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A Longitudinal HbA1c Model Elucidates Genes
Linked to Disease Progression on Metformin
S Goswami1, SW Yee1, F Xu2, SB Sridhar2, JD Mosley3, A Takahashi4, M Kubo4, S Maeda4, RL Davis5,6,
DM Roden3, MM Hedderson2, KM Giacomini1 and RM Savic1

One-third of type-2 diabetic patients respond poorly to metformin. Despite extensive research, the impact of genetic and nongenetic factors on
long-term outcome is unknown. In this study we combine nonlinear mixed effect modeling with computational genetic methodologies to identify
predictors of long-term response. In all, 1,056 patients contributed their genetic, demographic, and long-term HbA1c data. The top nine
variants (of 12,000 variants in 267 candidate genes) accounted for approximately one-third of the variability in the disease progression
parameter. Average serum creatinine level, age, and weight were determinants of symptomatic response; however, explaining negligible
variability. Two single nucleotide polymorphisms (SNPs) in CSMD1 gene (rs2617102, rs2954625) and one SNP in a pharmacologically
relevant SLC22A2 gene (rs316009) influenced disease progression, with minor alleles leading to less and more favorable outcomes,
respectively. Overall, our study highlights the influence of genetic factors on long-term HbA1c response and provides a computational model,
which when validated, may be used to individualize treatment.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE
TOPIC?
� Previous studies have focused on the effect of genetic poly-
morphisms in candidate genes on short-term changes in metfor-
min response. Additionally, studies have developed computational
models to capture short-term pharmacodynamic changes without
consideration of long-term disease progression.
WHAT QUESTION DID THIS STUDY ADDRESS?
� In this study we combined quantitative pharmacology with
computational genetic analysis techniques to investigate the
effect of genetic variants in biologically and pharmacologically
meaningful genes on long-term disease progression of patients
with type 2 diabetes on metformin therapy.
WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� This study provides evidence that genetic polymorphisms in
CSMD1 and membrane transporter gene SLC22A2 are

significant influencers of disease progression, affecting the long-
term trajectory of HbA1c levels. This study also adds a robust
quantitative pharmacology model that predicts long-term
changes in HbA1c levels, which if validated, may be used as a
valuable tool to predict long-term outcomes for patients.
HOW THIS MIGHT CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE
� To date, this is the first study to explore the effect of biologi-
cally and pharmacologically relevant genes on long-term disease
progression of patients taking metformin. This is also the first
study to investigate long-term HbA1c disease trajectories. In
the future, combining genotyping of biologically and pharmaco-
logically relevant genes with proper consideration of demo-
graphic and clinical predictors may be used to inform
metformin therapy in T2D patients.

Metformin is the first line of therapy for the treatment of type 2
diabetes (T2D) and is one of the most frequently prescribed
drugs worldwide.1–3 Response to the drug is highly variable;
greater than 30% of patients taking metformin are considered
poor responders and require additional medications such as sulfo-
nylureas and insulin instead of metformin. Metformin lowers
both basal and postprandial glucose in patients with T2D and
works by inhibiting hepatic glucose production, reducing intesti-
nal glucose absorption, and improving glucose uptake and utiliza-
tion.2,4 Glycosylated hemoglobin (HbA1c) is formed through a
nonenzymatic and irreversible reaction between hemoglobin and

glucose and is the primary surrogate biomarker for long-term gly-
cemic control and drug response, reflecting the average glucose
levels circulating in the blood over previous months.5 This bio-
marker has been shown to be more reliable than fasting plasma
glucose in assessing long-term efficacy; several studies have shown
that HbA1c levels are strongly linked to adverse T2D-related car-
diovascular outcomes and mortality.6–8

Baseline HbA1c levels vary significantly in the T2D popula-
tion, from 5.5% (37 mmol/mol) to 15% (140 mmol/mol).9,10

Most studies have focused on uncovering the effect of genetic
variants in pharmacokinetic (PK) genes on static pharmacological
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phenotypes of metformin and fail to address the variable nature
of metformin response.2,10–14 One of the largest studies to date, a
genome-wide association study on metformin response in indi-
viduals from the United Kingdom, identified variants near the
Ataxia Telangiectasia Mutated locus associated with the ability to
achieve HbA1c below 7% (53 mmol/mol) in the first 18 months
of metformin treatment.15 Finally, despite many studies having
demonstrated associations between single nucleotide polymor-
phisms (SNPs) in biologically relevant genes with metformin PK
and pharmacodynamics (PD), each variant accounts for only a
small fraction of the variation in HbA1c levels.
To date, there have been no studies on the effect of genetic and

