 

necessary, and specificity can be achieved through chemical titration with NO (Brown et al., 

2001). However, enhanced specificity without chemical titration can be gained by combining 

resonator techniques with DOAS detection. It should be noted that the advantage of a closed 

cavity to be able to remove (or manipulate) NO3 comes at the expense of potential wall 

losses, which have to be characterized. Such instruments have the advantage of being able to 

also detect N2O5, which is in thermal equilibrium with NO3 and can be quantitatively 

converted to NO3 by thermal dissociation (Brown et al., 2001, 2002).

Another complication arises from the presence of water vapor and oxygen lines in the 

wavelength range of strong NO3 absorptions. To compensate for these potential 

interferences in open-path measurements (where NO3 cannot easily be removed), daytime 

measurements are frequently used as reference because NO3 levels are typically very low 

(but not necessarily negligibly low) (Geyer et al., 2003). Thus, a good fraction of the 

reported NO3 data (in particular, older data) represents day–night differences.

Passive long-path remote sensing techniques: Measurements of the NO3 absorption 

structure using sunlight take advantage of the fact that NO3 is very quickly photolyzed by 

sunlight (around 5 s lifetime during the day) allowing for vertically resolved measurements 

during twilight (e.g., Aliwell and Jones, 1998; Allan et al., 2002; Coe et al., 2002; von 

Friedeburg et al., 2002). The fact that the NO3 concentration is nearly zero due to rapid 

photolysis in the directly sunlit atmosphere, while it is largely undisturbed in a shadowed 

area, can be used to determine NO3 vertical concentration profiles during sunrise using the 

moon as a light source (Smith and Solomon, 1990; Smith et al., 1993; Weaver et al., 1996). 

Alternatively, the time series of the NO3 column density derived from scattered sunlight 

originating from the zenith (or from a viewing direction away from the sun) during sunrise 

can be evaluated to yield NO3 vertical profiles (Allan et al., 2002; Coe et al., 2002; von 

Friedeburg et al., 2002).

Nighttime NO3 total column data have been derived by spectroscopy of moonlight and 

starlight (Naudet et al., 1981), the intensity of which is about 4–5 orders of magnitude lower 

than that of sunlight. Thus, photolysis of NO3 by moonlight is negligible. A series of 
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moonlight NO3 measurements have been reported (Noxon et al., 1980; Noxon, 1983; 

Sanders et al., 1987; Solomon et al., 1989, 1993; Aliwell and Jones, 1996a, b; Wagner et al., 

2000). These measurements yield total column data of NO3, the sum of tropospheric and 

stratospheric partial columns. Separation between stratospheric and tropospheric NO3 can be 

accomplished (to some extent) by the Langley plot method (Noxon et al., 1980), which takes 

advantage of the different dependence of tropospheric and stratospheric NO3 slant column 

density on the lunar zenith angle.

Active long-path techniques: A large number of NO3 measurements have been made using 

the active long-path DOAS technique (Platt et al., 1980, 1981, 1984; Pitts et al., 1984; 

Heintz et al., 1996; Allan et al., 2000; Martinez et al., 2000; Geyer et al., 2001a, b, 2003; 

Gölz et al., 2001; Stutz et al., 2002, 2004, 2010; Asaf et al., 2009; McLaren et al., 2010; 

Crowley et al., 2011; Sobanski et al., 2016). Here, a searchlight-type light source is used to 

transmit a beam of light across a kilometer-long light path in the open atmosphere to a 

receiving telescope–spectrometer combination. The light source typically is a broadband 

thermal radiator (incandescent lamp, Xe arc lamp, laser-driven light source). More recently, 

LED light sources were also used (Kern et al., 2006). The telescope (around 0.2 m diameter) 

collects the radiation and transmits it, usually through an optical fiber, into the spectrometer, 

which produces the absorption spectrum. Modern instruments now almost exclusively use 

transmitter/receiver combinations at one end of the light path and retro-reflector arrays (e.g., 

cat-eye-like optical devices) at the other end. The great advantage of this approach is that 

power and optical adjustment is only required at one end of the light path while the other 

end (with the retro-reflector array) is fixed. In this way, several retro-reflector arrays, for 

instance, mounted at different altitudes, can be used sequentially with the same transmitter/

receiver unit allowing determination of vertical profiles of NO3 (and other species 

measurable by DOAS) (Stutz et al., 2002, 2004, 2010).

In situ measurement techniques: Cavity ring-down spectroscopy (CRDS) and cavity-

enhanced absorption spectroscopy (CEAS) are related techniques for in situ quantification of 

atmospheric trace gases such as NO3. These methods are characterized by high sensitivity, 

specificity, and acquisition speed (Table 3a), and they allow for spatially resolved 

measurements on mobile platforms.

In CRDS, laser light is “trapped” in a high-finesse stable optical cavity, which usually 

consists of a pair of highly reflective spherical mirrors in a near-confocal arrangement. The 

concentrations of the optical absorbers present within the resonator are derived from the 

Beer–Lambert law and the rate of light leaking from the cavity after the input beam has been 

switched off (O’Keefe and Deacon, 1988). CRDS instruments are inherently sensitive as 

they achieve long effective optical absorption paths (up to, or in some cases exceeding, 100 

km) as the light decay is monitored for several 100 μs, and the absorption measurement is 

not affected by laser intensity fluctuations. For detection of NO3 at 662 nm, pulsed laser 

sources such as Nd:YAG pumped dye lasers have been used because of the relative ease of 

coupling the laser beam to the optical cavity (Brown et al., 2002, 2003; Dubé et al., 2006). 

Relatively lower cost continuous-wave (cw) diode laser modules that are easily modulated 
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also have been popular choices (e.g., King et al., 2000; Simpson, 2003; Ayers et al., 2005; 

Odame-Ankrah and Osthoff, 2011; Wagner et al., 2011).

In a CEAS instrument (also referred to as integrated cavity output spectroscopy, ICOS, or 

cavity-enhanced DOAS, CE-DOAS), the spectrum transmitted through a high-finesse optical 

cavity is recorded. Mixing ratios of the absorbing gases are derived using spectral retrieval 

routines similar to those used for open-path DOAS (e.g., O’Keefe, 1998, 1999; Ball et al., 

2001; Fiedler et al., 2003; Platt et al., 2009; Schuster et al., 2009).

CRDS and CEAS are, in principle, absolute measurement techniques and do not need to rely 

on external calibration. In practice, however, chemical losses can occur on the inner walls of 

the inlet (even when constructed from inert materials such as Teflon) or at the aerosol filters 

necessary for CRDS instruments. Hence, the inlet transmission efficiencies have to be 

monitored for measurements to be accurate (Fuchs et al., 2008, 2012; Odame-Ankrah and 

Osthoff, 2011). On the other hand, a key advantage of in situ instruments over open-path 

instruments is that the sampled air can be manipulated. Deliberate addition of excess NO to 

the instrument’s inlet titrates NO3 and allows measurement of the instrument’s zero level 

and separation of contributions to optical extinction from other species, such as NO2, O3, 

and H2O. Adding a heated section to the inlet (usually in a second detection channel) 

enables (parallel) detection of N2O5 via the increase in the NO3 signal (Brown et al., 2001; 

Simpson, 2003).

In addition, non-optical techniques have been used to detect and quantify NO3. Chemical 

ionization mass spectrometry (CIMS) is a powerful method for sensitive, selective, and fast 

quantification of a variety of atmospheric trace gases (Huey, 2007). NO3 is readily detected 

after reaction with iodide reagent ion as the nitrate anion at m/z 62; at this mass, however, 

there are several known interferences, including dissociative generation from N2O5, HNO3, 

and HO2NO2 (Slusher et al., 2004; Abida et al., 2011; Wang et al., 2014). There has been 

more success with the quantification of N2O5, usually as the iodide cluster ion at m/z 235 

(Kercher et al., 2009), though accurate N2O5 measurement at m/z 62 has been reported from 

recent aircraft measurements with a large N2O5 signal (Le Breton et al., 2014).

Two groups have used laser-induced fluorescence (LIF) to quantify NO3 (and N2O5 through 

thermal dissociation) in ambient air (Wood et al., 2003; Matsumoto et al., 2005a, b). The 

major drawback of this method is the relatively low fluorescence quantum yield of NO3, and 

hence the method has not gained wide use.

Another technique that was demonstrated to be capable of measuring NO3 radicals at 

atmospheric concentration is matrix isolation electron spin resonance (MIESR) (Geyer et al., 

1999). Although the technique allows simultaneous detection of other radicals (including 

HO2 and NO2), it has not been used extensively, probably because of its complexity.

Recently, a variety of in situ NO3 (Dorn et al., 2013) and N2O5 (Fuchs et al., 2012) 

measurement techniques were compared at the SAPHIR chamber in Jülich, Germany. All 

instruments measuring NO3 were optically based (absorption or fluorescence). N2O5 was 

detected as NO3 after thermal decomposition in a heated inlet by either CRDS or LIF. 

Generally, agreement within the accuracy of instruments was found for all techniques 
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detecting NO3 and/or N2O5 in this comparison exercise. This study showed excellent 

agreement between the instruments on the single-digit ppt NO3 and N2O5 levels with no 

noticeable interference due to NO2 and water vapor for instruments based on cavity ring-

down or cavity-enhanced spectroscopy. Because of the low sensitivity of LIF instruments, 

N2O5 measurements by these instruments were significantly noisier compared to the 

measurements by cavity-enhanced methods. The agreement between instruments was less 

good in experiments with high aerosol mass loadings, specifically for N2O5, presumably due 

to enhanced, unaccounted loss of NO3 and N2O5 demonstrating the need for regular filter 

changes in closed-cavity instruments. Whereas differences between N2O5 measurements 

were less than 20 % in the absence of aerosol, measurements differed up to a factor of 2.5 

for the highest aerosol surface concentrations of 5 × 108 nm2 cm−3. Also, differences 

between NO3 measurements showed an increasing trend (up to 50 %) with increasing 

aerosol surface concentration for some instruments.

2.4.2 Gas-phase organic nitrate measurements—Analytical techniques to detect 

gaseous organic nitrates have been documented in a recent review by Perring et al. (2013). 

Sample collection techniques for organic nitrates include preconcentration on solid 

adsorbents (Atlas and Schauffler, 1991; Schneider and Ballschmiter, 1999; Grossenbacher et 

al., 2001), cryogenic trapping (Flocke et al., 1991) or collection in stainless steel canisters 

(Flocke et al., 1998; Blake et al., 1999), or direct sampling (Day et al., 2002; Beaver et al., 

2012).

The approaches to the analysis of the organic nitrates fall into three broad categories. First, 

one or more chemically speciated organic nitrates are measured by a variety of techniques 

including liquid chromatography (LC) (Kastler et al., 2000) or gas chromatography (GC) 

with electron capture detection (Fischer et al., 2000), GC with electron impact or negative-

ion chemical ionization mass spectrometry (GC-MS) (Atlas, 1988; Luxenhofer et al., 1996; 

Blake et al., 1999, 2003a, b; Worton et al., 2008), GC followed by conversion to NO and 

chemiluminescent detection (Flocke et al., 1991, 1998), GC followed by photoionization 

mass spectrometry (Takagi et al., 1981), GC followed by conversion of organic nitrates to 

NO2 and luminol chemiluminescent detection (Hao et al., 1994), CIMS (Beaver et al., 2012; 

Paulot et al., 2012), and proton transfer reaction MS (PTR-MS) (Perring et al., 2009). 

Second, the sum of all organic nitrates can be measured directly by thermal dissociation to 

NO2, which is subsequently measured by LIF (TD-LIF) (Day et al., 2002), CRDS (TD-

CRDS) (Paul et al., 2009; Thieser et al., 2016), or cavity-attenuated phase shift spectroscopy 

(TD-CAPS) (Sadanaga et al., 2016). Finally, the sum of all organic nitrates can be measured 

indirectly as the difference between all reactive NOx except for organic nitrates and total 

oxidized nitrogen (NOy ) (Parrish et al., 1993).

Recent advances in adduct ionization utilize detection of the charged cluster of the parent 

reagent ion with the compound of interest. This scheme is then coupled to high-resolution 

time-of-flight (HR-ToF) mass spectrometry. The combination of these methods allows the 

identification of molecular composition due to the soft ionization approach that minimizes 

fragmentation. Multifunctional organic nitrates resulting from the oxidation of BVOC have 

been detected using CF3O− (Bates et al., 2014; Nguyen et al., 2015; Schwantes et al., 2015; 
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Teng et al., 2015) and iodide as reagent ions (Lee et al., 2014a, 2016; Xiong et al., 2015, 

2016; Nah et al., 2016b).

2.4.3 Online analysis of particulate matter—Total (organic plus inorganic) mass of 

particulate nitrates is routinely quantified using online AMS (Jayne et al., 2000; Allan et al., 

2004), from which the mass of organic nitrates can be obtained by three techniques. First, 

the NO+/NO2
+ ratio (or NO2

+/NO+ ratio) in the mass spectra is used to distinguish organic 

from inorganic nitrates (Fry et al., 2009, 2013; Farmer et al., 2010; Xu et al., 2015b; 

Kiendler-Scharr et al., 2016). It is noted that the NO2
+/NO+ approaches zero in the case of 

low or nonexistent NO2
+ signal, while NO+/NO2

+ gives large numbers. Second, positive 

matrix factorization (PMF) of data matrices including the NO+ and NO2
+ ions in addition to 

organic ions (Sun et al., 2012; Hao et al., 2014; Xu et al., 2015b) is used. Third, the 

particulate inorganic nitrate concentration, as measured by an independent method such as 

ion chromatography, is subtracted from the total particulate nitrate concentration (Schlag et 

al., 2016; Xu et al., 2015a, b). A detailed comparison of these three methods is presented in 

Xu et al. (2015b). As the NO+/NO2
+ ratio in AMS data is dependent on instruments and the 

types of nitrates (inorganic and organic nitrates from different VOC oxidations), different 

strategies were developed when using this method to estimate particulate organic nitrates 

(Fry et al., 2013; Xu et al., 2015b).

A specialized inlet that selectively scrubs gaseous organic nitrates or collects particulate 

mass on a filter has been coupled to some of the techniques summarized in this section and 

utilized to observe particulate organic nitrates in the ambient atmosphere and laboratory 

studies. A TD-LIF equipped with a gas-scrubbing denuder (Rollins et al., 2010, 2012) and 

the filter inlet for gases and aerosols (FIGAERO) (Lopez-Hilfiker et al., 2014) at the front 

end of an iodide adduct HR-ToF-CIMS are examples (Lee et al., 2016; Nah et al., 2016b).

2.4.4 Offline analysis of particulate matter—Owing to its ability to analyze polar 

organic compounds without a prior derivatization step, liquid chromatography coupled to 

MS (HPLC/MS) is well suited for the characterization of SOA compounds originating from 

the reactions of BVOC and NO3. Unlike in GC/MS methods, a soft ionization technique 

such as electrospray ionization (ESI) is utilized to ionize target analytes in the LC/MS 

technique. In the ESI/MS, target analytes are detected as a cation adduct of a target analyte 

(e.g., [M + H]+ or [M + Na]+) for a positive mode or a deprotonated form of a target analyte 

([M − H]−) for a negative mode. As a biogenic SOA compound typically bears a functional 

group, such as a carboxylic group or a sulfate group, that easily loses a proton, the negative-

mode ESI ((−)ESI) is commonly applied to detect SOA compounds. High-resolution MS 

such as TOF or Fourier transform ion cyclotron (FTICR) MS is commonly used to assign 

chemical formulas for SOA compounds unambiguously.

The LC/(−)ESI-MS technique played a crucial role in relating the formation of 

organosulfates (OS) and nitrooxy-organosulfates (NOS) to NO3-initiated oxidation of 

BVOC in laboratory-generated and ambient SOA. Since these earlier works, a number of 

studies have reported the presence of OS and/or NOS compounds in ambient samples (Table 
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S4), though most studies do not connect these compounds explicitly to the NO3 oxidation of 

BVOC. It should be noted that the direct infusion (−)ESI-MS technique rather than LC/

(−)ESI-MS is often used for the analysis of fog, rainwater, and cloud water samples as 

diluted liquid water samples can be injected into the ion source directly without a sample 

pretreatment procedure. However, caution is warranted for the direct infusion technique 

because it cannot separate isobaric isomers and it is susceptible to ion suppression, 

especially from the presence of inorganic ions in the samples.

Whilst the LC or direct infusion (−)ESI-MS techniques have been successfully applied for 

the detection of the oxidation products from NO3-BVOC reactions, the techniques have been 

less successful in quantifying these compounds, mainly due to the lack of authentic standard 

compounds. The synthesis of these compounds should be a priority for future studies.

Finally, total organic nitrate functional groups within the particle phase have been quantified 

in ambient air using FTIR of particles collected on ZnSe impaction disks (low-pressure 

cascade impactor, size segregated) or Teflon filters (PM1) (Mylonas et al., 1991; Garnes and 

Allen, 2002; Day et al., 2010). The organic nitrate content of particles can be quantified 

offline as well by collection on quartz fiber filters, extraction into solution (e.g., with water–

acetonitrile mixtures), and analysis using standard wet chemistry techniques such as high-

pressure liquid chromatography coupled to electrospray ionization mass spectrometry 

(HPLC-ESI-MS) (Angove et al., 2006; Perraud et al., 2010; Draper et al., 2015).

2.5 Field observations

This section surveys the current literature on field observations of nitrate radicals and BVOC 

(Sect. 2.5.1), and organic nitrate aerosol attributable to NO3-BVOC chemistry (Sect. 2.5.2).

