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MAPPING OF THE EPSTEIN-BARR VIRUS AND

C3dg BINDING SITES TO A COMMON DOMAIN ON
COMPLEMENT RECEPTOR TYPE 2

BY CLIFFORD A. LOWELL, LLOYD B. KLICKSTEIN,
ROBERT H. CARTER, JACQUELINE A. MITCHELL,
DOUGLAS T FEARON, AND JOSEPH M. AHEARN

From the Division ofMolecular and Clinical Rheumatology, Department of Medicine,
The Johns Hopkins University School ofMedicine, Baltimore, Maryland 21205

Epstein-Bars Virus (EBV), a herpesvirus that infects most humans, causes infec-
tious mononucleosis and has been implicated in the pathogenesis of several human
malignancies including Burkitt's lymphoma, X-linked lymphoproliferative syndrome,
and nasopharyngeal carcinoma (1-3). Immunocompromised patients undergoing
immunosuppressive therapy or having the acquired immune deficiency syndrome
(AIDS) are subject to EBVinduced B cell lymphomas, because of impaired T cell
regulation of the proliferation of latently infected B lymphocytes (4). EBV also has
been detected in Reed-Sternberg cells of patients with Hodgkin's lymphoma (5).
In vitro, this virus is unique in its ability to immortalize efficiently human B cells (6).
EBV selectively infects B lymphocytes and some epithelial cells via the specific

interaction between the major envelope protein of the virus gp350/220 and a cel-
lular receptor, human complement receptor type 2 (CR2; CD21)t (7-9). The im-
portance of this receptor in determining the tissue tropism of EBV is indicated by
the finding that expression of CR2 in murine L cells renders them susceptible to
viral infection (10) . CR2 is a phosphoprotein (11) that normally functions to regulate
B cell proliferation by interaction with its natural ligand, the C3dg fragment of the
third component of the complement system (12-14) . The receptor is composed of
an extracellular domain made up entirely of 15 or 16 tandem short consensus repeats
(SCRs) of -60 amino acids each, a single transmembrane region and a 34 amino
acid cytoplasmic tail (15, 16) . Each SCR has four invariant cysteine residues that
are probably disulfide bonded in a cys-1 to cys-3, cys-2 to cys-4 pattern forming a
triple loop structure (17, 18) . The tandem alignment of SCRs, each having dimen-
sions of 38 x 30 A, yields an extended beads-on-a-string appearance when other
proteins having this structural motif are examined by electron microscopy (19, 20) .
The presence of SCRs indicates that CR2 is a member of a family of mammalian

proteins that contain a variable number of SCRs, ranging from two for the ct subunit
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ofthe IL-2R to 30 for complement receptor type 1 (CR1 ; CD35) (reviewed in refer-
ence 21) . Proteins in this family are involved in the processes of inflammation, im-
mune response, and tissue repair and include several plasma and cellular compo-
nents ofthe complement system, factor XIIIb ofthe coagulation cascade, the IL-2R,
and the cell adhesion molecules ELAM-1 and the lymphocyte homing receptor (21-23) .
Analysis of CRl and IL-2R by deletional and site-directed mutagenesis has indi-
cated that each ofthree binding sites in CRl and the single site in the IL-2R require
the function of at least two SCRs (24, 25) .
The SCRs comprising the binding sites for EBV and C3dg on CR2 are not known

but may be identical . An anti-receptor mAb, OKB-7, blocks uptake of both ligands,
as do multimeric forms of a peptide corresponding to the NH2 terminus of
gp350/220 that is homologous to a CR2-binding site in C3dg (26, 27). The viral
and natural ligand binding sites of two other receptors may also be proximate or
identical ; mAbs that block uptake by CD4 and ICAM-1 of HIV and rhinovirus,
respectively, also inhibit the interaction ofthese receptors with their natural ligands,
the class II MHC antigen and LFA-1 (28-30) . Moreover, the residues in CD4 re-
quired for binding of gp120 may also be necessary for interaction with MHC class
II (31) . Therefore, it has been suggested that certain viruses may have adapted to
recognize the natural ligand binding sites of cellular receptors (32) .
To determine whether EBV and C3dg use common structural elements of CR2

for binding, we constructed and functionally assessed a series of CR2 deletion mu-
tants and chimeric receptors containing SCRs, or portions thereof, from CR2 and
CRl . We have concluded that the NH2-terminal two SCRs of CR2 are required
for the binding of both ligands .

Materials and Methods
Plasmids .

	

The isolation of overlapping CR2 cDNA clones X 1 .3 (10) and X4.11 (16) has
been described previously. The X 1 .3 Eco RI insert was subcloned into pUC18 to generate
pCR2 1 .3 and the X 4 .11 Eco RI insert was subcloned into pBR322 to generate pCR2 4.11 .
These plasmids were digested with Eco RI/Nsi I and Nsi I/Cla 1, respectively, and the appro-
priate CR2-containing fragments were ligated with Eco RI/Cla I-digested pBluescript KS+
(Stratagene, La Jolla, CA) to generate, pBSCR2.1 in which the full-length CR2 cDNA is
inserted in an Eco RI (5') to Cla I (3') orientation . In a similar manner, pCR2 1.3 and pCR2
4.11 were digested with Xba I/Nsi I and Nsi I/Sph I, respectively, and these CR2 fragments
were ligated with Xba I/Sph I-digested pUC19 to generate pCR2.1 in which the full-length
CR2 cDNA clone is in an Xba I (5') to Sph I (3') orientation . Clone pBSCR2X was created
by removing the insert from pBSCR2 .1 with Xba I and ligating with Xba I-digested
pBSKS', followed by isolation of a clone in which the orientation of the CR2 cDNA insert
was reversed .

Deletion Mutants.

