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Abstract

Flexible Bayesian modeling and inference methods for Hawkes processes

by

Hyotae Kim

We propose a Bayesian nonparametric modeling and inference framework for

Hawkes processes. The objective is to increase the inferential scope for this practi-

cally important class of point processes by exploring flexible models for its conditional

intensity function.

As a building block for conditional intensity models, we develop a prior prob-

ability model for temporal Poisson process intensities through structured mixtures of

Erlang densities with common a scale parameter, mixing on the integer shape parame-

ters. The mixture weights are constructed through increments of a cumulative intensity

function modeled nonparametrically with a gamma process prior. This model specifica-

tion provides a novel extension of Erlang mixtures for density estimation to the intensity

estimation setting.

Turning to the main dissertation component, we develop different types of

nonparametric prior models for the Hawkes process immigrant intensity and for the

excitation function (or its normalized version, the offspring density), the two functions

that define the point process conditional intensity. The prior models are carefully con-

structed such that, along with the Hawkes process branching structure, they enable

efficient handling of the complex likelihood normalizing terms in implementation of

xiii



inference. The methodology is further elaborated to construct a flexible and compu-

tationally efficient model for marked Hawkes processes. The motivating application

involves earthquake data modeling, where the mark is given by the earthquake magni-

tude. The proposed model builds from a prior for the excitation function that allows

flexible shapes for mark-dependent offspring densities. In the context of our motivating

application, the modeling approach enables estimation of aftershock densities that can

vary with the magnitude of the main shock, unlike existing marked Hawkes process

models for earthquake occurrences.

For all proposed models, we develop approaches to prior specification, and

design posterior simulation algorithms to obtain inference for different point process

functionals. The modeling approaches are studied empirically using several synthetic

and real data examples, including data on earthquake occurrences from Japan and from

the southwestern US.
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Chapter 1

Introduction

A (temporal) point process results in a sequence of random arrival/event/occurrence

times. The point process can be interpreted as a counting process, which involves cumu-

lative counts of the number of arrivals/events/occurrences over time. The point process

and the counting process terminologies are interchangeable; we can consider a point

process a sequence of times at which the counting process has jumped by 1. Point

processes have been applied to research for seismology, finance, sociology, and numer-

ous other disciplines (e.g., Ogata, 1988; Filimonov and Sornette, 2015; Fox et al., 2016;

Mohler et al., 2011; Balderama et al., 2012; Schoenberg et al., 2019). Point processes can

also be defined over space or both time and space, referred to as spatial point processes

and spatio-temporal point processes, respectively.

This dissertation focuses on temporal point processes with prior probability

modeling for their conditional intensity functions. The conditional intensity function is

the conditional expected rate of arrivals at t, given the history of process up to time

1



t, denoted by H(t). Denote by N(·) the counting process. The conditional intensity is

expressed as

λ∗(t) = λ(t | H(t)) = lim
h→0

E(N(t+ h)−N(t)|H(t))

h
.

As such, the cumulative conditional intensity function, defined as Λ(t) =
∫ t
0 λ
∗(u)du,

indicates the expected number of arrivals in time window (0, t). In the following two

sections, we will review two point processes – the non-homogeneous Poisson process and

the Hawkes process – which will be mainly studied in the thesis.

1.1 Non-homogeneous Poisson processes

Poisson processes play a key role in both theory and applications of point

processes. They form a widely used class of stochastic models for point patterns that

arise in biology, ecology, engineering, and finance among many other disciplines. The

relatively tractable form of the non-homogeneous Poisson process (NHPP) likelihood is

one of the reasons for the popularity of NHPPs in applications involving point process

data.

A NHPP on R+ can be defined through its intensity function, λ(t), for t ∈

R+, a non-negative and locally integrable function such that: (a) for any bounded

B ⊂ R+, the number of events in B, N(B), is Poisson distributed with mean Λ(B) =∫
B λ(u) du; and (b) given N(B) = n, the times ti, for i = 1, ..., n, that form the point

pattern in B arise independently and identically distributed (i.i.d.) according to density

λ(t)/Λ(B). Consequently, the likelihood for the NHPP intensity function, based on the

2



point pattern {0 < t1 < ... < tn < T} observed in time window (0, T ), is proportional

to exp(−
∫ T
0 λ(u) du)

∏n
i=1 λ(ti).

Theoretical background for the Poisson process can be found, for example, in

Kingman (1993) and Daley and Vere-Jones (2003). Regarding Bayesian nonparametric

modeling and inference, prior probability models have been developed for the NHPP

mean measure (e.g., Lo, 1982, 1992), and mainly for the intensity function of NHPPs

over time and/or space. Modeling methods for NHPP intensities include: mixtures of

non-negative kernels with weighted gamma process priors for the mixing measure (e.g.,

Lo and Weng, 1989; Wolpert and Ickstadt, 1998; Ishwaran and James, 2004; Kang et al.,

2014); piecewise constant functions driven by Voronoi tessellations with Markov random

field priors (Heikkinen and Arjas, 1998, 1999); Gaussian process priors for logarithmic

or logit transformations of the intensity (e.g., Møller et al., 1998; Brix and Diggle, 2001;

Adams et al., 2009; Rodrigues and Diggle, 2012); and Dirichlet process mixtures for the

NHPP density, i.e., the intensity function normalized in the observation window (e.g.,

Kottas, 2006; Kottas and Sansó, 2007; Taddy and Kottas, 2012).

1.2 Hawkes processes

The Hawkes process (HP), originally developed in Hawkes (1971a), is a ver-

satile stochastic model for point processes, built from structured conditional intensity

functions that model self-excitation, i.e., the property that the occurrence of an event

increases the rate of occurrence for some period of time in the future. Such a structure

3



yields point patterns with events that are naturally clustered in time. For example,

earthquake occurrences are grouped into clusters consisting of a main shock and sub-

sequent shocks (aftershocks). Indeed, including extensions to incorporate marks and

information on spatial location, HPs have found applications in seismology (e.g., Ogata,

1988; Ogata, 1998; Zhuang et al., 2002; Veen and Schoenberg, 2008), as well as in crime

data modeling (e.g., Mohler et al., 2011, Mohler, 2014), finance (e.g., Fonseca and Za-

atour, 2014; Hardiman et al., 2013; Rambaldi et al., 2015), biology (e.g., Balderama

et al., 2012), and epidemiology (e.g., Meyer et al., 2012; Schoenberg et al., 2019).

The standard form of the HP conditional intensity is expressed as

λ∗(t) = λ(t | H(t)) = µ+
∑
tj<t

h(t− tj), t > 0 (1.1)

where, as before, H(t) denotes the point process history up to time t, µ > 0 is the

background (immigrant) intensity, and h : R+ → R+ is the excitation function, which

accounts for the effect of previous events on the current intensity. The excitation func-

tion (offspring intensity) must be integrable, and it can thus be equivalently represented

in terms of the branching ratio, γ =
∫∞
0 h(u)du, and the offspring density f(t) = h(t)/γ.

The original definition of the HP, and several of its applications, focus on constant immi-

grant rate µ, in which case the HP is stationary provided γ ∈ (0, 1). Our methodology

of Chapter 3 handles also the more general case of a non-constant immigrant intensity

function, µ(t) : R+ → R+.

The immigrant and offspring terminology originates from the HP cluster rep-

resentation (Hawkes and Oakes, 1974), which is key for our modeling and inference
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Figure 1.1: Illustration of the HP branching structure. Squares and circles indicate
immigrant and offspring points. For example, t1 is an immigrant and has two offspring
points t2 and t3. The offspring t3 also gives birth to two offspring points t4 and t5.
Crosses at the bottom denote point observations, composing the HP point pattern.

methods. Consider a HP realization, {0 < t1 < ... < tn < T}, observed in time window

(0, T ). The branching structure for the point pattern can be described by latent vari-

ables y = {yi : i = 1, ..., n}, such that yi = 0 if ti is an immigrant point, and yi = j

if point ti is the offspring of tj . Hence, given y, the HP point pattern is partitioned

into the set of immigrants, I = {tj : yj = 0}, and sets of offspring, Oj = {ti : yi = j},

where Oj collects all offspring of tj . For example, in Figure 1.1, the latent variables for

time points t2 and t3 are y2 = 1 and y3 = 1 because t1 begets the two points. Point

t1 is an immigrant point with y1 = 0. The branching structure splits the point pattern

into I = {t1, t6, t9}, O1 = {t2, t3}, O3 = {t4, t5}, O6 = {t7, t10}, and O7 = {t8}. Condi-

tioning on the branching structure y, the HP can be constructed as the superposition

of independent Poisson processes corresponding to I and the Oj , with intensity µ (or
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Figure 1.2: An example of a HP conditional intensity function. Squares and circles refer
to immigrant and offspring time points. Red and blue dashed lines indicate the increase
of conditional intensity at the immigrant or offspring points.

µ(t)) and h(t− tj) = γf(t− tj) for I and Oj , respectively. Figure 1.2 shows an example

of the conditional intensity function with the exponential density with rate 0.4 for f(t),

constant immigrant intensity µ = 0.05, and branching ratio γ = 0.3.

The HP likelihood based on observed point pattern {0 < t1 < ... < tn < T} is

given by exp
(
−
∫ T
0 λ∗(u)du

) ∏n
i=1 λ

∗(ti). Owing to the additive form of the conditional

intensity, it is challenging to work with the likelihood, even under constant immigrant

intensity and simple parametric offspring intensities. The HP cluster representation

provides a practically useful alternative, using the branching structure latent variables.

Consider the general case with a time-varying immigrant intensity. Then, given y, the
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augmented likelihood can be expressed as

exp

(
−
∫ T

0
µ(u)du

)  ∏
{i:ti∈I}

µ(ti)

 exp

− n∑
j=1

∫ T

0
h(u− tj)du

  ∏
{i:ti∈O}

h(ti − tyi)


where O = ∪nj=1Oj is the set of all offspring points. The second exponential term

incorporates the probability that point tj has no offspring in (0, T ), for all j with Oj = ∅.

Regarding classical inference for HPs, which is based mainly on maximum like-

lihood estimation, we refer to the reviews by Laub et al. (2015) and Reinhart (2018),

the latter focusing on space-time HPs. Bayesian modeling and inference for HPs has

received relatively less attention in the literature. Working with constant immigrant

intensity and parametric forms for the excitation function, Rasmussen (2013) compared

posterior simulation methods based on either the likelihood defined directly through

the conditional intensity or the augmented likelihood that utilizes the branching struc-

ture. Donnet et al. (2020) studied Bayesian nonparametric priors for multivariate HPs,

but their main contributions are theoretical, without particular emphasis on practi-

cal properties of the prior models. Zhang et al. (2018) introduced another Bayesian

nonparametric model for HPs, focusing on the excitation function. They restrict the

immigrant intensity to be constant to retain stationarity, required for their inference

methods.

1.3 Motivation and objectives

The main objective of the dissertation is to provide a Bayesian nonparametric

modeling and inference framework for Hawkes processes. We will introduce flexible
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models for the immigrant intensity and the excitation function accompanied by efficient

posterior inference methods for the HP conditional intensity function and other point

process functionals. We will also describe quantitative tools for comprehensive model

comparison. The models will be extended by adding marks for marked HPs, motivated

by earthquake modeling applications.

As a building block for the priors for HP intensity functions, in Chapter 2 we

develop a flexible and computationally efficient model for NHPPs. We focus on tem-

poral intensities to motivate the modeling approach and to detail the methodological

development, and then extend the model for spatial NHPPs. The NHPP intensity over

time is represented as a weighted combination of Erlang densities indexed by their inte-

ger shape parameters and with a common scale parameter. Thus, different from existing

mixture representations, the proposed mixture model is more structured with each Er-

lang density identified by the corresponding mixture weight. The non-negative mixture

weights are defined through increments of a cumulative intensity on R+. Under certain

conditions, the Erlang mixture intensity model can approximate in a pointwise sense

general intensities on R+ (see Section 2.1.1). A gamma process prior is assigned to the

primary model component, that is, the cumulative intensity that defines the mixture

weights. Mixture weights driven by the gamma process prior result in flexible intensity

function shapes, and, at the same time, ready prior-to-posterior updating given the

observed point pattern. Indeed, a key feature of the model is that it can be imple-

mented with an efficient Markov chain Monte Carlo (MCMC) algorithm that does not

require approximations, complex computational methods, or restrictive prior modeling
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assumptions in order to handle the NHPP likelihood normalizing term. The intensity

model is extended to the two-dimensional setting through products of Erlang densities

for the mixture components, with the weights built from a measure modeled again with

a gamma process prior. The extension to spatial NHPPs retains the appealing aspect

of computationally efficient MCMC posterior simulation.

