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Abstract. We investigate the ability of a genetic algorithm to design cellular au-
tomata that perform computations. The computational strategies of the resulting
cellular automata can be understood using a framework in which “particles” embed-
ded in space-time configurations carry information and interactions between particles
effect information processing. This structural analysis can also be used to explain the
evolutionary process by which the strategies were designed by the genetic algorithm.
More generally, our goals are to understand how machine-learning processes can design
complex decentralized systems with sophisticated collective computational abilities and
to develop rigorous frameworks for understanding how the resulting dynamical systems
perform computation.
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1. Introduction

From the earliest days of computer science, researchers have been interested in making
computers and computation more like information-processing systems in nature. In the
1940’s and 1950’s, von Neumann viewed the new field of “automata theory” as closely related
to theoretical biology, and asked questions such as “How are computers and brains alike?”
[75] and “What is necessary for an automaton to reproduce itself?” [76]. Turing was deeply
interested in the mechanical roots of human-like intelligence [72], and Weiner looked for
links among the functioning of computers, nervous systems, and societies [79]. More recently
work on biologically and sociologically inspired computation has received renewed interest;
researchers are borrowing information-processing mechanisms found in natural systems such
as brains [7, 28, 63], immune systems [25, 31], insect colonies [9, 21], economies [78, 80], and
biological evolution [2, 29, 40]. The motivation behind such work is both to understand how
systems in nature adaptively process information and to construct fast, robust, adaptive
computational systems that can learn on their own and perform well in many environments.

Although there are some commonalities, natural systems differ considerably from tradi-
tional von Neumann-style architectures1. Biological systems such as brains, immune systems,

1It should be noted that although computer architectures with central control, random access memory,
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and insect societies consist of myriad relatively homogeneous components that are extended
in space and operate in parallel with no central control and with only limited communication
among components. Information processing in such systems arises from coordination among
large-scale patterns that are distributed across components (e.g., distributed activations of
neurons or activities of antibodies). Such decentralized systems, being highly nonlinear, of-
ten exhibit complicated, difficult-to-analyze, and unpredictable behavior. The result is that
they are hard to control and “program”. It seems clear that in order to design and under-
stand decentralized systems and to develop them into useful technologies, engineers must
extend traditional notions of computation to encompass these architectures. This has been
done to some extent in research on parallel and distributed computing (e.g., [10]) and with
architectures such as systolic arrays [47]. However, as computing systems become more par-
allelized and decentralized and employ increasingly simple individual processors, it becomes
harder and harder to design and program such systems.

Cellular automata (CAs) are a simple class of systems that captures some of the features
of systems in nature listed above: large numbers of homogeneous components (simple finite
state machines) extended in space, no central control, and limited communication among
components. Given that there is no programming paradigm for implementing parallel com-
putations in CAs, our research investigates how genetic algorithms (GAs) can evolve CAs
to perform computations requiring coordination among many cells. In other words, the
GA’s job is to design ways in which the actions of simple components with local information
and communication give rise to coordinated global information processing. In addition, we
have adapted a framework—“computational mechanics”—that can be used to discover how
information processing is embedded in dynamical systems [12] and thus to analyze how com-
putation emerges in evolved CAs. Our ultimate motivations are two-fold: (i) to understand
collective computation and its evolution in natural systems and (ii) to explore ways of auto-
matically engineering sophisticated collective computation in decentralized multi-processor
systems.

In previous work we described some of the mechanisms by which genetic algorithms
evolve cellular automata to perform computations, and some of the impediments faced by the
GA [56]. We also briefly sketched our adaptation of the computational mechanics approach
to understanding computation in the evolved CAs [17, 19, 20]. In this paper we give a more
fully developed account of our research to date on these topics, report on new results, and
compare our work with other work on GAs, CAs, and distributed computing.

This paper is organized as follows. In Sec. 2–4, we review cellular automata, define
a computational task for CAs—“density classification”—that requires global coordination,
and describe how we used a GA to evolve cellular automata to perform this task. In Sec. 5–8,
we describe the results of the GA evolution of CAs. We first describe the different types of
CA computational strategies discovered by the GA for performing the density classification
task. We then make the notion of computational “strategies” more rigorous by defining
them in terms of embedded particles, particle interactions, and geometric “subroutines”
consisting of these components. This high-level description enables us to explain how the
space-time configurations generated by the evolved CAs give rise to collective computation
and to predict quantitatively the CAs’s computational performance. We then use embedded-

and serial processing have been termed “von Neumann style”, von Neumann was also one of the inventors
of “non von Neumann-style” architectures such as cellular automata.
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Neighborhood η

1 010 0 0 001 11t = 0

1 011 1 0 111 11t = 1

Lattice configuration: 

Rule table φ: 
000   001   010   011   100   101   110   111
  0       1       1       1        0       1       1      0

Neighborhood η:
Output bit φ(η):

Output bit φ(η)

Figure 1: The components of one-dimensional, binary-state, r = 1
(“elementary”) CA 110 shown iterated one time step on a configura-
tion with N = 11 lattice sites and periodic boundary conditions (i.e.,
sN = s0).

particle descriptions to explain the evolutionary stages by which the successful CAs were
produced by the GA. Finally, in Sec. 9 we compare our research with related work.

2. Cellular Automata

An one-dimensional cellular automaton consists of a lattice of N identical finite-state ma-
chines (cells), each with an identical topology of local connections to other cells for input and
output, along with boundary conditions. Let Σ denote the set of states in a cell’s finite-state
machine and let k = |Σ| denote the number of states per cell. Each cell is indexed by its
site number i = 0, 1, . . . , N − 1. A cell’s state at time t is denoted by sti, where sti ∈ Σ.
The state sti of cell i together with the states of the cells to which it is connected is called
the neighborhood ηti of cell i. Each cell obeys the same transition rule φ(ηti), that gives the
update state st+1

i = φ(ηti) for cell i as a function of ηti . We will drop the indices on sti and ηti
when we refer to them as general (local) variables.

We use st to denote the configuration of cell states:

st = st0s
t
1 . . . s

t
N−1.

A CA {ΣN , φ} thus specifies a global map Φ of the configurations:

Φ : ΣN → ΣN ,

with
st+1 = Φ(st).
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In some cases in the discussion below, Φ will also be used to denote a map on subconfigura-
tions of the lattice. Whether Φ applies to global configurations or subconfigurations should
be clear from context.

In a synchronous CA, a global clock provides an update signal for all cells: at each t all
cells synchronously read the states of the cells in their neighborhood and then update their
own states according to sti = φ(ηti).

The neighborhood η is often taken to be spatially symmetric. For one-dimensional
CAs, ηi = si−r, . . . , s0, . . . , si+r, where r is the CA’s radius. Thus, φ : Σ2r+1 → Σ. For
small-radius, binary-state CAs, in which the number of possible neighborhoods is not too
large, φ is often displayed as a look-up table, or rule table, that lists each possible η together
with its resulting output bit st+1.

The architecture of a one-dimensional, (k, r) = (2, 1) CA is illustrated in Fig. 1. Here,
the neighborhood of each cell consists of itself and its two nearest neighbors and the boundary
conditions are periodic: sN = s0.

The 256 one-dimensional, (k, r) = (2, 1) CAs are called elementary CAs (ECAs). Wol-
fram [81] introduced a numbering scheme for one-dimensional CAs. The output bits can
be ordered lexicographically, as in Fig. 1, and are interpreted as the binary representation
of an integer between 0 and 255 with the leftmost bit being the least-significant digit and
the rightmost the most-significant digit. In this scheme, the elementary CA pictured here is
number 110.

In this paper we will restrict our attention to synchronous, one-dimensional, (k, r) =
(2, 3) CAs with periodic boundary conditions. This choice of parameters will be explained
below. For ease of presentation, we will sometimes refer to a CA by its transition rule φ
(e.g., as in “the CA φ . . . ”).

The behavior of CAs is often illustrated using space-time diagrams in which the con-
figurations st on the lattice are plotted as a function of time. Fig. 2 shows a space-time
diagram of the behavior of ECA 110 on a lattice of N = 149 sites and periodic boundary
conditions, starting from an arbitrary initial configuration (the lattice is displayed horizon-
tally) and iterated over 149 time steps with time increasing down the figure. A variety of
local structures are apparent to the eye in the space-time diagram. They develop over time
and move in space and interact.

ECAs are among the simplest spatial dynamical systems: discrete in time, space, and
local state. Despite this, as can be seen in Fig. 2, they generate quite complicated, even
apparently aperiodic behavior. The architecture of a CA can be modified in many ways—
increasing the number of spatial dimensions, the number k of states per cell, and the neigh-
borhood size r; modifying the boundary conditions; making the local CA rule φ probabilistic
rather than deterministic; making the global update Φ asynchronous; and so on.

CAs are included in the general class of “iterative networks” or “automata networks”.
(See [30] for a review.) They are distinguished from other architectures in this class by their
homogeneous and local (r ≪ N) connectivity among cells, homogeneous update rule across
all cells, and (typically) relatively small k.

For quite some time, due to their appealingly simple architecture, CAs have been suc-
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Figure 2: A space-time diagram illustrating the typical behavior of
elementary CA (ECA) 110. The lattice of 149 sites, displayed horizon-
tally at the top, starts with s0 being an arbitrary initial configuration.
Cells in state 1 are displayed as black and cells in state 0 are displayed
as white. Time increases down the page.

cessfully employed as models of physical, chemical, biological, and social phenomena, such
as fluid flow, galaxy formation, earthquakes, chemical pattern formation, biological morpho-
genesis, and vehicular traffic dynamics. They have been considered as mathematical objects
about which formal properties can be proved. They have been used as parallel computing
devices, both for the high-speed simulation of scientific models and for computational tasks
such as image processing. In addition, CAs have been used as abstract models for studying
“emergent” cooperative or collective behavior in complex systems. For discussions of work
in all these areas, see, e.g., [4, 26, 30, 37, 46, 59, 44, 55, 71, 82].

3. A Computational Task for Cellular Automata

It has been shown that some CAs are capable of universal computation; see, e.g., [3, 50, 67].
The constructions either embed a universal Turing machine’s tape states, read/write head
location, and finite-state control in a CA’s configurations and rule or they design a CA rule,
supporting propagating and interacting particles, that simulates a universal logic circuit.
These constructions are intended to be in-principle demonstrations of the potential compu-
tational capability of CAs, rather than implementations of practical computing devices; they
do not give much insight about the computational capabilities of CAs in practice. Also, in
such constructions it is typically very difficult to design initial configurations that perform
a desired computation. Moreover, these constructions amount to using a massively parallel
architecture to simulate a serial one.

Our interest in CA computation is quite different from this approach. In our work, CAs
are considered to be massively parallel and spatially extended pattern-forming systems. Our
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goal is to use machine-learning procedures, such as GA stochastic search, to automatically
design CAs that implement parallel computation by taking advantage of the patterns formed
via collective behavior of the cells.