	

Plasmid pCR2 XB was generated by cleavage of pCR2.1 with Xho I
and Bsm I, followed by modification with T4 DNA polymerase in the presence of dNTPs
(New England Biolabs, Beverly, MA). The modified 5.9-kb fragment containing CR2 se-
quences 5' of the Xho I site and 3' of the Bsm I site was ligated with Sph I linkers containing
the nucleotides GGCATGCC, digested with Sph I, and self-ligated . The sequence generated
at the deletion site (CTC GAG GCA TGC CAG) resulted in a valine (GCA) for glutamic
acid (GAA) substitution, while otherwise restoring the reading frame that joined the fourth
cysteine of SCR-2 with the first cysteine of SCR7 .

Plasmid pCR2 NN was generated by digestion of pCR2.1 with Nde I and religation of
the 5.8-kb fragment to itself. The Nde I sites are conserved within the homologous SCR-5
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and SCR9; therefore, deletion ofthe internal Nde I fragment followed by religation restores
the correct reading frame with appropriate spacing of cysteine residues .

PlasmidpCR2 EK was constructed by subcloning from pBSCR2Xthe Xho I, made blunt
ended by filling in with Klenow enzyme (New England Biolabs), to Hind III fragment con-
taining SCR-3 through SCR-15 into pUC19 cleaved with Eco RI (blunt ended) and Hind
III . This subclone was digested with Eco RI and Kpn I, treated with T4 DNA polymerase,
ligated with Sph I linkers (GGCATGCC), and digested with Sph I. The larger fragment con-
taining CR2 sequences 5' to the Eco RI site and 3' to the Kpn I sited was isolated, treated
with T4 polymerase, and self-ligated . An internal CR2 fragment containing the EcoRI/Kpn
I deletion was removed from this subclone by Cla I/Hind III digestion and ligated into these
same sites in pCR2.1 to form pCR2 EK. The resulting sequence at the deletion junction,
GGA TTG GCC CAG, introduces a single alanine codon, GCC, between the Eco RI and
Kpn I sites .

Plasmid pCR2 NK was created by removing the Nsi I/Nde I fragment from pCR2 EK,
which includes portions of SCR-1 through SCR-9, and replacing it with the Nsi I/Nde I frag-
ment from pBSCR2 NN, which contains portions of SCR-1 through SCR5.

Plasmid, pCR2 NP, was constructed by subcloning the Cla I/Pst I fragment containing
SCR-6 through SCR-15 from pCR2 .1 into pBSKS'. This subclone was digested completely
with Nde I and partially with Pvu II, and the 3.8-kb fragment containing portions of SCR-6
through SCR-9 and SCR-14 SCR-15 was ligated to a synthetic double-stranded oligonucleo-
tide containing the sequence 5' TAT GGA ACC ACG CTC ACT TAC ACA AG 3, which
restored the correct reading frame and maintained intercysteine spacing without adding extra
codons across the deletion site . The Cla I/Pst I fragment from the subclone containing the
Nde I to Pvu II deletion was ligated into these same sites in pCR2.1 to form pCR2 NP

PlasmidpCR2 NOP was constructed by removing the Nsi I/Nde I fragment, containing
SCR-1 through SCR-9, from pCR2 NP and replacing it with the Nsi I/Nde I fragment, con-
taining SCR-1 through SCR-5, from pBSCR2 NN.

Plasmid pBSCR2 PP was created by partial digestion of pBSCR2Xwith Pvu II, followed
by self-ligation of the 4.4-kb fragment containing CR2 sequence 5' to the Pvu II site within
SCR 3 and 3' to the Pvu II site within SCR 14 . These two Pvu II sites are conserved within
homologous SCRs, and self-ligation of this fragment restores the correct reading frame and
maintains the intercysteine spacing across the Pvu II/Pvu II deletion .

Chimeric Mutants.

	

Plasmids encoding receptors comprised of portions of both CRI and
CR2 were constructed using the full-length CRI cDNA clone pBSABCD, or the mutants
pBSAD and pBSCD, which were generated by fusion of LHR-A and LHRD, and deletion
of LHRA and -B, respectively, from pBSABCD (24). The order of CRI and CR2 used in
the plasmid nomenclature reflects the 5' to 3' composition of the construct.

Plasmid pBSCRI/CR2 N was constructed by ligation of the 3.1-kb Nsi I/Xba I fragment
of pBSCR2.1 to the 3.4-kb Nsi I/Xba I fragment of pBSABCD. This results in fusion of the
Nsi I site in SCR-2 of CRI to the Nsi I site in SCR-1 ofCR2. The fusion occurs at the third
cysteine residue in each SCR, resulting in natural restoration ofthe reading frame from CR1
to CR2 without addition ofextra codons . The resultingchimera encodes 16 SCRs, one more
than pBSCR2X.

Plasmid pBSCRI/CR2 EX was constructed by cleavage ofpCR2.1 with Xho I, treatment
with Klenow fragment, protection ofinternal Eco RI sites with Eco RI methylase (New En-
gland Biolabs), followed by ligation with the Eco RI linker, CGGAATTCCG, and digestion
with Eco RI and Xba I. This produced a 2.9-kb Eco RI (5')-Xba I (3') fragment that was
ligated with both a 520-bp Eco RI fragment containing SCR-1 and SCR-2 from pBSABCD
and pBSKS' digested with Eco RI and Xba I. This construct was partially digested with
Eco RI, treated with Klenow fragment, and self-ligated . A clone containing a modified Eco
RI site at the CRl/CR2 fusion junction was isolated in which the signal peptide and SCR-1
and SCR-2 ofCR1 are spliced to SCR-3 ofCR2. The resulting sequence at the fusion junc-
tion AAT TCC GTC encodes the amino acids asparagine-serine-valine, that are not present
in either CRI or CR2.
Plasmid pBSCR2/CRI N was created by digestion of pBSADwith Not I followed by par-
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tial digestion with Nsi I . The 3.7-kb fragment containing CRI sequences 3' to the Nsi I site
within SCR-2 was ligated to pBSCR2X that had been digested with Nsi I and Not I . This
chimera is the reciprocal ofthe Nsi I fusion used in pBSCRl/CR2 N, results in natural resto-
ration of the reading frame from CR2 to CRI, and is one SCR shorter than pBSCD.