Turning to HPs, in Chapter 3 we study models for temporal HPs without

marks. According to the HP cluster representation, the process can be viewed in terms

of independent NHPPs for immigrants and offspring. This representation allows us to

use the Erlang mixture model for the immigrant intensity or, with modifications, for the

excitation function, which yields an immigrant or an offspring semiparametric model.

Unlike the former, the Erlang mixture for the excitation function must incorporate

a stability condition. Therefore, we adjust the Erlang mixture with gamma priors

having special-form shape parameters for mixture weights, which ensures the stability

condition. The prior choice still provides the conjugacy with ready expressions for

hyperparameters in posterior sampling. In addition to model flexibility and efficiency

in model implementation, the single common scale parameter of the Erlang mixture

facilitates parsimonious modeling.

The other semiparametric modeling framework is based on nonparametric uni-

form mixtures for the offspring density, based on the Dirichlet process (DP) or geometric

weights prior. Such a model specializes in non-increasing offspring density estimation.

This modeling approach is motivated by standard HP models, whose parametric off-

spring densities have decreasing patterns with either exponential or polynomial tail
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behavior.

We also provide a fully nonparametric modeling framework for the HP con-

ditional intensity function, constructed by combining the immigrant semiparametric

model and either of the offspring semiparametric models. Such a model enables gen-

eral inference for HPs, providing flexibility to both the immigrant intensity and the

excitation function.

The HP model is further elaborated in Chapter 4 to include marks. The mo-

tivating application includes earthquake data modeling, where the mark is given by

earthquake magnitude. The excitation function of the marked HP involves marks as

well as time. To model the more general excitation function, we consider weighted

combinations of basis functions that have a multiplicative form, consisting of an Er-

lang density for time and a polynomial function for the mark. We define the mixture

weights through increments of a measure defined on R+×K, where K denotes the mark

space. A gamma process prior is assigned to the measure for model flexibility. The

prior choice also enables tractable inference, producing (gamma) conjugate priors for

mixture weights. Efficient handling of the normalizing constant is another key benefit,

as in the Erlang mixture model for NHPPs. To our knowledge, the model is the first

nonparametric method for marked HPs applied to earthquake data. In the context

of our motivating application, the modeling approach enables estimation of aftershock

densities that can vary with the magnitude of the main shock, unlike existing marked

HP models for earthquake occurrences.
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Chapter 2

Erlang Mixture Modeling for Poisson

Process Intensities

2.1 Methodology for temporal Poisson processes

The mixture model for NHPP intensities is developed in Section 2.1.1, in-

cluding a discussion of model properties and theoretical justification. Sections 2.1.2

and 2.1.3 present a prior specification approach and the posterior simulation method,

respectively.

2.1.1 The mixture modeling approach

We develop a model for the NHPP intensity function, λ(t). Denote by Ga(· |

α, β) the gamma density (or distribution, depending on the context) with mean α/β.

The proposed intensity model involves a structured mixture of Erlang densities, Ga(t |

j, θ−1), mixing on the integer shape parameters, j, with a common scale parameter
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θ. The non-negative mixture weights are defined through increments of a cumulative

intensity function, H, on R+, which is assigned a gamma process prior. More specifically,

λ(t) ≡ λ(t | H, θ) =
J∑
j=1

ωj Ga(t | j, θ−1), t ∈ R+

ωj = H(jθ)−H((j − 1)θ), H ∼ G(H0, c0),

(2.1)

where G(H0, c0) is a gamma process specified through H0, a (parametric) cumulative

intensity function, and c0, a positive scalar parameter (Kalbfleisch, 1978). A (real-

valued) stochastic process H = (H(t); t ≥ 0) follows the (time-inhomogeneous) gamma

process if H(0) = 0, and if it has independent, gamma distributed increments, i.e.,

H(t)−H(s) is gamma distributed with shape D0(t)−D0(s) for s < t and rate c0 > 0,

where D0 is a general increasing and everywhere right continuous function and has left

limits everywhere. We adopt the following parameterization c0H0 = D0. Accordingly,

for any t ∈ R+, the gamma process H has E(H(t)) = H0(t) and Var(H(t)) = H0(t)/c0,

and thus H0 plays the role of the centering cumulative intensity, whereas c0 is a precision

parameter. As an independent increments process, the G(H0, c0) prior for H implies

that, given θ, the mixture weights are independent Ga(ωj | c0 ω0j(θ), c0) distributed,

where ω0j(θ) = H0(jθ)−H0((j− 1)θ). As shown in Section 2.1.3, this is a key property

of the prior model with respect to implementation of posterior inference.

The model in (2.1) is motivated by Erlang mixtures for density estimation,

under which a density g on R+ is represented as g(t) ≡ gJ,θ(t) =
∑J

j=1 pj Ga(t | j, θ−1),

for t ∈ R+. Here, pj = G(jθ)−G((j − 1)θ), where G is a distribution function on R+;

the last weight can be defined as pJ = 1 − G((J − 1)θ) to ensure that (p1, ..., pJ) is a

probability vector. Erlang mixtures can approximate general densities on the positive
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real line, in particular, as θ → 0 and J →∞, gJ,θ converges pointwise to the density of

distribution function G that defines the mixture weights. This convergence property can

be obtained from more general results from the probability literature that studies Erlang

mixtures as extensions of Bernstein polynomials to the positive real line (e.g., Butzer,

1954); a convergence proof specifically for the distribution function of gJ,θ can be found

in Lee and Lin (2010). Density estimation on compact sets via Bernstein polynomials has

been explored in the Bayesian nonparametrics literature following the work of Petrone

(1999a,b). Regarding Bayesian nonparametric modeling with Erlang mixtures, we are

only aware of Xiao et al. (2021) where renewal process inter-arrival distributions are

modeled with mixtures of Erlang distributions, using a Dirichlet process prior (Ferguson,

1973) for distribution function G. Venturini et al. (2008) study a parametric Erlang

mixture model for density estimation on R+, working with a Dirichlet prior distribution

for the mixture weights.

Therefore, the modeling approach in (2.1) exploits the structure of the Er-

lang mixture density model to develop a prior for NHPP intensities, using the den-

sity/distribution function and intensity/cumulative intensity function connection to de-

fine the prior model for the mixture weights. In this context, the gamma process prior for

cumulative intensity H is the natural analogue to the Dirichlet process prior for distribu-

tion function G; recall that the Dirichlet process can be defined through normalization

of a gamma process (e.g., Ghosal and van der Vaart, 2017). To our knowledge, this is a

novel construction for NHPP intensities that has not been explored for intensity estima-

tion in either the classical or Bayesian nonparametrics literature. The following lemma,
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which can be obtained applying Theorem 2 from Butzer (1954), provides theoretical

motivation and support for the mixture model.

Lemma. Let h be the intensity function of a NHPP on R+, with cumulative intensity

function H(t) =
∫ t
0 h(u) du, such that H(t) = O(tm), as t → ∞, for some m > 0.

Consider the mixture intensity model λJ,θ(t) =
∑J

j=1{H(jθ)−H((j−1)θ)}Ga(t | j, θ−1),

for t ∈ R+. Then, as θ → 0 and J →∞, λJ,θ(t) converges to h(t) at every point t where

h(t) = dH(t)/dt.

The form of the prior model for the intensity in (2.1) allows ready expressions

for other NHPP functionals. For instance, the total intensity over the observation time

window (0, T ) is given by
∫ T
0 λ(u) du =

∑J
j=1 ωjKj,θ(T ), where Kj,θ(T ) =

∫ T
0 Ga(u |

j, θ−1) du is the j-th Erlang distribution function at T . In the context of the MCMC

posterior simulation method, this form enables efficient handling of the NHPP likelihood

normalizing constant. Moreover, the NHPP density on interval (0, T ) can be expressed

as a mixture of truncated Erlang densities. More specifically,

f(t) =
λ(t)∫ T

0 λ(u) du
=

J∑
j=1

ω∗j k(t | j, θ), t ∈ (0, T ), (2.2)

where ω∗j = ωjKj,θ(T )/{
∑J

r=1 ωrKr,θ(T )}, and k(t | j, θ) is the j-th Erlang density

truncated on (0, T ).

Regarding the role of the different model parameters, we reiterate that (2.1)

corresponds to a structured mixture. The Erlang densities, Ga(t | j, θ−1), play the role

of basis functions in the representation for the intensity. In this respect, of primary

importance is the flexibility of the nonparametric prior for the cumulative intensity
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Figure 2.1: Prior realizations for the mixture weights (top panels) and the correspond-
ing intensity function (bottom panels) for three different values of the gamma process
precision parameter, c0 = 0.05, 1, 10. In all cases, J = 50, θ = 0.4, and H0(t) = t/2.

function H that defines the mixture weights. In particular, the gamma process prior

provides realizations for H with general shapes that can concentrate on different time

intervals, thus favoring different subsets of the Erlang basis densities through the cor-

responding ωj . Here, the key parameter is the precision parameter c0, which controls

the variability of the gamma process prior around H0, and thus the effective mixture

weights. As an illustration, Figure 2.1 shows prior realizations for the weights ωj (and

the resulting intensity function) for different values of c0, keeping all other model pa-

rameters the same. Note that as c0 decreases, so does the number of practically non-zero

weights.
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The prior mean for H is taken to be H0(t) = t/b, i.e., the cumulative intensity

(hazard) of an exponential distribution with scale parameter b > 0. Although it is pos-

sible to use more general centering functions, such as the Weibull H0(t) = (t/b)a, the

exponential form is sufficiently flexible in practice, as demonstrated with the synthetic

data examples of Section 2.2. Based on the role of H in the intensity mixture model,

we typically anticipate realizations for H that are different from the centering function

H0, and thus, as discussed above, the more important gamma process parameter is

c0. Moreover, the exponential form for H0 allows for an analytical result for the prior

expectation of the Erlang mixture intensity model. Under H0(t) = t/b, the prior expec-

tation for the weights is given by E(ωj | θ, b) = θ/b. Therefore, conditional on all model

hyperparameters, the expectation of λ(t) over the gamma process prior can be written

as

E(λ(t) | b, θ) =
θ

b

J∑
j=1

Ga(t | j, θ−1) =
exp(−(t/θ))

b

J−1∑
m=0

(t/θ)m

m!
, t ∈ R+,

which converges to b−1, as J →∞, for any t ∈ R+ (and regardless of the value of θ and

c0). In practice, the prior mean for the intensity function is essentially constant at b−1

for t ∈ (0, Jθ), which, as discussed below, is roughly the effective support of the NHPP

intensity. This result is useful for prior specification as it distinguishes the role of b from

that of parameters θ and c0.

Also key are the two remaining model parameters, the number of Erlang basis

densities J , and their common scale parameter θ. Parameters θ and J interact to

control both the effective support and shape of NHPP intensities arising under (2.1).

Regarding intensity shapes, as the lemma suggests, smaller values of θ and larger values
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Figure 2.2: Prior mean (black line), prior 95% interval bands (shaded area), and five
individual prior realizations for the intensity under the Erlang mixture model in (2.1)
with (θ, J) = (0.4, 50) (left panel), (θ, J) = (0.2, 50) (middle panel), and (θ, J) = (1, 10)
(right panel). In all cases, the gamma process prior is specified with c0 = 0.01 and
H0(t) = t/0.01.

of J generally result in more variable, typically multimodal intensities. Moreover, the

representation for λ(t) in (2.1) utilizes Erlang basis densities with increasing means jθ,

and thus (0, Jθ) can be used as a proxy for the effective support of the NHPP intensity.

Of course, the mean underestimates the effective support, a more accurate guess can be

obtained using, say, the 95% percentile of the last Erlang density component. For an

illustration, Figure 2.2 plots five prior intensity realizations under three combinations

of (θ, J) values, with c0 = 0.01 and b = 0.01 in all cases. Also plotted are the prior

mean and 95% interval bands for the intensity, based on 1000 realizations from the

prior model. The left panel corresponds to the largest value for Jθ and, consequently,

to the widest effective support interval. The value of Jθ is the same for the middle

and right panels, resulting in similar effective support. However, the intensities in the

middle panel show larger variability in their shapes, as expected since the value of J is

increased and the value of θ decreased relative to the ones in the right panel.
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2.1.2 Prior specification

To complete the full Bayesian model, we place prior distributions on the pa-

rameters c0 and b of the gamma process prior for H, and on the scale parameter θ of the

Erlang basis densities. A generic approach to specify these hyperpriors can be obtained

using the observation time window (0, T ) as the effective support of the NHPP intensity.