To this end, we chose a particular computation for a one-dimensional, binary-state CA—
density classification—that requires collective behavior. The task is to determine whether
ρ0, the fraction of 1s in the initial configuration (IC) s0, is greater than or less than a critical
value ρc. If ρ0 > ρc, the entire lattice should relax to a fixed point of all 1s (i.e., Φ(1N ) = 1N)
in a maximum of Tmax time steps; otherwise it should relax to a fixed point of all 0s ((i.e.,
Φ(0N) = 0N) within that time. The task is undefined for ρ0 = ρc. In our experiments we set
ρc = 1/2 and Tmax = 2N . The performance PI

N (φ) of a CA φ on this task is calculated by
randomly choosing I initial configurations on a lattice of N cells, iterating φ on each IC for
a maximum of Tmax time steps, and determining the fraction of the I ICs that were correctly
classified by φ—a fixed point of all 1s for ρ0 > ρc, and a fixed point of all 0s otherwise. No
partial credit is given for final configurations that have not reached an all-1s or all-0s fixed
point. As a shorthand, we will refer to this task as the “ρc = 1/2” task. Defining the task for
other values of ρc is of course possible; e.g., Chau et al. showed that is is possible to perform
the task for rational densities ρc using two one-dimensional elementary CAs in succession
[6].

This task is trivial for a von Neumann-style architecture that holds the IC as an array
in memory: it simply requires counting the number of 1s in s0. It also trivial for a two-layer
neural network presented with each s0i on one of its N input units, all of which feed into
a single output unit: it simply requires weights set so that the output unit fires when the
activation reaches the desired threshold ρc. In contrast, it is nontrivial to design a CA of our
type to perform this task: all cells must agree on a global characteristic of the input even
though each cell communicates its state only to its neighbors.

The ρc = 1/2 task for CAs can be contrasted with the well-studied tasks known as
“Byzantine agreement” and “consensus” in the distributed computing literature (e.g., [22,
27]). These are tasks requiring a number of distributed processors to come to agreement
on a particular value held initially by one of the processors. Many decentralized protocols
have been developed for such tasks. They invariably assume that the individual processors
have more sophisticated computational capabilities and memory than the individual cells in
our binary-state CAs or that the communication topologies are more complicated than that
of our CAs. Moreover, to our knowledge, none of these protocols addresses the problem of
classifying a global property (such as initial density) of all the processors.

Given this background, we asked whether a GA could design CAs in which collective
behavior allowed them to perform well above chance (> PI

N(φ) = 0.5) on this task for a
range of N . To minimize local processor and local communication complexity, we wanted to
use the smallest values of k and r for which such behavior could be obtained. Over all 256
ECAs φ, the maximum performance P104

N (φ) is approximately 0.5 for N ∈ {149, 599, 999}.
For all CAs φ evolved in 300 runs of the GA on (k, r) = (2, 2) CAs, the maximum P104

N (φ)
was approximately 0.58 for N = 149 and approximately 0.5 for N ∈ {599, 999}. (The GA’s
details will be given in the next section.) Increasing the radius to r = 3, though, resulted in
markedly higher performance and more sophisticated collective behavior. As a result, all of
the experiments described in this paper were performed on one-dimensional (k, r) = (2, 3)
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Figure 3: Space-time diagrams for φmaj, the r = 3 local-majority-vote
CA. In the left diagram, ρ0 < 1/2; in the right diagram, ρ0 > 1/2.

CAs with N ∈ {149, 599, 999} and periodic boundary conditions. Note that for r = 3, the
neighborhood size |η| = 7.

One naive candidate solution to the ρc = 1/2 task, which we will contrast with the
GA-evolved CAs, is the r = 3 “majority vote” CA. This CA, denoted φmaj, maps the center
cell in each 7-cell neighborhood to the majority state in that neighborhood. Fig. 3 gives two
space-time diagrams illustrating the behavior of φmaj on two ICs, one with ρ0 < 1/2 and the
other with ρ0 > 1/2. As can be seen, small high-density (low-density) regions are mapped
to regions of all 1s (0s). But when an all-1s region and an all-0s region border each other,
there is no way to decide between them and both persist. Thus, φmaj does not perform the

ρc = 1/2 task. In particular, P104

N (φmaj) was measured to be zero for N ∈ {149, 599, 999}. At
a minimum more sophisticated coordination in the form of information transfer and decision
making is required. And, given the local nature of control and communication in CAs, the
coordination among cells must emerge in the absence of any central processor or central
memory directing the cells.

Other researchers, building on our work, have examined variations of the ρc = 1/2 task
that can be performed by simple CAs or by combinations of CAs. Capcarrere et al. [5] noted
that changing the output specification makes the task significantly easier. For example,
ECA 184 classifies densities of initial conditions within ⌈N/2⌉ time steps by producing a
final configuration of a checkerboard pattern (01)∗ interrupted by one or more blocks of at
least two consecutive 0s for low-density ICs or at least two consecutive 1s for high-density ICs.
Fukś [32] noted that by using the final configuration of ECA 184 as the initial configuration
of ECA 232, the correct final configuration of either all-0s or all-1s is obtained. Note that
Fukś’ solution requires a central controller that counts time up to ⌈N/2⌉ steps in order to
shift from a CA using rule 184 to one using rule 232.

Both solutions always yield correct density classification, whereas the single-CA ρc = 1/2
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task is considerably more difficult. In fact, it has been proven that no single, finite-radius
two-state CA can perform the ρc = 1/2 task perfectly for all N [18, 48].

Our interest is not focused on developing a new and better parallel method for per-
forming this specific task. Clearly, one-dimensional, binary-state cellular automata are far
from the best architectures to use if one is interested in performing density classification
efficiently. As we have emphasized before, the task is trivial within other computational
model classes. Instead, our interest is in investigating how GAs can design CAs that have
interesting collective computational capabilities and how we can understand those capabil-
ities. Due to our more general interest, we have been able to adapt this paradigm to other
spatial computation tasks—tasks for which the above specific solutions do not apply and for
which even approximate hand-designed CA solutions were not previously known [19].

4. Evolving Cellular Automata with Genetic Algorithms

Genetic algorithms are search methods inspired by biological evolution [40]. In a typical
GA, candidate solutions to a given problem are encoded as bit strings. A population of such
strings (“chromosomes”) is chosen at random and evolves over several generations under
selection, crossover, and mutation. At each generation, the fitness of each chromosome
is calculated according to some externally imposed fitness function and the highest-fitness
chromosomes are selected preferentially to form a new population via reproduction. Pairs of
such chromosomes produce offspring via crossover, where an offspring receives components
of its chromosome from each parent. The offspring chromosomes are then subject at each bit
position to a small probability of mutation (i.e., being flipped). After several generations,
the population often contains high-fitness chromosomes—approximate solutions to the given
problem. (For overviews of GAs, see [35, 54].)

We used a GA to search for (k, r) = (2, 3) CAs to perform the ρc = 1/2 task.2 Each
chromosome in the population represented a candidate CA—it consisted of the output bits
of the rule table, listed in lexicographic order of neighborhood (cf. φ in Fig. 1). The
chromosomes representing CAs were of length 22r+1 = 128 bits. The size of the space in which
the GA searched was thus 2128—far too large for exhaustive enumeration and performance
evaluation.

Our version of the GA worked as follows.

First, an initial population ofM chromosomes was chosen at random. The fitness F I
N(φ)

of a CA φ in the population was computed by randomly choosing I ICs on a lattice of N
cells, iterating the CA on each IC either until it arrived at a fixed point or for a maximum of
Tmax time steps. It was then determined whether the final configuration was correct—i.e.,
the all-0s fixed point for ρ0 < 1/2 or the all-1s fixed point for ρ0 > 1/2. F I

N(φ) was the
fraction of the I ICs on which φ produced the correct final behavior. No credit was given
for partially correct final configurations.

In each generation, (1) a new set of I ICs was generated; (2) F I
N(φ) was computed for

each CA φ in the population; (3) CAs in the population were ranked in order of fitness (with

2The basic framework was introduced in Ref. [61] to study issues of phase transitions, computation, and
adaptation. For a review of the original motivations and a critique of the results see Ref. [57].
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ties broken at random); (4) a number E of the highest fitness CAs (the “elite”) was copied
to the next generation without modification; and (5) the remaining M −E CAs for the next
generation were formed by crossovers between randomly chosen pairs of the elite CAs. With
probability pc, each pair was crossed over at a single randomly chosen locus l, forming two
offspring. The first child inherited bits 0 through l from the first parent and bits l+1 through
127 from the second parent; vice versa for the second child. The parent CAs were chosen for
crossover from the elite with replacement—that is, an elite CA was permitted to be chosen
any number of times. The two offspring chromosomes from each crossover (or copies of the
parents, if crossover did not take place) were mutated (0 → 1 and 1 → 0) at each locus with
probability pm. This process was repeated for G generations during a single GA run. Note
that since a different sample of ICs was chosen at each generation, the fitness function itself
is a random variable.

We ran experiments with two different distributions for choosing the M chromosomes in
the initial population and the set of I ICs at each generation: (i) an “unbiased” distribution
in which each bit’s value is chosen independently with equal probability for 0 and 1, and
(ii) a density-uniform distribution in which strings were chosen with uniform probability
over λ ∈ [0, 1] or over ρ0 ∈ [0, 1], where λ is the fraction of 1s in φ’s output bits and ρ0
is the fraction of 1s in the IC. Using the density-uniform distribution for the initial CA
population and for the ICs considerably improved the GA’s ability to find high fitness CAs
on any given run. (That is, we could use 50% fewer generations per GA run and still find
high performance CAs.) The results we report here are from experiments in which density-
uniform distributions were used.

The experimental parameters we used were M = 100, I = 100, E = 20, N = 149,
Tmax = 2N , pc = 1.0 (i.e., crossover was always performed), pm = 0.016, and G = 100. Ex-
periments using variations on these parameters did not result in higher performance solutions
or faster convergence to the best-performance solutions.

To test the quality of the evolved CAs we used P104

N with N ∈ {149, 599, 999}. This
performance measure is a more stringent quality test than the fitness F 100

N used in the GA
runs: under P104

N the ICs are chosen from an unbiased distribution and thus have ρ0 close to

the density threshold ρ = 1/2. Such ICs are the hardest cases to classify. Thus, P104

N gives
a lower bound on other performance measures. In machine learning terms, the ICs used to
calculate F 100

149 are the training sets for the CAs and the ICs used to calculate P104

N are larger
and harder test sets that probe the evolved CA’s generalization ability.

5. Results of Experiments

In this section we describe the results from 300 independent runs of this GA, with different
random number seeds.

In each of the 300 runs, the population converged to CAs implementing one of three
types of computational strategies. The term “strategy” here refers to the mechanisms by
which the CA attains some level of fitness on the ρc = 1/2 task. These three strategy types,
“default”, “block expanding”, and “particle”, are illustrated in Figures 4–6. In each figure,
each row contains two space-time diagrams displaying the typical behavior of a CA φ that
was evolved in a GA run. Thus, CAs from six different runs are shown. In each row, ρ0 < 1/2
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in the left space-time diagram and ρ0 > 1/2 in the right. The rule tables and measured P104

N

values for the six CAs are given in Table 1.