demographic variables on long-term changes of HbA1c in patients
on metformin. These factors may influence the drug’s efficacy or
the patient’s underlying disease progression and, once accounted
for, may make it easier to detect responders and nonresponders to
metformin.16 The traditional approach considers a glycemic
HbA1c change from baseline to evaluate the effectiveness of the
drug. This approach, however, effectively collapses the time dimen-
sion in the data by disregarding the actual trajectory of the bio-
marker and disease status over time. As a result, this method not
only ignores crucial information on disease progression, but also
lumps together the short-term effects of a treatment with the long-
term effects on the disease.
Longitudinal disease progression analysis allows for a quantitative

assessment of drug treatment effect on the time-course of the disease/
biomarker. Computational methods use mathematical models to

describe or predict changes in the disease status as a function of
time.16 These methods allow researchers to understand the role of
genes as well as any relevant demographic predictors on specific
response curve characteristics (such as disease progression and the
long-term dynamics of therapeutic effects). Nonlinear mixed effect
analysis (NLME) is a powerful statistical approach used for this longi-
tudinal analysis that effectively enhances the signal-to-noise ratio and
enables the utilization of all data points, irrespective of study design.17–19

To date, current mathematical models that capture the time-
course of HbA1c in relation to metformin therapy have been
limited by small sample sizes and sparse measurements.16,20,21

Furthermore, a comprehensive genetic analysis linking genetic
variants to long-term HbA1c trajectories has not yet been per-
formed and, consequently, there is no current knowledge regard-
ing the influence of genetics on long-term HbA1c dynamics.
The aim of this research was to explain the variance in long-

term response, linking genes, demographics, and clinical factors
to the upward trajectory of HbA1c levels (a marker of disease
progression) using a rich, long-term HbA1c dataset from patients
on metformin (Figure 1).

RESULTS
Summary of data
Baseline characteristics of patients with T2D are summarized in
Table 1. A total of 7,822 HbA1c measurements from 1,056
patients were used to develop a mathematical model of longitudi-
nal HbA1c levels.

Figure 1 Workflow of longitudinal modeling, genetic analysis, and the potential clinical impact on individualizing metformin therapy. Longitudinal HbA1c
modeling is followed by a clinical/demographic analysis of model parameters using a stepwise approach. Once model parameters have been corrected for
by clinical and demographic factors, a genetic analysis pipeline was deployed using multiple approaches; disease-based and pharmacologically relevant
genes were selected as part of the candidate gene selection. A HyperLasso regression and a mode-based approach were sequentially used to develop the
final HbA1c model. Simulations were then performed using the final HbA1c model in order to determine the clinical impact of identified clinical, demographic,
and genetic factors. This work sets the stage for future research groups to replicate and validate the clinical impact of identified factors on external datasets.

ARTICLES

538 VOLUME 100 NUMBER 5 | NOVEMBER 2016 | www.wileyonlinelibrary/cpt



Of the 7,822 total HbA1c measurements, 2,928 HbA1c sam-
ples (37%) were collected after 2 years following metformin initi-
ation across 344 patients (33%). In all, 1,220 HbA1c
measurements (15.6%) were collected after 5 years following met-
formin initiation across 202 patients (19%). A total of 555
HbA1c samples (7%) were collected after 7 years following met-
formin initiation across 123 patients (12%).
The dataset has a stronger representation of African Americans

(63%) compared to European Americans (36%). The average length
of time that each patient was under study was 2.78 years (median of
1.43 years, range of 0.28–13.5 years). Mean HbA1c samples provided
per patient available for analysis was 7.5 (58 mmol/mol) (median of
5, range of 1–45). Of the 1,056 patients, 1,220 HbA1c measurements
(15.6%) were available for 202 patients (19%) 5 years following met-
formin initiation; 123 patients (12%) 7 years after metformin initia-
tion, and 28 patients (3%) 10 years after.