Plasmid pBSCR2/CRI SE was constructed by digestion of pCR2.1 with Ssp I, followed
by treatment with Eco RI methylase, ligation of an Eco RI linker containing the sequence
CCGGAATTCCGG, and digestion with Eco RI and Sal I . The 350-bp fragment containing
CR2 sequence 5' of the modified Ssp I site was ligated to pBSCD digested with Sal I and
Eco RI to fuse SCR-1 ofCR2 to SCR17 of CRI in a manner that restores the reading frame
and results in a chimera that is one SCR shorter than native pBSCD. The sequence at the
fusionjunction TGT GAA TCC GGA ATT CCT contains two codons for serine and glycine
which are not present in either CRI or CR2.

Plasmid pBSCR2/CRl XE was constructed by digestion of pCR2.1 with Xho I, followed
by treatment with Klenow fragment, methylation of Eco RI sites, ligation of an Eco RI linker
containing the sequence CGGAATTCCG, and digestion with Eco RI and Sal I . The 550-bp
Sal I/Eco RI fragment containing CR2 sequences 5' of the modified Xho I site was ligated
with both the 3 .6-kb Eco RI/Xba I fragment from pBSCD and pBSKS' digested with Sal
I/Xba I to result in fusion of SCR-1 and -2 of CR2 to SCR-17 of CRI while maintaining
the reading frame . The sequence at the fusionjunction CTC GAC GGA ATT CCT contains
a single glycine residue in place of the arginine normally present in CRI .

Plasmid pBSCR2/CRI/CR2 KON was constructed by subcloning the Sal I/Barn HI frag-
ment, containing SCR-1 through SCR-9, from pBSCR2X into a pBSKS' plasmid in which
the Kpn I site had been removed from the polylinker through sequential digestion with Kpn
I and T4 DNA polymerase followed by self-ligation . The subclone was digested with Kpn
I and Nsi I and the larger fragment was ligated with a synthetic double-stranded oligonucleo-
tide that contained the sequence GT ACC GTG ATA AGG TAC AGT TGC CGC CCT
GGT TAT TCC GGA AGA CCGTTT TCT ATC ATC TGC T. This resulted in replace-
ment of the sequences encoding amino acids between cysteines 2 and 3 of SCR-1 of CR2
with those between cysteines 2 and 3 of SCRI of CRI, such that the sequence CSGTFR-
LIGEKSLLC was converted to CRPGYSGRPFSIIC .

Deletion mutants and chimeras were confirmed by restriction mapping and dideoxynucleo-
tide sequencing ofdouble-stranded plasmids or M13mp18 subclones (33, 34) . Enzymes were
used as described by the manufacturer. Bacterial strain DH5a (Bethesda Research Laborato-
ries, Gaithersburg, MD) was used for propagation of the above plasmids .
The complete inserts that encoded deletion and chimeric mutant receptors were removed

from bacterial vectors with either Xba I alone or Not I and Xho I, and cloned into these
sites in the eukaryotic expression vector CDM8 (35), which was propagated in bacterial strain
DKl/P3 (24) . The CDM8-containing constructs are preceded by pi in the nomenclature used
here.

Antibodies.

	

HB-5 (IgG2a), OKB-7 (IgG2a) (Ortho Pharmaceuticals, Raritan, NJ), and
B2 (IgM) (Coulter Immunology, Hialeah, FL) are mouse mAbs specific for human CR2
(8, 36) YZ-1 is an anti-CRI mouse IgGl mAb (11) . Mouse mAb 72AI is an IgG that recog-
nizes the EBV gp350/220 glycoprotein (37) . UPC-10 is an IgG2a mouse mAb that recognizes
levan and inulin (Bionetics Laboratory Products, Charleston, SC) . Fluorescein-conjugated
or Texas Red-conjugated goat F(aV)2 anti-mouse IgG and goat F(ab)2 anti-mouse IgM were
purchased (Jackson ImmunoResearch Laboratories, West Grove, PA) . Goat F(aV)2 anti-
mouse IgG or anti-mouse IgM were radiolabeled with 125 1 to a specific activity of 5 FT32%4
10 5 cpm/kg using the iodo-bead method (Pierce Chemical Co., Rockford, IL) .

Pblymerized C3dg, gp350/220, andEBV.

	

C3dg was prepared from aged human serum by
chromatography on DEAE-Sephacel (Pharmacia Fine Chemicals, Piscataway, NJ) followed
by gel filtration through Sephacryl S-200 HR (Pharmacia Fine Chemicals) (13) . C3dg was
polymerized with an 80-fold molar excess of glutaraldehyde and polymers were isolated by
chromatography through Sephacryl S-200 . Analysis of polymerized C3dg (pC3dg) by su-
crose gradient ultracentrifugation demonstrated an average molecularweight of450,000, con-
sistent with polymers ranging from tetramers to 20-mers . Polymerized C3dg was conjugated
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to FITC to a FITC:pC3dg molar ratio of four. Polymerized C3dg was radiolabeled with 125 1
to a specific activity of 2 x 106 cpm/Ag using the iodo-bead method.