We work with exponential prior distributions for parameters c0 and b. Using

the prior mean for the intensity function, which as discussed in Section 2.1.1 is roughly

constant at b−1 within the time interval of interest, the total intensity in (0, T ) can

be approximated by T/b. Therefore, taking the size n of the observed point pattern,

as a proxy for the total intensity in (0, T ), we can use T/n to specify the mean of

the exponential prior distribution for b. Given its role in the gamma process prior, we

anticipate that small values of c0 will be important to allow prior variability around

H0, as well as sparsity in the mixture weights. Experience from prior simulations, such

as the ones shown in Figure 2.1, is useful to guide the range of “small” values. Note

that the pattern observed in Figure 2.1 is not affected by the length of the observation

window. In general, a value around 10 can be viewed as a conservative guess at a high

percentile for c0. For the data examples of Section 2.2, we assigned an exponential prior

with mean 10 to c0, observing substantial learning for this key model hyperparameter

with its posterior distribution supported by values (much) smaller than 1.

Also given the key role of parameter θ in controlling the intensity shapes, we

recommend favoring sufficiently small values in the prior for θ, especially if prior infor-
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mation suggests a non-standard intensity shape. Recall that θ, along with J , control

the effective support of the intensity, and thus “small” values for θ should be assessed

relative to the length of the observation window. Again, prior simulation, as in Figure

2.2, is a useful tool. A practical approach to specify the prior range of θ values involves

reducing the Erlang mixture model to the first component. The corresponding (expo-

nential) density has mean θ, and we thus use (0, T ) as the effective prior range for θ.

Because T is a fairly large upper bound, and since we wish to favor smaller θ values,

rather than an exponential prior, we use a Lomax prior, p(θ) ∝ (1+d−1θ θ)−3, with shape

parameter equal to 2 (thus implying infinite variance), and median dθ(
√

2 − 1). The

value of the scale parameter, dθ, is specified such that Pr(0 < θ < T ) ≈ 0.999. This

simple strategy is effective in practice in identifying a plausible range of θ values. For

the synthetic data examples of Section 2.2, for which T = 20, we assigned a Lomax

prior with scale parameter dθ = 1 to θ, obtaining overall moderate prior-to-posterior

learning for θ.

Finally, we work with fixed J , the value of which can be specified exploiting

the role of θ and J in controlling the support of the NHPP intensity. In particular,

J can be set equal to the integer part of T/θ∗, where θ∗ is the prior median for θ.

More conservatively, this value can be used as a lower bound for values of J to be

studied in a sensitivity analysis, especially for applications where one expects non-

standard shapes for the intensity function. In practice, we recommend conducting prior

sensitivity analysis for all model parameters, as well as plotting prior realizations and

prior uncertainty bands for the intensity function to graphically explore the implications
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of different prior choices.

The number of Erlang basis densities is the only model parameter which is

not assigned a hyperprior. Placing a prior on J complicates significantly the posterior

simulation method, as it necessitates use of variable-dimension MCMC techniques, while

offering relatively little from a practical point of view. The key observation is again that

the Erlang densities play the role of basis functions rather than of kernel densities in

traditional (less structured) finite mixture models. Also key is the nonparametric nature

of the prior for function H that defines the mixture weights which select the Erlang

densities to be used in the representation of the intensity. This model feature effectively

guards against over-fitting if one conservatively chooses a larger value for J than may

be necessary. In this respect, the flexibility afforded by random parameters c0 and θ is

particularly useful. Overall, we have found that fixing J strikes a good balance between

computational tractability and model flexibility in terms of the resulting inferences.

2.1.3 Posterior simulation

Denote as before by {0 < t1 < ... < tn < T} the point pattern observed in time

window (0, T ). Under the Erlang mixture model of Section 2.1.1, the NHPP likelihood

is proportional to exp
(
−
∫ T
0 λ(u) du

)∏n
i=1 λ(ti)

= exp

(
−
∑J

j=1
ωjKj,θ(T )

) n∏
i=1


J∑
j=1

ωj Ga(ti | j, θ−1)


=

J∏
j=1

exp(−ωjKj,θ(T ))

n∏
i=1


(∑J

r=1
ωr

) J∑
j=1

(
ωj∑J
r=1 ωr

)
Ga(ti | j, θ−1)

 ,

where Kj,θ(T ) =
∫ T
0 Ga(u | j, θ−1) du is the j-th Erlang distribution function at T .
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For the posterior simulation approach, we augment the likelihood with auxil-

iary variables γ = {γi : i = 1, . . . , n}, where γi identifies the Erlang basis density to

which time event ti is assigned. Then, the augmented, hierarchical model for the data

can be expressed as follows:

{t1, ..., tn} | γ,ω, θ ∼
J∏
j=1

exp(−ωjKj,θ(T ))

n∏
i=1

{(∑J

r=1
ωr

)
Ga(ti | γi, θ−1)

}

γi | ω
i.i.d.∼

J∑
j=1

(
ωj∑J
r=1 ωr

)
δj(γi), i = 1, ..., n

θ, c0, b,ω ∼ p(θ) p(c0) p(b)
J∏
j=1

Ga(ωj | c0 ω0j(θ), c0), (2.3)

where ω = {ωj : j = 1, ..., J}, and p(θ), p(c0), and p(b) denote the priors for θ, c0, and

b. Recall that, under the exponential distribution form for H0 = t/b, we have ω0j(θ) =

θ/b.

We utilize Gibbs sampling to explore the posterior distribution. The sampler

involves ready updates for the auxiliary variables γi, and, importantly, also for the

mixture weights ωj . More specifically, the posterior full conditional for each γi is a

discrete distribution on {1, ..., J} such that Pr(γi = j | θ,ω, data) ∝ ωj Ga(ti | j, θ−1),

for j = 1, ..., J .

Denote by Nj = |{ti : γi = j}|, for j = 1, ..., J , that is, Nj is the number of

time points assigned to the j-th Erlang basis density. The posterior full conditional
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distribution for ω is derived as follows:

p(ω | θ, c0, b,γ,data) ∝


J∏
j=1

exp(−ωjKj,θ(T ))


(∑J

r=1
ωr

)n

×


J∏
j=1

ω
Nj
j

(∑J

r=1
ωr

)−Nj


J∏
j=1

Ga(ωj | c0 ω0j(θ), c0)


∝

J∏
j=1

exp(−ωjKj,θ(T ))ω
Nj
j Ga(ωj | c0 ω0j(θ), c0)

=
J∏
j=1

Ga(ωj | Nj + c0 ω0j(θ),Kj,θ(T ) + c0),

where we have used the fact that
∑J

j=1Nj = n. Therefore, given the other parameters

and the data, the mixture weights are independent, and each ωj follows a gamma

posterior full conditional distribution. This is a practically important feature of the

model in terms of convenient updates for the mixture weights, and with respect to

efficiency of the posterior simulation algorithm as it pertains to this key component of

the model parameter vector.

Finally, each of the remaining parameters, c0, b, and θ, is updated with a

Metropolis-Hastings (M-H) step, using a log-normal proposal distribution in each case.

2.1.4 Model extensions to incorporate marks

Here, we discuss how the Erlang mixture prior for NHPP intensities can be em-

bedded in semiparametric models for point patterns that include additional information

on marks.

Consider the setting where, associated with each observed time event ti, marks

yi ≡ yti are recorded (marks are only observed when an event is observed). Without loss
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of generality, we assume that marks are continuous variables taking values in mark space

M⊆ Rd, for d ≥ 1. As discussed in Taddy and Kottas (2012), a nonparametric prior for

the intensity of the temporal process, T , can be combined with a mark distribution to

construct a semiparametric model for marked NHPPs. In particular, consider a generic

marked NHPP {(t,yt) : t ∈ T ,yt ∈ M}, that is: the temporal process T is a NHPP

on R+ with intensity function λ; and, conditional on T , the marks {yt : t ∈ T } are

mutually independent. Now, assume that, conditional on T , the marks have density mt

that depends only on t (i.e., it does not depend on any earlier time t′ < t). Then, by the

“marking” theorem (e.g., Kingman, 1993), we have that the marked NHPP is a NHPP

on the extended space R+ ×M with intensity λ∗(t,yt) = λ(t)mt(yt). Therefore, the

likelihood for the observed marked point pattern {(ti,yi) : i = 1, ..., n} can be written

as exp
(
−
∫ T
0 λ(u) du

)∏n
i=1 λ(ti)

∏n
i=1mti(yi) (the integral

∫ T
0

∫
M λ∗(u, z) dudz in the

normalizing term reduces to
∫ T
0 λ(u) du, since mt is a density). Hence, the MCMC

method of Section 2.1.3 can be extended for marked NHPP models built from the Erlang

mixture prior for intensity λ, and any time-dependent model for the mark density mt.

2.2 Data examples

To empirically investigate inference under the proposed model, we present

three synthetic data examples corresponding to decreasing, increasing, and bimodal

intensities. We also consider the coal-mining disasters data set, which is commonly

used to illustrate NHPP intensity estimation.
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We used the approach of Section 2.1.2 to specify the priors for c0, b and θ,

and the value for J . In particular, we used the exponential prior for c0 with mean 10

for all data examples. For the three synthetic data sets (for which T = 20), we used

the Lomax prior for θ with shape parameter equal to 2 and scale parameter equal to

1. Prior sensitivity analysis results are provided in Section 2.2.3. Overall, results from

prior sensitivity analysis (also conducted for all other data examples) suggest that the

prior specification approach of Section 2.1.2 is effective as a general strategy. Moreover,

more dispersed priors for parameters c0, b and θ have little to no effect on the posterior

distribution for these parameters and essentially no effect on posterior estimates for the

NHPP intensity function, even for point patterns with relatively small size, such as the

one (n = 112) for the data example of Section 2.2.3.

Section 2.2.5 compares our model with a Bayesian nonparametric model based

on a Gaussian process (GP) prior for the logit transformation of the NHPP intensity,

called the sigmoidal Gaussian Cox process (SGCP) model (Adams et al., 2009). Such a

model is popular in both the statistics and the machine learning literature. Since we were

not able to find publicly available software, results are based on our implementation of

the SGCP model, which allows for a detailed comparison involving full inference results

and computational efficiency.

Appendix A provides also computational details about the MCMC posterior

simulation algorithm, including study of the effect of the number of basis densities (J)

and the size of the point pattern (n) on effective sample size and computing time.
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2.2.1 Decreasing intensity synthetic point pattern

The first synthetic data set involves 491 time points generated in time window

(0, 20) from a NHPP with intensity function β−1α(β−1t)α−1, where (α, β) = (0.5, 8 ×

10−5). This form corresponds to the hazard function of a Weibull distribution with

shape parameter less than 1, thus resulting in a decreasing intensity function.

The Erlang mixture model was applied with J = 50, and an exponential prior

for b with mean 0.04. The model captures the decreasing pattern of the data generating

intensity function; see Figure 2.3. We note that there is significant prior-to-posterior

learning in the intensity function estimation; the prior intensity mean is roughly constant

at value about 25 with prior uncertainty bands that cover almost the entire top left panel

in Figure 2.3. Prior uncertainty bands were similarly wide for all other data examples.

2.2.2 Increasing intensity synthetic point pattern

We consider again the form β−1α(β−1t)α−1 for the NHPP intensity function,

but here with (α, β) = (6, 7) such that the intensity is increasing. A point pattern

comprising 565 points was generated in time window (0, 20). The Erlang mixture model

was applied with J = 50, and an exponential prior for b with mean 0.035. Figure 2.4

reports inference results. This example demonstrates the model’s capacity to effectively

recover increasing intensity shapes over the bounded observation window, even though

the Erlang basis densities are ultimately decreasing.
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Figure 2.3: Synthetic data from temporal NHPP with decreasing intensity. The top
left panel shows the posterior mean estimate (dashed-dotted line) and posterior 95%
interval bands (shaded area) for the intensity function. The true intensity is denoted
by the solid line. The point pattern is plotted in the bottom left panel. The three
plots on the right panels display histograms of the posterior samples for the model
hyperparameters, along with the corresponding prior densities (dashed lines).