5.1 Default Strategies

In 11 out of the 300 runs, the highest performance CAs implemented “default” strategies,
which on almost all ICs iterate to all 0s or all 1s, respectively. The typical behavior of two
such CAs, φadef and φbdef, is illustrated in Figures 4(a) and 4(b). Default strategies each have
PI

N (φ) ≈ 0.5, since each classifies one density range (e.g., ρ < 1/2) correctly and the other
(ρ > 1/2) incorrectly. Since the initial CA population is generated with uniform distribution
over λ it always contains some CAs with very high or low λ. And since λ is the fraction
of 1s in the output bits of the look-up table, these extreme-λ CAs tend to have one or the
other default behavior.

5.2 Block-Expanding Strategies

In most runs (280 out of 300 in our experiments) the GA evolved CAs with strategies like
those shown in Figures 5(a) and 5(b). φaexp in Fig. 5(a) defaults to an all-1s fixed point (right
diagram) unless there is a sufficiently large block of adjacent (or almost adjacent) 0s in the

IC. In this case it expands that block until 0s fill up the entire lattice (left diagram). φbexp
in Fig. 5(b) has the opposite strategy. It defaults to the all-0s fixed point unless there is a
sufficiently large block of 1s in the IC. The meaning of “sufficiently large block” depends on
the particular CA, but is typically close to the neighborhood size 2r+ 1. For example, φaexp
will expand blocks of 8 or more 0s and φbexp will expand blocks of 7 or more 1s.

These “block-expanding” strategies rely on the presence or absence of blocks of 1s or
0s in the IC: blocks of adjacent 0s (1s) are more likely to appear in low- (high-) density
ICs. Since the occurrence of such blocks is statistically correlated with ρ0, recognizing and
then expanding them leads to fitnesses above those for the default strategy. The strength
of this correlation depends on the initial density ρ0 and on the lattice size N . Typical
block-expanding strategies have F 100

149 ≈ 0.9 and P104

149 ≈ 0.6. The block-expanding strategies
designed by the GA are adapted to N = 149; their performances do not scale well to larger
lattice sizes. This occurs since the probability of a block of, say, seven adjacent 1s appearing
for a given ρ0 increases with N and this means that the correlation between the occurrence
of this block and density decreases. This can be seen in the measured values of P104

N for φaexp
and φbexp for longer lattices given in Table 1.

5.3 Embedded-Particle Strategies

The block-expanding strategies are not examples of the kind of sophisticated coordination
and information transfer that we claimed must be achieved for robust performance on the
ρc = 1/2 task. Under these strategies all the computation is done locally in identifying
and then expanding a “sufficiently large” block. Moreover, the performance on N = 149
does not generalize to larger lattices. Clearly, the block-expanding strategies are missing
important aspects required by the task. The third class of strategies evolved by the GA, the
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Figure 4: Space-time behavior of “default” strategy CAs evolved on
two different GA runs. (a) φadef with ρ0 = 0.48 (left) and ρ0 = 0.74
(right). On almost all ICs this CA iterates to a fixed point of all 0s,

correctly classifying only low-ρ ICs. (b) φbdef with ρ0 = 0.15 (left) and
ρ0 = 0.56 (right). On almost all ICs this CA iterates to a fixed point
of all 1s, correctly classifying only high-ρ ICs.
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Figure 5: Space-time behavior of two “block expanding” CAs evolved
on different GA runs. (a) φaexp with ρ0 = 0.46 (left) and ρ0 = 0.55
(right). This CA defaults to a fixed point of all 1s unless the IC
contains a sufficiently large block of adjacent 0s, in which case, that
block is expanded. (b) φbexp with ρ0 = 0.44 (left) and ρ0 = 0.52
(right). This CA defaults to a fixed point of all 0s unless the IC
contains a sufficiently large block of adjacent 1s, in which case, that
block is expanded. The classification of the IC is correct in each of
these four cases.
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“embedded-particle” strategies, do achieve the coordination and communication we alluded
to earlier. Typical space-time behaviors of two particle strategies, φapar and φbpar, are given in
Figures 6(a) and 6(b). It can be seen that there is a transient phase during which the spatial
and temporal transfer of information about the local density takes place. Such strategies
were evolved in 9 out of the 300 runs.

φapar’s behavior is somewhat similar to that of φmaj in that local high-density regions
are mapped to all 1s and local low-density regions are mapped to all 0s. In addition, a
vertical stationary boundary separates these regions. The set of local spatial configurations
that make up this boundary is specified in formal language terms by the regular expression
(1)+01(0)+, where (w)+ means a positive number of repetitions of the word w [41].

The stationary boundary appears when a region of 1s on the left meets a region of 0s on
the right. However, there is a crucial difference from φmaj: when a region of 0s on the left
meets a region of 1s on the right, a checkerboard region (01)+ grows in size with equal speed
in both directions. A closer analysis of its role in the overall space-time behavior shows that
the checkerboard region serves to decide which of the two adjacent regions (0s and 1s) is the
larger. It does this by simply cutting off the smaller region and so the larger (0 or 1) region
continues to expand. The net decision is that the density in the region was in fact below or
above ρc = 1/2. The spatial computation here is largely geometric: there is a competition
between the sizes of high- and low-density regions.

For example, consider the right-hand space-time diagram of Fig. 6(a). The large low-
density region between the lines marked “boundary 1” and “boundary 2” is smaller than
the large high-density region between “boundary 2” and “boundary 1” (moving left from
boundary 2 and wrapping around). The left-hand side of the checkerboard region (centered
around boundary 2) collides with boundary 1 before the right-hand side does. The result is
that the collision cuts off the inner white region, letting the outer black region propagate.

In this way, φapar uses local interactions and simple geometry to determine the relative
sizes of adjacent low- and high-density regions that are larger than the neighborhood size.
As is evident in Figures 6(a) and 6(b), this type of size competition over time happens across
increasingly larger spatial scales, gradually resolving competitions between larger and larger
regions.

The black-white boundary and the checkerboard region can be thought of as signals
indicating “ambiguous” density regions. Each of these boundaries has local density exactly
at ρc = 1/2. Thus, they are not themselves “classified” by the CA as low or high density.
The result is that these signals can persist over time. The creation and interaction of these
signals can be interpreted as the locus of the computation being performed by the CA—they
form its emergent “algorithm”, what we have been referring to as the CA’s “strategy”.

φbpar (Fig. 6(b)) follows a similar strategy, but with a vertically striped region playing
the role of the checkerboard region in φapar. However, in this case there are asymmetries in

the speeds of the propagating region boundaries. This difference yields a lower P104

N , as can
be seen in Table 1.

These descriptions of the computational strategies evolved by the GA are informal. A
major goal of our work is to make terms such as “computation”, “computational strategy”,
and “emergent algorithm” more rigorous for cellular automata. In the next section we will

14



CA Name Rule Table (Hexadecimal) P104

149 P104

599 P104

999

φadef 100111215030114D 0.500 0.500 0.500
01613507143B05BF

φbdef 0BF9D97AF26F4F4B 0.499 0.499 0.501
F3FF301F0B110DF7

φaexp 1010614604273F9B 0.656 0.523 0.504
7FD7D9DF35F53FFF

φbexp 02330A4B07016711 0.643 0.513 0.502
42D080C3CD877B7F

φapar 0504058605000F77 0.775 0.740 0.728
037755877BFFB77F

φbpar 00240066A0A02246 0.766 0.687 0.641
76EFEFFFFBFFAAFE

Table 1: CA chromosomes (look-up table output bits) given in hex-
adecimal and P104

N for the six CAs illustrated in Figures 4–6, on lat-
tices of sizes N = 149, N = 599, and N = 999. To recover the 128-bit
string giving the CA look-up table outputs, expand each hexadecimal
digit (left to right, top row followed by bottom row) to binary. This
yields the neighborhood outputs in lexicographic order of neighbor-
hood, with the leftmost bit of the 128-bit string giving the output bit
for neighborhood 00000000, and so on. Since P104

N is measured on a
randomly chosen sample of ICs, it is a random variable. This table
gives its mean over 100 trials for each CA. Its standard deviation over
the same 100 trials is approximately 0.005 for each CA for all three
values of N . For comparison, the best known (k, r) = (2, 3) CAs for
the ρc = 1/2 task have P104

149 ≈ 0.85 (see Sec. 9). This appears to be
close to the upper limit of P104

149 for this class of spatial architectures.

describe how we are using the notions of domains, particles, and particle interactions to
do this. We will use these notions to answer questions such as, How, precisely, is a given
CA performing the task? What structural components are used to support this information
processing? How can we predict PI

N and other computational properties of a given CA? Why
is PI

N greater for one CA than for another? What types of mistakes does a given CA make
in performing the ρc = 1/2 task? These types of questions are difficult, if not impossible, to
answer in terms of local space-time notions such as the bits in a CA’s look-up table or even
the raw space-time configurations produced by the CA. A higher-level description is needed,
one that incorporates computational structures.

6. Understanding Collective Computation in Cellular Automata

In this section we will describe our approach to formalizing the notion of computational
strategy in cellular automata and in other spatially extended systems. This approach is
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Figure 6: Space-time behavior of two “particle” CAs evolved on dif-
ferent GA runs. (a) φapar with ρ0 = 0.48 (left) and ρ0 = 0.51 (right).

(b) φbpar with ρ0 = 0.48 (left) and ρ0 = 0.51 (right). These CAs
use the boundaries between homogeneous space-time regions to effect
information transmission and processing. Again, the classification of
the IC is correct in each of these four cases.
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Figure 7: (a) Space-time diagram illustrating the typical behavior
of ECA 18—a CA exhibiting apparently random behavior, i.e., the
set of length-L spatial words has a positive entropy density as L →
∞. (b) The same diagram with the regular domains—instances of
words in Λ0—filtered out, leaving only the embedded particles P =
{1(00)n1, n = 0, 1, 2, . . .}. (After Ref. [14].)

based on the computational mechanics framework of Crutchfield [12], as applied to cellular
automata by Crutchfield and Hanson [15, 38, 39]. This framework comprises a set of methods
for classifying the different patterns that appear in CA space-time behavior, using concepts
from computation and dynamical systems theories. These methods were developed as a way
of analyzing the behavior of cellular automata and other dynamical systems. They extend
more traditional geometric and statistical analyses by revealing the intrinsic information-
processing structures embedded in dynamical processes.