Mathematical model development
A turnover HbA1c model with a reversible metformin effect on
the synthesis rate of HbA1c best characterized the data. A

reversible (symptomatic) metformin effect was implemented
because it was assumed that the drug does not directly impact the
disease progression and this structure was supported by the
data.22 The upward trajectory (disease progression) of HbA1c
over time was modeled by implementing a separate compartment
that represented the HbA1c synthesis rate: KIN(t). Model
mechanics and the interplay of disease progression, HbA1c syn-
thesis rate, and %HbA1c level over time can be viewed in Sup-
plementary Figure 1. In the model structure, KIN was increasing
due to disease progression, which is quantified by the disease pro-
gression parameter. The disease progression parameter generates a
nonlinear increase of KIN over time, especially when the estimate
of disease progression is high. A time-dependent increase in the
HbA1c synthesis rate captured well the upward HbA1c trajectory
observed in the data. In the model, between-subject variability
(BSV) was estimated for baseline HbA1c, the magnitude of met-
formin’s effect (an individual’s specific HbA1c relative change
from baseline), and disease progression. The inclusion of a full
covariance block for all BSV parameters resulted in a significant
improvement in the likelihood ratio. Final selection of the model
was based on improvements in the objective function value and
visual predictive checks of the longitudinal HbA1c data. Through
simulations, the “onset” of disease progression, which is defined
by the timepoint at which HbA1c levels start to increase (i.e., an
upward slope in HbA1c levels), was investigated. The model pre-
dicted that the onset of disease progression for a typical patient
on metformin is �321 days; at which point HbA1c levels
increased at a rate of 0.1% (1.1 mmol/mol) (0.07%–0.13%) per
year through the first 3 years (Table 2). For patients not on met-
formin, the model predicts that HbA1c levels would increase at a
steady state rate of �0.16% (1.7 mmol/mol) (0.08%–0.22%) per
year. Mathematical model parameters along with clinically
derived parameters are summarized in Table 2.

Final demographic/clinical covariate model
As determined by model diagnostics, the demographic-corrected
mathematical model adequately described the data (Figure 2). As
expected, average serum creatinine level (a likely surrogate for met-
formin drug exposure) was a significant predictor on MetfEFFECT,
with higher levels leading to improved HbA1c response. Through
simulations, a typical patient with a 0.6 mg/dL creatinine level is
expected to result in a 0.77% (8.4 mmol/mol) HbA1c improve-
ment from baseline (at 2 years), whereas a patient with a 1.3 mg/
dL creatinine level is expected to result in a 0.96% improvement
in HbA1c (10.5 mmol/mol) from baseline. This response charac-
teristic is anticipated as, pharmacologically, average exposure of
metformin is expected to increase by �20% with a 0.7 mg/dL
increase (from 0.6 to 1.3) in serum creatinine level for males and
females of age 50.
Additionally, body weight and clinical site were significant

covariates on the MetfEFFECT model parameter. Body weight was
inversely related to metformin effect, estimated to result in a 6%
decrease in metformin’s effect parameter per 10-kg increase in
body weight. Clinically, this would result in a 0.99% and 0.80%
change in HbA1c (equivalent of 10.8 and 8.7 mmol/mol) from
baseline (at 2 years) for patients with body weights of 66 kg and

Table 1 Baseline characteristics of patients with type 2
diabetes

Clinical Site N (%)

Total patients 1,056

Kaiser South East 154 (15%)

Marshfield Clinic 150 (14%)

Vanderbilt 251 (24%)

Kaiser Northern California 501 (47%)

Categorical Variable N (%)

Males 415 (61%)

Females 641 (39%)

European Americansa 376 (36%)

African Americans 665 (63%)

Asian Americans and Others 15 (1%)

Continuous Variable Median (range)

Age (years) 55 (23–90)

Body weight (kg) 96 (34–212)

Average serum creatinine (mg/dL) 0.91 (0.5–2.0)

Baseline HbA1c (%) 7.6 (5.6–17.9) (60 mmol/
mol (38–172 mmol/mol)

Metformin daily doseb (mg) 1,000 (200–2,500)

# HbA1c samples/patient 5 (1–45)

Years on study 1.43 (0.28–13.5)

aEthnicities reported are all self-reported. bThis is the average daily dose of metfor-
min calculated from metformin start day up to the day, where minimum HbA1c
levels were achieved between 3–18 months (and before other antidiabetic drug or
insulin was added). There was one patient, as noted in the electronic medical
record, who had <250 mg average metformin dose due to an early stop of metfor-
min (at 1,000 mg) for several months and then restarted the metformin at 500 mg.
As a result, the average metformin dose was <250 mg.
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Table 2 Population pharmacodynamic model derived estimates and bootstrap results for model parameters

Final model parameter Median (%RSE)a Median (90% CI)b

Baseline HbA1c Level (%) 7.74 (1) 7.73 (7.6–7.8)

Half Life of Effect (days) 40.9 (6) 41.2 (36.8–45.7)

Metformin Effect Magnitude EFF 13.1% (5) 13.0 (12.1–14.4)