2.2.3 Bimodal intensity synthetic point pattern

The data examples in Sections 2.2.1 and 2.2.2 illustrate the model’s capacity to

uncover monotonic intensity shapes, associated with a parametric distribution different

from the Erlang distribution that forms the basis of the mixture intensity model. Here,
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Figure 2.4: Synthetic data from temporal NHPP with increasing intensity. The top
left panel shows the posterior mean estimate (dashed-dotted line) and posterior 95%
interval bands (shaded area) for the intensity function. The true intensity is denoted
by the solid line. The point pattern is plotted in the bottom left panel. The three
plots on the right panels display histograms of the posterior samples for the model
hyperparameters, along with the corresponding prior densities (dashed lines).

we consider a point pattern generated from a NHPP with a more complex intensity

function, λ(t) = 50 We(t | 3.5, 5) + 60 We(t | 6.5, 15), where We(t | α, β) denotes the

Weibull density with shape parameter α and mean β Γ(1 + 1/α). This specification

results in a bimodal intensity within the observation window (0, 20) where a synthetic

27



●●●●●●
●

●

●

●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40 50

0
10

20
30

40

Index of Erlang density

In
te

ns
ity

 w
ei

gh
t

0 5 10 15 20

0
5

10
15

20

Time

In
te

ns
ity

| | | ||||| ||| | || ||| ||||| ||| ||| || | || || | ||| || | |||| | || | | || |||| | | | ||| || ||| | | || || | || | ||| || || || ||| || || |||| ||||| | ||| |||| |

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

Time

D
en

si
ty

●●●●●●

●

●

●

●●●●●●●●
●

●
●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●

●

0 20 40 60 80 100

0
5

10
15

20

Index of Erlang density

In
te

ns
ity

 w
ei

gh
t

0 5 10 15 20

0
5

10
15

20

Time

In
te

ns
ity

| | | ||||| ||| | || ||| ||||| ||| ||| || | || || | ||| || | |||| | || | | || |||| | | | ||| || ||| | | || || | || | ||| || || || ||| || || |||| ||||| | ||| |||| |

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

Time

D
en

si
ty

Figure 2.5: Synthetic data from temporal NHPP with bimodal intensity. Inference
results are reported under J = 50 (top row) and J = 100 (bottom row). The left
column plots the posterior means (circles) and 90% interval estimates (bars) of the
weights for the Erlang basis densities. The middle column displays the posterior mean
estimate (dashed-dotted line) and posterior 95% interval bands (shaded area) for the
NHPP intensity function. The true intensity is denoted by the solid line. The bars
on the horizontal axis indicate the point pattern. The right column plots the posterior
mean estimate (dashed-dotted line) and posterior 95% interval bands (shaded area) for
the NHPP density function on the observation window. The histogram corresponds to
the simulated times that comprise the point pattern.

point pattern of 112 time points is generated; see Figure 2.5.

We used an exponential prior for b with mean 0.179. Anticipating an underly-

ing intensity with less standard shape than in the earlier examples, we compare inference

results under J = 50 and J = 100; see Figure 2.5. The posterior point and interval

estimates capture effectively the bimodal intensity shape, especially if one takes into ac-
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count the relatively small size of the point pattern. (In particular, the histogram of the

simulated random time points indicates that they do not provide an entirely accurate

depiction of the underlying NHPP density shape.) The estimates are somewhat more

accurate under J = 100. The estimates for the mixture weights (left column of Figure

2.5) indicate the subsets of the Erlang basis densities that are utilized under the two

different values for J . The posterior mean of θ was 0.366 under J = 50, and 0.258 under

J = 100, that is, as expected, inference for θ adjusts to different values of J such that

(0, Jθ) provides roughly the effective support of the intensity.

We present results from sensitivity analysis to the prior choices for θ, c0, and b.

We focus on this data set, mainly because it involves the smallest sample size (n = 112)

among all data examples, but also due to the non-standard, bimodal shape of the under-

lying non-homogeneous Poisson process (NHPP) intensity function. We have conducted

prior sensitivity analysis for all other data examples observing levels of robustness to

the prior choice that are either higher or the same with the ones reported here.

Here, we study the effect of the priors for θ, c0, and b, under J = 50. Inference

results for the intensity function and for the model parameters are reported in Figure

2.6, under four different prior choices. The top row corresponds to the prior specification

approach described in Section 2.1.2, and thus to the earlier results (under J = 50). For

each of the other three cases, we change one of the priors for θ, c0, and b relative to

the “default” prior specification. In particular, results in the second row are based on

a more dispersed Lomax prior for θ, with scale parameter dθ = 9 (instead of dθ = 1),

such that Pr(0 < θ < T ) ≈ 0.9 (instead of Pr(0 < θ < T ) ≈ 0.999), where T = 20.
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Figure 2.6: Synthetic data from temporal NHPP with bimodal intensity. Erlang mixture
model inference results under four different prior choices for θ, c0, and b. The left
column shows the posterior mean estimate (dashed line) and posterior 95% interval
bands (shaded area) for the intensity function, with the true intensity denoted by the
red solid line. The other three columns plot histograms of the posterior samples for θ,
c0, and b, along with the corresponding prior densities (blue dashed lines).

Analogously, the third and fourth rows correspond to more dispersed exponential priors

for c0 and b, respectively. Note that the posterior distribution for θ and c0 is largely

unaffected by the change in the dispersion of the prior distribution, whereas there is
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some effect on the tail of the posterior density for b. Importantly, for a point pattern

with a relatively small size, posterior estimates for the intensity function are essentially

the same under the different prior choices.

2.2.4 Coal-mining disasters data

Our real data example involves the “coal-mining disasters” data (e.g., Andrews

and Herzberg, 1985, p. 53-56), a standard dataset used in the literature to test NHPP

intenstiy estimation methods. The point pattern comprises the times (in days) of n =

191 explosions of fire-damp or coal-dust in mines resulting in 10 or more casualties from

the accident. The observation window consists of 40,550 days, from March 15, 1851 to

March 22, 1962.

We fit the Erlang mixture model with J = 50, using a Lomax prior for θ with

shape parameter 2 and scale parameter 2, 000, such that Pr(0 < θ < 40, 550) ≈ 0.998,

and an exponential prior for b with mean 213. We also implemented the model with

J = 130, obtaining essentially the same inference results for the NHPP functionals with

the ones reported in Figure 2.7.

The estimates for the point process intensity and density functions (Figure 2.7,

top row) suggest that the model successfully captures the multimodal intensity shape

suggested by the data. The estimates for the mixture weights (Figure 2.7, bottom left

panel) indicate the Erlang basis densities that are more influential to the model fit.

The bottom right panel of Figure 2.7 reports results from graphical model

checking, using the “time-rescaling” theorem (e.g., Daley and Vere-Jones, 2003). If the
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Figure 2.7: Coal-mining disasters data. The top left panel shows the posterior mean
estimate (dashed-dotted line) and 95% interval bands (shaded area) for the intensity
function. The bars at the bottom indicate the observed point pattern. The top right
panel plots the posterior mean (dashed-dotted line) and 95% interval bands (shaded
area) for the NHPP density, overlaid on the histogram of the accident times. The
bottom left panel presents the posterior means (circles) and 90% interval estimates
(bars) of the mixture weights. The bottom right panel plots the posterior mean and
95% interval bands for the time-rescaling model checking Q-Q plot.

point pattern {0 = t0 < t1 < ... < tn < T} is a realization from a NHPP with cumulative

intensity function Λ(t) =
∫ t
0 λ(u)du, then the transformed point pattern {Λ(ti) : i =
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1, ..., n} is a realization from a unit rate homogeneous Poisson process. Therefore, if

we further transform to Ui = 1 − exp{−(Λ(ti) − Λ(ti−1))}, where Λ(0) ≡ 0, then the

{Ui : i = 1, ..., n} are independent uniform(0, 1) random variables. Hence, graphical

model checking can be based on quantile–quantile (Q-Q) plots to assess agreement of

the estimated Ui with the uniform distribution on the unit interval. Under the Bayesian

inference framework, we can obtain a posterior sample for the Ui for each posterior

realization for the NHPP intensity, and we can thus plot posterior point and interval

estimates for the Q-Q graph. These estimates suggest that the NHPP model with the

Erlang mixture intensity provides a good fit for the coal-mining disasters data.

2.2.5 Model comparison

Under the SGCP model, the temporal NHPP intensity is represented as λ(t) =

λ∗ σ(g(t)), where λ∗ is an upper bound on the intensity function, σ(z) = (1 + e−z)−1 is

the logistic function, and g is a real-valued random function assigned a GP prior. Adams

et al. (2009) develop MCMC posterior simulation using latent variables (associated with

“thinned” events) to handle the intractable NHPP likelihood normalizing term.

To compare the Erlang mixture and SGCP models, we work with the synthetic

data set of Section 2.2.3. This is a choice arising from practical considerations; as

discussed below, the SGCP model is particularly computationally intensive, and we

thus consider the data example with the smallest point pattern size.

We applied the SGCP model using a GP prior for function g with constant

mean, µ, and squared-exponential covariance function, cov(g(t1), g(t2)) = θ1e
−θ2(t1−t2)2 .
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Figure 2.8: Synthetic data from temporal NHPP with bimodal intensity (Section 2.2.3).
The left and middle panels provide estimates for the underlying intensity (red solid line)
under the SGCP and Erlang mixture model, respectively: prior 95% interval bands
(dark-gray shaded area), the posterior mean (dashed line), and posterior 95% interval
bands (light-gray shaded area). The right panel shows for each model boxplots of 51
ESS values based on posterior samples for the intensity at 51 equally-spaced time points.

Therefore, the SGCP model parameters comprise λ∗ and (µ, θ1, θ2), all four of which

are assigned priors. We note that a prior specification strategy is not provided in

Adams et al. (2009). We observed that, at least for this data set, inference for all

SGCP model parameters is sensitive to the prior choice. Moreover, there is a conflict

regarding the role of parameter λ∗: it controls the extent of prior uncertainty, with

larger λ∗ values resulting in wider prior interval bands for the intensity, but at the same

time, increasing λ∗ increases the number of latent variables and thus also the MCMC

algorithm computing time.

We tuned the priors for the SGCP model parameters to obtain the best possible

estimates for the intensity function. The resulting estimates are reported in the left panel

of Figure 2.8. Even though we intentionally favored the SGCP model through the prior

selection, the Erlang mixture model posterior mean estimate captures the peaks of the
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underlying intensity more accurately than the SGCP model, indeed, under larger levels

of prior uncertainty (middle panel of Figure 2.8).

The right panel of Figure 2.8 shows boxplots of 51 ESS values computed from

the posterior samples for λ(t) at 51 equally-spaced time points on a grid over (0, T ) =

(0, 20). The ESS values are based on 15,000 posterior samples, obtained after discarding

5,000 burn-in samples. Evidently, the Erlang mixture model outperforms the SGCP

model in terms of mixing of the MCMC algorithm as measured by the ESS. The benefit

is more emphatic considering computing times: completing the 20,000 MCMC iterations

took around 310 minutes under the SGCP model, while the corresponding computing

time for the Erlang mixture model was about 5 minutes.

2.3 Modeling for spatial Poisson process intensities

In Section 2.3.1, we extend the modeling framework to spatial NHPPs with

intensities defined on R+ × R+. The resulting inference method is illustrated with

synthetic and real data examples in Section 2.3.3 and 2.3.4, respectively.

2.3.1 The Erlang mixture model for spatial NHPPs

A spatial NHPP is again characterized by its intensity function, λ(s), for

s = (s1, s2) ∈ R+ × R+. The NHPP intensity is a non-negative and locally integrable

function such that: (a) for any bounded B ⊂ R+ × R+, the number of points in B,

N(B), follows a Poisson distribution with mean
∫
B λ(u) du; and (b) given N(B) = n,

the random locations si = (si1, si2), for i = 1, ..., n, that form the spatial point pattern
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in B are i.i.d. with density λ(s)/{
∫
B λ(u) du}. Therefore, the structure of the likelihood

for the intensity function is similar to the temporal NHPP case. In particular, for spatial

point pattern, {s1, . . . , sn}, observed in bounded region D ⊂ R+ × R+, the likelihood

is proportional to exp{−
∫
D λ(u) du}

∏n
i=1 λ(si). As is typically the case in standard

applications involving spatial NHPPs, we consider a regular, rectangular domain for the

observation region D, which can therefore be taken without loss of generality to be the

unit square.