2.5.1 Nitrate radicals and BVOC—A few years after the first measurement of 

tropospheric NO3 (Noxon et al., 1980; Platt et al., 1980), it was recognized that the nitrate 

radical is a significant sink for BVOC, especially monoterpenes in terrestrial ecosystems and 

dimethyl sulfide (DMS) in maritime air influenced by continental NOx sources (Winer et al., 

1984). The conclusion was based upon computer simulations using NO3 concentrations 

measured in field studies in the western US and Europe, and measured rate constants of NO3 

with olefins. The scenarios in these simulations showed very low monoterpene 

concentrations in the early morning that were directly attributable to BVOC reactions with 

NO3. An analysis of NO3 formation rates at several urban and rural sites in Scandinavia 

(Ljungström and Hallquist, 1996) resulted in the conclusion that while night-time urban loss 

of NO3 is dominated by reaction with NO, the loss in rural regions is likely dominated by 

reactive hydrocarbons, especially monoterpenes.

Due to the fast reactions of NO3 with BVOC, lifetimes of NO3 in biogenically influenced 

environments can be very short, making simultaneous detection of VOC and NO3 in 

biogenic regions very difficult. For this reason, several studies have inferred levels of NO3 

and its role in processing BVOC using observational analysis and supporting modeling. In 

particular, the rapid decay of isoprene after sunset has received considerable attention. 

Measurements of BVOC ~ 1–2 m above canopy level in a loblolly pine plantation in 

Alabama during the 1990 ROSE program (Goldan et al., 1995) were used to infer a 
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nighttime NO3 mixing ratio of only 0.2 ppt and NO3 lifetime of only 7 s due to high levels 

of monoterpenes. The 4 h decay time of isoprene after sun-set could not be accounted for by 

gas reactions with NO3 and O3 although the decrease in the α- / β-pinene ratio at night was 

consistent with known NO3 and O3 chemistry. As part of the North American Research 

Strategy for Tropospheric Ozone – Canada East (NARSTO-CE) campaign, measurements of 

BVOC were made in Nova Scotia in a heavily forested region (Biesenthal et al., 1998). A 

box-model simulation based on the observational analysis found that the short lifetime of 

isoprene at night (τ = 1–3 h) could not be explained by the NO3 radical, which was 

estimated to be 0.1 ppt maximum at night due to low NOx and O3 levels and high 

monoterpene emissions. When OH yields from ozonolysis of BVOC were included in the 

model, this nighttime OH oxidant could partially account for the isoprene decay. During the 

Southern Oxidants Study (SOS) campaign in Nashville, TN (Starn et al., 1998), a chemical 

box model was used to show that rapid nighttime decays of isoprene were consistent with 

simulated NO3 but only when the site was impacted by urban NOx emissions. During the 

PROPHET study, measurements of VOC were made in a mixed forest approximately 10 m 

above the canopy surface (Hurst et al., 2001). Isoprene decays at night had an average 

lifetime of ~ 2.7 h. Box modeling showed that O3 reactions as well as dry deposition were 

insufficient to account for the decay, and that the NO3 radical was a significant sink only 

after the majority of isoprene had already decayed. On some nights, oxidation by OH could 

account for all the decay but the decay rates were overpredicted. The authors concluded that 

vertical transport of isoprene-depleted air aloft contributes to the fast initial decay of 

isoprene, followed by nighttime OH, NO3, and O3 chemistry decay. Steinbacher et al. (2005) 

reported on surface measurements in the Po Valley at a site 200–300 m from the closest edge 

of a deciduous forest. Bimodal diurnal cycles of isoprene were observed with morning and 

evening maxima that were reproduced by a Eulerian model. Isoprene decay lifetimes of 1–3 

h were partially explained by NO3 decay, although a dynamic influence on isoprene decrease 

seemed to be likely including horizontal and vertical dispersion. During the 

HOHenpeissenberg Photochemistry Experiment (HOHPEX) field campaign, BVOC were 

analyzed via 2-D GC at a site located on a hilltop above adjacent rural agricultural/forested 

area that is frequently in the residual layer at night (Bartenbach et al., 2007). For the reactive 

monoterpenes, a significant non-zero dependency of the concentration variability on lifetime 

was found, indicating that chemistry (as well as transport) was playing a role in determining 

the ambient VOC concentrations. The night-time analysis gave an estimate of the NO3 

mixing ratio of 6.2 ± 4.2 ppt, indicating it was a significant chemical factor in depletion of 

monoterpenes.

While the studies above made indirect conclusions about the role of NO3 in BVOC 

processing, field studies including direct measurements of NO3 are key to confirming the 

above findings. Golz et al. (2001) reported measurements of NO3 by long-path DOAS at an 

eucalyptus forest site in Portugal during the FIELDVOC94 campaign in 1994. The DOAS 

beam passed directly over the canopy at heights of 15 and 25 m, and as a result, they were 

unable to measure NO3 above the 6 ppt instrumental detection limit despite NO3 production 

rates of 0.4 ppt s−1. Rapid reaction with BVOC limited the NO3 lifetime to approximately 20 

s such that NO3 reactions dominated other indirect losses, such as heterogeneous N2O5 

uptake. Simultaneous measurements of NO3 and VOC during the Berliner Ozonexperiment 
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(BERLIOZ) campaign in 1998 allowed one of the first assessments of the NO3 budget in 

comparison to OH and O3 oxidants (Geyer et al., 2001b). Surface measurements at this 

semi-rural location close to forests found the NO3 radical above detection limit (2.4 ppt) on 

15 of 19 nights with a maximum of 70 ppt, a steady-state lifetime ranging from 20 to 540 s 

and N2O5 ranging from 2 to 900 ppt. The two most significant losses of NO3 were found to 

be its direct reaction with olefins (monoterpenes dominating) and indirect loss due to 

heterogeneous hydrolysis of N2O5. Over the study, it was possible for the first time to 

quantify the relative contribution of the NO3 radical to oxidation of VOC as 28 (24 h) and 

31 % for olefinic VOC (24 h) compared to the total oxidation via NO3, OH, and O3. As part 

of the 1999 SOS study, NO3, isoprene, and its oxidation products were measured at a 

suburban forested site in Nashville, TN (Stroud et al., 2002). The nitrate radical measured at 

multiple beam heights by DOAS had maximum mixing ratios of 100 ppt that were generally 

found to anticorrelate with isoprene levels with significant vertical gradients on some nights. 

Early evening losses of isoprene were attributable to reaction with the NO3 radical. During 

the Pacific 2001 Air Quality Study (PACIFIC 2001) field campaign, NO3 was measured by 

long-path DOAS at an elevated forested site in the lower Fraser Valley of British Columbia 

with beam-path nighttime NO3 levels up to a maximum of 50 ppt (average of nighttime 

boundary layer and residual layer) (McLaren et al., 2004). Simultaneous analysis of 

carbonyl compounds in aerosol samples (Liggio and Mclaren, 2003) during the study found 

that only monoterpene oxidation products pinonaldehyde and nopinone (not reported) were 

enhanced in aerosol filters collected at night, evidence of the role of NO3 in nighttime 

oxidation of BVOC in the valley. In 2004 measurements of NO3 and N2O5 by CRDS, 

isoprene and its oxidation products were made on board the NOAA P-3 aircraft as part of the 

New England Air Quality Study (NEAQS) and International Consortium for Atmospheric 

Research on Transport and Transformation (ICARTT) campaigns in the northeast US 

(Brown et al., 2009). These studies found a very clear anticorrelation between isoprene 

levels after dark and NO3 mixing ratios, which varied as high as 350 ppt when isoprene was 

absent from the air mass. The loss frequencies (i.e., first-order loss rate constants) of NO3 

were strongly correlated with the loss rate constant of NO3 with isoprene for lifetimes less 

than 20 min, clearly showing that isoprene was the most important factor determining the 

lifetime of NO3. It was also shown that more than 20 % of emitted isoprene was oxidized at 

night and that 1–17 % of SOA was contributed by NO3-isoprene oxidation. A number of 

recent studies have also investigated the role of NO3+ BVOC chemistry in more polluted 

areas. In many urban areas, the NO3+ BVOC chemistry occurs in parallel to heterogeneous 

NO3 / N2O5 chemistry and reactions of NO3 with anthropogenic VOC. Examples of such 

environments have been discussed in Brown et al. (2011, 2013) and Stutz et al. (2010) who 

presented observations in Houston, TX. Brown et al. (2011) and Stutz et al. (2010) found 

that up to 50 % of the NO3+ VOC reactions in Houston are driven by isoprene, with the 

other VOC emitted by industrial sources. Surprisingly, heterogeneous NO3 / N2O5 chemistry 

plays a minor role in Houston. Brown et al. (2011) also point out that the nocturnal VOC 

oxidation by NO3 dominates over that by ozone. Nocturnal NO3 formation rates were rapid 

and comparable to those of OH during the day. Crowley et al. (2011) compared NO3 

chemistry in air masses of marine, continental, and urban origin at a field site in southern 

Spain. Under all conditions, NO3+ BVOC reactions (predominately α-pinene and limonene) 

contributed to the overall NO3 reactivity, confirming other observations that concluded that 
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this chemistry is important in all environments where BVOC sources are present. In the 

southeastern US summer, this importance extends even through the daytime, when 

photolysis and NO reactions compete (Ayres et al., 2015). The NO3+ BVOC reaction rates 

observed in these studies imply a high production rate of SOA and organic peroxy radicals.

2.5.2 Organic nitrate aerosols—There are many factors that motivate understanding 

organic nitrate in the particulate phase through field deployment of a variety of 

instrumentation, much of which is described in other sections of this review. Nitrogen-

containing organic fragments (not necessarily organic nitrates) have been identified in 

atmospheric particles using mass spectrometric techniques (Reemtsma et al., 2006; Farmer 

et al., 2010; O’Brien et al., 2014). Total atmospheric organic nitrates, as well as organic 

nitrates segregated by phase, also have been measured in the atmosphere using techniques 

such as TD-LIF, CIMS, etc. (Day et al., 2003; Beaver et al., 2012). Given these observations 

and the propensity of organic nitrate compounds to partition to the condensed phase to create 

SOA (Rollins et al., 2013), it is critical to determine the level of organic nitrates that reside 

specifically in the atmospheric aerosol phase under typical ambient conditions and to 

identify the chemical and physical processes that determine their concentrations. It is also 

important to note that formation of SOA that contains organic nitrate groups has the 

potential to sequester NOx, thereby influencing the cycling of atmospheric oxidants.

Organic nitrates in urban PM that were identified using functional group analyses such as 

FTIR spectroscopy have been attributed to emission of nitrogen-containing primary organic 

aerosol or to involvement of reactive nitrogen compounds in SOA formation chemistry 

(Mylonas et al., 1991; Garnes and Allen, 2002; Day et al., 2010). Other more advanced 

techniques, such as TD-LIF enhanced with the ability to separate phases or techniques to 

obtain high-resolution mass spectra (HR-ToF-AMS), have been utilized to quantify the 

amount of organic nitrate in particles in areas less likely to be influenced strongly by BVOC 

emissions, such as urban areas or areas influenced by oil and gas operations (Lee et al., 

2015). Of specific interest here, however, are observations of organic nitrate PM in areas 

with a significant influence of BVOC, especially if co-located measurements allow for 

insight into the role that NO3 plays in the initial BVOC oxidation step. As such, we focus 

here on online measurements and on measurements that allow specific attribution to BVOC-

NO3 reactions. Such measurements broadly can be categorized by region of sampling: the 

eastern United States (US), the western US, and Europe. Figure 5a summarizes average 

mass concentrations of submicrometer particulate organic nitrates (NO3, org) and particulate 

inorganic nitrates (NO3, inorg) in different months at multiple sites around the world. Figure 

5b summarizes the corresponding percentage (by mass) of submicrometer particulate 

organic nitrate aerosols in ambient organic aerosols. Detailed information and measurements 

for each site are provided in Table S5.

Eastern United States: The first reports of aerosol organic nitrates in the southeastern (SE) 

US resulted from composition analysis of four daily PM filter samples from four 

Southeastern Aerosol Research and Characterization (SEARCH) network sites during 

summer 2004. Filters were analyzed for polar compounds, with particular focus on 

organosulfates, using offline chromatographic–MS methods (Gao et al., 2006; Surratt et al., 
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2007, 2008). Several nitrooxy organosulfates were identified, but the only one quantified (1–

2 % of organic mass) was associated with α-pinene photooxidation or reaction with NO3. 

Several of the nitrooxy organosulfates were likely the same as products from BVOC-

oxidant–NOx -seed systems based on comparison to spectra collected from chamber studies.

Brown et al. (2013) examined several nighttime aircraft vertical profiles in Houston (October 

2006 during the Texas Air Quality Study 2006) that showed increases of total nitrate aerosol 

(and increases in AMS m/z 30 to m/z 46 ratio, the unit mass resolution approximation for 

NO+/NO2
+, indicative of organic nitrates; Farmer et al., 2010) and oxygenated organic 

aerosol (OOA). The OA versus carbon monoxide (CO) slopes at lower altitudes were 

consistent with SOA sources from NO3-BVOC reactions, with a combination of 

observations and zero-dimensional modeling showing 1 to 2 μg m−3 SOA formation from 

NO3-BVOC oxidation overnight with formation rates of 0.05 to 1 μg m−3 h−1.

More recently, during the summer Southern Oxidant and Aerosol Study (SOAS; mixed, 

semi-polluted forest) in Alabama (2013), an unprecedented suite of instruments quantified 

particle-phase organic nitrates using five different online methods: HR-ToF-AMS 

( NO+/NO2
+), HR-ToF-AMS – PiLS (particle-into-liquid sampler) ion chromatography 

(PiLS-IC), HR-ToF-AMS (PMF), TD-LIF (denuded), and iodide CIMS. Total particle-phase 

nitrates increased throughout the night and peaked in early/mid-morning. Xu et al. (2015b) 

systematically evaluated the three AMS-related methods in estimating ambient particulate 

organic nitrate concentrations. Analysis presented in Xu et al. (2015a, b) using the HR-ToF-

AMS – PiLS-IC method showed that organic nitrate functional groups comprised ~ 5–12 % 

of OA mass and correlated with PMF-derived less-oxidized oxygenated OA (LO-OOA). 

Two-thirds of the LO-OOA was estimated to be formed via NO3-BVOC chemistry 

(dominantly monoterpenes, ~ 80 %), with the balance due to ozone (O3)-BVOC chemistry. 

Organic nitrates were calculated to comprise 20–30 % of the LO-OOA factor. Ayres et al. 

(2015) used a measurement-constrained model for nighttime that compared NO3 production/

loss to total organic nitrate (HR-ToF-AMS NO+/NO2
+, TD-LIF) formation to calculate a 

molar yield of aerosol-phase organic nitrates of 23–44 % (organic nitrate formed per NO3-

BVOC reaction) that was dominated by monoterpene oxidation. They noted that the 

estimated yield was low compared to aggregated aerosol-phase organic nitrate yields, 

possibly due to rapid nitrate losses not considered in the model. Organic nitrate hydrolysis in 

the particle phase is one potential loss pathway, although recent laboratory studies suggest 

this process is slow for NO3 + β-pinene SOA (Boyd et al., 2015). Also, particle-phase 

organic nitrates were observed to contribute 30–45 % to the total NOy budget. Lee et al. 

(2016) quantified speciated particle-phase organic nitrates using iodide CIMS (88 individual 

C4-C17 mono/dinitrates). A large fraction was highly functionalized, with six to eight 

oxygen atoms per molecule. Diurnal cycles of isoprene-derived organic nitrates generally 

peaked during daytime, and monoterpene-derived organic nitrates peaked at night or during 

early/mid-morning. Using an observationally constrained diurnal zero-dimensional model, 

they showed that the observations were consistent with fast gas–particle equilibrium and a 

short particle-phase lifetime (2–4 h), again possibly due to hydrolysis if the field-derived 

lifetimes for particle-phase organic nitrates can be reconciled with recent laboratory studies 
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(Boyd et al., 2015). The sum of the CIMS particle-phase organic nitrates (mass of nitrate 

functional groups only) was correlated with the two total aerosol organic nitrate AMS-based 

methods (R2 = 0.52, 0.67) with slopes of 0.63 and 0.90 (Lee et al., 2016). The CIMS sum 

was also correlated with the total measured with the TD-LIF method (R2 = 0.55); however, 

since the TD-LIF measurements were ~ 2–4 times higher (depending on period) than the 

AMS-based methods, the CIMS versus TD-LIF slope was substantially lower (0.19). 

Reasons for the differences between the total organic nitrate measured by different methods 

have been investigated but remain unclear.

A seasonal and regional survey of particle-phase organic nitrates is reported by Xu et al. 

(2015b) using a HR-ToF-AMS and an aerosol chemical speciation monitor (ACSM) (Ng et 

al., 2011) at four rural and urban sites in the greater Atlanta area (2012–2013) and in 

Centreville, AL (summer 2013 only, SOAS). They show strong diurnal cycles during 

summer, peaking early/mid-morning, and cycles with similar timing but smaller magnitude 

during winter. The concentrations were slightly higher in summer, which was attributed to 

compensating effects of source strength and gas–particle partitioning. Shallower boundary 

layers during winter also may have played a role in making the summer and winter 

concentrations more similar (Kim et al., 2015).