Disease Progression Estimate DISPRc (all patients) 82.2 (67) 75.3 (32.6–249)

Boxcox transformation parameter on Baseline 2.38 (9) 2.41 (1.99–2.78)

Boxcox transformation parameter on DISPR –0.246 (15) –0.26 (–0.31 to –0.20)

KLOSS 0.205 (86%) 0.266 (0.05–0.657)

Between-subject variability (% variance)

Between-subject variability (Baseline) 16.9 (3) 16.6 (15.9–17.8)

Between-subject variability (Metformin Effect Magnitude METFEFF) 76.4 (4) 75.9 (71.7–81.6)

Between-subject variability (Disease Progression DISPR) 324 (17) 390 (164–418)

Covariance of parameters (%)

Correlation Baseline– METFEFF 0.114 (1) 0.11 (0.101–0.136)

Correlation Baseline–DISPR 0.033 (3.6) 0.03 (–0.07–0.14)

Correlation DISPR– METFEFF 0.204 (21) 0.31 (–0.42–0.95)

Residual error model

Proportional error (%) 0.098 (3) 0.098 (0.092–0.101)

Additive error 0.1 (FIXED) 0.1 (NA)

Derived Clinical Parameters Simulated Median (90% CI)

Estimated onset of disease progressiond 321 (309–332) days

Estimated yearly rate of HbA1c increase on Metformind 0.1 %HbA1c (0.07–0.13)

Estimated yearly rate of HbA1c increase not on Metformind 0.16 %HbA1c (0.08–0.22)

aTypical value of parameter in final model. RSE, relative standard error (%), also known as the precision of the parameter estimate. bConfidence interval for the population
pharmacodynamic parameter following bootstrap results. Covariance of parameters are shown in untransformed format. cDISPR is the disease progression model
parameter that affects the synthesis rate of HbA1c and longitudinal HbA1c levels through the following equations. (1) DADT(A1) 5 KON*(11DISPR) – KLOSS*A(1) and
(2) DADT(A2) 5 A(1)*(1– METFEFF) – KOUT*A(2). Where A(1) represents the synthesis rate of HbA1c (KSYN), and A(2) represents HbA1c levels. dYearly rate of HbA1c
increase was based on simulated median yearly increase over the first 3 years following the onset of disease progression (i.e., 321 days). The median and 90%CI of the
onset and yearly rate of HbA1c increase was calculated across simulations. For example, each simulation provided a median, which was then summarized across 1,000
simulations.

Figure 2 Longitudinal HbA1c levels over time and model-based visual predictive check. The plot to the left shows raw HbA1c observations over time. On
the right plot, a visual predictive check is shown, where the solid black line highlights the median observed profiles. The shaded regions indicate the 95th
and 5th percentiles (ends) and the range of median simulated profiles (center) of simulated predictions from the visual predictive check.

ARTICLES

540 VOLUME 100 NUMBER 5 | NOVEMBER 2016 | www.wileyonlinelibrary/cpt



140 kg (5th and 95th percentile), respectively. For clinical site
variable, Vanderbilt and Kaiser Georgia had a 16% and 30% low-
er estimate on the metformin effect parameter when compared
to Kaiser Northern California, respectively.
Age was also a significant covariate on the disease progression

model parameter, with a negative correlation observed between
age and disease progression. Clinically, this would result in a rela-
tive change in HbA1c (at 2 years) to fall between 0.76% and
0.84% improvement for patients between the ages of 49 and 64
years.

Genetic analysis: HyperLasso (Cambridge, UK) methodology
on model parameters
A total of 267 genes were selected and �12,000 variants within a
50-kb region around each gene were extracted for analysis. Of the
variants investigated, a total of 16 SNPs were linked to the dis-
ease progression parameter by HyperLasso analysis (with a minor
allele frequency (MAF) �5%). Of the remaining 16 variants, 11
were intronic (CSMD1(4), ADCY5(1), PRKAG(1), SLC22A2(1),
EMILIN2(1), SULF1(1), FTO(1), WWOX(1)), one was missense
(SREBF1), and four were located within 50 kb upstream or down-
stream of each gene (VPS13C(1), KCNK16(1), PPARG(1),
FOXN3(1)).