Extending the Erlang mixture model in (2.1), we build the basis represen-

tation for the spatial NHPP intensity from products of Erlang densities, {Ga(s1 |

j1, θ
−1
1 ) Ga(s2 | j2, θ−12 ) : j1, j2 = 1, ..., J}. Mixing is again with respect to the shape

parameters (j1, j2), and the basis densities share a pair of scale parameters (θ1, θ2).

Therefore, the model can be expressed as

λ(s1, s2) =

J∑
j1=1

J∑
j2=1

ωj1j2 Ga(s1 | j1, θ−11 ) Ga(s2 | j2, θ−12 ), (s1, s2) ∈ R+ × R+.

Again, a key model feature is the prior for the mixture weights. Here, the basis density

indexed by (j1, j2) is associated with rectangle Aj1j2 = [(j1−1)θ1, j1θ1)×[(j2−1)θ2, j2θ2).

The corresponding weight is defined through a random measure H supported on R+ ×

R+, such that ωj1j2 = H(Aj1j2). This construction extends the one for the weights of the

temporal NHPP model. We again place a gamma process prior, G(H0, c0), on H, where

c0 is the precision parameter and H0 is the centering measure on R+×R+. As a natural

extension of the exponential cumulative hazard used in Section 2.1.1 for the gamma

process prior mean, we specify H0 to be proportional to area. In particular, H0(Aj1j2) =
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|Aj1j2 |/b = θ1θ2/b, where b > 0. Using the independent increments property of the

gamma process, and under the specific choice of H0, the prior for the mixture weights

is given by

ωj1j2 | θ1, θ2, c0, b
i.i.d.∼ Ga(ωj1j2 | c0 θ1 θ2 b−1, c0), j1, j2 = 1, ..., J,

which, as before, is a practically important feature of the model construction as it

pertains to MCMC posterior simulation.

To complete the full Bayesian model, we place priors on the common scale

parameters for the basis densities, (θ1, θ2), and on the gamma process prior hyperpa-

rameters c0 and b. The role played by these model parameters is directly analogous

to the one of the corresponding parameters for the temporal NHPP model, as detailed

in Section 2.1.1. Therefore, we apply similar arguments to the ones in Section 2.1.2

to specify the model hyperpriors. More specifically, we work with (independent) Lo-

max prior distributions for scale parameters θ1 and θ2, where the shape parameter

of the Lomax prior is set equal to 2 and the scale parameter is specified such that

Pr(0 < θ1 < 1)Pr(0 < θ2 < 1) ≈ 0.999. Recall that the observation region is taken to be

the unit square; in general, for a square observation region, this approach implies the

same Lomax prior for θ1 and θ2. The gamma process precision parameter c0 is assigned

an exponential prior with mean 10. The result of Section 2.1.1 for the prior mean of

the NHPP intensity can be extended to show that E(λ(s1, s2) | b, θ1, θ2) converges to

b−1, as J → ∞, for any (s1, s2) ∈ R+ × R+, and for any (θ1, θ2) (and c0). The prior

mean for the spatial NHPP intensity is practically constant at b−1 within its effective

37



support given roughly by (0, Jθ1)× (0, Jθ2). Hence, taking the size of the observed spa-

tial point pattern as a proxy for the total intensity, b is assigned an exponential prior

distribution with mean 1/n. Finally, the choice of the value for J can be guided from

the approximate effective support for the intensity, which is controlled by J along with

θ1 and θ2. Analogously to the approach discussed in Section 2.1.2, the value of J (or

perhaps a lower bound for J) can be specified through the integer part of 1/θ∗, where

θ∗ is the median of the common Lomax prior for θ1 and θ2.

2.3.2 Posterior simulation for spatial NHPPs

The posterior simulation method for the spatial NHPP model is developed

through a straightforward extension of the approach detailed in Section 2.1.3. We work

again with the augmented model that involves latent variables {γi : i = 1, . . . , n}, where

γi = (γi1, γi2) identifies the basis density to which observed point location (si1, si2) is

assigned. The spatial NHPP model retains the practically relevant feature of efficient

updates for the mixture weights, which, given the other model parameters and the data,

have independent gamma posterior full conditional distributions.

Denote by {si : i = 1, ..., n}, where si = (si1, si2), the spatial point pattern

observed in the unit square. Under the Erlang mixture model for spatial NHPPs,
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developed in Section 2.3.1, the likelihood is proportional to

exp
(
−
∫ 1

0

∫ 1

0
λ(u1, u2) du1du2

) n∏
i=1

λ(si1, si2)

= exp
(
−

J∑
j1=1

J∑
j2=1

ωj1j2 Kj1,θ1(1)Kj2,θ2(1)
)

×
n∏
i=1

{ J∑
j1=1

J∑
j2=1

ωj1j2 Ga(si1 | j1, θ−11 )Ga(si2 | j2, θ−12 )
}

=

J∏
j1=1

J∏
j2=1

exp
(
− ωj1j2Kj1,θ1(1)Kj2,θ2(1)

)

×
n∏
i=1

{( J∑
r1=1

J∑
r2=1

ωr1r2

) J∑
j1=1

J∑
j2=1

( ωj1j2∑J
r1=1

∑J
r2=1 ωr1r2

)
×Ga(si1 | j1, θ−11 )Ga(si2 | j2, θ−12 )

}
.

where Kj,θ(1) =
∫ 1
0 Ga(u | j, θ−1) du.

Next, we introduce auxiliary variables Γ = {γi : i = 1, . . . , n}, where γi =

(γi1, γi2), to obtain the following hierarchical model representation:

{s1, ..., sn} | Γ,ω,θ ∼
J∏

j1=1

J∏
j2=1

exp
(
− ωj1j2Kj1,θ1(1)Kj2,θ2(1)

)

×
n∏
i=1

{( J∑
r1=1

J∑
r2=1

ωr1r2

)
Ga(si1 | γi1, θ−11 )Ga(si2 | γi2, θ−12 )

}

γi | ω
i.i.d.∼

J∑
j1=1

J∑
j2=1

( ωj1j2∑J
r1=1

∑J
r2=1 ωr1r2

)
δj1(γi1)δj2(γi2), i = 1, . . . , n

θ, c0, b,ω ∼ p(θ1)p(θ2)p(c0)p(b)
J∏

j1=1

J∏
j2=1

Ga(ωj1j2 | c0θ1θ2b−1, c0)

where ω = {ωj1j2 : j1, j2 = 1, ..., J}, θ = (θ1, θ2), and p(θ1), p(θ2), p(c0), and p(b) denote

the priors for θ1, θ2, c0, and b.

As in the posterior inference method for the temporal NHPP model (Section

2.1.3), we explore the posterior distribution using Gibbs sampling. The posterior full
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conditional for each γi is a discrete distribution on {1, ..., J} × {1, ..., J} such that

Pr(γi1 = j1, γi2 = j2 | θ,ω, data) ∝ ωj1j2 Ga(si1 | j1, θ−11 )Ga(si2 | j2, θ−12 ), for j1, j2 =

1, ..., J .

Let Nj1j2 = |{si : γi1 = j1, γi2 = j2}|, for j1, j2 = 1, ..., J . With the condi-

tionally conjugate priors for ωj1j2 , implied by the gamma process prior, the posterior

full conditional distribution for the mixture weights is derived as follows:

p(ω | Γ,θ, c0, b,data) ∝
{ J∏
j1=1

J∏
j2=1

exp
(
− ωj1j2Kj1,θ1(1)Kj2,θ2(1)

)}( J∑
r1=1

J∑
r2=1

ωr1r2

)n
×
{ J∏
j1=1

J∏
j2=1

ω
Nj1j2
j1j2

( J∑
r1=1

J∑
r2=1

ωr1r2
)−Nj1j2}

×
{ J∏
j1=1

J∏
j2=1

Ga(ωj1j2 | c0θ1θ2b−1, c0)
}

∝
J∏

j1=1

J∏
j2=1

exp
(
− ωj1j2Kj1,θ1(1)Kj2,θ2(1)

)
ω
Nj1j2
j1j2

×Ga(ωj1j2 | c0θ1θ2b−1, c0)

=
J∏

j1=1

J∏
j2=1

Ga(ωj1j2 | Nj1j2 + c0θ1θ2b
−1,Kj1,θ1(1)Kj2,θ2(1) + c0)

with
∑J

j1=1

∑J
j2=1Nj1j2 = n. As in the temporal case, the mixture weights can be up-

dated independently, given the other parameters and the data, from gamma posterior

full conditional distributions. Therefore, the practical benefits of the Erlang mixture

model structure – convenient updates for the mixture weights and computational effi-

ciency of the MCMC algorithm – carry over to inference for spatial NHPPs.

Finally, parameters θ1 and θ2 and the hyperparameters, c0 and b, of the gamma

process prior for H are updated with Metropolis-Hastings steps, using log-normal pro-
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posal distributions.

2.3.3 Synthetic data example

Here, we illustrate the spatial NHPP model using synthetic data based on

a bimodal intensity function built from a two-component mixture of bivariate logit-

normal densities. Denote by BLN(µ,Σ) the bivariate logit-normal density arising from

the logistic transformation of a bivariate normal with mean vector µ and covariance

matrix Σ. A spatial point pattern of size 528 was generated over the unit square from a

NHPP with intensity λ(s1, s2) = 150 BLN((s1, s2) | µ1,Σ) + 350 BLN((s1, s2) | µ2,Σ),

where µ1 = (−1, 1), µ2 = (1,−1), and Σ = (σ11, σ12, σ21, σ22) = (0.3, 0.1, 0.1, 0.3). The

intensity function and the generated spatial point pattern are shown in the top left

panel of Figure 2.9.

The Erlang mixture model was applied setting J = 70 and using the hyperpri-

ors for θ1, θ2, c0 and b discussed in Section 2.3.1. Figure 2.9 reports inference results.

The posterior mean intensity estimate successfully captures the shape of the underlying

intensity function. The structure of the Erlang mixture model enables ready inference

for the marginal NHPP intensities associated with the two-dimensional NHPP. Although

such inference is generally not of direct interest for spatial NHPPs, in the context of

a synthetic data example it provides an additional means to check the model fit. The

marginal intensity estimates effectively retrieve the bimodality of the true marginal

intensity functions; the slight discrepancy at the second mode can be explained by in-

spection of the generated data for which the second mode clusters are located slightly
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Figure 2.9: Synthetic data example from spatial NHPP. The top row panels show con-
tour plots of the true intensity, and of the posterior mean and interquartile range es-
timates. The points in each panel indicate the observed point pattern. The first two
panels at the bottom row show the marginal intensity estimates – the posterior mean
(dashed line) and 95% uncertainty bands (shaded area) – along with the true function
(red solid line) and corresponding point pattern (bars at the bottom of each panel).
The bottom right panel displays histograms of posterior samples for the model hyper-
parameters along with the corresponding prior densities (dashed lines).

to the left of the theoretical mode. Finally, we note the substantial prior-to-posterior

learning for all model hyperparameters.

2.3.4 Real data illustration

Our final data example involves a spatial point pattern that has been previously

used to illustrate NHPP intensity estimation methods (e.g., Diggle, 2014; Kottas and

Sansó, 2007). The data set involves the locations of 514 maple trees in a 19.6 acre
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Contour plot of posterior mean intensity
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Figure 2.10: Maple trees data. The top row panels show the posterior mean estimate
for the intensity function in the form of contour and perspective plots. The bottom left
panel displays the corresponding posterior interquartile range contour plot. The bottom
right panel plots histograms of posterior samples for the model hyperparameters along
with the corresponding prior densities (dashed lines). The points in the left column
plots indicate the locations of the 514 maple trees.

square plot in Lansing Woods, Clinton County, Michigan, USA; the maple trees point

pattern is included in the left column panels of Figure 2.10.
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To apply the spatial Erlang mixture model, we specified the hyperpriors for θ1,

θ2, c0 and b following the approach discussed in Section 2.3.1, and set J = 70. As with

the synthetic data example, the posterior distributions for model hyperparameters are

substantially concentrated relative to their priors; see the bottom right panel of Figure

2.10. The estimates for the spatial intensity of maple tree locations reported in Figure

2.10 demonstrate the model’s capacity to uncover non-standard, multimodal intensity

surfaces.