Fisher et al. (2016) report a broad regional survey of particle-phase (and gas-phase) organic 

nitrates (HR-ToF-AMS NO+/NO2
+) during summertime for the Studies of Emissions and 

Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) 

aircraft campaign (August–September, 2013, SE US only) as well as the ground-based 

SOAS measurements. A substantial vertical gradient was observed in particle-phase organic 

nitrates, with concentrations decreasing by several-fold from the boundary/residual layer 

into the free troposphere. Consistent with SOAS ground observations, 10–20 % of observed 

boundary layer total (gas plus particle) organic nitrates were in the particle phase for the 

aircraft measurements.

In addition to the measurements made in the SE US, characterization of aerosol organic 

nitrates has been performed in New England. As part of the New England Air Quality Study 

(NEAQS) in summer 2002, Zaveri et al. (2010) observed evolution of aerosols in the 

nocturnal residual layer with an airborne quadrupole (Q)-AMS in the Salem Harbor power 

plant plume. The aerosols were acidic and internally mixed, suggesting that the observed 

nitrate was in the form of organic nitrate and that the enhanced particulate organics in the 

plume were possibly formed from NO3-initiated oxidation of isoprene present in the residual 

layer.

Western United States: Significant work on understanding ambient organic nitrate 

formation from BVOC-NO3 has been performed in California. During the California 

Research at the Nexus of Air Quality and Climate Change (CalNex) field campaign from 

mid-May through June 2010, Rollins et al. (2012, 2013) measured particulate total alkyl and 

multifunctional nitrates (pΣANs) with TD-LIF at a ground site in Bakersfield, California. 

They attributed the increase in pΣAN concentrations at night to oxidation of BVOC by NO3 

forming SOA, with an estimated 27 to 40 % of the OA growth due to molecules with nitrate 
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functionalities. On average, 21 % of ΣANs were in the particle phase and increased with 

OA, which was fit to a volatility basis set in which pΣANs / ΣANs increased from ~ 10 % at 

< 1 μg m−3 and plateaued at ~ 30 % by ~ 5 μg m−3. At the same site, using PMF analysis of 

FTIR and HR-ToF-AMS measurements, Liu et al. (2012a) showed that the organic nitrate-

containing biogenic SOA condensed onto 400 to 700 nm sized primary particles at night. As 

part of the Carbonaceous Aerosol and Radiative Effects Study (CARES) in June 2010, 

Setyan et al. (2012) observed enhanced SOA formation due to interactions between 

anthropogenic and biogenic emissions at a forest site in the foothills of the Sierra Nevada 

mountains, approximately 40 km downwind of Sacramento. While nitrate accounted for 

only ~ 4 % of the particle mass measured by a HR-ToF-AMS, it was attributed potentially to 

organic nitrates based on the much higher NO+/NO2
+ ion ratio than observed in pure 

ammonium nitrate.

During the Rocky Mountain Biogenic Aerosol Study field campaign in Colorado’s Front 

Range (rural coniferous montane forest) (BEACHON-RoMBAS) from July to August 2011, 

Fry et al. (2013) observed aerosol-phase organic nitrates by optical spectroscopic (denuded 

TD-LIF) and mass spectrometric (HR-ToF-AMS, NO+/NO2
+) instruments. The two methods 

agreed well on average (AMS/TD-LIF slope of 0.94–1.16, depending on averaging method) 

with a fair correlation (R2 = 0.53). Similar to studies in other forested environments, the 

organic nitrate concentration was found to peak at night. The organic nitrate concentration 

was positively correlated with the product of the nitrogen dioxide and O3 mixing ratios but 

not with that of O3 alone; this suggested nighttime NO3-initiated oxidation of monoterpenes 

as a significant source of nighttime aerosol organic nitrates. The gas–particle partitioning 

also showed a strong diurnal cycle, with the fraction in the particle phase peaking at ~ 30 % 

at night and decreasing to a broad minimum of ~ 5 % during daytime, which suggests a 

change in composition in addition to thermodynamic partitioning effects.

Europe: Iinuma et al. (2007) analyzed ambient aerosol samples collected on filters in a 

Norway spruce forest in northeastern Germany during the BEWA campaign (Regional 

biogenic emissions of reactive volatile organic compounds from forests: process studies, 

modeling, and validation experiments) and compared the results to those from chamber 

studies. The filter extracts were analyzed using LC-ESI-ToF-MS in parallel to ion trap MS. 

Several nitrooxy organosulfates with significant mass in the BEWA ambient samples were 

enhanced in the nighttime samples relative to the daytime samples. Their abundance in the 

nighttime samples strongly suggests that NO3-monoterpene chemistry in the presence of 

sulfate aerosols has an important role in the formation of these nitrooxy organosulfate 

aerosols.

A similar study by Gómez-González et al. (2008) focused on isoprene through LC-

multidimensional MS (MSn) analysis of filter samples from both chamber studies and 

ambient summer day/night PM2.5 samples from K-Puszta, Hungary, a mixed deciduous/

coniferous forest site. Although not the focus of the study, they confirmed the presence of 

significant quantities of nitrooxy organosulfates that were enhanced in the nighttime samples 

over the daytime samples.
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Initial online evidence of the production of organic nitrate aerosols in Europe was provided 

by Allan et al. (2006) when studying nucleation events driven by BVOC oxidation in 

Hyytiälä, a (boreal) forested region in Finland. The Q-AMS m/z 30 to m/z 46 ratio (the unit 

mass resolution approximation for NO+/NO2
+ ratio) was frequently found to be very high, ~ 

10, for a distinct organic Aitken mode that became apparent late in the afternoon and 

increased at night. They hypothesized that the excess m/z 30 (NO+) signal was associated 

with organic nitrates, although could not rule out amine contributions. During the same field 

study, Vaattovaara et al. (2009) applied two tandem differential mobility analyzer methods to 

study the evolution of the nucleation-and Aitken-mode particle compositions at this boreal 

forest site. The results showed a clear anthropogenic influence on the nucleation- and 

Aitken-mode-particle compositions during the events and suggested organic nitrate and 

organosulfate aerosol was generated from monoterpene oxidation. Also, it was shown that 

organic nitrate was enhanced in aerosol exposed to elevated temperatures, implying low 

volatility of organic nitrates (Häkkinen et al., 2012).

More recently, Hao et al. (2014) used a HR-ToF-AMS on a tower in Kuopio, Finland, 224 m 

above a lake surrounded by a mixed forest of mostly coniferous (pine and spruce) mixed 

with deciduous trees (mostly birch) to measure submicron aerosol composition. The site also 

was influenced by urban emissions. A particular focus of the study was to separate organic 

and inorganic nitrate using PMF. They found that ~ 37 % of the nitrate mass at this location 

and time could be allocated to organic nitrate factors, the rest being inorganic nitrate. The 

organic nitrate aerosol was segregated into two organic factors, less-oxidized OOA (LO-

OOA), and more-oxidized OOA (MO-OOA) (previously called SV- and LV-OOA, 

respectively); the majority (74 %) of the organic nitrate was found to be in the more volatile 

LO-OOA factor. Based on meteorology, the air mass source of the organic nitrate aerosol 

was from a sector with residential and forested areas. Again, the organic nitrate aerosol 

showed a diurnal trend that was highest at night.

An analysis of AMS data taken across Europe within EU-CAARI and EMEP intensive 

measurement campaigns (Kulmala et al., 2011; Crippa et al., 2014) has recently shown high 

organic nitrate contributions to total measured PM1 nitrate (Kiendler-Scharr et al., 2016). 

The spatial distribution and diurnal pattern of particulate organic nitrate indicate a gradient 

of concentration. High concentrations are found in source regions with NOx emissions and 

during the night. Low concentrations are found in remote regions and during the day. 

EURAD-IM simulations for Europe show an increase of SOA by 50 to 70 % when 

considering SOA formation by NO3 oxidation with maximum ground-level concentrations 

of SOA from NO3 oxidation in the range of 2 to 4 μg m−3 (Li et al., 2013; Kiendler-Scharr et 

al., 2016).

Summary of organic nitrate aerosol observations: Taken together, the observations of 

particle-phase organic nitrates in the US and Europe suggest that particle-phase organic 

nitrates (formed substantially via NO3-BVOC chemistry) are ubiquitous, especially in, but 

not limited to, summer. Their formation appears to play an important role in SOA formation, 

which can potentially be underestimated due to short particle-phase lifetimes. Regions with 
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widespread NOx and BVOC emissions and a humid climate may create optimal conditions 

for a rapid life cycle of particle-phase organic nitrates.

2.6 Models of NO3-BVOC chemistry

To understand the implications of NO3-BVOC chemistry on atmospheric chemistry as a 

whole, under both current and future scenarios, the physical and chemical processes, such as 

those reported in Sect. 2.1 through Sect. 2.3, must be parameterized in numerical models. In 

this section, we summarize how these reactions are represented in current air quality models 

(AQMs).

2.6.1 Chemical mechanisms—Organic nitrates are produced from the reactions of VOC 

with OH followed by NO as well as with NO3, and both of these pathways are represented in 

chemical mechanisms albeit at varying levels of detail. The use of the term “model” below 

refers to the treatment of BVOC + NO3 chemistry in lumped chemical mechanisms. The 

products formed from the OH-initiated (typically daytime) versus NO3-initiated (typically 

nighttime) chemistry may or may not be treated separately.

The NO3-BVOC reactions result in an RO2 that reacts with NO3, other RO2, HO2, or NO. 

RO2-NO reactions for NO3-initiated chemistry are relatively unimportant due to rapid 

reaction of NO with NO3 at night (Perring et al., 2009), but they are included in models. 

Unimolecular rearrangements of the NO3-initiated RO2 radical are not currently considered 

in models (Crounse et al., 2011). The products of the initial NO3-BVOC reaction may retain 

the nitrate group, thus forming an organic nitrate or releasing nitrogen as NO2. The 

branching between organic nitrate formation and N recycling is parameterized in models. 

Table 4 summarizes the gas-phase organic nitrate yields for isoprene and monoterpene 

oxidation by NO3 in a number of currently available chemical mechanisms. The yields 

represent the first-generation yields since products may react to form further organic nitrates 

or release NO2. The organic nitrate yield values span from 0 (e.g., SAPRC07 isoprene) to 

100 % (e.g., MCM isoprene). Although GEOS-Chem v10-01 does not consider gas-phase 

monoterpene chemistry, the model has recently been updated to consider a 10–50 % yield of 

organic nitrates from the monoterpene-NO3 reaction independent of the nitrate-RO2 fate but 

dependent on monoterpene identity (Fisher et al., 2016). Differences in the organic nitrate 

yield from NO3 oxidation result from a number of causes including treatment of RO2 fate, 

assumptions about decomposition versus retention, and prioritization of functional group 

identity.

Some models parameterize the yield of organic nitrates as a function of RO2 fate while 

others, such as the carbon bond-based (CB) mechanisms, treat all RO2 fates the same. The 

MCM v3.3.1 also considers the yield of isoprene organic nitrates to be independent of RO2 

fate, but monoterpene organic nitrate yields are variable between 0 and 100 % depending on 

RO2 fate. Differences in organic nitrate formation, due to treating the organic nitrate yield as 

a function of RO2 fate, may vary with atmospheric conditions. Reactions with both HO2 and 

RO2 are significant at night (Xie et al., 2013; Pye et al., 2015). RO2-NO3 may be important 

in urban areas or locations where BVOC concentrations are not so high as to deplete NO3 

(Rollins et al., 2012).
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Mechanisms differ in their assumptions about whether or not the organic nitrates from NO3-

initiated chemistry release NO2 or retain the nitrate group. An example of this difference in 

treatment of organic nitrates can been seen in the reactions of nitrated peroxy radicals with 

different radicals (NO, HO2, RO2) predicted by SAPRC07 and MCM. MCM predicts greater 

loss of the nitrate group, while SAPRC tends to retain it, leading to either < 5 % (MCM) or 

> 50 % (SAPRC) organic nitrate yields.

In order to predict accurately the fates of RO2 and yield of organic nitrates, models must also 

include information on RO2 reaction rate constants. Some mechanisms use the same set of 

RO2 rate constants for all hydrocarbons. However, the MCM (Jenkin et al., 1997; Saunders 

et al., 2003) indicates that the RO2-HO2 rate constant should vary with carbon number (n) 

and predict k = 2.91 × 10−13 exp(1300/T) [1 − exp(−0.245n)] molec−1 cm3 s−1. The MCM 

RO2-RO2 rate constant varies between 2 × 10−12 cm3 molec−1 s−1 (based on C1-C3 primary 

RO2 with adjacent O or Cl) and 6.7 × 10−15 cm3 molec−1 s−1 for tertiary alkyl RO2 (based 

on t-C4H9O2). RO2-NO3 and RO2-NO rate constants are estimated as 2.3 × 10−13 and 9.0 × 

10−12 cm3 molec−1 s−1 at 298 K.

AQMs and chemistry–climate models typically cannot handle the complexity associated 

with tracking each individual VOC and all its possible reaction products. As a result, 

surrogate species are often used to represent classes of compounds (e.g., CB05, which uses 

the designation NTR to indicate organic nitrates). This mapping can cause yields of organic 

nitrates to be falsely low in a mechanism if other functional groups are prioritized over 

nitrate in the mapping of predicted products to mechanism species. Compared to the other 

mechanisms in Table 4, SAPRC07 monoterpenes tend to have very low organic nitrate 

yields as a result of prioritization of peroxide and non-nitrate functional groups. If nitrate 

groups were prioritized, SAPRC07 would more closely resemble the “other monoterpene” 

yields from SAPRC07tic. In addition, the diversity across mechanisms in the RO2-HO2 

monoterpene organic nitrate yields would be reduced such that they would all indicate > 

50 % organic nitrate yields and all but the CB mechanisms would predict a 100 % yield of 

organic nitrates from RO2-HO2. The RO2-HO2 pathway is relatively unstudied in laboratory 

conditions due to difficulties in maintaining sufficient concentrations of both NO3 and HO2 

radicals (Boyd et al., 2015; Schwantes et al., 2015).

2.6.2 Influence on organic aerosol—Nitrate radical oxidation can lead to significant 

amounts of SOA on global and regional scales. Due to a lack of information on the identity 

and volatility of later-generation BVOC + NO3 products, most models parameterize SOA 

formation separately from gas-phase chemistry using either the Odum two-product (Odum et 

al., 1996) fit, volatility basis set (VBS) (Donahue et al., 2006) fit, or fixed yield (Table 5). 

Based on the understanding of SOA pathways at the time, Hoyle et al. (2007) found that up 

to 21 % of the global average SOA burden may be due to NO3 oxidation, and Pye et al. 

(2010) predicted ~ 10 % of global SOA production was due to NO3. Regional contributions 

to SOA concentrations can be much higher (Hoyle et al., 2007; Pye et al., 2010). Nitrate 

radical reactions themselves are estimated to account for less than 3 % of isoprene oxidation 

and less than 2 % of sesquiterpene oxidation globally; however, they account for 26 % of 

bicyclic monoterpene oxidation (Pye et al., 2010). Representations of monoterpene-NO3 

SOA are more widespread in chemistry–climate models than other BVOC-NO3 SOA 
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parameterizations due to the relatively early recognition of its high yields (e.g., Griffin et al., 

1999) and relative importance for SOA. Inclusion of SOA from isoprene-NO3 is more 

variable as reflected in Table 5.

SOA from BVOC-NO3 reactions traditionally has been parameterized on the initial 

hydrocarbon reaction assuming semivolatile products and an Odum two-product approach 

(e.g., Chung and Seinfeld, 2002). This treatment is often implemented in parallel to the gas-

phase chemistry, meaning that later-generation products leading to SOA are not identified. 

Information is still emerging on the fate of organic nitrates, and that information is just 

beginning to be included in models. Hydrolysis of particle-phase organic nitrates is one such 

process more recently considered with impacts for both O3 and PM in models (Hildebrandt 

Ruiz and Yarwood, 2013; Browne et al., 2014; Pye et al., 2015; Fisher et al., 2016).

2.6.3 Influence on reactive nitrogen and ozone—The influence of BVOC nighttime 

oxidation on the nitrogen budget remains unclear. Current modeling efforts have mainly 

focused on the nighttime oxidation of isoprene, which is dominated by isoprene-NO3 

reaction. This pathway is initialized via addition of NO3 to one of the double bonds, as 

discussed in Sect. 2.1.2. Due to the additional stabilization from alkoxy radical and nitrate 

functional groups (Paulson and Seinfeld, 1992), the yield of first-generation organic nitrates 

is relatively high (62–78 %; Table 2); they may react with NO3 again to produce secondary 

dinitrates (Perring et al., 2009; Rollins et al., 2009, 2012). Assuming little NOx is recycled 

from these organic nitrates, most models suggest that nighttime oxidation of isoprene by 

NO3 contributes significantly to the budget of organic nitrates (von Kuhlmann et al., 2004; 

Horowitz et al., 2007; Mao et al., 2013; Xie et al., 2013). Two recent studies (Suarez-Bertoa 

et al., 2012; Müller et al., 2014), however, suggest fast photolysis of carbonyl nitrates with 

high efficiency of NOx recycling, which could lead to release of NOx in the next day. Further 

modeling is required to investigate the importance of nighttime isoprene oxidation on the 

nitrogen budget.