Purified recombinant gp350/220 (38) (provided by N. Cooper and G. Nemerow, Research
Institute of Scripps Clinic, La Jolla, CA) was prepared by immunoaffinity chromatography of
culture supernatants ofGH3 cells secretinga truncated, soluble form of the protein that lacks
the transmembrane and cytoplasmic domains . The preparation, which contained approximate-
ly equal portions of gp350 and gp220, was 1251 labeled to a specific activity of 2 x 106 cpm .
The B95-8 strain of EBV was prepared as described (39), and used as either 1,000-fold

concentrated culture supernatant or as dextran gradient-purified virus.
Transfection .

	

Plasmids were transiently expressed by transfection into COS cells using the
DEAE-dextran procedure (40) . Murine L cells were stably transfected with pMTCR2.neo.1
(10), or co-transfected with piCR2/CR1 XE and pSVneo.l (which contains the neo gene driven
by the HSV TK promoter; provided by L. Sanders, Department of Molecular Biology and
Genetics, Johns Hopkins University, Baltimore, MD) using the calcium phosphate proce-
dure as described (41) . Transfected cells were selected for 14 d in 400 jig/ml of G418 (Gibco
Laboratories, Grand Island, NY) ; resistant colonies were pooled and assayed for CR2 or
CR2/CR1 XE expression .
L cells transfected with pMTCR2.neo.1 or piCR2/CR1 XE and bearing relatively high

numbers ofrecombinant receptors were obtained by indirectly staining with the mAbs HB-5
and YZ-1, respectively, and performing four (pMTCR2.neo.1) or two (piCR2/CRl XE) con-
secutive rounds of fluorescence activated cell sorting in which the brightest 3-12% of each
population were recovered with each sort .

Immunofluorescence, Radioimmunoassay, andImmunoprecipitation.

	

COS cells or L cells were har-
vested with PBS containing 1 mM EDTA and washed with PBS containing 0.19o BSA and
0.02% sodium azide (PBSA) . Replicate samples of5 x 10 4 to 5 x 10 5 cells in 0 .1 ml of PBSA
were sequentially incubated at 0°C for 30 min with 1.0 NAg/ml OKB-7, or with 4.0 Ag/ml
of HB-5, YZ-1, UPC-10, or B2, washed, and incubated with second antibody labeled with
FITC, Texas Red, or 1251 . Cells were assayed for 1251 or were observed for fluorescence by
microscopy or flow cytometry utilizing a Coulter Epics model 752 counter and correcting
for autofluorescence (42) . Cells also were incubated with 5.0 kg/ml FITC-pC3dg with or
without preincubation with 40-fold molar excess ofunlabeled pC3dg and assayed for fluores-
cence . Immunofluorescent analysis of the binding of EBV was performed as described (10) .

Approximately 107 L cells or 106 COS cells transfected with recombinant plasmids were
surface labeled with Iodo-Gen (Pierce Chemical Co.) . Detergent lysates of labeled cells were
sequentially immunoadsorbed with Sepharose-UPC-10 followed by either Sepharose-HB-5
or SepharoseYZ-1 . COS cells transfected with piCR2 PP, which reacts with OKB-7 only,
were sequentially incubated with Sepharose-protein A (Sigma Chemical Co.), OKB-7, and
Sepharose-protein A . Adsorbed proteins were eluted by boiling in 1 17o SDS and assessed by
SDS-PAGE and autoradiography.

Quantitative Binding of 1251pC3dg and 1251gp3501220.

	

Duplicate or triplicate samples of 5 x
105 L cells expressing wild-type CR2 or 106 L cells expressing CR2/CR1 XE, Raji cells, or
untransfected L cells were incubated in 0 .1 ml of PBSA with 0.1 hg/ml 1251-pC3dg or
0.25 Fog/ml 1251-gp350/220 in the presence or absence of increasing concentrations of unla-
beled ligand for 1 h at 0°C. Cells were centrifuged through 0.3 ml of a 1 .5 :1 mixture of dibutyl-
phthalate/dinonylphthalate in 0.4 ml polypropylene microfuge tubes for 2 min at 8,000 rpm
at room temperature . The tubes were cut and cell bound and free 1251 were determined .

Results
Expression andAnalysis of CR2 Deletion Mutants and CR2/CR1 Chimeric Receptors.

	

Ex-
pression ofCR2 by transfected COS cells was assessed by measurement ofthe binding
of EBV polymerized C3dg (pC3dg), and three anti-CR2 mAbs. Polymerized C3dg
was used for these studies because of the low affinity of CR2 for monomeric C3dg
(43) . mAb OKB-7, which inhibits uptake by CR2 of both pC3dg and EBV and
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mAbs HB-5 and B2, which do not, bound to 30, 33, and 39% of the transfected
COS cells, respectively, as demonstrated by surface immunofluorescence (Fig . 1) ;
these antibodies also bound specifically to CR2-transfected COScells when assessed
by RIA (Table I) . The fraction of cells that stained with the mAbs was equivalent
to that fluorescently labeled with FITC-pC3dg and EBV(Fig . 1) . When CR2 trans-
fected COS cells were stained simultaneously with FITC pC3dg and indirectly la-
beled Texas Red HB-5, there were no singly positive cells for either fluorochrome,
indicating correspondence between recombinant CR2 antigen and ligand binding
function . The membrane protein expressed by the COS cells transfected with the
full length cDNA construct had aMr of 145,000, when immunoprecipitates of sur-
face-labeled cells were analyzed by SDS-PAGE, which is comparable to that ofCR2

FIGURE 1 .