2.4 Discussion

We have proposed a Bayesian nonparametric modeling approach for Poisson

processes over time or space. The approach is based on a mixture representation of the

point process intensity through Erlang basis densities, which are fully specified save for

a scale parameter shared by all of them. The weights assigned to the Erlang densities

are defined through increments of a random measure (a random cumulative intensity

function in the temporal NHPP case) which is modeled with a gamma process prior. A

key feature of the methodology is that it offers a good balance between model flexibility

and computational efficiency in implementation of posterior inference. Such inference

has been illustrated with synthetic and real data for both temporal and spatial Poisson

process intensities.

To discuss our contribution in the context of Bayesian nonparametric mod-

eling methods for NHPPs (briefly reviewed in the Introduction), note that the main

44



approaches can be grouped into two broad categories: placing the prior model on the

NHPP intensity function; or, assigning separate priors to the total intensity and the

NHPP density (both defined over the observation window).

In terms of applications, especially for spatial point patterns, the most com-

monly explored class of models falling in the former category involves Gaussian process

(GP) priors for logarithmic (or logit) transformations of the NHPP intensity (e.g., Møller

et al., 1998; Adams et al., 2009). The NHPP likelihood normalizing term renders full

posterior inference under GP-based models particularly challenging. This challenge has

been bypassed using approximations of the stochastic integral that defines the likelihood

normalizing term (Brix and Diggle, 2001, Brix and Møller, 2001), data augmentation

techniques (Adams et al., 2009), and different types of approximations of the NHPP like-

lihood along with integrated nested Laplace approximation for approximate Bayesian

inference (Illian et al., 2012, Simpson et al., 2016). In contrast, the Erlang mixture

model can be readily implemented with MCMC algorithms that do not involve approx-

imations to the NHPP likelihood or complex computational techniques. Section 2.2.5

and Appendix B include comparison of the proposed model with two GP-based models:

the sigmoidal Gaussian Cox process (SGCP) model (Adams et al., 2009) for tempo-

ral NHPPs; and the log-Gaussian Cox process (LGCP) model for spatial NHPPs, as

implemented in the R package lgcp (Taylor et al., 2013). The results, based on the

synthetic data considered in Sections 2.2.3 and 2.3.3, suggest that the Erlang mixture

model is substantially more computationally efficient than the SGCP model, as well as

less sensitive to model/prior specification than LGCP models for which the choice of
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the GP covariance function can have a large effect on the intensity surface estimates.

Since it involves a mixture formulation for the NHPP intensity, the proposed

modeling approach is closer in spirit to methods based on Dirichlet process mixture

priors for the NHPP density (e.g., Kottas and Sansó, 2007; Taddy and Kottas, 2012).

Both types of approaches build posterior simulation from standard MCMC techniques

for mixture models, using latent variables that configure the observed points to the

mixture components. Models that build from density estimation with Dirichlet process

mixtures benefit from the wide availability of related posterior simulation methods (e.g.,

the number of mixture components in the NHPP density representation does not need

to be specified), and from the various extensions of the Dirichlet process for dependent

distributions that can be explored to develop flexible models for hierarchically related

point processes (e.g., Taddy, 2010; Kottas et al., 2012; Xiao et al., 2015; Rodriguez

et al., 2017). However, by construction, this approach is restricted to modeling the

NHPP intensity only on the observation window, in fact, with a separate prior for the

NHPP density and for the total intensity over the observation window. The Erlang

mixture model overcomes this limitation. For instance, in the temporal case, the prior

model supports the intensity on R+, and the priors for the total intensity and the NHPP

density over (0, T ) (given in Equation (2.2)) are compatible with the prior for the NHPP

intensity.
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Chapter 3

Bayesian Nonparametric Modeling and

Inference for Hawkes Processes

3.1 Prior models for the HP intensity function

The Erlang mixture prior model is useful as a building block towards Bayesian

nonparametric inference for Hawkes processes that can be represented as hierarchically

structured, clustered NHPPs. Beyond its flexibility and computational efficiency, the

Erlang mixture model facilitates prediction of future events. Not all existing models

offer this benefit. DP-based mixture models, for example, consider intensity functions

defined on a bounded interval, the observation window. Therefore, intensity estimates

cannot be used to make predictions for intervals beyond the observation window. This

is not a major concern when modeling NHPPs, since their conditional intensities do not

involve the process history. The HP, on the other hand, utilizes the conditional intensity
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estimates for predictive inference. Restricting the model for the HP immigrant intensity

on the observation window would be a practical limitation. In the following section, we

describe a semiparametric model using the Erlang mixture prior for the Hawkes process

immigrant (background) intensity function.

3.1.1 Mixture model for the immigrant intensity function

According to the cluster representation, the HP can be viewed as independent

NHPPs for immigrants and offspring. So, we can treat the HP immigrant intensity

function as the intensity of the NHPP for immigrants. Similarly, the excitation function

becomes the intensity of the NHPP for offspring. The connection allows us to model

the immigrant intensity and excitation functions using the Erlang mixture, introduced

in Section 2.1.1. This section focuses on the Erlang mixture model for the immigrant

intensity. Substituting the Erlang mixture for the constant immigrant intensity µ of

(1.1) enables flexible immigrant intensity modeling, which is desirable for real data

analyses (e.g., Ogata, 1998; Helmstetter et al., 2006; Ogata and Zhuang, 2006, for

earthquake applications). Following are the details of the model formulation and the

prior specification.

The Erlang mixture model is a structured mixture of Erlang densities with

a common scale parameter, mixing on integer shape parameters. The mixture weight

is constructed through increments of a cumulative hazard function. This model con-

verges (pointwise) to the hazard function of the cumulative hazard. Incorporating a

nonparametric prior on the cumulative hazard gives flexibility to the (cumulative) haz-
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ard function and eventually to the model due to convergence. We employ the gamma

process prior for the cumulative hazard function. The prior choice allows for efficient

handling of the likelihood normalizing constant with ready prior-to-posterior updating

for the mixture weight.

Denote by Ga(t|a, b) for t ∈ R+, a gamma density function with shape a and

mean a/b. We also use the term for an Erlang density with an integer shape parameter.

With the Erlang mixture for the immigrant intensity, our semiparametric model is

defined as

λ∗(t) =

L∑
l=1

νlGa(t|l, θ−1) + γ
∑
ti<t

Exp(t− ti|α), t ∈ R+

νl = G(lθ)−G((l − 1)θ), l = 1, . . . , L, G ∼ G(G0, c0),

(3.1)

where G(G0, c0) denotes the gamma process with a non-decreasing function G0(·) on

R+ and a positive constant c0, such that E(G(t)) = G0(t) and Var(G(t)) = G0(t)/c0.

So, G0 and c0 can be viewed as the centering function and the precision parameter of

G. We consider the exponential cumulative hazard for the centering function as follows:

G0(t) = t/bG0 with bG0 > 0. This function, which has only one parameter bG0 to

be estimated, is chosen for its brevity. The mixture weight, νl, has the gamma prior

distribution Ga(c0θ/bG0 , c0), driven by the gamma process prior. Exp(t− ti|α) of (3.1)

denotes the exponential density function with mean 1/α, which is the common choice for

the offspring density alongside the power-law density function, defined as aba/(b+t)a+1,

a, b > 0.

We follow the strategy given in Section 2.1.2 to specify the Erlang mixture of
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the semiparametric model, with different notations. The prior mean of the immigrant

intensity function is roughly constant at 1/bG0 . So, T/bG0 , integrated immigrant inten-

sity over (0, T ), would be a reasonable approximation to the total immigrant intensity

on (0, T ). To specify bG0 , we match T/bG0 with its proxy: the number of observed

immigrant points; or half of the point pattern size. For the precision parameter c0, we

take the Exp(0.1) prior with mean 10. Based on empirical evidence, 10 was regarded

as a conservative value, and substantial prior-to-posterior learning was observed in the

simulation study presented in Section 3.3.2.1. The parameter θ, the common scale of

Erlang density basis functions, is assigned the Lomax prior with shape 2 and scale dθ.

The hyperparameter is determined by considering the least flexible model of a single

component (i.e., L = 1). As a rough guess about the effective support for the immigrant

intensity, the model returns (0, Lθ) = (0, θ). Using the observation window as a proxy

for the effective support, dθ is chosen, such that Pr(0 < θ < T ) ≈ 0.999. Such a choice

is conservative because more flexible models with L > 1 would result in a smaller θ by

the support’s upper bound Lθ. Using (0, Lθ∗) for the effective support, the number of

mixture components, L, is chosen and set to the integer part of T/θ∗, where θ∗ denotes

the prior median for θ. In order to achieve a more conservative value for L, we rec-

ommend conducting sensitivity analysis based on the value as a lower bound. A larger

L may improve the estimation of immigrant intensity in cases where underlying immi-

grant intensities are assumed to be non-standard. The branching ratio, γ, is assigned

the Ga(2, aγ) prior with shape 2 and mean 2/aγ . We determine the hyperparameter

using the HP stability condition γ ∈ (0, 1), such that Pr(0 < γ < 1) ≈ 0.9. Lastly, α of
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the exponential offspring density has the Exp(aα) prior. Hyperparameter aα is chosen

based on a prior guess at (LO, UO), a bound for the distance between an offspring and

its parent. We take aα, such that Pr(LO < (t − ti) < UO) ≈ 0.9. In Section 3.2.1.1,

we present the hierarchical model representation and outline the posterior inference

procedure.

3.1.2 Mixture models for the excitation function

In this section, we turn our attention to the estimation of the excitation func-

tion. For the offspring density function, exponential and power-law densities are typ-

ically chosen. The resulting decreasing (in time) excitation functions have dominated

parametric modeling (e.g., Hawkes, 1971a; Ogata, 1988; Balderama et al., 2012; Mohler,

2014). It may be natural to assume a decreasing excitation function in certain ap-

plications such as earthquake forecasting. Indeed, the odds of aftershocks occurring

will decrease as time passes from the main shock. But, recent classical nonparamet-

ric approaches cast doubt on the decreasing-shape offspring functions and show non-

decreasing estimation results from real data analyses (e.g., Mohler et al., 2011; Lewis and

Mohler, 2011; Zhou et al., 2013). Even when decreasing offspring densities are justified,

the two prevalent options for the offspring density function have the issue of potentially

incompatible estimation results caused by their different tail behavior. Consequently,

model misspecification may result in distorted estimates. These considerations have

motivated our nonparametric approach to modeling the excitation function, for which

we propose two different options: an Erlang mixture-based model in Section 3.1.2.1;
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and uniform-mixture-based models for decreasing offspring densities in Section 3.1.2.2.

3.1.2.1 Erlang mixture for the excitation function

As a necessary condition of the excitation function, it must be integrable so that

it can be factorized into the branching ratio and the offspring density. Furthermore,

the branching ratio should be within the unit interval for HP stability. The process

will explode without such a scheme due to the divergence in the expected cluster size,

which is represented by a geometric series (Daley and Vere-Jones, 2003). The exclusive

conditions of the excitation function preclude the use of the Erlang mixture model we

applied to the immigrant intensity. Under the modeling framework, the branching ratio

can be expressed as γ =
∑J

j=1 ωj = H(Jθ). Because the gamma process prior that is

assigned to H regards R+ as the state space, limiting the values of γ makes the prior

choice irrelevant.

Alternatively, we propose a novel mixture of Erlang densities with weights

(directly) assigned independent gamma priors, as opposed to defined by increments of

a cumulative hazard function. The model satisfies the excitation function integrability

condition needed for the HP definition. The modeling method also allows for effective

handling of the stability condition via hyperparameters of the gamma priors. With

the common choice, a positive constant µ, for the immigrant intensity, we define a

semiparametric model as
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λ∗(t) = µ+
∑
ti<t

[ L∑
l=1

νlGa(t− ti|l, θ−1)
]
, t ∈ R+

νl
ind.∼ Ga(Al, η),

(3.2)

where Al ≡ α0[F0(lθ)− F0((l − 1)θ)], l = 1, . . . , L− 1 and AL ≡ α0[1− F0((L− 1)θ)].

As a result of these hyperparameter choices for the gamma priors, the branching ratio,

γ =
∑L

l=1 νl, becomes a gamma random variable with shape α0 =
∑L

l=1Al and rate η.

So, the necessary condition of integrability for the excitation function is satisfied, and

the stability condition can be managed by adjusting just two hyperparameters. F0 is a

cumulative distribution function and is assigned the exponential cumulative distribution

for simplicity.