Very little modeling effort has been dedicated to the influence of nighttime terpene oxidation 

on the nitrogen budget, mainly due to the lack of laboratory data on oxidation products and 

their fate. In contrast to isoprene, terpene emissions are temperature sensitive but not light 

sensitive (Guenther et al., 1995), leading to a significant portion of terpene emissions being 

released at night. The high yield of organic nitrates and SOA from the terpene-NO3 reaction 

(Fry et al., 2009, 2011, 2014; Boyd et al., 2015) provides an important sink for NOx at night, 

likely larger than for isoprene-NO3 over the eastern US (Warneke et al., 2004). Recent 

laboratory experiments suggest that aerosol organic nitrates can be either a permanent or 

temporary NOx sink depending on their monoterpene precursors (and hence nature of the 

resulting RO2) as well as ambient RH (Boyd et al., 2015; Nah et al., 2016b). In order to 

understand the impact of terpenes on nighttime chemistry, a fully coupled model of terpene-

NOx chemistry will be required, as monoterpenes can be the dominant loss process for NO3 

and N2O5 at night (Ayres et al., 2015).

While a significant portion of nitrogen is emitted at night (Boersma et al., 2008), the impact 

of nighttime chemistry on the initiation of the following daytime chemistry has received 

little attention in regional and global models. Different treatments of NO3 chemistry can 
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result in 20 % change in the following daytime O3 concentration, as shown by a 1-D model 

study (Wong and Stutz, 2010) and box model simulations (Millet et al., 2016). This impact 

can be further complicated by uncertainty in emissions of BVOC and model resolutions. For 

example, a recent study by Millet et al. (2016) shows that in a city downwind of an isoprene-

rich forest, daytime O3 can be largely modulated by the chemical removal of isoprene 

throughout the night. Such local-scale events may only be captured by a very high-resolution 

model with detailed characterization of emission sources. It is important to assess this 

impact on a global scale using 3-D chemistry models, owing to the profound coupling of 

boundary layer dynamics and chemistry. Quantifying the impact of BVOC-NO3 chemistry 

on NOx fate is important given the long-standing problem in current global and regional 

AQMs of a large overestimate of O3 over the eastern US in summer (Fiore et al., 2009).

2.6.4 Comparison of field data with air quality models—Recent field campaigns 

(SOAS, SEAC4RS, EUCAARI, EMEP) have allowed for the attribution of SOA to NO3 

oxidation to provide model constraints not previously available. Pye et al. (2015) and Fisher 

et al. (2016) implemented updated BVOC + NO3 chemistry in CMAQ and GEOS-Chem, 

respectively, to interpret data in the SE US during the summer of 2013 (SOAS and 

SEAC4RS). Model predictions of gas-phase monoterpene nitrates (primarily NO3 derived) 

were higher than the sum of C10H17NO4 and C10H17NO5 (Nguyen et al., 2015) by a factor 

of 2–3 (Fisher et al., 2016) and 7 (Pye et al., 2015), consistent with a significant fraction of 

the monoterpene nitrates being highly functionalized (Lee et al., 2016). The studies 

identified particle-phase hydrolysis as an important modulator of particulate organic-nitrate 

concentrations and organic nitrate lifetime. The GEOS-Chem simulation reproduced the 

particle-phase organic nitrate diurnal cycles (SOAS), boundary layer concentrations, and 

gas–particle partitioning reasonably well; however, it underestimated concentrations in the 

free troposphere, possibly due to measurement limitations and/or the implementation of 

rapid uptake followed by hydrolysis of all gas-phase organic nitrates in the model, which 

may not be valid for non-tertiary organic nitrates (Fisher et al., 2016).

3 Perspectives and outlook

Section 3 outlines perspectives on the implications of NO3-BVOC atmospheric chemistry 

with respect to (1) aerosol optical and physical properties; (2) health effects; (3) trends in 

NOx emissions and organic aerosols and their implications for control strategies related to 

particulate matter; (4) critical needs for analytical methods; (5) critical needs for models; (6) 

field studies in the developing world and under-studied areas; and (7) critical issues to 

address in future field and laboratory measurements in light of current understanding of this 

chemistry and trends in emissions.

3.1 Aerosol optical and physical properties

The climatic effects of atmospheric aerosols depend on their various physical and chemical 

properties. Hygroscopicity, cloud condensation nuclei (CCN) activity, optical properties 

(namely light absorption and scattering), and ability to act as CCN and ice nuclei (IN) are 

the key aerosol properties that would determine their ability to affect climate. Additional 

properties such as aerosol number size distribution, chemical composition, mixing state, and 

Ng et al. Page 32

Atmos Chem Phys. Author manuscript; available in PMC 2018 August 22.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



morphology will determine whether the aerosols will be optically important or whether they 

would affect cloud properties. These aerosol properties depend on the sources, aging 

processes, and removal pathways that aerosols experience in the atmosphere (Boucher, 

2013).

Absorption by aerosol may affect the cloud lifetime and altitude due to heating of the 

atmosphere (Mishra et al., 2014). They can also change the atmospheric lapse rate, which in 

turn can result in modification in aerosol microphysics in mixed-phase, ice, and convective 

clouds (Boucher, 2013). In addition to direct emissions of known absorbing particles (black 

carbon, mineral dust, biomass burning aerosols), SOA may also have absorption properties. 

The absorbing component of organic carbon (OC), namely “brown carbon” (BrC), is 

associated with OC found in both primary and secondary OC and has a spectral-dependent 

absorption that smoothly increases from short visible to UV wavelengths (Bond and 

Bergstrom, 2006). It has been suggested that BrC is a component of SOA that is composed 

of high molecular weight and multifunctional species such as humic-like substances, organic 

nitrates, and organosulfate species (Andreae and Gelencser, 2006; Bond and Bergstrom, 

2006; Ramanathan et al., 2007b; Laskin et al., 2015; Moise et al., 2015). Many modeling 

studies often assume that BC and mineral dust are the only two significant types of light-

absorbing aerosols on the global scale. Therefore, they treat SOA as a purely scattering 

component that leads to climate cooling (Stier et al., 2007; Bond et al., 2011; Ma et al., 

2012). However, observations suggest that BrC is widespread mostly around and downwind 

urban centers (Jacobson, 1999). In such places, BrC may have significant contribution, and 

in some cases it may dominate the total aerosol absorption at specific (short) wavelengths 

(Ramanathan et al., 2007a; Bahadur et al., 2012; Chung et al., 2012; Feng et al., 2013).

Based on observations, Chung et al. (2012) recently suggested that the direct radiative 

forcing of carbonaceous aerosols is +0.65 (0.5 to about 0.8) Wm−2, comparable to that of 

methane, the second most important greenhouse gas. This study emphasizes the important 

role of BrC and calls for better measurements of the absorption properties of BrC, 

specifically at short wavelengths where the absorption is most significant. Many previous 

studies have concentrated on primary particulate matter, mostly from biomass burning. 

However, these studies often neglected contributions to absorption due to BrC in SOA. 

There is ample laboratory and field evidence for the formation of such absorbing material in 

SOA (Chung et al., 2012; Lack et al., 2012). This absorbing component is the least 

characterized component of the atmospheric absorbing aerosols and constitutes a major 

knowledge gap, calling for an urgent need to identify the optical properties of the organic 

(BrC) component in SOA, and the chemical pathways leading to its formation and losses 

(Laskin et al., 2015; Lin et al., 2015; Moise et al., 2015).

Recently, Washenfelder et al. (2015) measured aerosol optical extinction and absorption in 

rural Alabama during the SOAS campaign. While they found that the majority of BrC 

aerosol mass was associated with biomass burning, a smaller (but not negligible) 

contribution was attributed to biogenically derived SOA. This fraction reached a daily 

maximum at night and correlated with particle-phase organic nitrates and is associated with 

nighttime reactions between monoterpenes and the NO3 radical (Xu et al., 2015a). Based on 

the above, it is concluded that SOA produced from reactions of NO3 with BVOC can be a 
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major source of SOA during the night that may affect daytime aerosol loading. This 

important fraction of NO3-derived SOA can contribute to the direct radiative effect of SOA 

through scattering and absorption of incoming solar radiation.

Nitration of aromatic compounds (oxidation via NO2, NO3, N2O5) has a potential to form 

chromophores that can absorb solar radiation. Theoretical and experimental studies have 

shown that nitration of PAHs leads to nitro PAHs and their derivatives such as nitrophenols 

(Jacobson, 1999; Harrison et al., 2005; Lu et al., 2011). The nitro substituents on the 

aromatic ring in compounds enhance and shift the absorption to longer wavelengths (> 350 

nm). Field studies report that nitrogen-containing mono- and polyaromatic SOA constituents 

absorb light at short (near-UV and visible) wave-lengths. The reaction products between 

NO3 and BVOC have the potential to form effective chromophores. Multifunctional organic 

nitrates and organosulfate compounds formed during the nighttime suggest that the SOA 

produced from NO3 reactions leads to formation of BrC that can absorb solar radiation 

(Iinuma et al., 2007).

Only a few studies have investigated optical properties of SOA partially composed of 

organic nitrates (Moise et al., 2015). Most existing literature on optical properties of organic 

nitrates in SOA has been focused on oxidation of anthropogenic precursor compounds 

(Jacobson, 1999; Nakayama et al., 2010; Lu et al., 2011; Liu et al., 2012b), while a few 

partially contradictory studies have examined SOA formed from NO3 reaction with biogenic 

precursors (Song et al., 2013; Varma et al., 2013). The typically high mass absorption 

coefficient (MAC) that was observed for anthropogenic high-NOx SOA can be partially 

attributed to the presence of nitroaromatic groups, for example, via the nitration of PAHs 

(Jacobson, 1999; Lu et al., 2011). Song et al. (2013) examined optical properties of SOA 

formed by NO3+ O3+ α-pinene. With neutral seed aerosol, organic nitrates were present but 

observed to be non-absorbing; however, with acidic seed aerosol, SOA were strongly light 

absorbing, which the authors attributed to nitrooxy organosulfates formed via aldol 

condensation. Varma et al. (2013) measured absorption of NO3 +β-pinene SOA and found a 

higher refractive index than when oxidation was via OH or O3, and attributed to the 

difference to the low HC / NOx ratio and presence of organic nitrates in the particle phase.

Laboratory and field studies suggest that SOA formed by nighttime chemistry can have 

profound regional and possible global climatic effects via their absorbing properties. 

However, the optical properties of NO3-containing SOA are not well known. Varma et al. 

(2013) measured a high value for the refractive index real part value of 1.61 (±0.03) at λ = 

655– 687 nm following reactions of NO3 with β-pinene. This value is significantly higher 

than values observed following OH- and ozone-initiated terpene oxidation (Fig. 6) (Moise et 

al., 2015). This has been attributed to the high content (up to 45 %) of organic nitrates in the 

particle phase (Varma et al., 2013).

Key physical parameters of aerosols include particle size and number, volatility, viscosity, 

hygroscopicity, and CCN activity. While it is clear that atmospheric particle size increases 

through condensation of BVOC + NO3 oxidation products, the effect of NO3 oxidation on 

particle number is not usually studied in laboratory experiments. Very little is known about 

the volatility of SOA from NO3, with field studies from Hyytiälä indicating that organic 
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nitrates may have low volatility (Häkkinen et al., 2012). Viscosity is not known. Few studies 

report the hygroscopicity and CCN activity of SOA from NO3 oxidation of BVOC. A study 

by Suda et al. (2014) showed that organic compounds with nitrate functionality (compared 

to other functional groups such as hydroxyl, carbonyl, hydroperoxide) have the lowest 

hygroscopicity and CCN efficiency. Recently, Cerully et al. (2015) reported that the 

hygroscopicity of less-oxidized OOA (LO-OOA, mostly from BVOC + NO3) is lower than 

other OA subtypes (MO-OOA and isoprene-OA) resolved by PMF analysis of AMS data 

from the SOAS campaign. As monoterpenes + NO3 reactions can contribute ~ 50 % of 

nighttime OA production (Xu et al., 2015a), results from Cerully et al. (2015) suggested that 

it is possible that SOA formed from NO3 oxidation of BVOC is less hygroscopic than OA 

formed from other oxidation pathways.

3.2 Health effects

Nitrated organic compounds also pose adverse health effects (Franze et al., 2003, 2005; 

Pöschl, 2005; Gruijthuijsen et al., 2006; Pöschl and Shiraiwa, 2015). In particular, several 

studies have reported that biological particles such as birch pollen protein can be nitrated by 

O3 and NO2 in polluted urban air (Franze et al., 2005; Reinmuth-Selzle et al., 2014). The 

mechanism of protein nitration involves the formation of long-lived reactive oxygen 

intermediates, which are most likely tyrosyl radicals (phenoxy radical derivatives of 

tyrosine) (Shiraiwa et al., 2011). The resulting organic nitrates were found to enhance the 

immune response and the allergenicity of proteins and biomedical data suggest strong links 

between protein nitration and various diseases (Gruijthuijsen et al., 2006). Inhalation and 

deposition of organic nitrates into lung lining fluid in the human respiratory tract may lead 

to hydrolysis of organic nitrates forming HNO3, which may reduce pulmonary functions 

(Koenig et al., 1989). Consequently, inhalation of aerosols partially composed of nitrated 

proteins or nitrating reagents might promote (i) immune reactions, (ii) the genesis of 

allergies, (iii) the intensity of allergic diseases, and (iv) airway inflammation. Toxicity of 

nitrated SOA compounds is still unclear. In the light of these observations and remaining 

uncertainties, the effect of organic nitrates present in biogenic SOA on human health should 

be a focus of future studies.

Formaldehyde is an important source of atmospheric radicals as well as a major hazardous 

air pollutant (HAP). It is a degradation product of almost every VOC in the atmosphere, and 

BVOC are known to contribute substantially to ambient concentrations of formaldehyde 

(Luecken et al., 2012). The overall yield of formaldehyde from BVOC-NO3 reactions is 

lower than from corresponding OH reactions, indicating that any changes in the relative 

distribution of oxidation routes will have a corresponding change in formaldehyde (and thus 

oxidant regeneration and HAP exposure).

3.3 Trends in NOx emissions and organic aerosols – implications for air quality control 
strategies

Nitrogen oxide emissions are converted to NO3 and thus affect nitrate-derived SOA. In the 

United States, where NOx emissions are dominated by fuel combustion, regulatory actions 

have resulted in decreasing NOx levels after increases from 1940 to 1970 (Nizich et al., 

2000) and relatively stable levels between ~ 1970 and ~ 2000 (Richter et al., 2005). NOx 
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emissions in the US are estimated to have decreased by roughly 30–40 % in the recent past 

(between 2005 and 2011/2012), as reflected in satellite-observed NO2, ground-based 

measurements, and the Environmental Protection Agency (EPA) National Emission 

Inventory (NEI) (Russell et al., 2012; Xing et al., 2013, 2015; Hidy et al., 2014; Tong et al., 

2015). Recent decreases in NOx have been attributed to the mobile sector, and power plant 

controls including the EPA NOx State Implementation Plan Call implemented between 2003 

and 2004 (Kim et al., 2006; Russell et al., 2012; Hidy et al., 2014; Foley et al., 2015; Lu et 

al., 2015). In the United States, NOx emissions are expected to continue to decrease and 

reach 72 and 61 % of their 2011 levels in 2018 and 2025, respectively (Eyth et al., 2014). 

Furthermore, recent work indicates that NOx emissions may be overestimated in models for 

the United States (Travis et al., 2016) particularly for on-road gasoline vehicles (McDonald 

et al., 2012).

Globally, the Representative Concentration Pathway trajectories indicate that NOx emissions 

will decrease below year 2000 levels by the middle of the 21st century (Lamarque et al., 

2011). Europe has experienced declines in NOx with NO2 concentrations decreasing by 

20 % over western Europe between 1996 and 2002 (Richter et al., 2005) and decreasing by 

an additional ~ 20 % in the more recent past (2004–2010) (Castellanos and Boersma, 2012). 

In contrast, NOx emissions in China have increased by large amounts since 1996 (Richter et 

al., 2005; Stavrakou et al., 2008; Verstraeten et al., 2015) with a more recent leveling out or 

decrease of NO2 concentrations (Krotkov et al., 2016). NO2 concentrations in India have 

continued to increase (Krotkov et al., 2016; Duncan et al., 2016).

These large past and expected future changes in anthropogenic NOx emissions indicate that 

analysis of historical data could reveal how NOx emissions affect organic aerosol formation 

and more specifically SOA from NO3-initiated chemistry. Long-term monitoring networks 

often measure NOx and OC, which could allow for correlation analysis. In addition, air 

quality trends in organic aerosol from traditionally less-sampled locations (e.g., Streets et al., 

2008) and emissions for locations such as China have been characterized and could be used 

for analysis.

In addition to examining measurement data for relationships between NO3-derived SOA and 

NOx, chemical transport modeling with emission sensitivity simulations can be used to 

provide estimates of how various SOA pathways respond to changes in NOx emissions. For 

example, Carlton et al. (2010b) used the CMAQ model to determine that controllable NOx 

emissions were responsible for just over 20 % of total SOA in the United States based on the 

NO3-BVOC mechanism available at the time. Pye et al. (2015) predicted nitrate-derived 

SOA concentrations would decrease by 25 % due to a 25 % reduction in NOx emissions, but 

the overall change including all organic aerosol components would be only 9 % as a result of 

other less sensitive (or increasing) components. Other modeling studies (Lane et al., 2008; 

Zheng et al., 2015; Fisher et al., 2016) have shown that total organic aerosol or particle-

phase organic nitrates may not respond strongly to decreased NOx emissions, but significant 

spatial and composition changes can occur.
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3.4 Organic nitrate standards

The CIMS technique allows for highly time-resolved, chemically speciated measurements of 

multifunctional organic nitrates (Beaver et al., 2012; Paulot et al., 2012; Lee et al., 2014a; 

Xiong et al., 2015). Synthesis, purification, and independent quantification of an individual, 

isomerically specific organic nitrate is, however, required for calibration because standards 

are not commercially available, except for a few monofunctional alkyl nitrates.