Genetic analysis: model-based approach for variant selection
Of the prioritized 16 variants from HyperLasso, a model-based
methodology was implemented to verify statistical significance
and determine effect sizes on the disease progression parameter.
SNPs that passed this test were included in the final mathemati-
cal model for simulation purposes. From this step, seven SNPs
were removed due to the defined criteria (see Methods). The
nine remaining variants were statistically significant in the model
structure and collectively accounted for approximately one-third
of the variability in the predicted disease progression model
parameter (reduced the BSV of the disease progression model
parameter from 324% to 225%). Of the nine variants,
rs12907856 (VPS13C), rs2954625 (CSMD1), and rs3160009
(SLC22A2) individually accounted for �6%, 5%, and 8% of the
variability, respectively. The characteristics of each SNP are
shown in Table 3.
In the final model, several simulations were performed to illus-

trate the potential clinical impact of each SNP on long-term
HbA1c levels. Figure 3 quantitatively summarizes the predicted
effects of final model genetic and nongenetic factors on HbA1c
levels at the 1-year and 5-year mark. Hypothetical gene/gene
interactions were also explored and the combinatorial effects of
high-risk SNPs in the CSMD1, WWOX, and SLC22A2 genes
are also explored in Figure 4.
In the exploratory studies, patients carrying one or more minor

alleles of the identified variants in the CSMD1 gene (rs2617102
(C), rs2954625 (T)) were predicted to have significantly higher
long-term HbA1c levels compared to patients not carrying any
CSMD1 minor alleles or patients with homozygous rs3160009
TT (SLC22A2) and/or homozygous rs7500549 CC (WWOX)
genotypes.

Functional annotation of top variants
Three out of the nine variants (rs12907856, rs316009, and
rs7159552) are located in linkage disequilibrium (LD) to a regu-
latory region, determined by an algorithmic prediction by Regu-
lomeDB.23 In particular, rs316009 and rs7159552 are located in
a transcription factor binding motif as identified by the
ENCODE project.24 The rs316009 variant is in LD to the non-
synonymous variant of SLC22A2, rs316019, which is known to
play a role in metformin PKs.25–27 Another variant, rs6982250,
is in an intronic region of SULF1. Several SNPs in SULF1 have
been associated with many phenotypes,28 with one such variant
associated with fasting insulin-related traits.29

DISCUSSION
Previous pharmacogenetic studies of metformin response have
focused on the effect of selected variants in relevant pharmaco-
genes on single-timepoint outcomes of metformin (i.e., HbA1c
levels after 90 days, FPG levels, etc.).15,30–32 Long-term, time-
dependent changes of HbA1c have been previously overlooked,
resulting in a collapse of valuable biomarker information that
may inform disease progression as well as temporal response
patterns.
Here we developed a longitudinal HbA1c model by leveraging

a large T2D dataset and subsequently investigated the role of
genetic and nongenetic factors on long-term dynamics of HbA1c
following metformin initiation. Special focus was given to identi-
fying factors that are responsible for the long-term variance in
HbA1c levels.
Three important findings emerged from this analysis: 1) a

mathematical model incorporating disease progression and a
reversible metformin effect best characterized the long-term
HbA1c data in T2D patients. 2) The model presented herein
predicted that the onset of disease progression for patients on
metformin is �321 days, at which point levels increase, on aver-
age, at a rate of 0.1% (1.1 mmol/mol) (0.04%–0.16%) HbA1c
per year; HbA1c levels are expected to increase at a steady state
rate of �0.16% (1.76 mmol/mol) (0.08%–0.22%) per year in
patients not treated with metformin. 3) Nine variants in eight
genes (of 267 genes interrogated) accounted for approximately
one-third of the total estimated variability in the disease progres-
sion model parameter. Variants in three of these genes (CSMD1,
WWOX, and SLC22A2) were identified as significant influencers
of disease progression on metformin therapy.
The development of the final mathematical model resulted