6.1 Computational Mechanics of Cellular Automata

As applied to cellular automata, the purpose of computational mechanics is to discover an
appropriate “pattern basis” with which to describe the structural components that emerge
in a CA’s space-time behavior. A CA pattern basis consists of a set Λ of formal languages
{Λi, i = 0, 1, . . .} in terms of which a CA’s space-time behavior can be decomposed concisely
and in a way constrained by the temporal dynamics. Once such a pattern basis is found,
those cells in space-time regions that are described by the basis can be seen as forming
background “domains” against which coherent structures—defects, walls, etc.—not fitting
the basis move. In this way, structural features above and beyond the domains can be
identified and their dynamics analyzed and interpreted on their own terms.

For example, consider the space-time diagram of Fig. 7(a), illustrating the apparently
random behavior of ECA 18. This example is a useful illustration of embedded information
processing since the coherent structures are not immediately apparent to the eye. The
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computational mechanics analysis [14, 39] of ECA 18 uses a pattern basis consisting of the
single domain language Λ = {Λ0 = (0Σ)+}, where Σ = {0, 1}. That is, over most regions in
ECA 18’s configurations, every other site is a 0 and the remaining sites are wildcards, either
0 or 1. (Often this type of formal-language description of a set of configuration features can
be discovered automatically via the “ǫ-machine reconstruction” algorithm [12, 38].)

Crutchfield and Hanson define a regular domain Λj as a space-time region that (i) is
a regular language and (ii) is space- and time-translation invariant. Regular domains can
be represented by either the set Λi of configurations or by the minimal finite-state machine
M(Λi) that recognizes Λi. More specifically, let {Λi} be the pattern basis for CA φ. Then
the regular domain Λi describes the space-time regions of {Φt(s0) : t = 0, 1, 2, . . .} whose
configurations are words in Λi. Formally, then, a regular domain Λi is a set that is

1. temporally invariant—the CA always maps a configuration in Λi to another configu-
ration in Λi: Φ(s) = s′, s, s′ ∈ Λi; and

2. spatially homogeneous—the same pattern can occur at any site: the recurrent states
in the minimal finite automaton M(Λi) recognizing Λi are strongly connected.

Once a CA’s regular domains are discovered, either through visual inspection or by
an automated induction method, and proved to satisfy the above two conditions, then the
corresponding space-time regions are, in a sense, understood. Given this level of discovered
regularity, the domains can be filtered out of the space-time diagram, leaving only the
“unmodeled” deviations, referred to as domain “walls”, whose dynamics can then be studied
in and of themselves. Sometimes, as is the case for the evolved CA we analyze here, these
domain walls are spatially localized, time-invariant structures and so can be considered to
be “particles”.

In ECA 18 there is only one regular domain Λ0. It turns out that it is stable and so
is called a regular “attractor”—the stable invariant set to which configurations tend over
long times, after being perturbed away from it by, for example, flipping a site value [14, 39].
Although there are random sites in the domain, its basic pattern is described by a simple
rule: all configurations are allowed in which every other site value is a 0. If these fixed-value
sites are on even-numbered lattice sites, then the odd-numbered lattice sites have a wild card
value, being 0 or 1 with equal probability. The boundaries between these “phase-locked”
regions are “defects” in the spatial periodicity of Λ0 and, since they are spatially localized
in ECA 18, they can be thought of as particles embedded in the raw configurations.

To locate a particle in a configuration generated by ECA 18, assuming one starts in a
domain, one scans across the configuration, from left to right say, until the spatial period-2
phase is broken. This occurs when a site value of 1 is seen where the domain pattern indicates
a 0 should be. Depending on a particle’s structure, it can occur, as it does with ECA 18,
that scanning the same configuration in the opposite direction (right to left) may lead to the
detection of the broken domain pattern at a different site. In this case the particle is defined
to be the set of local configurations between these locations.

Due to this ECA 18’s particles are manifest in spatial configurations as blocks in the set
P = {1(00)n1, n = 0, 1, 2, . . .}, a definition that is left-right scan invariant. Fig. 7(b) shows
a filtered version of Fig. 7(a) in which the cells participating in Λ0 are colored white and the
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Regular Domain
Λ0 = {(0(0 + 1))∗}

Particle
α ∼ Λ0 Λ0 = {1(00)n1, n = 0, 1, 2, . . .}

Interaction (annihilation)
α + α → ∅ (Λ0)

Table 2: ECA 18’s catalog of regular domains, particles, and particle
interactions. The notation p ∼ ΛiΛj means that p is the particle
forming the boundary between domains Λi and Λj.

cells participating in P are colored black. The spatial structure of the particles is reflected in
the triangular structures, which are regions of the lattice in which the particle—the breaking
of Λ0’s pattern—is localized, though not restricted to a single site.

In this way, ECA 18’s configurations can be decomposed into natural, “intrinsic” struc-
tures that ECA 18 itself generates; viz., its domain Λ0 and its particle P. These structures
are summarized for a CA in what we call a particle catalog. The catalog is particularly simple
for ECA 18; cf. Table 2. The net result is that ECA 18’s behavior can be redescribed at the
higher level of particles. It is noteworthy that, starting from arbitrary initial configurations,
ECA 18’s particles have been shown to follow a random walk in space-time on an infinite
lattice, annihilating in pairs whenever they intersect [24, 39]. One consequence is that there
is no further structure, such as coherent particle groupings, to understand in ECA 18’s dy-
namics. Thus, one moves from the deterministic dynamics at the level of the CA acting
on raw configurations to a level of stochastic particle dynamics. The result is that ECA 18
configurations, such as those in Fig. 7(a), can be analyzed in a much more structural way
than by simply classifying ECA 18 as “chaotic”.

In the computational mechanics view of CA dynamics, embedded particles carry various
kinds of information about local regions in the IC. Given this, particle interactions are the
loci at which this information is combined and processed and at which decisions are made.
In general, these structural aspects—domains, particles, and interactions—do not appear
immediately. As will be seen below, often there is a initial disordered period, after which the
configurations condense into well-defined regular domains, particles, and interactions. To
capture this relaxation process we define the condensation time tc as the first iteration at
which the filtered space-time diagram contains only well-defined domains in Λ and the walls
between them. In other words, at tc, every cell participates in either a regular domain, of
width at least 2r+1, in a wall between them, or in an interaction between walls. (See Refs.
[16] and [42] for a more detailed discussion of the condensation phase and its consequences.)

6.2 Computational Mechanics of Evolved Cellular Automata

This same methodology is particularly useful in understanding and formalizing the computa-
tional strategies that emerged in the GA-evolved CA. Fortunately, in the following exposition
most of the structural features in the evolved CA are apparent to the eye. Fig. 6(a) sug-
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Regular Domains
Λ0 = {0+} Λ1= {1+} Λ2= {(01)+}

Particles (Velocities)
α ∼ Λ0 Λ1 (—) β ∼ Λ1 Λ0 (0) γ ∼ Λ0 Λ2 (-1)
δ ∼ Λ2 Λ0 (-3) η ∼ Λ1 Λ2 (3) µ ∼ Λ2 Λ1 (1)

Interactions
decay α → γ + µ
react β + γ → η, µ+ β → δ, η + δ → β

annihilate η + µ → ∅ (Λ1), γ + δ → ∅ (Λ0)

Table 3: φapar’s catalog of regular domains, particles (including veloc-
ities in parentheses), and particle interactions. Note that this catalog
leaves out possible three-particle interactions.

gests that an appropriate pattern basis for φapar is Λ = {Λ0 = 00+,Λ1 = 11+,Λ2 = (01)+},
corresponding to the all-white, all-black, and checkerboard regions. Similarly, Fig. 6(b) sug-

gests that for φbpar we use Λ = {Λ0 = 00+,Λ1 = 111+,Λ0 = (011)+}, corresponding to the
all-white, all-black, and striped regions.

Note that a simple shortcut can be used to identify domains that are spatially and
temporally periodic. If the same “pattern” appears repeated over a sufficiently large (≫ r
cells by r time steps) space-time region, then it is a domain. It is also particularly easy to
prove such regions are regular domains. Exactly how the pattern is expressed as a regular
language or as a minimal finite-state machine typically requires closer inspection.

Once identified, the computational contributions of these space-time regions can be
easily understood. The contributions consist solely of the generation of words in the cor-
responding regular language. Since this requires only a finite amount of spatially localized
memory, its direct contribution to the global computation required by the task is minimal.
(The density of memory vanishes as the domain increases in size.) The conclusion is that the
domains themselves, while necessary, are not the locus of the global information processing.

Fig. 8 is a version of Fig. 6 with φapar’s and φbpar’s regular domains filtered out. The

result reveals the walls between them, which for φapar and φbpar are several kinds of embedded
particles. The particles in Fig. 8 are labeled with Greek letters. This filtering is performed
by a building a transducer that reads in the raw configurations and can recognize when
sites are in which domain. The transducer used for Fig. 8(a), for example, outputs white
at each site in one of φapar’s domains and black at each site participating in a domain wall.
(The particular transducer and comments on its construction and properties can be found
in Appendix A. The general construction procedure is given in Ref. [15].)

Having performed the filtering, the focus of analysis shifts away from the raw config-
urations to the new level of embedded-particle structure. The questions now become, Are
the computational strategies explainable in terms of particles and their interactions ? Or, is
there as yet some unrevealed information processing occurring that is responsible for high
performance?
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Figure 8: (a) Version of Fig. 6(a) with the regular domains filtered
out, revealing the particles and their interactions. (b) Filtered version
of Fig. 6(b).
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Regular Domains
Λ0 = {0+} Λ1 = {1+} Λ2 = {(011)+}

Particles (Velocities)
α ∼ Λ1 Λ0 (0) β ∼ Λ0 Λ1 (1) γ ∼ Λ1 Λ2 (0)
δ ∼ Λ2 Λ1 (-3) η ∼ Λ0 Λ2 (3) µ ∼ Λ2 Λ0 (3/2)

Interactions
decay α → γ + µ
react β + γ → η, µ+ β → δ, η + δ → β

annihilate η + µ → ∅ (Λ0), γ + δ → ∅ (Λ1)

Table 4: φbpar’s catalog of regular domains, particles (including their
velocities in parentheses), and particle interactions.

Tables 3 and 4 list all the different particles that are observed in the space-time behavior
of φapar and φbpar, along with their velocities and the interactions that can take place between
them. Note that these particle catalogs do not include all possible structures, for example,
possible three-particle interactions. The computational strategies of φapar and φbpar can now
be analyzed in terms of the particles and their interactions as listed in the particle catalogs.

6.3 Computational Strategy of φapar

In a high-performance CA such as φapar, particles carry information about the density of local
regions in the IC, and their interactions combine and process this information, rendering a
series of decisions about ρ0. How do these presumed “functional” components lead to the
observed fitness and computation performance?

Referring to Table 3 and Fig. 8(a), φapar’s β particle is seen to consist of the zero-velocity
black-to-white boundary. β carries the information that it came from a region in the IC in
which the density is locally ambiguous: the density of 1k0k, when determined at its center,
is exactly ρc. The ambiguity cannot be resolved locally. It might be, however, at a later
time, when more information can be integrated from other regions of the IC.