The synthesis of monofunctional alkyl nitrates can be performed via several methods 

(Boschan et al., 1955), including nitration of alkyl halides with silver nitrate, direct nitration 

of alcohols or alkanes with nitric acid (Luxenhofer et al., 1996; Woidich et al., 1999), or 

treatment of alcohols with dinitrogen pentoxide (Kames et al., 1993). Techniques for the 

synthesis of multifunctional nitrates (in particular, hydroxynitrates) have been described in 

previous reports (Muthuramu et al., 1993; Kastler and Ballschmiter, 1998; Werner et al., 

1999; Treves et al., 2000). Carbonyl nitrates have also been synthesized using the same 

protocol, i.e., nitration of hydroxy ketones with dinitrogen pentoxide (Kames et al., 1993; 

Suarez-Bertoa et al., 2012).

Most recently, three isomers of isoprene hydroxynitrates were synthesized (Lockwood et al., 

2010; Lee et al., 2014b). As the precursor ingredient is an organic epoxide on which 

hydroxy and nitrate functional groups are attached, the same protocol (Nichols et al., 1953; 

Cavdar and Saracoglu, 2008) can be applied to synthesize hydroxynitrates of various VOC 

backbones assuming availability of precursor compounds. Oxidation of a single-parent 

compound can yield numerous isomerically unique byproducts possessing various functional 

groups, including one or more nitrates. As such, synthesis of and calibration for each nitrate 

rapidly become prohibitive. Given that multifunctional organic nitrates possessing more than 

four oxygen atoms, for which synthesis protocols currently do not exist, dominate the 

particulate nitrate mass of submicron particles (Lee et al., 2016), a more comprehensive 

calibration technique is needed. Three broad approaches are currently utilized. One is to 

cryogenically collect a suite of oxidation byproducts (present in the atmosphere, formed in a 

simulation chamber or flow tube, etc.) on a GC column. The desorbing eluent, separated in 

time by volatility/polarity as it is thermally desorbed, is measured simultaneously by CIMS 

and a quantitative instrument such as the TD-LIF (Day et al., 2002; Lee et al., 2014b). The 

corresponding eluting peaks detected by both instruments allow for calibration of each 

surviving, isobarically unique (at least for unit mass resolution spectrometers) organic nitrate 

(Bates et al., 2014; Schwantes et al., 2015; Teng et al., 2015). The second approach 

employed for the iodide adduct ionization technique is to deduce the instrument response 

from a comparison of the binding energies of the numerous iodide organic nitrate clusters to 

those of compounds with known sensitivities by applying variable voltages in the ion 

molecule reaction region to break up charged clusters systematically. The rate at which the 

signal of an organic nitrate cluster decays with voltage is a function of its binding energy, 

which governs its transmission efficiency through the electric fields and thus its sensitivity 

(Lopez-Hilfiker et al., 2016). Lastly, quantum chemical calculations of specific compounds 

allow the determination of the sensitivity of their iodide adduct (Iyer et al., 2016) and CF3O− 

(Kwan et al., 2012; Paulot et al., 2012) ionizations.
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3.5 Critical needs for models

3.5.1 Robust and efficient representation of gas-phase chemistry—Previous 

sections have detailed the reactions of BVOC with NO3 and the need to include this 

chemistry to represent more accurately processes that control O3 and SOA formation. But 

applying that information in a way that can be used for air quality studies presents a serious 

challenge. As highlighted in Sect. 2.6.1, the chemical mechanisms currently being used in 

AQMs are limited in their representation of NO3-BVOC chemistry, largely lumping all 

monoterpenes together, and with no agreement on yields. The lack of detail in current 

mechanisms is reflected in the variety of methods by which SOA formation from BVOC-

NO3 chemistry is estimated (Sect. 2.6.2).

Typically, the NO3-BVOC chemistry is implemented in AQMs into the existing system of 

organic and inorganic chemical reactions that occur in the atmosphere. Because there may 

be hundreds or thousands of different chemical reactions occurring simultaneously and the 

computational efforts required to solve those on a 3-D grid are onerous, the chemical 

mechanisms used in AQMs are typically condensed to a certain extent. The greatest 

challenges in modeling the reactions initiated by NO3 and BVOC in AQMs are (1) deciding 

how much detail must be included to accurately represent the chemistry; (2) estimating 

intermediate reactions and/or products when direct experimental observations are not 

available; (3) integrating the new reactions into existing chemical mechanisms; and (4) 

validating the complete schemes against observational data.

Including all of the attack pathways and isomers that are formed in the reactions of NO3 and 

BVOC and their subsequent products rapidly becomes an intractable problem, as the number 

of species and reactions produced from a VOC grows exponentially with the number of 

carbons in the compound (Aumont et al., 2005), resulting in an estimate of almost 400 

million products from a single C10 hydrocarbon. Even restricting the chemistry solely to the 

RO2 formed from α-pinene, β-pinene, and limonene via addition of NO3 to the double bond 

results in 861 unique product species and 2646 reactions as estimated from the MCM (http://

mcm.leeds.ac.uk/MCM-devel/home.htt; Saunders et al., 2003). In comparison, the chemical 

mechanisms used in AQMs typically consider a total of 100–200 species and less than 400 

reactions to model the entire gas-phase chemistry occurring in the troposphere. One 

challenge is to find a balance between complexity and computational efficiency that involves 

both deriving complete mechanisms as well as condensing them to the extent possible.

The second major challenge is that many of the chemical pathways must be estimated given 

the limited experimental measurements of intermediate reaction rate constants and products. 

Structure–activity predictions have been used heavily in the past, but these have been 

formulated for a limited number of compounds. Their predictions become less accurate as 

the complexity of the molecule increases (Calvert et al., 2015). When heterogeneous 

reactions play a significant role in the transport and fate of reaction products, as they do in 

monoterpene chemistry, the challenge becomes even greater. With recent research, new 

product structures that contribute to SOA have been identified (Boyd et al., 2015). However, 

these are not covered by existing predictive theory, and these new pathways must be 

characterized, including reaction rate constants, co-reactants, and products. Physical 
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parameters of all of these new species, such as solubility, radiative properties, emission rates, 

and deposition velocities also are required, but data are often unavailable for these or even 

comparable species.

The last challenge is integrating the chemistry within the rest of the chemistry occurring in 

the atmosphere. The major chemical mechanisms used in AQMs today were developed 

primarily to address episodes of elevated O3 under conditions of high NOx and have been 

evaluated for this purpose. Thus, the mechanisms often do not lend themselves well to 

predicting the chemistry of complex VOC or other air quality endpoints (Kaduwela et al., 

2015). Minor pathways with respect to O3 formation have been removed from the 

mechanisms to reduce the computational burden, but these pathways may be important for 

formation of SOA. In addition, the detailed chemistry of multistep alkoxy and peroxy radical 

chemistry is condensed into a single step in some mechanisms, but identifying whether these 

radicals react with NOx or HOx or isomerize is critical for predicting the types of organic 

molecules that are formed. As described in Sect. 2.6, existing mechanisms include the 

capability for a limited number of nitrates, and in many cases the links to facilitate 

expansion to more detailed representations are missing.

Significant work must be done to allow modelers to implement this new information in 

AQMs and thus use this updated knowledge to develop improved predictions of future air 

quality. One approach is to focus on key chemicals of interest, derive mechanisms that are 

suitable for specialized applications, and append these on to existing frameworks (for 

example, Xie et al., 2013). The longer-term view requires a more comprehensive approach 

that draws on the development of community archives that can better accommodate rapidly 

changing information and better represent the interactions of biogenic with anthropogenic 

chemistry. Here, we put forward our recommendations for future work in the following 

areas:

1. Development of tools for the semi-automated production of the reaction 

pathways and products of later-generation products resulting from alternate 

pathways of radical reactions with BVOC. These tools should be able to 

incorporate experimental data when available. In conjunction with the automated 

development, we require advanced methods for condensing these large 

mechanisms into computationally feasible reaction schemes.

2. Improvements in estimation techniques for uncertain pathways, including 

reaction rate constants for multifunctional stable compounds and radicals for 

which measurements are not available, and the quantification of the errors 

associated with these estimation methods.

3. Development of theory and techniques for integrating gas-phase products with 

SOA production, in this case, describing the transformation of gas-phase organic 

nitrates to their SOA products.

4. Development of more versatile base mechanisms that have the flexibility to 

accept increased detail in VOC description and the continuing validation of the 

complete tropospheric chemical mechanisms against observational data.
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3.5.2 Improved techniques and protocols for evaluation of complex and 
reduced gas-phase mechanisms—Generally speaking, once detailed mechanisms are 

developed, they are evaluated through some form of benchmarking. Systematic strategies for 

mechanism evaluation include validation of highly detailed mechanisms unable to be run in 

3-D models against benchmark data from well-characterized simulation chamber 

experiments (Jenkin et al., 1997; Aumont et al., 2005) and the incorporation of these 

mechanisms into box or 1-D models to validate radical and short-lived species against field 

campaign observations. Less-detailed air quality (AQ) mechanisms can then be compared to 

these reference mechanisms by way of sensitivity experiments in idealized modeling studies 

– often aimed at assessing the sensitivity in O3 to changing NOx and VOC emissions 

(Archibald et al., 2010; Squire et al., 2015). AQ mechanisms are often also then re-evaluated 

against chamber and/or field experiment data before they are implemented into 3-D models 

and then undergo evaluation against extensive measurements in the residual layer.

One of the greatest challenges in the BVOC-NO3 system is that current nighttime 

measurements are mainly collected from surface sites, which are confined to a shallow 

surface layer at night and not representative of the whole nighttime boundary layer. The 

impact of nighttime chemistry on daytime ozone and nitrogen/aerosol budget would require 

careful investigation of nighttime chemistry in the residual layer, which contains > 80 % of 

air masses at night.

Moreover, the benchmarking activities mentioned above and the development process 

discussed in Sect. 3.5.1 are not well aligned. A more unified approach that identifies some 

key mechanistic problems and identifies strategies to evaluate them is required in order to 

make improved progress on simulating the changing composition of the atmosphere.

3.5.3 Reduce uncertainties in sub-grid-scale processes—Uncertainties in AQM 

predictions also arise from the representation of physical sub-grid-scale processes. The ones 

particularly relevant for the NO3-BVOC chemistry include, but are not limited to, the 

following.

Nighttime boundary layer mixing: The spatial distribution of BVOC and NOx precursors 

is highly variable, but the current AQMs neglect these heterogeneities and assume perfect 

mixing within grid cells of typically 3–10 km in the horizontal. At those resolutions, models 

are unable to resolve the localized surface emission sources and the microscale structure of 

boundary layer turbulence, and therefore cannot resolve spatial heterogeneities in chemistry, 

partitioning, and mixing of chemicals, which are essential for predicting the concentrations 

of secondary pollutants.

Typically, the freshly emitted monoterpene species have a tendency to accumulate in the 

shallow nighttime boundary layer (typically < 200 m), and can react with NO3 if available. 

However, often NO3 is located in the residual layer that is decoupled from the nighttime 

boundary layer (NBL), and the BVOC + NO3 reactions would depend on the model’s ability 

to mix the two layers. Thus, mixing within and out of the boundary layer provides a key 

challenge for modeling the impacts of BVOC-NO3 chemistry, as the measured gradients of 
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NO3 and BVOC are very strong in the vertical (e.g., Brown et al., 2007b; Fuentes et al., 

2007).

A large focus on model evaluation has been on the impacts of higher horizontal resolution 

(Jang et al., 1995). It has been shown in several cases that owing to the complex interplay of 

chemical families, the sensitivity of the chemical system is not captured at lower resolution 

(e.g., Cohan et al., 2006). However, very little work has focused on the role of improvements 

in vertical resolution, despite the fact that inter-model differences in properties like the 

height of the boundary layer vary by over a factor of 2 in some cases (e.g., Hu et al., 2010). 

Moreover, the NBL is not well mixed, so evaluation of nocturnal physics requires more than 

just evaluating the NBL height.

Plume parameterizations: Typically, parameterizations have been applied to anthropogenic 

emission sources (e.g., aircraft plumes, urban plumes) and not to biogenic sources. Partly, 

this is a result of the differences in the source terms, anthropogenic emissions often being 

well represented as point sources in space, whereas biogenic emissions are often large area 

sources. However, as the emissions of BVOC are often very species specific, and 

observations highlight large spatial variability over small areas (e.g., Niinemets et al., 2010), 

the adoption of the anthropogenic plume parameterizations to BVOC emissions could lead 

to improvements in model performance.

One approach is the plume-in-grid (PiG) parameterization (Karamchandani et al., 2002). 

This aims to solve the problem of sub-grid-scale chemical processes by implementing 

ensembles of Gaussian puffs within the AQM (e.g., Vijayaraghavan et al., 2006). Other 

approaches include hybrid Eulerian–Lagrangian models (Alessandrini and Ferrero, 2009). 

These differ from the PiG models by simulating large numbers of stochastic trajectories that 

can make use of variable reactive volumes to simulate their diffusion into background air 

masses simulated on Eulerian grids.

Global models have generally used a different approach to the problem of plumes. Broadly, 

following one of the two paradigms (Paoli et al., 2011) to (i) modify the emissions of the 

reaction mix (using so-called effective emissions or applying emission conversion factors) 

and (ii) modify the rates of reaction (effective reaction rates).

3.6 Field studies in the developing world and under-studied areas

In light of the questions raised earlier in this review, assessing the role of NO3-BVOC 

chemistry will require field experiments over a wide range of ratios of isoprene to 

monoterpene emissions and of NO3 to BVOC. Future studies of NO3-BVOC chemistry are 

in the planning stages for North America. These studies will provide access to environments 

with different NOx levels and over a modest range of isoprene and monoterpene emission 

rates. A wider range of these parameters can be accessed in countries where NOx emission 

controls are not as completely implemented and where BVOC emissions are abundant. 

Bringing the state-of-the-art capabilities developed for study of NO3-BVOC chemistry to 

locations in China and India would allow insight not only into the role of that chemistry in 

those countries now but also into the role this chemistry played in Europe and the US prior 

to implementation of current emission standards. Experiments in the tropics potentially 
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would allow observations of the confluence of BVOC and very low NOx to be explored, thus 

providing insight into BVOC-NO3 as a sink of NOx.

3.7 Future needs for chamber studies

Field studies, by definition, include the entire complexity of the real atmosphere, so that the 

identification of single processes and quantification of their impact is challenging. Specific 

experiments in chambers allow investigating processes without effects from meteorology, 

which largely impacts observations in the real atmosphere specifically during nighttime, 

when the lower troposphere is not as well mixed as it is during daytime. In chamber 

experiments, specific compounds of interest can be isolated and studied under well-

controlled oxidation environments, allowing a more detailed and direct characterization of 

the composition, chemical, and physical properties of aerosols. Because such laboratory 

chamber data provide the basic understanding for predicting SOA formation, it is important 

that the design of such experiments mimics the oxidation environments in the atmosphere to 

the greatest extent possible. Several important needs for understanding NO3-BVOC 

chemistry in chambers include (1) elucidation of kinetic and mechanistic information for 

NO3-BVOC reactions; (2) characterization of wall losses for low-volatility products in the 

NO3-BVOC system; (3) understanding the fate of peroxy radicals in the nighttime 

atmosphere and its influence on this chemistry; (4) hydrolysis and photooxidation of BVOC-

derived organic nitrates from specific BVOC plus specific oxidant pairs over a range of 

appropriate conditions; (5) optical properties of aerosol organic nitrate; and (6) 

intercomparison of instrumental methods for key species in the NO3-BVOC system.