	

Binding of mAbs and ligands to deletion and chimeric mutants ofCR2. Shown on
the left are schematic representations ofdeletion and chimeric mutants beneath a partial restric-
tion map ofwild-type CR2 cDNA in which positions ofthe 15 SCRs are delineated. Restriction
sites are abbreviated: B, Bsm I; E, Eco RI ; K, Kpn I ; N, Nsi I; Nd, Nde 1; P, Pvu II; S, Ssp
I; X, Xho I . The Kpn I and Ssp I sites indicated within SCR-1 are present as pairs of each site
separated by -20 by each . The chimeric mutants are aligned with respect to numbering ofCR2
SCRs . Shown to the right ofeach construct are the immunofluorescent analyses of the binding
of the anti-CR2 mAbs, HB-5, OKB-7, and B2, the anti-CR1 mAb, YZ-1, and the CR2 ligands
pC3dg and EBV, to COS cells expressing each mutant . The results are expressed as the percent
of transfected COS cells that are immunofluorescently labeled with each mAb or CR2 ligand
as determined by counting at least 250 cells. Absence of binding indicates no positives among
at least 2,000 cells counted. Below is a model demonstrating the positions for the anti-CR2 mAb
epitopes and the binding sites for EBV and pC3dg.
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from previously characterized stably transfected L cells expressing a full-length CR2
construct (Fig . 2) (10) .
A series of deletion mutants of recombinant CR2 were constructed in a manner

that would maintain the proper spacing ofthe four conserved cysteines ofeach SCR
to enable formation ofthe predicted disulfide bonds. This aim was achieved in some
mutants by the use of conserved restriction sites residing in homologous SCRs, and
in others by the addition ofoligonucleotide linkers encoding additional amino acids .
Thus, the deletion mutants vary in size by an integral number of SCRs, and the
number of SCRs deleted ranges from aminimum oftwo forCR2 EK to amaximum
of 11 forCR2 PP (Fig. 1) . Immunoprecipitation of surface-labeled COS cell trans-
fectants with anti-CR2 mAbs indicated that several deletion mutants directed syn-
thesis of receptors of the predicted Mr: the CR2 PP deletion mutant which has four
SCRs was -40,000 Mr, and the CR2 NN mutant which has 12 SCRs was -107,000
Mr (Fig . 2) . The CR2 PP mutant was well expressed as determined by immuno-
fluorescence and RIA (Fig . 1; Table I) .
Two deletion mutants did not bind HB-5: CR2 XB which lacks SCR-3 through

SCR-6, and CR2 PP which has a large internal deletion affecting SCR-3 through
SCR-14 (Fig . 1). The finding that HB-5 did bind to COS cells expressing the CR2
NN mutant, which lacks the COOH-terminal two-thirds ofSCR-5 through the first
third ofSCR-9, localizes the epitope for this mAbto a region including SCR-3, SCR-4,
and the first third of SCR-5.
Three deletion mutants did not bind B2 : CR2 NP which lacks most of SCR-9,

all of SCR-10 through SCR-13, and a portion of SCR-14 ; CR2 NOP which has a
further deletion extending 5' to SCR-5; and the CR2 PP mutant having the largest
deletion extending up through SCR-3 (Fig. 1) . The capacity ofCOS cells expressing

FIGURE 2. Comparison of recom-
binant wild-type CR2 with deletion
and chimeric mutants. Detergent ly-
sates of 1211 surface-labeled murine L
cells stably expressing wild-type CR2
(lanes 1 and 7) and COS cells trans-
fected with piCR2 (lanes 2 and 8),
piCR2/CR1 XE (lanes 3 and 9),
piCR1/CR2N(lanes 4 and 10), piCR2
NN (lanes 5 and 11), and piCR2 PP
(lanes 6 and 12), respectively, were im-
munoprecipitated with Sepharose-
UPC-10 anti-levan (lanes 1-5), UPC-
10 and protein A-Sepharose (lane 6),
Sepharose-HB-5 anti-CR2 (lanes 7, 8,
10, 11), SepharoseYZ-1 (lane 9), and
OKB-7 anti-CR2 and protein A-Seph-
arose (lane 12), respectively. The elu-
ates were subjected to SDS-PAGE
under reducing conditions and auto-
radiography for 36 h. The diminished
intensity ofthe CR2PP mutant com-
pared with other CR2 proteins was
caused by less efficient immunoprecip-
itation with OKB-7 and immobilized
proteinAthan with HB-5 directly cou-
pled to sepharose.
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TABLE I
Binding of Anti-CR2 or Anti-CRI mAbs to COS Cell Transfectants

Fold increase in binding of 125 1-labeled second antibody to transfected COS cells
preincubated with specific antibody relative to COS cells preincubated with ir-
relevant antibody, or relative to COS cells transfected with vector alone . Data
are from the same transfection experiment shown in Fig. 1 ; all constructs were
analyzed in at least two separate transfections with comparable results .

either the CR2 NK mutant or the CR2 EK constructs to bind B2, which together
replace SCR12, SCR-13, and a portion of SCR14, indicates that the epitope for
B2 resides within these SCRs.

All deletion mutants bound OKB-7, placing its epitope in the most NH2-terminal
and/or COOH-terminal two SCRs ofCR2 (Fig . 1) . Furthermore, since no deletion
mutants lacked these two regions, the presence of additional epitopes for OKB-7
cannot be excluded by this analysis. All deletion mutants also boundEBVandpC3dg,
indicating that the binding sites for these ligands co-localize with the OKB-7 epi-
tope, which is consistent with the capacity of OKB-7 to inhibit uptake by CR2 of
EBV and C3dg .
Chimeric receptors composed of SCRs from CR2 and its homologue, CRI, were

prepared to define further the sequences required to form binding sites for EBV,
pC3dg, and OKB-7. As with the deletion mutants, chimeras were constructed in
amanner that preserved the spacing of conserved cysteine residues, and the recom-
binant chimeric receptors varied in size by integral SCR units . Substitution of the
cys-1 through cys-3 region of SCR-1 in the full-lengthCR2 construct with asegment
ofCRI consisting ofSCR-1 and the cys-1 through cys-3 portion of SCR-2 was achieved
in the CR1/CR2 Nchimera (Fig . 1) . This receptor was expressed well by COS cells,
as assessed by the binding of the mAbs HB-5 and B2 (Fig . 1 ; Table I), and by immu-
noprecipitation followed by SDS-PAGE, revealing a receptor with aMr slightly
larger than that of wild-type CR2, because of the presence of the additional SCR
(Fig. 2) . However, theCRI/CR2 N chimera lacked the OKB-7 epitope andwasun-
able to bind EBV and pC3dg (Fig . 1) . Analysis of the effects of the more extensive