The model in (3.2) can be expressed as λ∗(t) = µ +
∑

ti<t
γ
[∑L

l=1 ωlGa(t −

ti|l, θ−1)
]

with the normalized weight ωl = νl/
∑L

k=1 νk. Due to the characteristic

property that a Dirichlet random vector can be represented by independent gamma

random variables, we can regard the weights (ω1, ω2, . . . , ωL) as a Dirichlet random

vector with concentration parametersAl, l = 1, . . . , L. This model expression establishes

a connection between the Erlang mixture and the Erlang-density-based DP mixture.

Suppose the normalized mixture weights are defined as ωl = F (lθ) − F ((l − 1)θ) for

l = 1, . . . , L − 1 and ωL = 1 − F ((L − 1)θ) with a cumulative distribution function

F . Placing the DP prior on F with precision parameter α0 and centering cumulative

distribution function F0 recovers the Erlang DP mixture
∑L

l=1 ωlGa(t− ti|l, θ−1), where

the mixture weight has the Dirichlet distribution Dir(A1, A2, . . . , AL). Consequently,
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the Erlang mixture in (3.2) for the excitation function is equivalent to the Erlang DP

mixture for the offspring density function multiplied by the special-form branching ratio,

γ =
∑L

l=1 νl ∼ Ga(α0, η). According to the pointwise convergence of the Erlang mixture

in distribution in Lee and Lin (2010) and the convergence theorem for the density

function in Butzer (1954), the Erlang DP mixture converges to the density function

of F . Therefore, the DP prior for F , prompted by the gamma prior for νl, provides

flexibility for the prior model.

To complete the probability model, we place the following set of priors on the

model parameters. The constant immigrant µ is assigned the Exp(aµ) prior, under which

the posterior full condition for µ is available in closed-form. The rate parameter is chosen

by linking T/aµ, expected cumulative immigrant intensity over (0, T ), to the size of

observed immigrant points (or simply n/2, half of the observed point pattern size). The

branching ratio is gamma distributed with shape α0 and rate η. The hyperparameters

are specified by the stability condition, such that Pr(0 < γ < 1) ≈ 0.9.

As in the immigrant Erlang mixture model, we take the Lomax prior for θ

with shape 2 and scale dθ, such that Pr(0 < θ < TO) ≈ 0.999, where the interval (0, TO)

is the effective support for the excitation function of distance t− ti. The upper bound

TO can be chosen by experts or general theories for the range of t − ti, which may

differ depending on the application to which the model is applied. We use (0, Lθ∗) as

a rough guess about the effective support and take the integer part of TO/θ
∗ to set L,

where θ∗ indicates the prior median of θ. The rate parameter bF0 of the exponential

centering distribution, F0(t) = 1 − exp{−bF0t}, is assigned the Exp(abF0 ) prior. We
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can determine the hyperparameter using the offspring density function expected over

the mixture weight. Appendix F provides the asymptotic expected offspring density

function, that is, the exponential density function with rate (1− exp{−θ/bF0})/θ. Ac-

cording to the appendix, the mean distance (between an offspring and its parent) under

the asymptotic density function is given by θ/(1 − exp{−θ/bF0}). We regard the up-

per bound TO of the effective support as a conservative choice for the mean distance

and solve the equation θ∗/(1 − exp{−θ∗/bF0}) = TO in terms of bF0 . Then, we have

bF0 = θ∗/ − log(1 − θ∗/TO), which will be used for the expectation of bF0 , such that

E(bF0) = 1/abF0 = θ∗/− log(1− θ∗/TO).

We conducted sensitivity analysis to the choice of TO and even tried T as an

extremely conservative selection. The posterior inference for the excitation function was

found to be robust in the simulation study of Section 3.3.2. Section 3.2.1.2 addresses

the hierarchical model representation and posterior inference methods.

3.1.2.2 Uniform mixtures for the non-increasing offspring density function

In HP parametric modeling, both exponential and power-law densities are

commonly used as the offspring density function. But, these two densities exhibit dif-

ferent tail behavior, owing to their exponential tail or polynomial tail. In the real data

analysis of Section 3.4, we applied each density function to HP parametric modeling

for earthquake occurrences. The choice of the offspring density function brought about

remarkably different estimation results. Our new modeling approach was inspired by

the dramatic change in inferences from the density function. The section describes a
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semiparametric modeling framework, whose offspring density specializes in estimating

non-increasing densities.

Our modeling method is based on the fact that for any non-increasing den-

sity f on the positive real line there exists a distribution function F on [0,∞) such

that f(t|F ) =
∫
θ−11[0,θ)(t)dF (θ). By placing a nonparametric prior on the mixing

distribution, F , we can construct a uniform mixture model which can represent any

non-increasing density function on R+.

For F , we consider two stochastic process priors: the Dirichlet process (DP)

and geometric weights (GW). Both priors can be defined via stick-breaking construc-

tions, F (·) =
∑∞

l=1 ωlδZl(·). From the infinite-sum representation of the priors, the

target function (i.e., the offspring density function such that f = g) can be derived as

g(t|F ) =
∫
θ−11[0,θ)(t)dF (θ) =

∑∞
l=1 ωlZ

−1
l 1[0,Zl)(t), where the weights ωl and locations

Zl are random, with
∑∞

l=1 ωl = 1 almost surely. The weight is independent of Zl
i.i.d.∼ F0,

where F0 is the centering distribution function. By substituting the uniform mixture

for the offspring density function (the target function), we can define a semiparametric

model as follows:

λ∗(t) = µ+
∑
tj<t

γg(t− tj) = µ+
∑
tj<t

γ
[ ∞∑
l=1

ωlZ
−1
l 1[0,Zl)(t)

]
. t > 0 (3.3)

Following is a way to specify mixture weight for the priors, which clarifies the

difference between their modeling frameworks. Denote by Be(a, b) the beta distribution

with mean a/(a + b). The weight of the Dirichlet process prior is defined through the
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following stick-breaking mechanism,

ω1 = ν1 ωl = νl

l−1∏
r=1

(1− νr), l ≥ 2, (3.4)

with νl
i.i.d.∼ Be(1, α) and α ∼ Ga(aα, bα). On the other hand, the weight of the GW

prior is given in the form

ωl = (1− ζ)ζ l−1, l = 1, 2, . . . , (3.5)

with ζ ∼ Be(aζ , bζ). The method of generating ωl in (3.5) can be envisioned as a

simplified stick-breaking technique in which the stick is always broken with the same

size of 1 − ζ. By the use of a single parameter ζ, we can achieve ordered weights,

ω1 > ω2 > . . ., which resolves the identifiability issue that arises in inference about

weights and locations when using the DP prior. But, we focus on the estimation of

the offspring density, neither the weight nor location parameters; the feature of the

GW prior brings no remarkable difference in estimating the offspring density (see, e.g.,

Section 3.3.3). Practically, posterior sampling ζ is easier to implement and has a lower

time complexity than sampling νl, l = 1, . . . , L in the DP model. Empirically, however,

the GW model requires more mixing components L and, therefore, more computing

time for a similar uncertainty level in the prior model. Note that we use the blocked

Gibbs sampler for posterior inference with truncation approximation to F , such that

FL(·) =
∑L

l=1 ωlδZl(·). The number of components, L, is a key factor for computing

time.

The following strategy is used to specify the prior for the models. For the

common parameter µ, we take the Exp(aµ) prior with rate aµ = 2T/n, chosen as in
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Section 3.1.2.1. The branching ratio, independent of the offspring density function under

the models, is assigned the Ga(aγ , bγ) prior. We set the hyperparameters, considering

the stability condition, such that Pr(0 < γ < 1) ≈ 1. We choose the inverse gamma

distribution for the centering function F0, which affords a recognizable posterior full

conditional distribution – the piecewise truncated inverse gamma distribution – for Zl.

The scale parameter β of the inverse gamma prior for Zl is chosen using the

offspring density expected over the random mixing distribution, E(g(x)), x ≡ t − ty,

where ty is the parent of t. Then, the expectation E(X) of the density function indicates

the mean distance from the parent, which can be derived as β/4 with the inverse gamma

centering distribution with shape 3 and scale β (Appendix G). The mean distance

should be within the effective support, (0, TO), for the offspring density function. We

choose TO, considering expert advice or existing theories for the distance x in each

application to which the model is applied. The hyperparameter β is selected such that

Pr(0 < β/4 < TO) ≈ 0.999.

The other key parameters of the models are α of the DP prior and (aζ , bζ)

of the GW prior. Generally, α is well known for modulating the discreteness and the

variability of F around F0. In the uniform DP mixture, α also contributes to the

smoothness of f(t|F ). Since the kernel is the uniform density function, the finite DP

mixture yields a stepwise function. Larger values of α produce less discrete mixing

distributions with more distinct locations and, thus, more steps in f(t|F ). Empirically,

we select the gamma prior for α whose effective support reaches 20, which offers a good

balance of the model flexibility and smoothness.
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Finally, the truncation level L of the uniform mixtures is determined, taking

into account the prior expectation of the partial sum of weights: E(
∑L

l=1 ωl|α) = 1 −

{α/(α+ 1)}L for DP and E(
∑L

l=1 ωl|ζ) = 1− ζL for GW, where the expectation of the

partial sum marginalized over α or ζ is approximately 1 under the selected L. Section

3.2.1.2 will present the hierarchical representation of the above uniform-mixture-based

models as well as an overview of posterior inference methods.

3.1.3 Fully NPB model for the full HP intensity function

To achieve fully nonparametric model extensions, we propose models obtained

by combining a semiparametric immigrant model with a semiparametric offspring model.

Denote by I the immigrant process and by O the superposition of offspring processes.

With the branching structure, the fully nonparametric Bayesian (NPB) model based on

two Erlang mixtures is defined as

λ∗(t) =

LI∑
l=1

νl,IGa(t|l, θ−1I ) +
∑
ti<t

[ LO∑
l=1

νl,OGa(t− ti|l, θ−1O )
]
, t ∈ R+

νl,I
ind.∼ Ga(Al,I , c0), Al,I ≡ c0[G0(lθI)−G0((l − 1)θI)],

νl,O
ind.∼ Ga(Al,O, η), Al,O ≡ α0[F0(lθO)− F0((l − 1)θO)],

(3.6)

where G0(t) = t/bG0 and F0(t) = 1−exp{−t/bF0}. The prior is specified, following the

strategy given for each Erlang-mixture-based semiparametric model in Sections 3.1.1

and 3.1.2.1.

Similarly, for the offspring density function supposed to be non-increasing, the

uniform mixtures given in Section 3.1.2.2 can be substituted for the offspring Erlang
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mixture of (3.6). With the branching structure, the fully NPB model using the uniform

mixtures is defined as

λ∗(t) =

LI∑
l=1

νl,IGa(t|l, θ−1I ) +
∑
ti<t

[ ∫
θ−11[0,θ)(t− ti)dF (θ)

]
, t ∈ R+

νl,I
ind.∼ Ga(Al,I , c0), Al,I ≡ c0[G0(lθI)−G0((l − 1)θI)]

F ∼ DP(F0, α0) / GW(F0, ζ),

(3.7)

where the centering distribution F0 in both DP and GW priors is set to an inverse gamma

distribution with shape 3 and mean β/2. Again, the prior for the model parameters is

specified in the same manner as in Sections 3.1.1 and 3.1.2.2.

3.2 Posterior inference

3.2.1 Hierarchical model representation

3.2.1.1 Mixture model for the immigrant intensity function

Here is the hierarchical representation of the semiparametric model incorpo-

rating the Erlang mixture for the immigrant intensity function, as presented in Section

3.1.1. We will refer to this as: the semiparametric model with the immigrant Erlang

mixture; or simply the immigrant Erlang mixture model.
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p(t|ν, θ, ξ,y) =
[ ∏
ti∈I

(

L∑
k=1

νk)Ga(ti|ξi, θ−1)
]

exp
{
−

L∑
l=1

νl

∫ T

0
Ga(u|l, θ−1)du

}
×
[ ∏
ti∈O

γExp(ti − tyi |α)
]

exp
{
−
∑
ti∈t

γ

∫ T−ti

0
Exp(s|α)ds

}

p(ξi|ν) ∝
L∑
l=1

νl∑
k νk

δl(ξi), i : ti ∈ I

p(y) = δ0(y1)

n∏
i=2

Unif(yi|0, 1, . . . , i− 1),

(3.8)

where Unif(yi|0, 1, . . . , i− 1) denotes a discrete uniform probability mass function sup-

pored on a set of non-negative integers {0, 1, . . . , i−1}. We adopted the discrete uniform

prior choice for the branching structure, which was introduced in Ross (2021) for HP

parametric models. δl(t) is the Dirac delta function, such that δl(t) = 1 for t = l. This

representation omits priors for νl, θ, c0, and bG0 , specified in Section 3.1.1.