Kinetic and mechanistic elucidation: The number of chamber studies investigating NO3 

chemistry is small compared to the number of studies for photochemical oxidation and 

ozonolysis. In most of the studies, gas-phase oxidation products and SOA yields from the 

oxidation of BVOC have been measured. Studies include the investigation of SOA from 

monoterpenes (Wangberg et al., 1997; Griffin et al., 1999; Hallquist et al., 1999; Spittler et 

al., 2006; Fry et al., 2009, 2011; Boyd et al., 2015; Nah et al., 2016b), methyl butenol 

(Fantechi et al., 1998a, b), and isoprene (Rollins et al., 2009; Ng et al., 2010; Schwantes et 

al., 2015). A few more studies investigated gas-phase reaction kinetics, including the 

reactions of NO3 with aldehydes (Clifford et al., 2005; Bossmeyer et al., 2006), amines 

(Zhou and Wenger, 2013), or cresol (Olariu et al., 2013). As a consequence of the small 

number of studies, the oxidation mechanisms of organic compounds by NO3 and the yields 

of oxidation products in the gas phase and particle phase have larger uncertainties. The well-

controlled oxidation environments in chamber experiments, coupled with complimentary 

gas-phase and particle-phase measurements (online and offline), allow for elucidating 

detailed oxidation mechanisms under varying reaction conditions (Ng et al., 2008; Boyd et 

al., 2015; Schwantes et al., 2015). Identification of gas- and particle-phase reaction products 

from NO3-BVOC chemistry within controlled chamber environments can also greatly aid in 

the interpretation of field data in which multiple oxidants and BVOC are present. Future 

chamber experiments will naturally take advantage of new advanced gas–aerosol 

instrumentation and aim to constrain the formation yields of gas-phase oxidation products 

and establish a fundamental under-standing of aerosol formation mechanisms from NO3-

BVOC under a wide range of oxidation conditions.
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Wall losses: Although chamber studies allow separating processes driven by chemistry and 

physics from transport processes that occur in the real atmosphere, careful characterization 

of the behavior of NO3 in chambers as well as the organic products of the NO3 oxidation 

remains a research priority. Yields of gas-phase oxidation products can be influenced by 

chamber-specific loss processes (surface loss on the chamber wall) and SOA yields can be 

impacted by both direct loss of particles and loss of species that can condense on particle or 

chamber wall surfaces (McMurry and Grosjean, 1985; Loza et al., 2010; Matsunaga and 

Ziemann, 2010; Yeh and Ziemann, 2014; Zhang et al., 2014a, 2015; Krechmer et al., 2016; 

La et al., 2016; Nah et al., 2016a; Ye et al., 2016). The extent to which vapor wall loss 

affects SOA yields appears to be dependent on the VOC system, from relatively small effects 

to as high as a factor of 4 (Zhang et al., 2014a; Nah et al., 2016a). Studies on the effects of 

vapor loss on SOA formation from BVOC + NO3 are limited. With minimal or no 

competing gas–particle partitioning processes, substantial vapor wall loss of organic nitrates 

has been observed in experiments not specific to NO3 oxidation (Yeh and Ziemann, 2014; 

Krechmer et al., 2016). However, the use of excess oxidant concentrations and rapid SOA 

formation in BVOC + NO3 experiments (hence, shorter experiments) could potentially 

mitigate the effects of vapor wall loss on SOA yields in chamber studies (Boyd et al., 2015; 

Nah et al., 2016a). In light of the developing understanding of this issue, an important 

consideration for the design of any future systematic chamber studies is the influence of 

vapor wall loss on SOA formation from nitrate radical oxidation under different reaction 

conditions, such as peroxy radical fates, relative humidity, seeds, oxidant level, chamber 

volume, etc.

Peroxy radical fate: As discussed above, the fate of peroxy radicals directly governs the 

product distribution in the NO3-BVOC system, including SOA yields and composition. Dark 

reactions of peroxy radicals differ significantly from their photochemical analogs, and are 

directly related to the development of mechanistic understanding in the NO3-BVOC system. 

There is a need to systematically investigate reaction products and SOA formation from 

NO3-BVOC reactions under different peroxy radical reaction regimes, but this aspect has 

only recently become a focus of chamber studies (Ng et al., 2008; Boyd et al., 2015; 

Schwantes et al., 2015). Rapid formation of highly oxygenated organic nitrates has been 

observed in laboratory studies of β-pinene + NO3 and α-pinene + NO3; these products could 

be formed by unimolecular isomerization of peroxy radicals or autoxidation (Nah et al., 

2016b). The importance of this peroxy radical reaction channel in NO3-BVOC chemistry 

warrants further studies. Future chamber studies will need to be explicit in their specification 

of the peroxy radical chemistry regime that is investigated in a particular experiment, and 

will need to relate that regime to the conditions of ambient nighttime atmosphere.

Organic nitrate hydrolysis and photooxidation: Recent field studies have shown that 

organic nitrates formed from NO3-BVOC are important components of ambient OA. 

However, the reactivity in both gaseous and condensed phases of these biogenic nitrates, in 

particular of polyfunctional nitrates, has been subject to few studies and requires better 

characterization to evaluate the role of these compounds as reservoirs/sinks of NOx. Field 

results suggest that the fate of organic nitrates in both the gas and aerosol phase have 

variable lifetimes with respect to hydrolysis. The difference in the relative amount of 
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primary/secondary/tertiary organic nitrates (which hydrolyze with different rates) from 

nitrate radical oxidation versus photochemical oxidation needs to be constrained. Most of 

the hydrolysis studies thus far are conducted in bulk, except for a few recent studies on 

monoterpene organic nitrates (e.g., Boyd et al., 2015; Rindelaub et al., 2015). The solubility 

of multifunctional organic nitrates in water and the extent to which hydrolysis occurs in 

aerosol water warrant future studies. The effect of particle acidity on hydrolysis might also 

be important for organic nitrates formed in different BVOC systems.

While there are extensive studies on photochemical aging of ozonolysis SOA, studies on 

photochemical aging of NO3-initiated SOA and organic nitrates are extremely limited. A 

recent study shows that the particle-phase organic nitrates from NO3+β-pinene and NO3+α-

pinene reactions exhibit completely different behavior upon photochemical aging during the 

night-to-day transition, and act as permanent and temporary NOx sinks, respectively (Nah et 

al., 2016b). With the ~ 1-week lifetime of aerosols in the atmosphere and the majority of 

NO3-BVOC organic nitrates that are formed at night, the photochemical fates of these 

organic nitrates could impact next-day NOx cycling and ozone formation. Therefore, there is 

a critical need to understand the multigenerational chemistry and characterize the evolution 

of organic nitrates over its diurnal life cycle, including aging NO3-initiated SOA and organic 

nitrates by photolysis and/or OH radicals.

Aerosol optical properties: The optical properties, especially in the short wavelength 

region, of NO3-derived SOA may be most conveniently measured during coordinated 

chamber studies that also include detailed measurements of gas-phase oxidation chemistry 

and aerosol composition. Such studies could also serve to isolate the specific optical 

properties of NO3-BVOC-derived aerosol to obtain better optical closure in the 

interpretation of field data. Field studies that include aerosol optical properties 

measurements in conjunction with other instrumentation can help quantify the bulk organic 

nitrate abundance and identify organic nitrate molecular composition in the SOA.

Instrument intercomparisons: The discussion above shows that recent advances in 

analytical instrumentation are key to the developing science of NO3-BVOC chemistry. 

Chamber studies provide an excellent opportunity for the comparison and validation of such 

instrumentation. State-of-the-art and developing instruments for measurement of NO3 and 

N2O5 were compared approximately a decade ago (Fuchs et al., 2012; Dorn et al., 2013). 

These instruments have improved and proliferated since that time, and further validation 

studies are needed. Measurements of total and speciated gas and aerosol-phase organic 

nitrates, as well as other oxygenated compounds that result from NO3-BVOC reactions, have 

not been the subject of a specific intercomparison study. Their comparison and validation 

will be a priority in future coordinated chamber studies.

Utility of coordinated chamber studies: Because of the need for a better understanding of 

NO3 oxidation and because of the challenges of chamber studies, investigating NO3 

chemistry, coordination between studies carried out in different chambers, and between 

chamber and field studies, can augment efforts of single or standalone chamber studies. 

Coordinated studies that would include several chambers could increase the accuracy and 

reliability of results and quantify realistic errors associated with product yield estimates. 
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This can be achieved by determining the same quantities in similar experiments in different 

chambers. Studies could benefit from complementary capabilities and properties of 

chambers. Chambers that typically operate at higher concentration ranges, and therefore 

increased oxidation rates, are suitable to perform a larger number of experiments that are 

useful for screening experiments and a series of experiments with systematic variations of 

chemical conditions. Other chambers are suited to perform experiments at atmospheric 

reactant concentrations. Experiments in these chambers may take place on a longer 

timescale, for example, a scale characteristic of the duration of at least one night. Analytical 

instrumentation and capability also differs considerably among chambers, so that 

coordinated chamber studies can make use of the determination of complementary quantities 

such as product yields of different organic compounds and characterization of various 

properties of particles for the same chemical system. For instance, it would be invaluable to 

conduct coordinated studies where a variety of instrument techniques are used to measure 

total and speciated gas- and particle-phase organic nitrates, as well as aerosol physical and 

chemical properties in the same chamber.

Substantial insights into aerosol sources, formation, and processing can be gained from 

coordinated laboratory chamber and field studies. Laboratory chamber experiments provide 

the fundamental data to interpret field measurements. The analysis of field data in turn can 

provide important insights for constraining chamber experiment parameters so that the 

oxidation conditions in chambers can be as representative as possible of those in the 

atmosphere. Two recent sets of experiments serve as examples of this approach. 

Fundamental chamber studies on β-pinene+NO3 in the Georgia Tech Environmental 

Chamber (GTEC) facility under conditions relevant to the SE US provided constraints on the 

contribution of monoterpenes + NO3 to ambient OA during the 2013 SOAS campaign (Boyd 

et al., 2015; Xu et al., 2015a). The Focused Isoprene eXperiment at California Institute of 

Technology (FIXCIT) chamber study following SOAS advanced the understanding of 

isoprene oxidation chemistry relevant to the SE US (Nguyen et al., 2014). It is important not 

to consider fundamental laboratory studies as isolated efforts, but they should be an 

integrated part of field studies. Similarly, having the modeling community involved in early 

planning stages of laboratory and field studies will greatly aid in the identification of 

critically needed measurement data.

4 Impacts of NO3-BVOC chemistry on air quality

The previous sections have demonstrated that understanding how NO3 reacts with BVOC, 

including the ultimate fate of products, encompasses all aspects of atmospheric physics, 

chemistry, and transport. These sections have raised numerous complex and fascinating 

scientific questions and highlighted the critical need for much more basic science to fill in 

unknown aspects of this system. However, “getting this system right” is not just an 

interesting scientific problem because it has direct implications for policy decisions that 

governments across the world are taking to protect citizens and ecosystems from harmful 

effects of air pollutants. Addressing the uncertainties raised in the previous sections is 

critical for developing efficient, accurate, and cost-effective strategies to reduce the harmful 

effects of air pollution.
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BVOC have long been predicted to be significant contributors to regional and global O3 

(e.g., Pierce et al., 1998; Curci et al., 2009) and PM2.5 (Pandis et al., 1991), with NO3 

reactions providing a major pathway for loss of ambient BVOC (Winer et al., 1984; Pye et 

al., 2010; Xie et al., 2013). If BVOC react with NO3 instead of OH, the O3 production of the 

BVOC can be reduced relative to reactions through OH, although in some instances they 

may slightly increase O3 by reducing next-day NOx. For example, measurements in St. 

Louis (Millet et al., 2016) demonstrate that nights with lower levels of NO3 resulted in 

higher isoprene concentrations the following morning, producing higher and earlier O3 

peaks. Recent insights into the role of biogenic nitrates, which are produced in large 

quantities through the reactions of NO3 with primary emitted BVOC and subsequent 

reactions of their stable products, demonstrate that these compounds can substantially alter 

the availability of NOx (Perring et al., 2013). This highlights the importance of accurate 

treatment of fates of organic nitrates that form from nighttime chemistry in models, which 

will impact the next-day NOx and ozone levels. Organic nitrates from BVOC + NO3 also can 

contribute to nitrogen deposition (Nguyen et al., 2015), which adversely impacts 

ecosystems. The ways in which the patterns of deposition for biogenic nitrates affect 

inorganic nitrate deposition remain poorly understood.

Implications for spatial distribution of ozone and PM2.5

While it is clear that NO3-BVOC reactions affect oxidant availability and SOA, it remains 

unclear how large that role is in the ambient atmosphere relative to other VOC and other 

oxidants and where it occurs. The extent of O3 formation downwind of sources is influenced 

by the transport of NOy species, including organic nitrates, which can release NOx 

downwind, where O3 may be formed more efficiently. Biogenically derived nitrates are the 

dominant organic nitrates in many places (Pratt et al., 2012). A variety of different organic 

nitrates are formed from different BVOC, with some being short lived (releasing NO2 

locally) and others being long lived (releasing NO2 downwind unless they are removed in 

the meantime). Errors in our attribution of the lifetime of individual biogenic nitrate 

compounds can cause errors in predicted NOx redistributions regionally and globally, and 

modify the spatial distributions of O3 (Perring et al., 2013). Updates to the chemistry of 

BVOC-NO3 also could alter calculations of the relative role of biogenic species versus 

anthropogenic pollutants to O3 and PM2.5 formation.

Implications for control strategy development

Air quality models are used not only to understand the production of air pollutants in the 

current atmosphere but also to guide the development of strategies to reduce the future 

pollution burden. Uncertainties in the chemistry and removal of BVOC can contribute to 

uncertainties in the sensitivity of O3 and PM to emission reduction strategies. This increases 

the risk of implementing expensive control strategies that are found later to be inefficient 

(more control specified than needed) or ineffective (do not meet the air quality goals for 

which they were developed). As noted by Millet et al. (2016), in urban areas downwind of 

high isoprene emissions, the loss of isoprene by NO3 at night can produce the opposite O3-

NOx behavior that would normally be expected in urban areas, potentially causing a 

reassessment of optimum control strategies. In addition, the early O3 peaks noted on low 
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NO3 nights expands the high ozone time window, resulting in higher 8 h O3 averages, on 

which regulatory compliance in the US is based.

The uncertainties in our understanding of NO3-BVOC chemistry propagate into chemical 

mechanisms, as described in Sect. 3. Past work has shown that vastly different chemical 

mechanisms may predict similar O3 in current atmospheres but show huge differences for 

intermediate species (e.g., Luecken et al., 2008) and different potential responses to 

precursor reductions, including different indicators of O3 sensitivity to VOC versus NOx 

reductions (Knote et al., 2015). The presence of large weekend effects in NOx makes 

identifying such errors more likely in current analyses.

Incorporating new information on biogenic chemistry within a chemical mechanism will 

impact the availability of NOx (e.g., Archibald et al., 2010; Xie et al., 2013) and modify the 

predicted effectiveness of anthropogenic NOx controls. Incorporating new chemical 

information into models can also impact PM2.5 sensitivities to NOx reductions. In one 

example, organic PM2.5 was almost twice as responsive to a NOx reduction than in older 

mechanisms (Pye et al., 2015). Because much of the NOx dependence of O3 and aerosols 

from NO3-BVOC reactions is inadequately accounted for in models, the few examples we 

have hint that current NOx control strategies might result in more significant improvements 

to air quality than currently assumed. Retrospective analyses should focus on elucidating the 

elements of this hypothesis that are represented in the historical record.

The role of climate change in modifying air quality is also a highly uncertain issue and may 

be particularly sensitive to the characterization of BVOC. Biogenic emissions may increase 

or decrease in the future, depending on many factors including increased temperatures, 

changes in water availability, occurrence of biotic and abiotic stress (e.g., Kleist et al., 2012; 

Wu et al., 2015), CO2 fertilization, CO2 inhibition, and land use changes (Chen et al., 2009; 

Squire et al., 2014). Uncertainties in biogenic reactions may be amplified as they become a 

larger share of the VOC burden in some places. The predicted response of O3 to future 

climate has been found to be especially sensitive to assumptions about the chemical 

pathways of BVOC reactions, in particular the treatment of nitrates. Mao et al. (2013) and 

several earlier researchers found that predictions of the O3 response to NOx reductions 

change from negative to positive depending solely on how the isoprene chemistry was 

represented. Similarly, a comparison of several widely used chemical mechanisms with 

varied descriptions of BVOC-derived nitrates (Squire et al., 2015) found that description of 

BVOC chemistry significantly alters not only the amount of oxidant change predicted under 

future scenarios but also the direction of the change. Direct measurements of the key steps in 

isoprene oxidation should eliminate the ambiguity in such model calculations. Nonetheless, 

the exquisite sensitivity of model predictions of ozone trends to the representation of 

isoprene and NOx indicates that ambient observations of those trends are an excellent 

strategy for evaluating the accuracy of mechanisms.

The relative distribution of emissions among different types of BVOC may also shift as 

climate and land use changes, emphasizing the need to understand differences among 

terpenes in their chemistry, transport, and fate (Pratt et al., 2012). While most of the research 

to date has been done on isoprene, with some on α-pinene and β-pinene, little has been done 
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on products or reaction parameters of other terpenes. The previous sections have 

demonstrated that different terpenoid structures can have vastly different atmospheric 

chemistry and physical properties, so it is unclear whether assuming one “representative” 

species or distribution, as is done in most chemical mechanisms, will adequately account for 

future impacts of BVOC on O3 and PM.

Summary of impacts

This review has illustrated that accurate characterization of NO3-BVOC chemistry is critical 

to our understanding of both the air quality and climate impacts of NOx emissions. Our 

knowledge of the complexity of NO3-BVOC reaction pathways and multigenerational 

products has advanced rapidly, especially in the last decade. Despite the fact that much of 

that information is not yet in a form that can be included in current air quality models, we 

anticipate improved predictive capabilities in models in the coming years through sustained 

laboratory and field studies coupled to model development. While the current levels of 

uncertainty make it difficult to accurately quantify the impact of NO3-BVOC chemistry on 

air pollutant concentrations, we expect that developments in this field will improve the 

effectiveness of air pollution control strategies going forward. The limited studies available 

demonstrate that even small changes to BVOC chemistry modify the production of oxidants 

(NO3, OH, and O3) and change the transport of NOy. Therefore, NO3-BVOC oxidation 

modifies the chemical regime in which additional BVOC oxidation occurs. Of most 

importance will be the studies that indicate changes in the direction of predicted future 

pollutant concentrations as chemical mechanisms of BVOC are updated. Emission control 

strategies and attainment of air quality goals rely on the best possible chemical models. 

Current and future laboratory and field research is critical to the improvement of chemical 

mechanisms that account for biogenic chemical processes and products which will augment 

efforts to reduce harmful air pollutants.
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Appendix A

Glossary of abbreviations and common chemical formulas.