Construct OKB7 HB-5 B2 YZ-1
Deletion mutants
CR2 WT 9.2 12 .7 6 .6
CR2 XB 8.0 0 .9 4 .3
CR2 NN 13.4 25 .4 6 .4
CR2 EK 3 .9 4 .7 3 .1
CR2 NK 3 .4 2 .0 3 .4
CR2 NP 5.5 7 .5 0 .9
CR2 NOP 5.0 6 .9 1 .0
CR2 PP 12 .9 1 .3 0 .7

Chimeras
CRI/CR2 N 1 .0 13 .7 9 .1 0 .6
CRI/CR2 EX 1 .2 21 .0 8 .0 0 .9
CR2/CR1 N 1 .6 1 .0 1 .6 11 .8
CR2/CR1 SE 1 .2 0 .8 0 .8 3 .8
CR2/CRl XE 5 .5 1 .5 1 .7 5 .0
CR2/CRI/CR2 KON 4.8 8 .9 4 .1
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substitution in the CRl/CR2 EX chimera in which SCRA and SCR-2 ofCR2 were
replaced with these SCRs of CRl confirmed the conclusion that the NH2-terminal
region ofCR2 was required for the formation ofsites involved in the uptake ofOKB-7,
EBV and pC3dg (Fig . 1) .
The roles of SCR-1 and SCR-2 of CR2 in the formation of these ligand binding

sites were assessed by expressing in COScells chimeric receptors that contained variable
portions of these two SCRs linked to the NH2 terminus of two deletion mutants
of CRl. The CRl constructs on which the CR2 substitutions were made contain
either the NH2-terminal seven SCRs spliced to the COOH-terminal nine SCRs or
all of the COOH-terminal 16 SCRs, along with transmembrane and cytoplasmic
regions of the receptor. Both of these CRl constructs have been shown previously
to be expressed well in COS cells (24) . Replacement of the cys-1 to cys-3 region of
SCR1, or of the entire NH2-terminal SCR of CRl with the corresponding regions
from CR2 in the CR2/CR1 N and CR2/CR1 SE chimeras did not form a binding
site for EBV, pC3dg, or OKB-7, despite reasonable expression in COS cells, as indi-
cated by the uptake of the anti-CR1 mAb YZ-1 (Fig . 1; Table I) . This observation,
when coupled with that ofthe absence ofligand binding functions in the CRl/CR2
Nchimera, indicates that SCR-1 is necessary but not sufficient for these ligand binding
sites in CR2 . In the chimera CR2/CR1 XE, both SCR-1 and SCR-2 of CR2 are
substituted for the NH2-terminal SCRs of the CRl construct to form a membrane
protein composed of 16 SCRs that is slightly larger than the 15-SCR form of wild-
type CR2 (Fig. 2) . This chimera was capable ofbinding EBV, pC3dg, and OKB-7,
indicating that the combination of the NH2-terminal two SCRs of CR2 are suf-
ficient to constitute binding sites for these three ligands. Staining ofCOScells trans-
fected with this chimera with FITC-pC3dg and indirectly labeled Texas Red YZ-1
revealed no singly positive cells for either fluorochrome, indicating correspondence
between expression ofthe recombinant CR2/CR1 chimeraand CR2ligand binding
function .
An attempt to discriminate among the structural requirements for these three ligands

was made by substituting the cys-2 to cys-3 region of SCR-1 of the full-length CR2
construct with this region of SCR-1 of CRl in the chimera, CR2/CRl/CR2 KON
(Fig . 1). Substitution of this region was chosen because mutations within the cys-2
to cys-3 portion of the first SCR of the a subunit of IL-2R result in a 100-fold de-
crease in IL-2 binding affinity (25) . The COS cells expressing the CR2/CR1/CR2
KON receptor did not bind EBV or pC3dg, despite demonstrating specific uptake
of OKB-7 (Fig . 1; Table I) . Thus, the EBV and pC3dg binding site(s) in CR2 re-
quire both SCR-1 and SCR-2, and cannot tolerate a substitution of an amino acid
segment from ahomologous position in CRl that represents only 10% ofthe linear
sequence of the two SCRs, distinguishing this site(s) from the epitope for OKB-7.

Comparison ofthe CR21CRI EX Chimera with Wild Type CR2 in Stably TransfectedMu-
rine L Cells. The analytic studies identifying SCR-1 and SCR-2 as the EBV/C3dg
bindingdomain ofCR2 were extended by quantitatively comparing ligand binding
to L cells bearing either the CR2/CR1 XE chimera or wild-type CR2. Pools of L
cells transfected with pMTCR2.neo .1 (10) were selected by four rounds of fluores-
cence activated sorting with indirectly labeled HB-5, and L cells co-transfected with
CR2/CR1 XE and pSVneo.1 were selected by two rounds ofsorting with indirectly
labeled YZ-1 . Replicate samples of cells , from both lines were assayed for fluores-
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cence by flow cytometry after labeling with the following mAbs and ligands: HB-5,
OKB-7, YZ-1, or irrelevant mAb UPC-10 (anti-levan) followed by indirect staining
with FITC-conjugated second antibody ; FITC-pC3dg alone or in the presence of
excess, unconjugated pC3dg; and EBVfollowed by the monoclonal anti-gp350/220,
72A1, and indirect staining with FITC-conjugated second antibody. All L cells ex-
pressing wild-type CR2 specifically bound both anti-CR2 mAbs, pC3dg and EBV,
but not anti-CRI mAb YZ-1 (Fig . 3) . No binding of FITC-pC3dg was observed
in the presence of excess unlabeled pC3dg and no binding of EBV was observed
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FIGURE 3.