Likewise, the α “particle” consists of the white-to-black boundary, but unlike the β
particle, α is unstable and immediately decays into two particles γ (white-checkerboard
boundary) and µ (checkerboard-black boundary). Like β, α indicates local density ambiguity.
The particles into which it decays, γ and µ, carry this information and so they too are
“ambiguous density” signals. γ carries the information that it borders a white (low density)
region and µ carries the information that it borders a black (high density) region. The two
particles also carry the mutual information of having come from the same ambiguous density
region where the transient α was originally located. They carry this positional information
about α’s location by virtue of having the same speed (±1).

To see how these elements work together over a space-time region consider the left side
of the left-hand (ρ0 < 1/2) diagram in Fig. 8(a). Here, α decays into a γ and a µ particle.
The µ then collides with a β before its companion γ (wrapping around the lattice) does.

22



This indicates that the low-density white region, whose right border is the γ, is larger than
the black region bordered by the µ. The µ-β collision creates a new particle, a δ, that carries
this information (“low-density domains”) to the left, producing more low-density area. δ,
a fast moving particle, catches up with the γ (“low density”) and annihilates it, producing
Λ0 over the entire lattice. The result is that the white region takes over the lattice before
the maximum number of iterations has passed. In this way, the classification of the (low
density) IC has been correctly determined by the spatial algorithm—the steps we have just
described. In the case of φapar, this final decision is implemented by δ’s velocity being three
times that of γ’s.

On the right side of the right-hand (ρ0 > 1/2) diagram in Fig. 8(a), a converse situation
emerges: γ collides with β before µ does. The effective decision indicates that the black
region bordered by µ is larger than the white region bordered by γ. In symmetry with the
µ-β interaction described above, the γ-β interaction creates the η particle that catches up
with the µ and the two annihilate. In this way, the larger black region takes over and the
correct density classification is effected.

A third type of particle-based information processing is illustrated at the top left of
the right-hand diagram in Fig. 8(a). Here, an α decays into a γ and a µ. In this case, the
white region bordered by γ is smaller than the black region bordered by µ. As before, γ
collides with the β on its left, producing η. However, there is another β particle to the right
of µ. Instead of the µ proceeding on to eventually collide with the η, the µ first collides
with the second β. Since the µ borders the larger of the two competing regions, its collision
is slightly later than the γ-β collision to its left. The µ-β collision produces a δ particle
propagating to the left. Now the η and the δ approach each other at equal and opposite
speeds and collide. Since η is carrying the information that the white region should win and
δ is carrying the information that the black region should win, their collision appropriately
results in an “ambiguity” signal—here, a β that later on interacts with particles from greater
distances. But since η traveled farther than δ before their collision, a β is produced that is
is shifted to the right from the original α. The net effect—the net geometric subroutine—is
to shift the location of density ambiguity from that of the original α particle in the IC to a
β moved to the right a distance proportional to the large black region’s size relative to the
white region’s size.

Even though this β encodes ambiguity that cannot be resolved by the information
currently at hand—that is, the information carried by the η and δ that produce it—this β
actually carries important information in its location, which is shifted to the right from the
original α. To see this, refer to Fig. 9, an enlargement of the right diagram of Fig. 8(a) with
some particle labels omitted for clarity. W and B denote the lengths of the indicated white
(low density) and black (high density) regions in the IC. Given the particle velocities listed
in Table 3 and using simple geometry it is easy to calculate that the β, produced by the η-δ
interaction, is shifted to the right by 2(B−W) cells from the α’s original position. The shift
to the right means that the high-density region (to the left of the leftmost β) has gained
B−W sites in size as a result of this series of interactions. In terms of relative position the
local particle configuration βαβ becomes βγµβ and then ηδ, which annihilate to produce
a final β. This information is used later on, when the rightmost γ collides with the new
β before its partner µ does, eventually leading to black taking over the lattice, correctly
classifying the (ρ0 > 1/2) IC.
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Figure 9: An enlargement and relabeling of the right diagram of
Fig. 8(a) with some particle labels omitted for clarity. W is the length
of the leftmost white region, B is the length of the black region to
its right, and d is the amount by which the β produced by the η–δ
interaction has been shifted from the leftmost α. Given the particle
velocities listed in Table 3 and using simply geometry, it is easy to
calculate that d = 2(B −W).
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Figure 10: (a) Type-1 misclassification by φapar, with ρ0 = 0.48. Even
though ρ0 < ρc, at tc (here, t = 8) the lengths of the black regions sum
to 65 cells and the lengths of the white regions sum to 44 cells. This
leads to a misclassification of IC density. (b) Type-2 misclassification
by φapar, starting with ρ0 = 0.52. At tc (here also, t = 8) the sum of
the lengths of the black regions is 65 cells and the sum of the lengths
of the white regions is 61 cells. However, even though these condensed
lengths correctly reflect the fact that ρ0 > ρc, the black regions in the
IC’s center occur within white regions in such a way that they get
cut off. Ultimately this yields a large white region that wins over the
large black region and the IC is misclassified.

It should now be clear in what sense we say that particles store and transmit informa-
tion and that particle collisions are the loci of decision making. We described in detail only
two such scenarios. As can be seen from the figures, this type of particle-based information
processing occurs in a distributed, parallel fashion over a wide range of spatial and temporal
scales. The functional organization of the information processing can be usefully analyzed
at three levels: (i) the information stored in the particles and decisions made during their
interaction, (ii) geometric subroutines that are coordinated groupings of particles and inter-
actions that effect intermediate-scale functions, and (iii) the net spatial computation over
the whole lattice and from t = 0 to t = Tmax.

In the next section we will argue that these levels of description of a CA’s compu-
tational behavior—in terms of information transmission and processing by particles and
their interactions—is analogous to, but significantly extends, Marr’s “representation and
algorithm” level of information processing. It turns out to be the most useful level for un-
derstanding and predicting the computational behavior of CAs, both for an individual CA
operating on particular ICs and also for understanding how the GA evolved the progres-
sive innovations in computational strategies over succeeding generations. (We will put these
latter claims on a quantitative basis shortly.)
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φapar almost always iterates to either all 0s or all 1s within Tmax = 2N time steps.
The errors it makes are almost always due to the wrong classification being reached rather
than no classification being effected. φapar makes two types of misclassifications. In the
first type, illustrated in Fig. 10(a), φapar reaches the condensation time tc having produced
a configuration whose density is on the opposite side of ρc than was ρ0. The particles and
interactions then lead, via a correct geometric computation, to an incorrect final configura-
tion. In the second type of error, illustrated in Fig. 10(b), the density ρtc is on the same
side of the threshold as ρ0, but the configuration is such that islands of black (or white) cells
are isolated from other black (or white) regions and get cut off. This error in the geometric
computation eventually leads to an incorrect final configuration. As N increases, this type
of error becomes increasingly frequent and results in the decreasing P104

N values at larger N ;
see Table 1.

6.4 Computational Strategy of φbpar—Failure Analysis

As noted in Table 4, the space-time behavior of φbpar exhibits three regular domains: Λ0

(white), Λ1 (black), and Λ2 (striped). The size-competition strategy of φbpar is similar to that

of φapar. In φbpar, the striped region plays the role of φapar’s checkerboard domain. However,

when compared to φapar, the roles of the two domain boundaries Λ0Λ1 and Λ1Λ0 are now

reversed. In φbpar, Λ0Λ1 is stable, while Λ1Λ0 is unstable and decays into two particles.

Thus, the strategy used by φbpar is, roughly speaking, a 0-1 site-value exchange applied to
φapar’s strategy. Particles α, β, γ, δ, η, and µ are all analogous in the two CAs, as are their
interactions, if we exclude three-particle interactions; cf. Tables 3 and 4. They implement
competition between adjacent large white and black regions. In analogy with the preceding
analysis for φapar’s strategy, these local competitions are decided by which particle, a γ or a
µ, reaches a β first.

In φapar, γ and µ each approach β at the rate of one cell per time step. In φbpar, although
γ is now a stationary particle, it also effectively approaches β at the rate of 1 cell per time
step, since β moves with velocity 1. µ approaches β at the rate of 1/2 cell per time step,

the velocity of µ minus the velocity of β. Thus, there is an asymmetry in φbpar’s geometric
computation that can result in errors of the type illustrated in Fig. 11(a). There the IC,
with ρ = 0.52, condenses around iteration tc ≈ 20 into a block of 85 black cells adjacent to
a block of 64 white cells. The γ particle, traveling at velocity 1 relative to β, reaches β in
approximately 85 time steps. The µ particle, traveling at velocity 1/2 relative to β, reaches
β in approximately 103 time steps. Thus, even though the black cells initially outnumber
the white cells, the black region is cut off first and white eventually wins out, yielding
an incorrect classification at time step 165. In contrast, φapar, with its symmetric particle
velocities, reaches a correct classification on this same IC (Fig. 11(b)).

Like φapar, φ
b
par makes two types of classification errors—the type in which φbpar reaches

tc with a configuration whose density ρtc is on the opposite side of ρc than ρ0 and the type
illustrated in Fig. 11(a). The first type (“type 1”) is an error in how the CA condenses
into domains and particles. The second type (“type 2”) is due to asymmetries in particle
velocities. Consider Fig. 12, a blow-up of part of the right-hand diagram of Fig. 8(b). To the

26



Figure 11: (a) Misclassification by φbpar, with ρ0 = 0.52. (By Tmax =
2N , the CA reaches an all-0s fixed point.) (b) Correct classification
by φapar on the same IC.

Figure 12: Blow-up of part of right-hand diagram of Fig. 8b, illus-
trating asymmetries in φbpar’s particle velocities that can result in
misclassifications.
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left of the α (labeled) is an isolated black island and to the right is a white island. Together
these two contiguous islands are bounded by two β particles on either side. Inside, as in φapar,
an α decays into a γ and a µ. The resulting set of local particle interactions is such that
the two islands compete for space within the two bounding β’s, ending with the creation of
a new β. If W and B respectively denote the lengths of the white and black islands, then
after a series of interactions—βγµβ → ηδ → β—the white region (to the left of the original
leftmost β) gains 2W−B sites in size. Thus, to increase this region’s size the internal white
island must be at least half the size of its adjacent black island.

It is evident, therefore, that unlike φapar, there are asymmetries in φbpar’s particle “logic”,
and these are biased in favor of classifying high densities. These asymmetries are what make
P104

N (φbpar) lower than P104

N (φapar). (See Table 1.)

7. Significance of the Particle-Level Description

There are several alternative ways in which cellular automata such as φapar and φbpar can be
described as performing a computation. Marr anticipated some of these in delineating the
various levels of information processing in vision [51]. In principle, our CAs are completely
described by the 128 bits in their look-up tables. This is too low-level a description, however,
to be useful for understanding how a given CA performs the ρc = 1/2 task. Using this level
is like trying to understand how a pocket calculator computes the square root function by
examining the physical equations of motion for the electrons and holes in the calculator’s
silicon circuitry.