ACSM Aerosol chemical speciation monitor

AM3 Atmospheric Model 3

AMS Aerosol mass spectrometry/spectrometer

AQM Air quality model

AR Absolute rate in simulation chamber

BB-CEAS Broadband cavity-enhanced absorption spectroscopy

BB-CRDS Broadband cavity ring-down spectroscopy

BDE Bond dissociation energy

BEACHON-RoMBAS Rocky Mountain Biogenic Aerosol Study

BERLIOZ Berliner Ozonexperiment
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BEWA Regional Biogenic Emissions of Reactive Volatile Organic 

Compounds from Forests

BC Black carbon

BrC Brown carbon

BVOC Biogenic volatile organic compound(s)

CalNex California Research at the Nexus of Air Quality and 

Climate Change

CAMx Comprehensive Air Quality Model with extensions

CARES Carbonaceous Aerosol and Radiative Effects Study

CAPRAM Chemical aqueous-phase radical mechanism

CAPS Cavity-attenuated phase shift spectroscopy/spectrometer

CB05 Carbon Bond 2005 chemical mechanism

CCN Cloud condensation nuclei

CEAS Cavity-enhanced absorption spectroscopy/spectrometer

CE-DOAS Cavity-enhanced differential optical absorption 

spectroscopy

CIMS Chemical ionization mass spectrometry/spectrometer

CMAQ Community Multiscale Air Quality

CRDS Cavity ring-down spectroscopy/spectrometer

DF-A Discharge flow – absorption

DF-CEAS Discharge flow – cavity-enhanced absorption spectroscopy

DF-LIF Discharge flow – laser-induced fluorescence

DF-MS Discharge flow – mass spectrometry

DMS Dimethyl sulfide

DOAS Differential optical absorption spectroscopy/spectrometer

ELVOC Extremely low volatility organic compounds

EMEP European Monitoring and Evaluation Program

EPA Environmental Protection Agency

ESI Electrospray ionization
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EUCAARI European Integrated project on Aerosol, Cloud, Climate, 

and Air Quality Interactions

EURAD-IM EURopean Air pollution Dispersion – Inverse Model

F-A Flow system – absorption

F-CIMS Flow system – chemical ionization mass spectrometry

F-LIF Flow system – laser-induced fluorescence

FIGAERO Filter inlet for gases and aerosols

FIXCIT Focused Isoprene eXperiment at California Institute of 

Technology

FTICR Fourier transform ion cyclotron

FTIR Fourier transform infrared spectroscopy

GC Gas chromatography

GC-MS Gas chromatography mass spectrometry

GCM Global climate model

GECKO-A Generator of Explicit Chemistry and Kinetics of Organics 

in the Atmosphere

GEOS-Chem Goddard Earth Observing System – Chemistry

GLOMAP Global Model of Aerosol Processes

GTEC Georgia Tech Environmental Chamber

HAP Hazardous air pollutant(s)

HOHPEX HOHenpeissenberg Photochemistry Experiment

HPLC High-performance liquid chromatography

HO2 Hydroperoxy radical

HR-ToF High-resolution time-of-flight

IC Ion chromatography

ICARTT International Consortium for Atmospheric Research on 

Transport and Transformation

IGAC International Global Atmospheric Chemistry

IN Ice nuclei

IUPAC International Union of Pure and Applied Chemistry
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LC Liquid chromatography

LED Light-emitting diode

LIF Laser-induced fluorescence

LO-OOA Less-oxidized oxygenated organic aerosol

LV-OOA Low-volatility oxygenated organic aerosol

MAC Mass absorption coefficient

MCM Master chemical mechanism

MBO 2-methyl-3-buten-2-ol

MIESR Matrix isolation electron spin resonance

MO-OOA More-oxidized oxygenated organic aerosol

MOSAIC Model for Simulating Aerosol Interactions and Chemistry

MOZART Model for OZone and Related chemical Tracers

NARSTO North American Research Strategy for Tropospheric Ozone

NEAQS New England Air Quality Study

NBL Nocturnal boundary layer

NEI National Emissions Inventory

NO Nitric oxide

NO2 Nitrogen dioxide

NO3 Nitrate radical

N2O5 Dinitrogen pentoxide

NOx Nitrogen oxides, NO + NO2

NOy Total reactive nitrogen

NOS Nitrooxy organosulfate

NSF National Science Foundation

O3 Ozone

OA Organic aerosol

OC Organic carbon

OH Hydroxyl radical

OS Organosulfate
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PACIFIC Pacific Air Quality Study

PAHs Polyaromatic (or polycyclic aromatic) hydrocarbons

PiLS Particle-into-liquid sampler

PiG Plume-in-grid

PM Particulate matter

PM1/2.5 Particulate matter smaller than 1/2.5 μ

PMF Positive matrix factorization

PROPHET Program for Research on Oxidants: Photochemistry, 

Emissions and Transport

PTR-MS Proton transfer reaction mass spectrometry

PR-A Pulse radiolysis – absorption

RH Relative humidity

RI Refractive index

RL Residual layer

RONO2 Organic nitrate

RO2 Organic peroxy radical

RR Relative rate

SAPRC Statewide Air Pollution Research Center

SAR Structure activity relationship

SEAC4RS Studies of Emissions and Atmospheric Composition, 

Clouds and Climate Coupling by Regional Surveys

SEARCH Southeastern Aerosol Research and Characterization

SOA Secondary organic aerosol

SOAS Southern Oxidant and Aerosol Study

SOS Southern Oxidant Study

STOCHEM-CRI STOchastic lagrangian CHEMistry model using Common 

Representative Intermediates

SV-OOA Semi-volatile oxygenated organic aerosol

TD-CAPS Thermal dissociation cavity-attenuated phase shift 

spectroscopy
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TD-CRDS Thermal dissociation cavity ring-down spectroscopy

TD-LIF Thermal dissociation laser-induced fluorescence

UKESM-1 UK Earth System Model 1

VBS Volatility basis set

VOC Volatile organic compound(s)

WRF-Chem Weather Research and Forecasting Model with Chemistry
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Figure 1. 
Schematic of nighttime NO3-BVOC chemistry.
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Figure 2. 
Condensed reaction mechanism for isoprene and β-pinene oxidation via NO3 (adapted from 

Schwantes et al., 2015 and Boyd et al., 2015). For brevity, only products generated from the 

dominant peroxy radicals (RO2) are shown. R′ represents an alkoxy radical, carbonyl 

compound, or hydroxy compound. Two of the largest uncertainties in β-pinene oxidation are 

shown in red: (1) quantification of product yields from the RO2+ HO2 channel and (2) 

identification of carbonyl products formed from RO2 reaction with NO3, RO2, or HO2 (see 

text for more details).
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Figure 3. 
Uptake coefficients, γ (NO3), for the interaction of NO3 with single-component organic 

surfaces. Details of the experiments and the references (corresponding to the x-axis 

numbers) are given in Table S1 in the Supplement.
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Figure 4. 
(a) Correlation of OH versus NO3 radical rate constants in the aqueous phase for the 

respective compound classes. The linear regression fits for the different compound classes 

are presented in the same color as the respective data points. The black line represents the 

correlation of the overall data. (b) Comparison of modeled, aqueous-phase reaction fluxes 

(mean chemical fluxes in mol cm−3 s−1 over a simulation period of 4–5 days) of organic 

compounds with hydroxyl (OH) versus nitrate (NO3) radicals distinguished by different 

compound classes (urban CAPRAM summer scenario).

Ng et al. Page 84

Atmos Chem Phys. Author manuscript; available in PMC 2018 August 22.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 5. 
(a) Average mass concentrations (in μg m−3, ambient temperature and pressure) of 

submicrometer particulate organic nitrates (NO3, org) and particulate inorganic nitrates 

(NO3, inorg) in different months at multiple sites. The concentrations correspond to mass 

concentrations of –ONO2 functionality. Note that the y axis is different for sites with total 

nitrates greater than 1 μg m−3 (shaded). Detailed information and measurements for each site 

are provided in Table S5. (b) Percentage (by mass; cyan) of submicrometer particulate 

organic nitrate aerosols in ambient organic aerosols in different months at multiple sites. 

Detailed information and measurements for each site are provided in Table S5.
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Figure 6. 
The real part of refractive index (RI) (mr) for biogenic SOA compiled from several chamber 

studies. The legend specifies the precursor type and oxidation pathway as well as the 

reference. The figure is reprinted with permission from Moise et al. (2015).
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Table 1

Reaction rate constants of NO3+ BVOC.

Compound k(NO3+BVOC) (cm3 molecule−1 s−1)a Temperature (K) Technique/reference

Isoprene

(5.94 ± 0.16)×10−13 295 RR/(Atkinson et al., 1984)

(1.30 ± 0.14)×10−12 298 DF-MS/(Benter and Schindler, 1988)

(3.03 ± 0.45)×10−12exp[−(450 ± 70)/T] 251–281 F-LIF/(Dlugokencky and Howard, 1989)

(6.52 ± 0.78)×10−13 297 F-LIF/(Dlugokencky and Howard, 1989)

(1.21 ± 0.20)×10−12 298 RR/(Barnes et al., 1990)

(7.30 ± 0.44)×10−13 298 DF-MS/(Wille et al., 1991)

(8.26 ± 0.60)×10−13 298 DF-MS/(Wille et al., 1991)

(1.07 ± 0.20)×10−12 295 PR-A/(Ellermann et al., 1992)

(6.86 ± 0.55)×10−13 298 RR/(Berndt and Boge, 1997b)

(7.3 ± 0.2)×10−13 298 F-CIMS/(Suh et al., 2001)

(6.24 ± 0.11)×10−13 295 RR/(Zhao et al., 2011b)

6.5×10−13 (Δlog k: ± 0.15) 298 IUPAC

α-pinene

(5.82 ± 0.16)×10−12 295 RR/(Atkinson et al., 1984)

(1.19 ± 0.31)×10−12exp[(490 ± 70)/T] 261–383 F-LIF/(Dlugokencky and Howard, 1989)

(6.18 ± 0.94)×10−12 298 F-LIF/(Dlugokencky and Howard, 1989)

(6.56 ± 0.94)×10−12 298 RR/(Barnes et al., 1990)

(3.5 ± 1.4)×10−13exp[(841 ± 144)/T] 298–423 DF-LIF/(Martinez et al., 1998)

(5.9 ± 0.8)×10−12 298 DF-LIF/(Martinez et al., 1998)

(5.82 ± 0.56)×10−12 298 RR/(Kind et al., 1998)

(4.88 ± 0.46)×10−12 298 RR/(Stewart et al., 2013)

6.2×10−12 (Δlog k : ± 0.1) 298 IUPAC

β-pinene

(2.36 ± 0.10)×10−12 295 RR/(Atkinson et al., 1984)

(2.38 ± 0.05)×10−12 296 RR/(Atkinson et al., 1988)

(1.1 ± 0.4)×10−12 298 RR/(Kotzias et al., 1989)

(2.81 ± 0.47)×10−12 298 RR/(Barnes et al., 1990)

(1.6 ± 1.5)×10−10exp[(−1248 ± 36)/T] 298–293 DF-LIF/(Martinez et al., 1998)

(2.1 ± 0.4)×10−12 298 DF-LIF/(Martinez et al., 1998)

(2.81 ± 0.56)×10−12 298 RR/(Kind et al., 1998)

2.5×10−12 (Δlog k : ± 0.12) 298 IUPAC

Sabinene (1.01 ± 0.03)×10−11 296 RR/(Atkinson et al., 1990)

(1.07 ± 0.16)×10−11 298 DF-LIF/(Martinez et al., 1999)

(2.3 ± 1.3)×10−10exp[(−940 ± 200)/T] 298–393 DF-LIF/(Martinez et al., 1999)

1.0×10−11 (Δlog k : ± 0.15) 298 IUPAC
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Compound k(NO3+BVOC) (cm3 molecule−1 s−1)a Temperature (K) Technique/reference

Camphene (6.54 ± 0.16)×10−13 296 RR/(Atkinson et al., 1990)

(3.1 ± 0.5)×10−12exp[(−481 ± 55)/T] 298–433 DF-LIF/(Martinez et al., 1998)

(6.2 ± 2.1)×10−13 298 DF-LIF/(Martinez et al., 1998)

2-carene
(1.87 ± 0.11)×10−11 295 RR/(Corchnoy and Atkinson, 1990)

(2.16 ± 0.36)×10−11 295 RR/(Corchnoy and Atkinson, 1990)

(1.66 ± 0.18)×10−11 298 DF-LIF/(Martínez et al., 1999)

(1.4 ± 0.7)×10−12exp[(741 ± 190)/T] 298–433 DF-LIF/(Martínez et al., 1999)

2.0×10−11 (Δlog k : ± 0.12) 298 IUPAC

3-carene (1.01 ± 0.02)×10−11 295 RR/(Atkinson et al., 1984)

(8.2 ± 1.2)×10−11 298 RR/(Barnes et al., 1990)

9.1×10−11 (Δlog k : ± 0.12) 298 IUPAC

Δ-limonene (1.31 ± 0.04)×10−11 295 RR/(Atkinson et al., 1984)

(1.12 ± 0.17)×10−11 298 RR/(Barnes et al., 1990)

(9.4 ± 0.9)×10−12 298 DF-LIF/(Martínez et al., 1999)

1.2×10−11 (Δlog k : ± 0.12) 298 IUPAC

α-phellandrene
(8.52 ± 0.63)×10−11 294 RR/(Atkinson et al., 1985)

(5.98 ± 0.20)×10−11 298 RR/(Berndt et al., 1996)

(4.2 ± 1.0)×10−11 298 DF-LIF/(Martínez et al., 1999)

(1.9 ± 1.3)×10−9exp[−(1158 ± 270)/T] 298–433 DF-LIF/(Martínez et al., 1999)

7.3×10−11 (Δlog k : ± 0.15) 298 IUPAC

β-phellandrene

(7.96 ± 2.82)×10−12 297 RR/(Shorees et al., 1991)

α-terpinene (1.82 ± 0.07)×10−10 294 RR/(Atkinson et al., 1985)

(1.03 ± 0.06)×10−10 298 RR/(Berndt et al., 1996)

1.8×10−10 (Δlog k : ± 0.25) 298 IUPAC

γ-terpinene (2.94 ± 0.05)×10−11 294 RR/(Atkinson et al., 1985)

(2.4 ± 0.7)×10−11 298 DF-LIF/(Martínez et al., 1999)

2.9×10−11 (Δlog k : ± 0.12) 298 IUPAC
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Compound k(NO3+BVOC) (cm3 molecule−1 s−1)a Temperature (K) Technique/reference

Terpinolene (9.67 ± 0.51)×10−11 295 RR/(Corchnoy and Atkinson, 1990)

(5.2 ± 0.9)×10−11 298 DF-LIF/(Martínez et al., 1999)

(6.12 ± 0.52)×10−11 298 RR/(Stewart et al., 2013)

9.7×10−11 (Δlog k : ± 0.25) 298 IUPAC

Ocimene (cis, trans) (2.23 ± 0.06)×10−11 294 RR/(Atkinson et al., 1985)

2.2×10−11 (Δlog k : ± 0.15) 298 IUPAC

Myrcene (1.06 ± 0.02)×10−11 294 RR/(Atkinson et al., 1985)

(1.28 ± 0.11)×10−11 298 DF-LIF/(Martínez et al., 1999)

(2.2± 0.2)×10−12exp[(523 ± 35)/T] 298–433 DF-LIF/(Martínez et al., 1999)

1.1×10−11 (Δlog k : ± 0.12) 298 IUPAC

α-cedrene

(0.82 ± 0.30)×10−11 296 RR/(Shu and Atkinson, 1995)

α-copaene

(1.6 ± 0.6)×10−11 296 RR/(Shu and Atkinson, 1995)

β-caryophyllene

(1.9 ± 0.8)×10−11 296 RR/(Shu and Atkinson, 1995)
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Compound k(NO3+BVOC) (cm3 molecule−1 s−1)a Temperature (K) Technique/reference

α-humulene

(3.5 ± 1.3)×10−11 296 RR/(Shu and Atkinson, 1995)

Longifolene

(6.8 ± 2.1)×10−13 296 RR/(Shu and Atkinson, 1995)

Isolongifolene

(3.9 ± 1.6)×10−12 298 RR/(Canosa-Mas et al., 1999b)

Alloisolongifolene

(1.4 ± 0.7)×10−12 298 RR/(Canosa-Mas et al., 1999b)

α-neoclovene

(8.2 ± 4.6)×10−12 298 RR/(Canosa-Mas et al., 1999b)

2-methyl-3-buten-2-ol

4.6×10−14exp[−(400 ± 35)/T] 267–400 F-A/(Rudich et al., 1996)

(1.21 ± 0.09)×10−14 298 F-A/(Rudich et al., 1996)

(2.1 ± 0.3)×10−14 294 DF-A/(Hallquist et al., 1996)

(1.55 ± 0.55)×10−14 294 RR/(Hallquist et al., 1996)

(8.7 ± 3.0)×10−14 298 RR/(Fantechi et al., 1998b)

(1.0 ± 0.2)×10−14 297 RR/(Noda et al., 2002)

(1.1 ± 0.1)×10−14 297 RR/(Noda et al., 2002)
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Compound k(NO3+BVOC) (cm3 molecule−1 s−1)a Temperature (K) Technique/reference

1.2×10−14 (Δlog k : ± 0.2) 298 IUPAC

3-methyl-2-buten-1-ol

(1.0 ± 0.1)×10−12 297 RR/(Noda et al., 2002)