	

Flow cytofluorometric
comparison of L cells expressing
wild-type CR2 with L cells ex-
pressing the chimeric receptor
CR2/CR1 XE . L cells stably ex-
pressing with pMTCR2.neo.1
(A-E) or piCR2/CR1 XE (FJ)
were indirectly fluorescently labeled
with HB-5 anti-CR2 (A and F)
OKB-7 anti-CR2 (B and G), YZ-1
anti-CRI (C and H), and EBV (E
and,), respectively, and directly la-
beled with FITC-pC3dg (D and I),
and analyzedby flow cytofluorom-
etry. Nonspecific fluorescent
labeling with UPC-10 is shown by
the dotted lines .
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to untransfected L cells (data not shown) . L cells expressing the CR2/CR1 EX chi-
mera bound OKB-7, YZ-1, pC3dg, and EBV but not HB-5 (Fig. 3) . The fluores-
cence intensities of the CR2/CR1 EX and wild-type transfectants binding C3dg and
EBV respectively, were comparable to the fluorescence ofthese two cell types binding
OKB-7, YZ-1 or HB-5, suggesting that the chimeric receptor was equivalent to wild-
type CR2 in its capacity to bind EBV and pC3dg.

Quantitative binding of 1251-labeled pC3dg and gp350/220 was performed on
these L cell lines to determine whether the chimeric receptor was capable of binding
each ligand with the same affinity as that ofthe wild-type receptor. Replicate samples
of wild-type CR2 transfectants, CR2/CR1 XE transfectants, untransfected L cells,
and Raji B-lymphoblastoid cells, were incubated with 0.1 hg/ml 1251-pC3dg in the
absence or presence ofincremental concentrations ofunlabeled pC3dg, or with 0.25
hg/ml 1251-labeled gp350/220 in the absence or presence of incremental concentra-
tions of unlabeled gp350/220, after which bound and free ligand were separated by
sedimentation ofcells through dibutyl/dinonyl phthalate. Specific competition ofthe
uptake of 1251-labeled ligand with unlabeled ligand was observed with both pC3dg
and gp350/220 by L cells expressing wild-type and chimeric receptors as well as
by Raji cells, but not by untransfected L cells (Fig. 4) . In addition, preincubation

1

o

	

.

	

.

	

.

	

.

	

.

	

.

	

. . ,
00

	

o

	

w

pC3dg fp9/mn

	

PC3d9 Bound (fmol)

0.10

0.08

mm
,t 0.06

LOWELL ET AL.

	

194 1

9P350/220Ip9M9

	

9P350f220 Bound (fmol)

FIGURE 4 .

	

Binding of "II-pC3dg and I'll-gp350/220 to L cells expressing wild-type CR2 or
CR2/CRI XE and to Raji cells . Replicate samples of L cells stably expressing pMTneo.CR2
or fp'CR2/CRI XE, wild-type L cells, and Raji cells and were incubated with f25 I-pC3dg (A)
or 25 1-gp350/220 (C) alone and in the presence of increasing amounts of the corresponding
ligands, after which cell-bound f25 I-labeled ligand was determined . Binding of each ligand to
cells preincubated with OKB-7 is indicated by the arrows. Scatchard analyses of the binding off25 I-pC3dg (B) and f25 I-gp350/220 (D) are shown . Lines represent the least squares fit of all data
points that are the means of triplicate ( 125 1-pC3dg) or duplicate ( f25 I-gp350/220) determinations .
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of each cell type with OKB-7 abolished specific binding of both 1211-pC3dg and 1211_
gp350/220, confirming the binding of both ligands to CR2. Scatchard analysis of
the binding data indicated comparable affinities for each ligand on all three types:
Kd = 0.7, 0.6, and 0.7 nM for pC3dg, and 9.3, 5.9, and 8.4 nM for gp350/220 on
L CR2, LCR2/CRI XE, and Raji cells, respectively (Fig . 4) . Thepredicted number
of CR2 receptors per Raji cell, which was 3 x 104 with pC3dg and 4 x 104 with
gp350/220 and the affinity of CR2 for gp350/220 are in accord with the results of
previous studies (44). In summary, these experiments demonstrate that the CR2/CRI
XE chimera is capable ofbinding both pC3dg and gp350/220 with the same affinity
as that of wild-type receptor expressed on L cells or naturally present on Raji cells.

Discussion
Viral tropism is determined in part by the tissue-specific expression ofmembrane

receptors . The capacity of viruses to maintain this functional interaction with target
cells requires conservation of both viral envelope protein and receptor binding sites.
One strategy for preservation ofviral residues that contact receptors is the recessed
"canyon" present in rhinovirus capsid protomers that is inaccessible to antibody and
thereby is protected from selective pressure of the host immune system (45) . Simi-
larly, it has been suggested that several viruses have evolved to recognize receptor
domains that are resistant to mutation in that they are binding sites for natural ligand.
Indirect evidence suggesting that viruses bind to receptor sites proximate or iden-
tical to those for natural ligands includes findings that mAbs that block binding of
HIV to CD4, rhinovirus to ICAM-1, and EBV to CR2, also inhibit interaction of
MHC class II antigens, LFA-1, and C3dg with their respective receptors (27-30).
Direct evidence for overlapping but distinct viral and natural ligand binding sites
has recently been obtained by analysis of CD4 substitution mutants affecting binding
ofboth HIV-1 gp120 and MHC class II antigens (31, 46). Furthermore, a nine amino
acid sequence near the NH2 terminus of gp350/220 that is homologous to a se-
quence in C3dg has been shown recently to mediate binding of EBV to CR2, sug-
gesting that these ligands may bind to a common domain on the receptor (26) .