from the exploration of several approaches with various empirical
and semimechanistic considerations. The structural parameters
from the model were estimated with high precision. The between-
subject variability estimates of baseline, metformin effect, and dis-
ease progression were also estimated with relatively high precision
(3%, 4%, and 17% relative standard error (RSE), respectively).
The high degree of parameter confidence was due to the abun-
dance of available HbA1c data, allowing for the reliable assess-
ment of clinical, demographic, and genetic covariates on disease
progression. Disease progression (upward trajectory of HbA1c lev-
els) is a function of both the patient’s underlying disease as well as
the buildup of metformin resistance. In order to differentiate
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between the effects of a patient’s biology and a reduction of met-
formin’s reversible effect, it is necessary to model longitudinal
HbA1c data prior to the administration of treatment; unfortu-
nately, this was not possible in our analysis, as this would require
patients to be off treatment during the duration of the disease.
The HbA1c model, however, was able to adequately predict the
dynamics of HbA1c levels, capturing the long-term upward trend
observed in this population. The ability to predict long-term
HbA1c changes is especially valuable: the onset of disease progres-
sion and the rate of HbA1c increase were quantified for patients
on metformin therapy (�0.1% increase per year for the first 3
years after 321 days, which is the estimated onset of disease pro-
gression) leveraging the richness of HbA1c data available. This
finding was particularly interesting in relation to the study by
Winter et al., where the authors noted a slight rise in patients’
HbA1c levels between 200 and 400 days after metformin initia-
tion; however, they were unable to quantify this upward trend
through their simulations—a limitation that resulted from the
lack of longitudinal data points available after 400 days.16 In our
analysis, the average length of time in the study was 1,014 days
and up to 10 years worth of HbA1c measurements were available
to inform disease progression—allowing the characterization and
quantification of this upward trend with high precision. The
robustness in the model enabled the simulation of patient-specific
disease progression with an underlying assumption of no metfor-
min administration (approximate increase of 0.16% (1.7 mmol/
mol) in HbA1c per year). The ability to separate disease progres-
sion and metformin effect is based on early HbA1c data (up to 1
year following metformin initiation). Simulations of disease pro-
gression assuming no metformin administration were explored by
removing metformin’s estimated effect on the HbA1c synthesis
rate within the model structure. The simulations demonstrate
that, on average, disease progression in patients who are
metformin-naive will occur faster than in patients taking metfor-
min for several months. Comparing this estimate to existing litera-
ture is problematic, since T2D progression is a gradual process
that typically takes place over several years and thus allows only a
small trajectory of change within the limited time frame available
for most studies. In the few studies reported, the rate of HbA1c
increase was estimated to be �0.2% (2.2 mmol/mol) per year, a
value consistent with our observations.33

A stepwise multivariate analysis was performed to identify sta-
tistically significant demographic and clinical covariates on model
parameters. Average serum creatinine level surfaced as a signifi-
cant factor that influenced the magnitude of metformin’s effect.
This finding was expected since serum creatinine is considered a
likely surrogate for metformin exposure. Serum creatinine direct-
ly influences a patient’s creatinine clearance, which ultimately
influences a patient’s systemic exposure to metformin by affecting
the apparent clearance PK parameter. The effect of age was also
noted—an inverse relationship was observed between age and the
magnitude of disease progression. It is important to note that
although age was statistically significant through a stepwise analy-
sis, the effect size was quite small and a reproduction of these
results is required to inspire greater conviction of this correlation.
Previously, in a study by Williams et al., lower HbA1c levels wereTa
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reported in African Americans compared to European American
individuals.34 In our analysis, however, there was no significant
effect of self-reported ethnicity on any of the model parameters,
including disease progression.
We used multiple genetic methods to prioritize influential var-

iants on disease progression. HyperLasso methodology was select-
ed over a stepwise procedure, as well as several other algorithms.
This is because the HyperLasso approach has been shown to be

robust when investigated covariates are correlated, which is the
case here with strong LD patterns in the genotype data. The final
selection of variants was based on the performance of individual
variants within the demographic-corrected model so that the cor-
relation across various model parameters may also be taken into
consideration.
Nine variants emerged were linked to the progression of

HbA1c levels on metformin. Collectively, the variants accounted

Figure 3 Top genetic and demographic covariates on long term HbA1c levels. (a) The effect of covariates on the simulated median (bands show 5th and
95th CI of simulated median) of HbA1c levels at the 1-year mark. (b) The effect of covariates on the simulated median (5th and 95th CI of simulated medi-
an) of HbA1c levels at the 5-year mark. A normal individual here represents a hypothetical patient with no minor alleles of any of the identified variants
with median age, body weight, and serum creatinine values. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 4 Effect of SNP combinations in CSMD1, SLC22A2, and WWOX on the dynamics of HbA1c levels. (a) Simulated median HbA1c levels (with 95% CI
bands) over 5 years comparing carriers and noncarriers of CSMD1 minor (risk) alleles. (b) Simulated median HbA1c levels over 5 years comparing carriers
and noncarriers of SLC22A1/WWOX genes minor alleles. Blue shaded region with solid line: simulated median for patients carrying no minor alleles with
5th and 95th confidence interval. Red/green shade with dashed line: simulated median for patients carrying minor alleles of labeled gene(s) with 5th and
95th confidence interval of median. [Color figure can be viewed at wileyonlinelibrary.com]
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for approximately one-third of the variance in the disease pro-
gression model parameter. It was also observed that these genetic
variants had larger effects on HbA1c levels than the demographic
and clinical covariates identified from the stepwise analysis.
Of the top genes, minor alleles of two SNPs (rs2617102,