Moreover, attempting interpretation at this level also violates, in a sense, one of the
central tenets of the century-long study of dynamical systems, namely, that for nonlinear
systems (e.g., most CAs), the local space-time equations of motion do not directly determine
the system’s long-term behavior. In the case of CAs it is not the individual look-up table
neighborhood-output-bit entries acting over a single time step that directly give rise to the
observed computational strategy. Instead, it is the interaction of subsets of CA look-up table
entries that over a number of iterations leads to the emergence of domains, particles, and
interactions.

A second possibility for describing computational behavior in CAs is in terms of its
detailed space-time behavior—i.e., the series of raw configurations of 0s and 1s. Again, this
description is too low level for understanding how the solutions to the task are implemented.
This approach is like trying to understand how a calculator’s square root function is per-
formed by taking a long series snapshots of the positions and velocities of the electrons and
holes traveling through the integrated circuits. This prosaic view is analogous to Marr’s
“hardware implementation” level of description [51].

A third possibility is to describe the CA in terms related to the task’s required in-
put/output mapping and the task’s computational complexity. For example, on a particular
set of 104 random ICs, half with ρ < 1/2 and half with ρ > 1/2, φapar correctly classified 81%
of the ρ < 1/2 ICs and 74% of the ρ > 1/2 ICs. On average φapar took 81 time steps to reach
a fixed point; the maximum time was 227. The computational complexity of the ρc = 1/2
task on a serial architecture is O(N). This kind of operational analysis is roughly at Marr’s
“computational theory” level.
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None of these levels of description gives much insight into how the task is being per-
formed by a particular CA in terms of what information processing is being done and how
it leads to a particular measured performance. What is needed is an intermediate-level de-
scription whose primitives are informationally related to the task at hand. This is what
the computational mechanics level of particles and particle interactions gives us. How ever
one might detect the primitives at this level, it is analogous to Marr’s “representation and
algorithm” level, in which particles can be seen as representing aspects of the IC and their
actions and interactions can be seen as the CA’s emergent algorithm.

Representations, in the form of data structures, and algorithms have been studied ex-
tensively for von Neumann-style computers, but there have been few attempts to define such
notions for decentralized spatially extended systems such as CAs. One can, of course, in
principle implement any standard data structure and algorithm in a computation-universal
CA, such as the game of Life CA [3], by simulating a von Neumann-style computer. How-
ever, this is not a particularly useful notion of information processing if one’s goals are to
understand how nonlinear systems in nature compute. It is even more problematic if one
wishes to design computation in complex decentralized spatially extended architectures. We
believe that it will be essential to develop new “macroscopic-level” vocabularies in order to
explain how collective information processing takes place in such architectures. (One benefit
of this development would be an understanding of how to program these architectures in
genuinely parallel ways.)

A close reading shows that Marr’s analysis of the descriptional levels required for visual
processing misses several key issues. These are (i) the fact that representations emerge
from the dynamics (i.e., are intrinsic to the dynamics), (ii) a clear formal definition is
required to remove the subjectivity of detecting these intrinsic representations, and (iii)
their functionality is entailed by a new level of dynamics, also intrinsic, that describes their
interactions. As illustrated above in several cases, the computational mechanics framework
that we are employing here makes these distinctions and provides the necessary concepts
and methods to address these issues [12, 13]. The result is that we can analyze in detail the
emergent computational strategies in the evolved CAs.

Our particle-level description forms an explanatory vocabulary for emergent computa-
tion in the context of one-dimensional, binary-state CAs. As was described above, particles
represent various kinds of information about the IC and particle interactions are the loci of
decision making that use this information. The resulting particle “logic” gives a functional
description of how the computation takes place that is neither directly available from the
CA look-up table nor from the raw space-time configurations produced by iterating the CA.
It gives us a formal notion of “strategy”, allowing us to see, for example, how the strategies
of φapar and φbpar are similar and how they differ. One immediate consequence of this level

of analysis is that we can say why φbpar’s strategy is weaker.

The level of particles and interactions is not only a qualitative description of spatial
information processing, it also enables us to make quantitative predictions about computa-
tional performance. In Refs. [16] and [42], we describe how to model a CA using its particle
catalog and statistical properties at the condensation time. For each of several different
CAs φ, we compare the model’s prediction for PI

N(φ) as well as for the average time taken
to reach a fixed point with the values measured for the actual φ. Some of these compar-
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Figure 13: (a) Partial ancestral tree of φapar. (b) F
100
149 (φ) (diamonds)

and P104

149 (φ) (crosses) of the CAs φi in (a). Six of the data points are
marked with the name of the corresponding CA.

isons will be summarized in Sec. 8.7. The degree to which a model’s predictions agree with
the corresponding CA’s behavior indicates the degree to which the particle-level description
captures how the CA is actually performing the computation. Since, as we will show, the
model’s predicted performance and the observed performance are very close, we conclude
that the particle-level description accurately captures the intrinsic computational capability
of the evolved CAs.

8. Evolutionary History of φapar: Innovation, Contingency, and Exaptation

The structural analysis of CA space-time information processing that we have just outlined
also allows us to understand the evolutionary stages during which the GA produces CAs.
Here we will show how the functional components—domains, particles, and interactions—
arise and are inherited across the evolutionary history of a GA run. We will also demonstrate
a number of evolutionary dynamical phenomena, such as the historical contingency of func-
tional emergence and the appearance of initially nonfunctional behaviors that later are key
to the final appearance of high performance CAs.

To begin, Figures 13(a) and 13(b) illustrate φapar’s evolutionary history. Fig. 13(a)
gives a partial tree of the parent-child relationships between some of φapar’s ancestors, each
numbered by its generation of birth. Note that, since elite CAs can survive for more than
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CA Name Rule Table (Hexadecimal) F 100
149 P104

149

φ7b F6EFFFFFFFFFFFFF 0.50 0.500
6B9F7F93FFFFBFFF

φ8 0400448102000FFF 0.61 0.500
6B9F7F93FFFFBFFF

φ13 0400458100000FFF 0.82 0.513
6B9F77937DFFFF7F

φ17 0500458100000FBF 0.92 0.595
6B9F75937FBFFF5F

φ18 0500458100000FBF 0.98 0.691
6B9F75937FBDF77F

φ33 0504058100840FB7 0.97 0.735
4BBF55837FBDF77F

Table 5: CA chromosomes (look-up table output bits) given in hex-
adecimal, F 100

149 , and P104

149 for the six ancestors of φapar described in
this section. (See Fig. 1 for directions on how to recover the CA rule
table outputs from the hexadecimal code.) The F 100

149 values in this
table are those calculated in the CA’s generation of birth by the GA;
the P104

149 values given are the means over 100 trials of the performance
function, calculated after the run was complete. When tested over 100
trials, the standard deviation of F 100

149 is approximately 0.02 and the
standard deviation of P104

149 is approximately 0.005 for each CA.
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Figure 14: Space-time behavior of generation 7 and 8 ancestors, φ7b

and φ8, of φ
a
par. Both start from the same IC with ρ0 = 0.11.

one generation, parents and offspring, e.g. φ10 and φ13, can have nonconsecutive generation
labels. The CAs listed are those with the best fitness in the generation in which they arose.
Table 5 lists the look-up tables, F 100

149 , and P104

149 for the six ancestors of φapar described below.

Fig. 13(b) plots F 100
149 (diamonds) and P104

149 (crosses) versus generation of birth for each

of these ancestors. In generations 0–7 the best CA in the population has F 100
149 = P104

149 = 0.5,
achieved by a “default” strategy like those of Fig. 4. Starting at generation 8, evolution
proceeds in a series of abrupt increases in F 100

149 . More gradual increases are seen in P104

149 ; of
course, this statistic is not available to and thus is not used by the GA. The occasional small
decreases result from the stochastic nature of the fitness and performance evaluations.

The goal now is to use the functional analysis to understand why these increases come
about. To do so, we present a series of space-time diagrams, in Figs. 14-19, that compare
space-time behaviors of CAs along the ancestral tree of Fig. 13(a). In each figure, space-
time behavior with the same IC is given for two ancestrally related CAs to highlight the
similarities and evolutionary innovations.

8.1 φ7b and φ8 (Fig. 14)

Here the IC has very low density: ρ0 = 0.11. φ7b, a “default” CA, always iterates to all 1s,
and in Fig. 14(a) misclassifies the IC. φ7a (not shown) is a default CA that always iterates to
all 0s. φ7b’s look-up table contains mostly 1s (see Table 5) and φ7a’s look-up table contains
mostly 0s. They crossed over at locus 52 to produce φ8: therefore the first part of φ8’s
look-up table contains mostly 0s, and the rest is mostly 1s. In Fig. 14(b) φ8 iterates to all
0s and correctly classifies the IC.
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Figure 15: Space-time behavior of generation 8 and 13 ancestors, φ8

and φ13, of φ
a
par. Both start from the same IC with ρ0 = 0.47. (The

significance of α′′ is explained below, when φ13 and φ17 are compared.)

8.2 φ8 and φ13 (Fig. 15)

Here ρ0 = 0.47. In Fig. 15(a) φ8 quickly iterates to all 1s. This is its more typical behavior
than that shown in Fig. 14(b); very small regions of black quickly grow to take over the
entire lattice. In this way, φ8 is only slightly better than a default CA like φ7b; it correctly
classifies all high-density ICs and only a small number of very low density ICs. Note that
while F 100

149 (φ8) > 0.5, P104

149 (φ8) remains at 0.5. φ8 can be said to be carrying out a “default-
with-exceptions” strategy. All runs that produced such strategies went on to converge on
either block-expanding strategies or embedded-particle strategies.

Interestingly, the checkerboard domain Λ2 = {(01)+} is produced by φ8 on some ICs
(Fig. 15). However, Λ2 does not contribute to φ8’s fitness or performance. It is a functionally
neutral feature. To determine this, we modified φ8’s rule table to prevent the checkerboard
domain from propagating. The two relevant entries are 0101010 → 0 and 1010101 → 1.
Flipping the output bit on either or both of these entries produces CAs with F 100

149 = 0.61 and

P104

149 = 0.5; that is, fitness and performance identical to those of φ8. (The standard deviations
of F 100

149 for this and the other variant CAs discussed in this section were approximately

0.02. The standard deviations of P104

149 were approximately 0.005.) Appropriating biological
terminology, we can consider the checkerboard domain, at this generation, to be an adaptively
neutral trait of φ8.

φ13 represents a steep jump in fitness over φ8, as seen in Fig. 13(b). φ13 is a block-
expanding CA. It maps ICs to all 1s unless there is a sufficiently large block of adjacent
0s in the IC, in which case that block expands to eventually fill up the entire lattice, as in
Fig. 15(b), which is a correct classification by t = Tmax. On some ICs, φ13 also produces
a checkerboard domain and a similar but less ordered region; the latter can be seen in
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Figure 16: Space-time behavior of φapar ancestors, φ13 and φ17 arising
in generation 13 and 17. Both start from the same IC with ρ0 = 0.58.