To map directly the EBV/C3dg binding site(s) on CR2 a strategy of deletional
mutagenesis was considered suitable because CR2 consists of 15 distinct, tandemly
aligned structural units, the SCRs, which, by analogy to other members ofthe SCR
superfamily, form an extended, semiflexible filament (19, 20, 47). Thus, each SCR
is likely to interact only with adjacent SCRs, and removal of SCRs not involved
in formation of the binding sites should not alter ligand binding function, as has
been observed with deletion mutants ofCR1 (24) . The construction and expression
of seven CR2 deletion mutants confirmed the utility ofthis approach and localized
the single epitopes recognized by the mAbs HB-5 and B2 to a region including SCR3,
-4, and a portion of SCR-5, and a region including the COOH-terminal portion
of SCR-11 through the NH2-terminal portion of SCR-14, respectively. Therefore the
internal three-quarters ofthe receptor extending from SCR-3 to SCR-14 are not re-
quired for binding of pC3dg, EBV or OKB-7 (Fig . 1).

In a second approach analogous to a strategy termed homolog-scanning muta-
genesis (48), a set of CR2/CRI chimeras were constructed in which segments of
sequences that are derived from a homologous protein, CRl, are substituted for se-
quences within the functional protein. The rationale for these constructs is that ge-
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netically related proteins have similar three-dimensional structures, despite large
sequence divergence, so that chimeric recombinant receptors are expected to be stably
expressed on the cell surface. In addition, an analysis not only ofchimeras containing
intact SCRs from CR2 fused to CRl but also of intra-SCR substitutions was pos-
sible . Hence, transferring portions or all ofSCR-I of CR2 to CR1 did not reconsti-
tute CR2 binding function, but a chimera containing both SCR-I and SCR-2 of
CR2 fused to CRI was necessary and sufficient to restore EBV, pC3dgand OKB-7
binding (Figs . 1, 3, and 4). Moreover, substitution of a portion of SCR-I of CR2
with sequences from the homologous portion of CRI in the intra-SCR1 chimera,
CR2/CRI/CR2 KON maintained the OKB-7 epitope but not the binding site for
the viral and natural ligands, indicating that binding site for EBV is more closely
related to that for C3dg than for OKB-7. When the binding affinities of the CR2/CR1
XE chimera for EBV and pC3dg were compared with those of wild-type CR2 or
recombinant full-length CR2, no difference could be discerned, indicating that SCR-3
through SCR-15 do not contribute to the binding of ligand by this receptor (Fig .
4) . Thus, a separation between the EBV and the pC3dg binding sites at the level
of SCR or sub-SCR domains was not obtained, supporting the concept that the
virus has adapted to recognize the binding site for natural ligand .

Localization ofthe EBV/C3dg binding site to a pair ofcontiguous SCRs is reminis-
cent of findings with the ci subunit of the IL-2R and CRI. Mutational analysis of
the former demonstrated that both of its SCRs were required for binding of IL-2
(49), and deletional mutagenesis of CR1 predicted that its single binding site for
C4b and two sites for C3b were each comprised of two SCRs (24) . The capacity
of two contiguous SCRs to create a novel conformation is also supported by the
analysis of the epitope for OKB-7 that requires both SCRI and SCR-2 (Fig . 1) .
Whether the ligand binding sites of other members of the SCR superfamily will
be formed by adjacent SCRs is not known, although all of the -20 members ofthis
family contain at least two SCRs (21) .
The mapping of the epitopes for OKB-7 and HB-5 to adjacent pairs of SCRs

(Fig . 1) contrasts with the marked differences in their biologic properties. For ex-
ample, pC3dg, UVinactivated EBV and OKB-7, but not HB-5, synergize with
phorbol ester to induce proliferation of tonsillar B cells, suggesting that binding of
ligand to a site in SCR-1 and SCR-2, but not in SCR-3 and SCR-4, transduces a
growth signal (12) . Although the mechanism for this mode of signal transduction
by CR2 is not known, it may involve interaction with other cellular proteins, as has
been suggested by the finding of co-capping of the receptor with membrane Ig (9,
50). An example of selective effects of epitope ligation on signal transduction and
protein-protein interaction is the finding that mAbs binding to different epitopes
on the TCR that differ by as much as 100-fold in their cellular activating properties
correspondingly differ in their capacity to induce association of theTCR with CD4
(51) . Thus, the selection by EBV a polyclonal activator of B cells, of a site in CR2
that is proximate or identical to the natural ligand binding site may be related not
only to the relative immutability ofthat site but also to its signal transducing properties .

Summary
Complement receptor type 2 (CR2 ;CD21), a member of the superfamily of pro-

teins containing short consensus repeats (SCRs), is the B cell receptor for both the
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gp350/220 envelope protein of Epstein-Barr virus (EBV), and for the C3dg protein
of complement. By analysis of CR2 deletion mutants and chimeras formed with
CRI (CD35) we determined that of the 15 SCRs in CR2, the NF12-terminal two
SCRs are necessary and sufficient to bind both gp350/220 and C3dg with affinities
equivalent to those of the wild-type receptor. The epitope for OKB-7, a mAb that
blocks binding ofboth EBV and C3dg and shares with these ligands B cell-activating
capabilities, also requires both SCR-1 and SCR2, whereas mAbs lacking these func-
tions bind to other SCRs. Thus, EBV, a polyclonal activator of B cells, has selected
a site that is proximate or identical to the natural ligand binding site in CR2, per-
haps reflecting the relative immutability ofthat site as well as its signal transducing
function .

We thank Laura Sanders and Keith Peden for providing pSV.neo .1 and pMTneo.1, respec-
tively ; and Glen Nemerow and Neil Cooper for soluble gp 350/220 .
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