3-methyl-3-buten-1-ol

(2.7 ± 0.2)×10−13 297 RR/(Noda et al., 2002)

cis-3-hexen-1-ol (2.72 ± 0.83)×10−13 296 RR/(Atkinson et al., 1995)

(2.67 ± 0.42)×10−13 298 DF-CEAS/(Pfrang et al., 2006)

trans-3-hexen-1-ol

(4.43 ± 0.91)×10−13 298 DF-CEAS/(Pfrang et al., 2006)

cis-4-hexen-1-ol

(2.93 ± 0.48)×10−13 298 DF-CEAS/(Pfrang et al., 2006)

trans-2-hexen-1-ol

(1.30 ± 0.24)×10−13 298 DF-CEAS/(Pfrang et al., 2006)

cis-2-hexen-1-ol

(1.56 ± 0.24)×10−13 298 DF-CEAS/(Pfrang et al., 2006)

trans-2-hexenal (1.21 ± 0.44)×10−14 296 RR/(Atkinson et al., 1995)

(1.36 ± 0.29)×10−14) 295 RR/(Zhao et al., 2011b)

(4.7 ± 1.5)×10−15 294 AR/(Kerdouci et al., 2012)

4-methylenehex-5-enal

(4.75 ± 0.35)×10−13 296 RR/(Baker et al., 2004)
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Compound k(NO3+BVOC) (cm3 molecule−1 s−1)a Temperature (K) Technique/reference

(3Z)-4-methylhexa-3,5-dienal

(2.17 ± 0.30)×10−12 296 RR/(Baker et al., 2004)

(3E)-4-methylhexa-3,5-dienal

(1.75 ± 0.27)×10−12 296 RR/(Baker et al., 2004)

4-methylcyclohex-3-en-1-one

(1.81 ± 0.35)×10−12 296 RR/(Baker et al., 2004)

cis-3-hexenyl acetate

(2.46 ± 0.75)×10−13 296 RR/(Atkinson et al., 1995)

Methyl vinyl ketone
< 1.2×10−16 298 F-A/(Rudich et al., 1996)

< 6×10−16 296 DF- RR/(Kwok et al., 1996)

(3.2 ± 0.6)×10−16 296 LIF/(Canosa-Mas et al., 1999a)

(5.0 ± 1.2)×10−16 296 RR/(Canosa-Mas et al., 1999a)

< 6×10−16 298 IUPAC

Methacrolein
(4.46 ± 0.58)×10−15 296 RR/(Kwok et al., 1996)

(3.08 ± 0.18)×10−15 298 RR/(Chew et al., 1998)

(3.50 ± 0.15)×10−15 298 RR/(Chew et al., 1998)

(3.72 ± 0.47)×10−15 296 RR/(Canosa-Mas et al., 1999a)

3.4×10−15 (Δlog k : ± 0.15) 298 IUPAC

Pinonaldehyde (2.40 ± 0.38)×10−14 299 RR/(Hallquist et al., 1997a)

(6.0 ± 2.0)×10−14 300 RR/(Glasius et al., 1997)

(2.0 ± 0.9)×10−14 296 RR/(Alvarado et al., 1998)

2.0×10−14 (Δlog k : ± 0.25) 298 IUPAC

Linalool

(1.12 ± 0.40)×10−11 296 RR/(Atkinson et al., 1995)
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Compound k(NO3+BVOC) (cm3 molecule−1 s−1)a Temperature (K) Technique/reference

α-terpineol

(1.6 ± 0.4)×10−11 297 RR/(Jones and Ham, 2008)

Sabinaketone

(3.6 ± 2.3)×10−16 296 RR/(Alvarado et al., 1998)

Caronaldehyde

(2.5 ± 1.1)×10−14 296 RR/(Alvarado et al., 1998)

a
Given uncertainties are those provided by the authors of the kinetic studies. The procedures used to calculate them are not detailed here, as they 

often differ from one study to another. Readers are referred to the original papers for more information on the uncertainties’ determination.

RR: relative rate; DF-MS: discharge flow–mass spectrometry; DF-LIF: discharge flow–laser–induced fluorescence; DF-A: discharge flow–
absorption; DF-CEAS: discharge flow–cavity–enhanced absorption spectroscopy; F-LIF: flow system–laser–induced fluorescence; F-CIMS: flow 
system–chemical ionization mass spectrometry; F-A: flow system–absorption; PR-A: pulse radiolysis–absorption; AR: absolute rate in simulation 
chamber.
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Table 2

Oxidation products and SOA yields observed in previous studies of NO3-BVOC reactions. Except where 

noted, carbonyl and organic nitrate molar yields represent initial gas-phase yields measured by FTIR 

spectroscopy (carbonyl and organic nitrate) or thermal desorption laser-induced fluorescence (TD-LIF) 

(organic nitrate only; Rollins et al., 2010; Fry et al., 2013). In some cases, the ranges reported correspond to 

wide ranges of organic aerosol loading, listed in the rightmost column. Where possible, the mass yield at 10 μg 

m−3 is reported for ease of comparison.

BVOC Carbonyl molar yield Organic nitrate 
molar yield

SOA mass yield Corresponding OA loading or 
other relevant information

Isoprene 62–78 % (Rollins 
et al., 2009)

2 % (14 % after further 
oxidation) (Rollins et al., 2009)

Nucleation (1 μg m−3)

4–24 % (Ng et al., 2008) 3–70 μg m−3; 12 % at 10 μg m −3

α-pinene 58–66 % (Wangberg et al., 
1997); 69–81 % (Berndt 
and Boge, 1997a); 65–
72 % (Hallquist et al., 
1999); 39–58 % (Spittler 
et al., 2006)

14 % (Wangberg et 
al., 1997); 12–
18 % (Berndt and 
Boge, 1997b); 18–
25 % (Hallquist et 
al., 1999); 11–
29 % (Spittler et 
al., 2006); 10 % 
(Fry et al., 2014)

0.2–16 % (Hallquist et al., 
1999)

Nucleation; 0.5 % at 10 ppt N2O5 

reacted, 7 % at 100 ppt N2O5 

reacteda

4 or 16 % (Spittler et al., 2006) Values for 20 % RH and dry 

conditions, respectively, at M∞
b

1.7–3.6 % (Nah et al., 2016a) 1.2–2.5 μg m−3

0 % (Fry et al., 2014) Both nucleation and ammonium 
sulfate seeded

9 % (Perraud et al., 2010) Nucleation at 1 ppm N2O5 and 1 
ppm α-pinene; OA is 480 μg m−3 

assuming density is1.235 g cm−3

β-pinene 0–2 % (Hallquist et al., 
1999)

51–74 % 
(Hallquist et al., 
1999); 40 % (Fry 
et al., 2009); 22 % 
(Fry et al., 2014); 
45–74 % of OA 
mass (Boyd et al., 
2015)

32–89 % (Griffin et al., 1999) 32–470 μg m−3 ; low end closest to 
10 μg m− 3

7–40 % (Moldanova and 
Ljungstrom, 2000) using new 
model to reinterpret data from 
Hallquist et al. (1999) (10–
52 %)

7–10 % at 7 ppt N2O5 reacted; 40–
52 % at 39 ppt N2O5 reacted

50 % (Fry et al., 2009) 40 μg m−3; same yield at both 0 and 
60 % RH

33–44 % (Fry et al., 2014) 10 μg m−3 c

27–104 % (Boyd et al., 2015) 5–135 μg m−3, various seeds and 
RO2 fate regimes; 50 % for 
experiments near 10 μg m −3

Δ-carene 0–3 % (Hallquist et al., 
1999)

68–74 % 
(Hallquist et al., 
1999); 77 % (Fry 
et al., 2014)

13–72 % (Griffin et al., 1999) 24–310 μg m−3 ; low end closest to 
10 μg m− 3
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BVOC Carbonyl molar yield Organic nitrate 
molar yield

SOA mass yield Corresponding OA loading or 
other relevant information

12–49 % (Moldanova and 
Ljungstrom, 2000) using new 
model to reinterpret data from 
Hallquist et al. (1999) (15–
62 %)

7–395 ppt N2O 5 reacted; 12–15 % 
at 6.8 ppt N2O5 reacted

38–65 % (Fry et al., 2014) 10 μg m−3 c

Limonene 69 % (Hallquist et al., 
1999); 25–33 % (Spittler 
et al., 2006)

48 % (Hallquist et 
al., 1999); 63–
72 % (Spittler et 
al., 2006); 30 % 
(Fry et al., 2011); 
54 % (Fry et al., 
2014)

14–24 % (Moldanova and 
Ljungstrom, 2000) using new 
model to reinterpret data from 
Hallquist et al. (1999) (17 %)

10 ppt N2O5 reacted; higher number 
in Moldanova and Ljungstrom 
(2000) from an additional injection 
of 7 ppt N2O5 and accounting for 
secondary reactions

21 or 40 % (Spittler et al., 
2006)

Ammonium sulfate or organic seed, 

respectively, at M∞
b

25–40 % (Fry et al., 2011) Nucleation to 10 μg m−3 (second 
injection of oxidant)

44–57 % (Fry et al., 2014) 10 μg m−3 c

Sabinene 14–76 % (Griffin et al., 1999) 24–277 μg m−3 ; low end closest to 
10 μg m− 3

25–45 % (Fry et al., 2014) 10 μg m−3 c

β-caryophyllene 91–146 % (Jaoui et al., 2013) 60–130 μg m−3 ; low end closest to 
10 μg m− 3

86 % (Fry et al., 2014) 10 μg m−3

a
The authors assume that N2O5 reacted is equal to BVOC reacted. The anomalously low 0.2 % yield observed at 390 ppt N2O5 reacted is a lower 

limit; Hallquist et al. note that the number–size distribution for that experiment fell partly outside the measured range.

b
M∞ corresponds to extrapolated value at highest mass loading. Organic seed aerosol in these experiments was generated from O3 + BVOC. Full 

dataset was shown only for limonene, where asymptote is 400 μg m−3.

c
Yield range corresponds to two different methods of calculating ΔBVOC.
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Table 3

(a)Selected CRDS and CEAS instruments used to quantify NO3 mixing ratios in ambient air. (b) Selected 

instruments used to quantify NO3 and N2O5 mixing ratios in ambient air other than by cavity-enhanced 

absorption spectroscopy.

(a)

Principle of measurement (laser pulse rate) LOD or precision (integration time) Reference

BB-CEAS 2.5 pptv (8.6 min) Ball et al. (2004)

BB-CRDS 1 pptv (100 s) Bitter et al. (2005)

Off-axis cw CRDS (500 Hz) 2 pptv (5 s) Ayers and Simpson (2006)

On-axis pDL-CRDS (33 Hz) <1 pptv (1 s) Dubé et al. (2006)

BB-CEAS 4 pptv (60 s) Venables et al. (2006)

pDL-CRDS (10 Hz) 2.2 pptv (100 s) Nakayama et al. (2008)

Off-axis cw CRDS (200 Hz) 2 pptv (5 s) Schuster et al. (2009), Crowley et al. (2010)

CE-DOAS 6.3 pptv (300 s) Platt et al. (2009), Meinen et al. (2010)

BB-CEAS 2 pptv (15 s) Langridge et al. (2008), Benton et al. (2010)

BB-CEAS < 2 pptv (1s) Kennedy et al. (2011)

On-axis cw-CRDS (500 Hz) <1 pptv (1 s) Wagner et al. (2011)

On-axis cw-CRDS (300 Hz) 8 pptv (10 s) Odame-Ankrah and Osthoff (2011)

BB-CEAS 1 pptv (1 s) Le Breton et al. (2014)

BB-CEAS 7.9 pptv (60 s) Wu et al. (2014)

(b)

Principle of measurement LOD or precision e(integration time) Species detected Reference

MIESR < 2 pptv (30 min) NO3 Geyer et al. (1999)

CIMS 12 pptv (1 s) NO3 + N2O5 Slusher et al. (2004)

LIF 11 pptv (10 min) NO3 Matsumoto et al. (2005a), Matsumoto et al. 
(2005b)

LIF 28 pptv (10 min) NO3 Wood et al. (2005)

CIMS 30 pptv (30 s) N2O5 Zheng et al. (2008)

CIMS 5 pptv (1 min) N2O5 Kercher et al. (2009)

CIMS 7.4 pptv (1 s) N2O5 Le Breton et al. (2014)

CIMS 39 pptv (6 s) N2O5 Wang et al. (2014)

CEAS = cavity-enhanced absorption spectroscopy; CRDS = cavity ring-down spectroscopy; BB = broadband; pDL = pulsed dye laser; CE-DOAS 
= cavity-enhanced differential optical absorption spectroscopy; cw = continuous-wave diode laser. MIESR = matrix isolation electron spin 
resonance; CIMS = chemical ionization mass spectrometry; LIF = laser-induced fluorescence; LOD = limit of detection.
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Table 4

Gas-phase organic nitrate yields (in percent) from BVOC + NO3 systems in current chemical mechanisms. 

Gas-phase organic nitrate yields depend on RO2 fate as indicated in the ternary diagrams; clockwise from the 

top: RO2 reacts with NO3, RO2, and HO2.

Chemical mechanism
Gas-phase yield of organic nitrates 

from isoprene+NO3
Gas-phase yield of organic nitrates from monoterpenes+NO3 References

CB05 (Yarwood et 
al., 2005)

CB6r2 same as CB05

(Perring et al., 
2009; 
Hildebrandt 
Ruiz and 
Yarwood, 
2013)

GECKO-A up to 100% (see supporting information) same as isoprene (Aumont et 
al., 2005)

GEOS-Chem v10-01 NA (monoterpene oxidation is offline) (Mao et al., 
2013)
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Chemical mechanism
Gas-phase yield of organic nitrates 

from isoprene+NO3
Gas-phase yield of organic nitrates from monoterpenes+NO3 References

GFDL AM3

MCM v3.3.1

(Jenkin et al., 
1997; 
Saunders et 
al., 2003; 
Jenkin et al., 
2015)

MOZART

(Emmons et 
al., 2010) with 
updates on 
organic 
nitrates

SAPRC07

(Carter, 
2010b; Carter, 
2010a) Plots 
of RO2+RO2 

based on 
RO2C

SAPRC07tic

(Rollins et al., 
2009; Xie et 
al., 2013)
α-pinene 
(same as 
SAPRC07)
Other 
monoterpenes: 
(Pye et al., 
2015)
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Table 5

Treatment of SOA formation from BVOC-NO3 systems in current 3-D models.

Model Gas-phase chemistry Isoprene + NO3 
parameterization

Monoterpene + NO3 
parameterization

CAMx v6.20 with SOAP CB05, CB6, or SAPRC99 No SOA from this path NO3 SOA yields same as 

photooxidation (OH + ozone) yields1

CAMx v6.20 with 1.5-D VBS CB05, CB6, or SAPRC99 NO3 SOA yields same as 
photooxidation (OH + ozone) 

yields2

NO3 SOA yields same as 

photooxidation (OH + ozone) yields2

CMAQ v5.1 cb05e51-AERO6 CB05 with additional 

modification3
Odum two-product approach 
based on Kroll et al. (2006) 

photooxidation (OH) yields3

Odum two-product approach based 
on Griffin et al. (1999a) 

photooxidation (OH + ozone) yields4

CMAQ v5.1 SAPRC07tc-AERO6 SAPRC075 with two 
monoter- penes: α-pinene 
(APIN) and other 
monoterpenes (TERP)

Odum two-product approach 
based on Kroll et al. (2006) 

photooxidation (OH) yields3

Odum two-product approach based 
on Griffin et al. (1999a) 

photooxidation (OH + ozone) yields4

CMAQ v5.1 SAPRC07tic-AERO6i SAPRC07tic6,7 based on semivolatile organic 

nitrate from isoprene dinitrate8
no SOA from α-pinene + NO3; SOA 
from other monoterpenes based on 

semivolatile organic nitrates8

EURAD-IM RACM Odum two-product approach 9 Odum two-product approach 10 with 

T dependence11,12

GEOS-Chem v10-01 GEOS-Chem v10-01 with 
speciated isoprene 

nitrates6,7

VBS fit9,13 VBS fit to β-pinene + NO3 

experiment10,13

GFDL AM3 GFDL AM3 no SOA from this pathway Odum two-product approach based 

on β-pinene + NO3
10,14

GISS-GCM II NA (offline oxidants) no SOA from this pathway Odum two-product approach based 

on β-pinene + NO3
10,14

GLOMAP/ UKESM-1 VOC + NO3 Based on Kroll et al. 

experiments (2006), set to 3 %15
Based on Tunved et al. (2004), set to 

13 %15

STOCHEM-CRI MCM CRI species fit to MCMv3.1 

simulations16,17,18
CRI species fit to MCMv3.1 

simulations 16,17,18

WRF-Chem v3.6.1 MOZART-MOSAIC no SOA from this pathway VBS fit to β-pinene + NO3 

experiment10,19

1
Strader et al. (1999).

2
Koo et al. (2014).

3
Appel et al. (2016).

4
Carlton et al. (2010a).

5
Hutzell et al. (2012).

6
Rollins et al. (2009).

7
Xie et al. (2013).

8
Pye et al. (2015).

9
Ng et al. (2008).
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10
Griffin et al. (1999).

11
Li et al. (2013).

12
Kiendler-Scharr et al. (2016).

13
Pye et al. (2010).

14
Chung and Seinfeld (2002).

15
Scott et al. (2014).

16
Utembe et al. (2009).

17
Johnson et al. (2006).

18
Khan et al. (2015).

19
Knote et al. (2014).
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