rs2954625) in the CSMD1 (CUB and Sushi multiple domains
1) gene had the strongest impact on disease progression.
Although the pharmacological and biological mechanism remains
unclear, CSMD1 has been previously linked to insulin sensitivity
and lipid levels.35,36 CSMD1 variants may have a significant
impact on longitudinal HbA1c levels, especially at the 5-year
mark when the simulated HbA1c improvement from baseline
becomes nominal—especially for homozygous carriers (TT) of
rs2617102. The simulated 5-year HbA1c level was very similar to
baseline levels (Figure 4)—which means that HbA1c levels
rebounded back to its baseline state. Furthermore, the effect on
HbA1c levels at the 5-year mark was higher for hypothetical
homozygous carriers of both CSMD1 SNPs (rs2617102,
rs2954625)—where HbA1c levels were predicted to be signifi-
cantly higher than baseline levels.
Minor alleles of SNPs in genes SLC22A2,WWOX, EMILIN2,

and FOXN3 were associated with more favorable trajectories
(lower disease progression) of HbA1c levels compared to major
allele carriers. Of these genes, SLC22A2 (rs316009 (T)) and
WWOX (rs7500549 (C)) showed the strongest effect. In contrast
to homozygous carriers of CSMD1 risk alleles, homozygous car-
riers of both SLC22A2 and WWOX SNPs were predicted to
have a favorable clinical outcome—maintaining their peak
HbA1c level improvement from baseline through 5 years of met-
formin therapy. The rs316009 variant is in LD to a nonsynony-
mous variant of SLC22A2 (rs316019), an SNP that has been
previously shown to alter transporter function as well as modu-
late metformin PKs.26,27 Therefore, the clinical expectation that
the reduced function rs316009 (T) allele would lead to a more
favorable outcome is pharmacologically sound. OCT2
(SLC22A2) is predominantly expressed at the basolateral mem-
brane in distal renal tubules and is responsible for the uptake of
metformin from circulation into renal epithelial cells, working in
concert with other renal transporters to excrete metformin.
Although functional studies have been controversial,25 loss of
transporter function is expected to increase plasma levels of met-
formin, potentially leading to a more favorable PD outcome with
relatively low HbA1c levels.
Also of clinical interest, the gene WWOX has been previously

associated with several T2D traits including body weight, C-
reactive protein, insulin, obesity, and lipid levels.37 WWOX enco-
des for an enzyme that is found in all eukaryotes and has been bio-
logically shown to play an important role in the regulation of a
wide variety of cellular functions such as protein degradation, tran-
scription, and RNA splicing. Unlike SLC22A2, a pharmacological
mechanism for WWOX is not clear. However, the clinical impact
(if replicated) would mean that carriers of the rs7500549 (C) allele
would respond favorably to metformin therapy. Future studies
should focus on elucidating the biology ofWWOX and replicating
the genetic findings on disease progression.

Although this computational approach represents a novel way
to uncover factors that influence long-term drug response, several
important limitations must be highlighted. First, the demograph-
ic distribution used for this analysis does not appropriately reflect
the national population distribution due to the disproportionate
representation of African Americans in this cohort. As a result, it
will be critical to replicate both genetic and nongenetic findings
in separate cohorts for validation purposes. Furthermore, the ret-
rospective dataset lacks a control group and is reflecting multiple
studies across multiple sites. As such, validation of the model-
based simulations, which quantify metformin’s effect on long-
term HbA1c dynamics with consideration of impactful
covariates, is required.
Overall, our study successfully integrated robust model-based

approaches with genetic analyses methods to uncover genes
linked to the progression of HbA1c on metformin therapy in a
large T2D cohort. If replicated, these genetic findings may have a
significant influence on T2D treatment strategy. Ultimately, the
long-term goal of this research is to translate this computational
model into clinical practice and enable clinicians to provide data-
driven, personalized treatment advice to T2D patients based on
individual patient characteristics.