Fig. 15(b). We determined, in a fashion similar to that just explained above, that these
traits also were adaptively neutral.

8.3 φ13 and φ17 (Fig. 16)

Here ρ0 = 0.58. φ13 expands blocks of 0s on many ICs with ρ > 1/2, including the one in
this figure, resulting in misclassifications. In fact, many high-density ICs with ρ ≈ 0.5 are
misclassified and, while φ13 has markedly higher F 100

149 than its ancestors, its performance

P104

149 is only marginally improved (see Table 5).

φ13 creates three types of boundaries between white and black domains. Two of them
are shown in Fig. 16(a), labeled α and α′. The α, like φapar’s α, exists for only a single time
step and then decays into η and µ, whereas α′ remains stable. A third type, α′′, does not
appear for this IC but can be seen in Fig. 15(b). α′ and α′′ support the block-expanding
strategy, whereas α leads to a competition between white and black regions similar to that
seen in φapar.

In contrast, consider Fig. 16(b), where the same ρ = 0.58 IC is correctly classified by

φ17. Recalling Table 5 we see that φ17’s F 100
149 and P104

149 are both substantially higher than
those of φ13. φ17’s higher F

100
149 and P104

149 can be explained at the particle level. The particles
are labeled in Fig. 16(a) and Fig. 16(b).

φ17 creates the same set of particles as φ13 (on some ICs it expands 0-blocks, not shown
in Fig. 16(b)) but with different frequencies of occurrence: α′ and α′′ appear less often than
in φ13 and α appears more often. Thus, φ13 is more likely to expand 0-blocks, and thus make
more errors, than φ17 on ICs for which ρ0 > 0.5. Given 100 randomly generated ρ > 0.5 ICs,
α′ and α′′ were created by φ13 in 86% of the ICs and by φ17 in 12% of the ICs. Whenever
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Figure 17: Space-time behavior of generation 17 and 18 ancestors, φ17

and φ18, of φ
a
par. Both are shown starting from the same IC that has

ρ0 = 0.45.

α′ or α′′ are created, the final configuration will be all 0s regardless of whether α is created.
That is, block expanding dominates other behaviors. This explains why flipping output bits
to suppress the checkerboard domain does not significantly affect φ13’s F 100

149 and P104

149 , but
does significantly affect these values for φ17. When the checkerboard domain was suppressed
in φ17, F

100
149 decreased only to 0.86 but P104

149 decreased to 0.54.

Following Gould and Vrba [36], we consider the checkerboard domain Λ2 to be an
example of an “exaptation”—a trait that has no adaptive significance when it first appears,
but is later co-opted by evolution to have adaptive value. According to Gould and Vrba, such
traits are common in biological evolution. In the evolutionary innovation that goes from φ13

to φ17 the exaptation of Λ2 in φ13 makes just this transition to functionality associated with
a marked increase in fitness and performance. This, in turn, leads to the change in dominant
computational strategy away from block expanding.

8.4 φ17 and φ18 (Fig. 17)

Here ρ0 = 0.45. The misclassification by φ17 (illustrated in Fig. 17(a)) is compared with the
correct classification by φ17’s higher fitness and performance child φ18 (Fig. 17(b)). Both
CAs create similar particles, but in φ17 the velocity of the β particle is 1/3, whereas in φ18

its velocity is zero.

In Fig. 17(a), the white region (marked W) is larger than the black region to its right
(marked B). Since the β particles have positive velocity, the black regions to W’s left and
right both expand to the right. Coming in from the left, this decreases the size of W. On

35



Figure 18: Space-time behavior of generation 18 and 33 ancestors, φ18

and φ33, of φ
a
par. Both start from the same IC with ρ0 = 0.61.

the other side, the (rightmost) β particle moves away from the W region. This asymmetry
allows the B region to win the size competition, when the B region should not.

The asymmetry between black and white regions is corrected in φ18 by the change
in β’s velocity to zero. This makes the size competition between black and white regions
symmetric. The result, seen in Fig. 17(b), is that the smaller B region is now cut off by the
µ and β, the W region is allowed to grow, and the correct classification is made.

8.5 φ18 and φ33 (Fig. 18)

Here ρ0 = 0.61. φ18, though an improvement over φ17, still carries with it remnants of its
ancestors’ block-expanding past. In Fig. 18(a), φ18 misclassifies the IC by creating an α′′

particle instead of an α particle at a white-black (ambiguous density) boundary in the IC.
Recall that in φ17, α

′ or α′′ particles were created in 12% of the random ICs with ρ > 1/2.
In φ18 this frequency is about the same: 13%. Thus, φ18’s main innovation over φ17 is the
zero velocity of the β particle and the resulting symmetric size-competition strategy.

In φ33, a descendant of φ18, neither α′ or α′′ particles are created. This explains the
higher F 100

149 and P104

149 of φ33 over those of φ18.

8.6 φ33 and φ64 (Fig. 19)

Here, ρ0 = 0.45. φapar, here named φ64 to denote its generation of birth, outperforms φ33

since it classifies more low-density ICs correctly. On some low-density ICs like the one used
in Fig. 19(a), φ33 condenses too much of the IC into black regions, a type 1 error. These
then win the size competition, resulting in a misclassification. φ64 makes type 1 errors on
low-density ICs less often (e.g., as seen in Fig. 19(b)), it correctly classifies the same IC as in
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Figure 19: Space-time behavior of generation 33 ancestor φ33 of φapar
and φ64 (itself φapar). Both start from the same IC, which has density
ρ0 = 0.45.

Fig. 19(a). On the same set of 104 ICs, 62% of φ33’s errors were on low-density ICs, whereas
only 43% of φ64’s errors were on low-density ICs.

8.7 Particle Models of Evolved Cellular Automata

The “natural history” of φapar’s evolution given above demonstrates how we can understand

the jumps in F 100
149 and P104

149 in terms of regular domains and particles—functional compo-
nents in the CA’s dynamical behavior. The GA’s actions can be described at a low level as
manipulating bits in CA rule tables via crossover and mutation, but a better understand-
ing of the evolutionary process emerges when we describe its actions at the higher level of
manipulating particle types, velocities, and interactions. An important component of this
viewpoint is that the particles and their interactions lead to higher fitness. To test the
hypothesis more quantitatively, we ask to what extent the CAs’ observed fitnesses and per-
formances can be predicted from the particle and interaction properties alone. To this end,
in collaboration with Wim Hordijk, we have constructed “ballistic” particle models of the
CAs φ8 through φ64. These models are intended to isolate the particle-level mechanisms and
in so doing allow us to determine how much of the CA behavior this level captures.

A ballistic particle model Mφ of a CA φ consists of the catalog of particle types, veloc-
ities, interactions, and their frequencies of occurrence at tc. Mφ is “run” by first using the
particle frequencies to generate an initial configuration stc of particles at the condensation
time and then using the catalog of velocities and interactions to calculate the initial par-
ticles’ ballistic trajectories and the products of subsequent particle interactions. The final
configuration is reached when either all particles have annihilated or when Tmax − tc steps
have occurred. This configuration and the actual time at which it was reached gives us Mφ’s
prediction of what φ’s classification would be for an IC corresponding to stc and the time it
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would take φ to reach it. Particle models and their analysis are described in detail in Refs.
[16] and [42].

CA Name P104

149 (φ) P104

149 (Mφ)
φ8 0.500 0.500
φ13 0.513 0.524
φ17 0.595 0.601
φ18 0.691 0.747
φ33 0.735 0.765
φ64 0.775 0.775

Table 6: The CA and model performances P149

104
of φ8, φ13, φ17, φ18,

φ33, and φ64. (After Ref. [16].) Note φapar has been referred here as
φ64. The CA rule tables are given in Table 5.

A comparison of the performances of the six CAs just analyzed and their particle models
are given in Table 6. As can be seen, the agreement is within a few percent for most cases. In
these and the other cases small discrepancies are due to simplifications made in the particle
models. These include assumptions such as the particles being zero width and interactions
occurring instantaneously. These error sources are analyzed in depth in Ref. [16]. For φ18

the error is higher, around 8%, due to a long-lived transient domain that is not part of the
particle catalog used for the model. The main effect of this is that the condensation time
is overestimated on some ICs that generate this domain. This, in turn, means that the
model describes only the last stages of convergence to the answer configurations, which it
gets correctly and so has a higher performance than φ18. For φ33 the error is around 4%.
This appears to be due to errors in estimates of the distribution of particle types at the
condensation time.

The conclusion is that the particle-level descriptions can be used to quantitatively pre-
dict the computational behavior of CAs and so also the CA fitnesses and performances in the
evolutionary setting. In particular, the results support the claim that it is these higher-level
structures, embedded in CA configurations, that implement the CA’s computational strat-
egy. More germane to the preceding natural history analysis, this level of description allows
us to understand at a functional level of structural components the evolutionary process by
which the CAs were produced.

9. Related Work

In Sec. 3 we discussed some similarities and differences between this work and other work
on distributed parallel computation. In this section we examine relationships between this
work and other work on computation in cellular automata.

It should be pointed out that φapar’s behavior (and the behavior of many of the other
highest-performance rules) is very similar to the behavior of the so-called Gács-Kurdyumov-
Levin (GKL) CA. This CA was invented not to perform the ρc = 1/2 task, but to study
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reliable computation and phase transitions in one-dimensional spatially-extended systems
[33]. More extensive work by Gács on reliable computation with CAs is reported in Ref.
[34].

The present work and earlier work by our group came out of follow-on research to
Packard’s investigation of “computation at the edge of chaos” in cellular automata [60].
Originally Wolfram proposed a classification of CAs into four behavioral categories [81].
These categories followed the basic classification of dissipative dynamical systems: fixed
point attractors exhibiting equilibrium behavior, limit cycle attractors exhibiting periodic
behavior, chaotic attractors exhibiting apparently random behavior, and neutrally stable sys-
tems at bifurcations exhibiting long transients. Wolfram suggested that the latter category
was particularly appropriate for implementing sophisticated (even universal) computation.

Following this with a more quantitative proposal Langton [49] hypothesized that a CA’s
λ—the fraction of “non-quiescent states” (here, 1s) in its look-up table’s output states—
was correlated “generically” with the CA’s computational capabilities. In particular, he
hypothesized that CAs with certain “critical” λ values, which we denoted λc, would be more
likely than CAs with λ values away from λc to be able to perform complex computations, or
even universal computation. Packard’s goal was to test this hypothesis by using a genetic
algorithm to evolve (k, r) = (2, 3) CAs to perform the ρc = 1/2 task, starting from an
initial population chosen from a distribution that was uniform over λ ∈ [0, 1]. He found that
after 100 generations, the final populations of CAs, when viewed only as distributions over
λ, tended to cluster close to λc values. He interpreted this clustering as evidence for the
hypothesized connection between λc and computational ability.