METHODS
Patients with type 2 diabetes
Diabetic patients of European American, African American, and Asian
American ancestry were recruited into a multicenter retrospective study,
as described previously.13,32 All patients were metformin-naive, had
HbA1c levels measured before and after initiation of metformin therapy
(between 3 and 18 months), and had a medication possession ratio great-
er than 80%. The Institutional Review Boards (IRBs) of Marshfield
Clinic Research Foundation, Kaiser Permanente Northern California,
Kaiser Permanente South East, Georgia, approved this study and
informed consent was obtained. At Vanderbilt, an opt-out consent mod-
el was used. In diabetic patients, metformin was administered for at least
3 months, so steady-state drug concentration levels were achieved, since
the half-life of metformin is roughly 5 hours. Patients were in the study
for an average of 2.8 years (median 5 1.43 years) with on average 7.4
(median 5 5) HbA1c measurements. HbA1c results were reported in
the NGSP format (National Glycohemoglobin Standardization Pro-
gram). The median metformin dose across the patient population was
1,000 mg (Table 1). Patients were genotyped using an Illumina
OmniExpress genotype array (see Supplementary Methods for further
details).

Development of mathematical model
Patient data were analyzed using nonlinear mixed effect modeling
(NONMEM 7) with first-order conditional estimation method with
interaction (FOCE-I). Several semimechanistic approaches were
explored to best describe the longitudinal HbA1c vs. time profiles. Mod-
el selection was determined using the objective function value (OFV, –2
times the log of the likelihood) and visual inspection of diagnostic plots.
The selected longitudinal HbA1c profiles were described by the follow-
ing equations:

dðKIN Þ
dt

¼ KSYN � ð11DisprEFFECT Þ2 KLOSS � KIN (1)

dðHbA1cÞ
dt

¼ KIN � ð12MetfEFFECT Þ2 KOUT �HbA1c (2)
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Eq. 1 defines the synthesis rate of HbA1c, which includes a nonlinear time-
sensitive parameter dependent on the baseline synthesis rate and the extent
of patient-specific disease progression. In Eq. 1, DisprEFFECT, KLOSS, and
KSYN represent the disease progression effect parameter, loss rate of KIN,
and synthesis rate of the KIN parameter, respectively. Eq. 2 defines the
dynamics of HbA1c, parameterized by the synthesis rate of HbA1c
(KIN(t)), metformin’s effect from baseline (MetfEFFECT), and the loss
rate of HbA1c (KOUT). A more detailed explanation and the model
source code can be found in the Supplementary Methods. A simulated
demonstration of the dynamics of this model can viewed in Supplemen-
tary Figure 1. A patient’s individual administered doses were taken into
consideration by examining the effect of the average daily dose. The aver-
age daily dose of metformin was calculated from metformin start day up
to the day where minimum HbA1c levels were achieved between 3–18
months (and before other antidiabetic drug or insulin was added).
Although no drug concentration was directly used for this analysis, sur-
rogate PK information was taken into account in the model structure by
investigating the effect of average serum creatinine level (a major predic-
tor on metformin individual clearance) or imputed exposure (based on
estimated individual clearance of metformin and average daily dose).
Individual clearance was estimated based on the clearance equation pre-
viously described.10 Both average dose and metformin exposure were
tested on the MetfEFFECT parameter.

Demographic analysis
Using the mathematical model described above, agnostic stepwise for-
ward selection (P < 0.05) and backward elimination (P < 0.01) were
applied to identify statistically significant demographic and clinical cova-
riates on model parameter estimates, which helped guide the selection of
the demographic-corrected final model. The effect of concomitant medi-
cations was taken into account by investigating the effect of added drug
on model parameters. The subsequent demographic-corrected mathe-
matical model served as a basis to investigate the effect of genetic variants
on the variance of long-term response.

Genetic analyses of model parameters
A comprehensive list of candidate genes was selected using the GWAS
Integrator tool on the HuGE Navigator38 (details found in Supplemen-
tary Methods). A penalized regression-based approach called Hyper-
Lasso was implemented to statistically prioritize the variants associated
with phenotypes outputted from the mathematical model (e.g., disease
progression, metformin effect, and baseline). This methodology was orig-
inally proposed by Hoggart et al., and is a generalization of Lasso.39,40

Further information about the HyperLasso method can be found in
Supplementary Methods.

Model-based genetic analysis of identified variants
The top SNPs from HyperLasso were subsequently investigated in the
developed demographic-corrected mathematical model described above.
Model-based analyses are advantageous because they account for correla-
tions across various model parameters as well as potential SNP/SNP
interactions. Two key steps were taken to select the final mathematical
model: 1) removal of nonsignificant SNPs, which resulted from a univar-
iate analysis of each variant in the demographic-adjusted mathematical
model, and 2) removal of variants from the full genetic model that had
very low, clinically irrelevant effect sizes. Details of this step may be
found in the Supplemental Material.

Additional Supporting information may be found in the online version of
this article.
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