In Ref. [57] we were able to show, via theoretical arguments and empirical results,
however, that the most successful CAs for the ρc = 1/2 task must have λ ≈ 1/2. This value
of λ is quite different from Packard’s quoted λc values. We argued that Packard’s results were
due to an artifact in his particular implementation of the GA. Using more standard versions
and his version of GA search we obtained results that disagreed with Packard’s findings and
that were roughly in accord with our theoretical predictions that high performance CAs were
to be found at λ ≈ 1/2, far from λc, and not in, for example, Wolfram’s fourth CA category.
We were also able to explain the deviations of our results from the theoretical predictions.
The current work came out of the discovery of phenomena, such as embedded-particle CAs
[17, 20], that were not found in Ref. [60]. Moreover, according to Langton the λ = 1/2
value for our high-performance CAs corresponds to CAs in Wolfram’s chaotic class. The
space-time diagrams shown earlier demonstrate that they are not “chaotic”; their behavior,
in fact, puts them in the first (fixed-point) category.

Later, other researchers performed their own studies of evolving cellular automata for
the ρc = 1/2 task. Sipper and Ruppin [65, 66] used a version of the GA to evolve “nonuniform
CAs”—CA-like architectures in which each cell uses its own look-up table to determine its
state at each time step. For a lattice of size N , the individuals in the GA population are
the N look-up tables making up a nonuniform CA. Sipper and Ruppin used this framework
to evolve r = 1 nonuniform CAs to perform the ρc = 1/2 task, as well as other tasks. They
reported the discovery of nonuniform CAs with P104

149 values comparable to that of φapar. They

did not report P104

N results for any other value of N nor did they give statistics on how often
high-performance nonuniform CAs were evolved. Moreover, no structural analysis of CA
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space-time behavior or GA population dynamics was given. Thus, it is unclear how the high
fitnesses were obtained, either dynamically or evolutionarily.

Andre et al. used a genetic programming algorithm to evolve (k, r) = (2, 3) CAs with
N = 149 to perform the ρc = 1/2 task [1]. This algorithm discovered particle CAs with
higher P104

149 than that of φapar (e.g., 0.828 versus 0.776). We obtained the look-up table for
one such CA, φGP (D. Andre, personal communication) and found that on larger lattices, the

performance of φGP was close to that of φapar (P
104

599 (φGP) = 0.765 and P104

999 (φGP) = 0.723; cf.

Table 1). It is not clear whether the improvement in P104

149 was due to the genetic programming
representation CA look-up tables or some other factor related to increased computational
resources. For example, their runs had a 500-fold larger population size M and 10-fold larger
number of ICs over our GA runs. Their runs did, however, find high-performance CA in
average numbers of generations that were half those in our GA. Thus, the computational
resources they used in their evolutionary search were approximately 2500 times larger than
in our GA runs.

Paredis [62] and Juillé and Pollack [45] experimented with coevolutionary learning tech-
niques to improve the GA’s search efficiency to find embedded particle CAs for the ρc = 1/2
task. The latter work specifically rewarded or penalized ICs of particular densities, depend-
ing on the amount of information ICs of those densities provided for distinguishing fitnesses
between CAs in the population. This resulted in a higher percentage of GA runs in which
high-performance embedded-particle CAs were discovered and in the discovery of higher-
performance CAs than in any of the non-coevolutionary runs. The highest performance
CA discovered had P149

105
= 0.863 ± 0.001, P599

105
= 0.822 ± 0.001, and P999

105
= 0.804 ± 0.001.

Unfortunately, the performance of this coevolved CA, although high on small lattices (e.g.
N = 149), decays more rapidly with lattice size than the GKL rule, which happens to have
lower performance than the coevolved rule on small lattices. This is appears to be the result
of the more complex domains that preclude, through additional persistent particles, conver-
gence to the answer configurations, 0N or 1N . Compared to the coevolved CAs, the GKL
CA is one of the CAs that maintains high performance on larger lattices.

Our own work has been extended to other tasks, most thoroughly to a global synchro-
nization task for which we have performed similar analyses to those given in this paper
[19].

Our notion of computation via particles and particle-interactions derives from that in-
troduced by the computational mechanics framework [12, 38, 39] and so differs considerably
from the notions used in most other work on designing CAs for computation. For example,
propagating particle-like signals were used in the solution to the Firing Squad Synchroniza-
tion Problem [52, 58, 77], in Smith’s work on CAs for parallel formal-language recognition
[68], and in Mazoyer’s work on computation in one-dimensional CAs [53]. However, in all
these cases, the particles and their interactions were designed by hand to be the explicit be-
havior of the CA. That is, the particles are explicitly coded in each cell’s local state and their
dynamics and their interactions are coded directly into the CA lookup table. Typically, their
interactions were effected by a relatively large number of states per site. Steiglitz, Kamal,
and Watson’s carry-ripple adder [70] and the universal computer constructed in the Game
of Life [3] both used binary-state signals consisting of propagating periodic patterns. But,
again, the particles were explicitly designed to ride on top of a quiescent background and
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their interaction properties were carefully hand coded. In Squier and Steiglitz’s “particle
machine” [69] and in Jakubowski, Steiglitz, and Squier’s “soliton machine” [43], particles
are the primitive states of the CA cells. Moreover, their interaction properties are explicitly
given by the CA rule table. These machines are essentially kinds of lattice gas automata
[23] that operate on “particles” directly. (Other work on arithmetic in cellular automata
has been done by Sheth, Nag, and Hellwarth [64] and Clementi, De Biase, and Massini [8],
among others.)

In contrast to these, particles in our system are embedded as walls between regular
domains. They are often apparent only after those domains have been discovered and filtered
out. Their structures and interaction properties are emergent properties of the patterns
formed by the CAs. Notably, although each cell has only two possible states, the structures
of embedded particles are spatially and temporally extended, and so are more complex than
atomic or simple periodic structures. Typically, these structures can extend over spatial
scales larger than the CA radius. For example, the background domain of the elementary
CA (ECA 110) shown in Fig. 2 has a temporal periodicity of 7 time steps and a spatial
periodicity of 14 sites, markedly larger than the r = 1 nearest-neighbor coupling.

10. Conclusion

Our philosophy is to view CAs as systems that naturally form patterns (such as regular
domains) and to view the GA as taking advantage—via selection and genetic variation—of
these pattern-forming propensities so as to shape them to perform desired computations.
Within this framework, we attempt to understand the behavior of the resulting CAs by
applying tools, such as the computational mechanics framework, formulated for analyzing
pattern-forming systems. The result gives us a high-level description of the computationally
relevant parts of the system’s behavior. In doing so, we begin to answer Wolfram’s last
problem from “Twenty problems in the theory of cellular automata” (Wolfram, 1985): “What
higher-level descriptions of information processing in cellular automata can be given?” We
believe that this framework will be a basis for the “radically new approach” that Wolfram
claimed will be required for understanding and designing sophisticated computation in CAs
and other decentralized spatially extended systems.

Our analysis showed that there are three levels of information processing occurring dur-
ing iterations of the evolved high-performance CAs. The first was the type of information
storage and transmission effected by the particles and the type of “logical” operations im-
plemented by the particle interactions. The second, higher level comprised the geometric
subroutines that implemented intermediate-scale computations. We analyzed in detail two
of these that were important to the size competition between regions of low and high density.
We also showed how variations in the particles led to several types of error at this level. The
third and final level is that of the global computation over the entire lattice up to the answer
time. This is the level at which fitness is conferred on the CAs.

We analyzed in some detail the natural history that led to the emergence of such com-
putationally sophisticated CAs. The evolutionary epochs typically proceed in a set sequence,
with earlier epochs setting the (necessary) context for the later, higher performance ones.
Often the jumps to higher epochs were facilitated by exaptations—changes in adaptively
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neutral traits appearing in much earlier generations.

There are a number of fruitful directions for future work. The first is to extend the
lessons learned here to more general evolutionary search algorithms and pattern forming dy-
namical systems. The problem of choosing a genetic representation of dynamical systems that
helps, or at least does not hinder, the search will play an important role in addressing this.
The evolution of CAs that operate on two-dimensional images rather than one-dimensional
strings will also help address this issue and also open up application areas, such as iterative
nonlinear image processing [11].

We also need to develop substantially better analytical descriptions of the search’s pop-
ulation dynamics and of how the intrinsic structures in CAs interact with that dynamics.
Although the evolution of CAs is a very simplified problem from the biological perspective,
the evolutionary time scale of the population dynamics and the development time scale of
the CAs result in a two-time-scale stochastic dynamical system that is difficult to analyti-
cally predict. Such predictions, say of how to set the mutation rate or population size for
effective search, are centrally important both for basic understanding of evolutionary mech-
anisms and for practical applications. Progress on quantitatively predicting the population
dynamics occurring during epochal evolution has been made [73, 74]. The adaptation of
the “statistical dynamics” approach introduced there to the evolution of CAs will be an im-
portant, but difficult, step toward understanding complicated genotype-to-phenotype maps.
The latter is highly relevant for using such search methods on complex problems.

Another quantitative direction is the estimation of computational performance of dis-
tributed systems based on higher-level descriptions. The results, reported here and described
in detail in Refs. [16] and [42], on predicting CA computational performance are encour-
aging. Constructing a more accurate model along with a quantitative analytical model of
higher-level computation in CAs will help us understand how much the embedded CA struc-
tures contribute individually to overall fitness. And this, in turn, will allow us to monitor the
evolutionary mechanisms that lead to the emergence of collective computation in coordinated
groups of functional units.
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A. Domain Filter

In this appendix we describe the properties and construction of φapar’s domain-recognizing
and filtering transducer.

The transducer, shown in Fig. 20, reads in binary CA configurations and outputs strings
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of the same length, the lattice size N , in the domain-wall alphabet {λ, 0, 1, 2, w}. In this
alphabet λ indicates that the transducer has not yet “synchronized” (see below) to the
domain or wall structures in the configuration, {0, 1, 2} label each of the three domains,
respectively, and w indicates a wall between domains. In the filtered space-time diagrams w
is mapped to black and all other output symbols map to white.

Briefly, φapar’s domain-wall transducer is constructed as follows. φapar has three domains,
each of which can be described by simple finite-state machines. These machines form the
recurrent states of the transducer. When the transducer first begins to read in the configu-
ration, it may take several steps to disambiguate the site values and identify the appropriate
domain in which they are participating. Working through the transitions and transient states
that lead to the recurrent (domain) states determines the transitions from the start state.
When the transducer is reading site values consistent with one of these domains, but then
encounters site values that are not consistent with it (e.g. values indicating walls), then some
number of additional site values must be read in to determine the domain type into which
the transducer has moved. Such transitions determine the transducer’s domain-to-domain
transitions.

Note, that due to the steps required to initially read in a sufficient number of site values
to recognize the domains and walls, a process that we call synchronization, the transducer
may have to read some portion of the configuration that it has already read, as it wraps
around due to the lattice’s periodic boundary conditions. This takes at most one additional
pass over the configuration.

The general construction procedure for domain-wall transducers is given in Ref. [15].
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