The HP cluster representation factorizes the likelihood so that we can estimate

separately the immigrant intensity and the excitation function. So, given the branching

structure, we can directly apply the inference method for the NHPP model in Section

2.1.3 to estimating the immigrant intensity. For better mixing in the posterior distri-

bution of θ, we replace the Metropolis-Hastings (M-H) algorithm with the Hamiltonian

Monte Carlo (HMC) algorithm. Appendix C details the MCMC posterior simulation

for the model.

3.2.1.2 Mixture models for the excitation function

The hierarchical representation of the semiparametric model with the Erlang

mixture for the excitation function is as follows:
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p(t|ν, θ, ξ,y) = µnI
[ ∏
i:ti∈O

(

L∑
k=1

νk)Ga(ti − tyi |ξi, θ−1)
]

× exp{−µT} exp
{
−
∑
ti∈t

L∑
l=1

νl

∫ T−ti

0
Ga(u|l, θ−1)du

}

p(ξi|ν) ∝
L∑
l=1

νl∑
k νk

δl(ξi), i : ti ∈ O,

(3.9)

where nI denotes the number of observations belonging to the immigrant process, |{ti :

yi = 0, i = 1, . . . , n}|. Latent variables {y1, y2, . . . , yn} are assigned the discrete uniform

prior, as in (3.8), with the Dirac delta function for y1. You can find the priors for

model parameters νl, θ, and bF0 in Section 3.1.2.1. The model will be called: the

semiparametric model with the offspring Erlang mixture; or the offspring Erlang mixture

model.

We can take posterior samples for model parameters using the general Gibbs

sampling method. Although the Erlang mixture has been adjusted for the excitation

function, the weights νl retain conjugate (gamma) priors. So, we can draw posterior

samples for νl using ready prior-to-posterior updating. The constant immigrant intensity

µ also has a well-known distribution for posterior sampling under its exponential prior.

Details of the MCMC posterior simulation are available in Appendix D.

The other semiparametric approach, based on uniform mixtures, has the fol-
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lowing model representation

p(t|y, µ, γ, ξ,Z) ∝ µnIγnO
[ ∏
i:ti∈O

1

Zξi
1(0,Zξi )

(ti − tyi)
]

exp{−µT} exp
{
−

L∑
l=1

γωlK(Zl)
}

p(ξi|ω) =
L∑
l=1

ωlδl(ξi), i : ti ∈ O,

(3.10)

ω =



ω1 = ν1, ωl = νl
∏l−1
r=1(1− νr), l = 2, . . . , L− 1, ωL =

∏L−1
r=1 (1− νr),

with νl ∼ Be(1, α), α ∼ Ga(aα, bα), l = 1, 2, . . . , L− 1 for DP;

ωl = (1− ζ)ζ l−1, l = 1, 2, . . . , L− 1, ωL = ζL−1, ζ ∼ Be(aζ , bζ) for GW,

K(Zl) =



1

Zl

(∑n
i=1(T − ti)

)
for Zl > T − t1;

r +
1

Zl

(∑n
i=r+1(T − ti)

)
for T − tr+1 < Zl ≤ T − tr, r = 1, . . . , n− 1;

n for 0 < Zl ≤ T − tn.

The hierarchical representation excludes the priors for the branching structure, but they

are the same as in (3.8), and for model parameters Zl, µ, γ, and β, given in Section

3.1.2.2. Throughout the thesis, the models are also referred to as uniform-mixture-based

models.

The posterior inference method for the models is based on the blocked Gibbs

sampler. Specifically, we use the algorithm for estimating the offspring density function,

modeled by the uniform mixture with the DP or GW prior. With an exponential prior

for the constant immigrant intensity µ, we can simply draw the posterior sample for the

parameter from a well-known distribution. The key parameter Zl also has a conjugate
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(inverse gamma) prior. An exponential term in (3.10) involves the functionK(Zl), which

is defined differently based on the postion of Zl in a partition of R+. The parameter

Zl, therefore, has a piecewise truncated (inverse gamma) distribution for its posterior

sampling. A complete description of the MCMC inference method are given in Appendix

E.

3.2.1.3 Fully NPB model

Our fully nonparametric models are constructed by combining two semipara-

metric models. Correspondingly, the hierarchical model representation is created by

incorporating semiparametric model representations. For example, we can derive the

NPB model representation based on the immigrant and offspring Erlang mixtures by

replacing µnI and exp{−µT} of (3.9) with
[∏

ti∈I(
∑L

k=1 νk)Ga(ti|ξi, θ−1)
]

and exp
{
−∑L

l=1 νl
∫ T
0 Ga(u|l, θ−1)du

}
of (3.8). The latent variables of the branching structure

remain the discrete uniform priors and the Dirac delta function.

Given the branching structure, we can separately estimate the immigrant in-

tensity and the excitation function. Therefore, the inference methods for each mixture

(appendices C, D, E) remain applicable to the nonparametric model for each function

estimation.
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3.2.2 Inference for functional

3.2.2.1 First- and second-order intensities

Presented here are the first- and second-order intensity functions, which can

be used to characterize HPs in conjunction with the conditional intensity function. We

begin by defining the HP conditional intensity function using the counting process, which

helps clarify the notion of the two functions. The conditional intensity function can be

interpreted as the conditional expected rate of arrivals at t, given the history H(t), times

observed in [0, t). So, we can write the function as λ∗(t) = E(dN(t)/dt|H(t)), where

N(t) is a counting process at t. The first-order intensity represents an averaged intensity

function over the history. In other words, the first-order intensity λ(t) is the expectation

of the HP conditional intensity function, defined as λ(t) = E(λ∗(t)). The second-order

intensity rt(τ) is the HP covariance structure, given by rt(τ) ≡ Cov(dN(t)/dt, dN(t +

τ)/dτ), τ > 0 and rt(τ) ≡ λ(t), τ = 0. Hawkes (1971a) presented derivations of the two

intensities under a simple parametric model consisting of a constant immigrant intensity

and an exponential offspring density function.

To derive the first-order intensity under our models, we start with a general

expression of the first-order intensity, λ(t) = µ+
∫ t
0 h(u)λ(t− u)du (Laub et al., 2015).

Taking the Laplace transform of the expression yields

L[λ(t)](s) = L[µ](s) + L
[ ∫ t

0
h(u)λ(t− u)du

]
(s), where

L[µ](s) =

∫ ∞
0

exp{−st}µdt =
µ

s

L
[ ∫ t

0
h(u)λ(t− u)du

]
(s) = L[h(t)](s)L[λ(t)](s).

(3.11)
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Under the offspring Erlang mixture model, for which the offspring density is defined

as h(t) =
∑L

l=1 νl(θ
−l/Γ(l))tl−1 exp{−tθ−1}, νl = γωl, the Laplace transform of the

excitation function is derived as

L[h(t)](s) =

∫ ∞
0

exp{−st}
( L∑
l=1

νl
θ−l

Γ(l)
tl−1 exp{−tθ−1}

)
dt

=
L∑
l=1

νl

∫ ∞
0

θ−l

Γ(l)
tl−1 exp{−t(s+ θ−1)}dt

=

L∑
l=1

νl

( 1

sθ + 1

)l
.

(3.12)

Substituting (3.12) into (3.11) provides an analytical form of the Laplace transform of

the first-order intensity, L[λ(t)](s) = µ/
[
s
(
1−

∑L
l=1 νl(sθ + 1)−l

)]
.

Similarly, under the uniform-mixture-based models with the excitation func-

tion h(t) =
∑L

l=1(νl/θl)1(0,θl)(t), νl = γωl, we can derive the Laplace transform of the

first-order intensity as follows

L[h(t)](s) =

∫ ∞
0

exp{−st}
( L∑
l=1

νl
θl

1(0,θl)(t)
)
dt =

1

s

L∑
l=1

νl
θl

(1− exp{−sθl}). (3.13)

Substituting (3.13) into (3.11) yields an analytical form of the Laplace transformed

first-order intensity, L[λ(t)](s) = µ/
[
s
(
1 − (

∑L
l=1(νl/θl)(1 − exp{−sθl}))/s

)]
. By nu-

merical inverse transforms, we can readily obtain the first-order intensities under the

two semiparametric models. Further development of the intensity can be accomplished

by replacing µ with µ(t) for our nonparametric models. Since the immigrant intensity of

the nonparametric models is the Erlang mixture, we can obtain an analogous result to

(3.12) for the Laplace transform of µ(t). Therefore, Laplace transforms of the intensity

of the models remain analytically available.
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In terms of second-order intensity, no analytical solution to the Laplace trans-

form of the function is available. As an alternative, we propose a simpler, intuitive, but

computationally intensive method.

The Monte Carlo integration underlies the method and is used to approximate

the expectations in rt(τ) = E((dN(t)/dt)(dN(t+τ)/dτ))−E(dN(t)/dt)E(dN(t+τ)/dτ).

Each expectation of the second term denotes the first-order intensities at t and t + τ ,

for example, E(dN(t)/dt) = E(E(dN(t)/dt|H(t))) = E(λ∗(t)) = λ(t). With the Monte

Carlo integration, we can find the expectation by averaging realizations of λ∗(t). We can

obtain the expectation E(dN(t+τ)/dτ) in the same manner. For posterior inference, we

draw multiple realizations of λ∗(t) and λ∗(t+ τ) at each MCMC iteration and average

each sequence to find λ(t) and λ(t + τ). Collections of λ(t) and λ(t + τ) from each

iteration provide the posterior distributions of the two first-order intensities at t and

t+ τ .

By the double expectation theorem, the first expectation of the second-order

intensity can be rewritten as E((dN(t)/dt)(dN(t + τ)/dτ)) = E(E((dN(t)/dt)(dN(t +

τ)/dτ)|H(t+τ))) = E(dN(t)/dtE(dN(t+τ)/dτ |H(t+τ))) = E(dN(t)/dtλ∗(t+τ)). For

posterior simulation, we sample realizations of dN(t)/dtλ∗(t+ τ), and then taking the

average gives us an approximation to E(dN(t)/dtλ∗(t + τ)) at each MCMC iteration.

Unlike the simple sampling of λ∗(t + τ), computing dN(t)/dt = limm→0(N(t + m) −

N(t))/m may be challenging. We bypass the calculation by replacing the limit with a

small value of m. We empirically choose m such that, for any m1,m2 < m and fixed

t > 0, (N(t+m1)−N(t))/m1 ≈ (N(t+m2)−N(t))/m2. Some results on the first- and
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second-order intensities are provided in Section 3.3.2.3.

3.2.2.2 Predicted counts of future events

In this section, we describe a simple inference method for prediction. Denote

by (0, T ) the observation window and by A = [T, T ∗) the prediction interval. The

predictive count N(A) indicates the number of points within the prediction interval, A.

For posterior prediction, we draw a realization, on (0, T )∪A = (0, T ∗), from a HP with

intensity specified by model parameters sampled at each MCMC iteration. Counting

points lying in A produces the predictive count N(A), and the collection of N(A) from

each iteration gives the posterior distribution for N(A). As alternatives, we consider

NI(A) and NO(A) for the immigrant predictive count and the offspring predictive count.

The alternative counts are obtained by splitting the predictive count, N(A), using the

branching structure sampled at each MCMC iteration. So, the number of points in A

whose latent variables are equal to 0 becomes NI(A). Similarly, NO(A) can be defined

under the condition that latent variables are not 0.

3.3 Simulation study

Using synthetic data examples, we investigate here the performance of our

models in estimating intensity/density. Section 3.3.2.1 and Section 3.3.2.2 focus on

the semiparametric models with the Erlang mixture for the immigrant intensity or the

excitation function. Section 3.3.2.3 mainly illustrates the nonparametric model and

highlights the model performance by comparison with other models. Section 3.3.3 deals
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with decreasing offspring density examples for the semiparametric models specializing

in non-increasing function estimation.

In the following sections, we will evaluate models primarily by graphical com-

parison between estimated functions and underlying intensity/density functions. For

more objective comparison, Section 3.3.1 introduces some quantitative measures.

3.3.1 Criteria for model assessment and comparison

The graphical comparison between estimated and underlying functions is an

intuitive method. However, a discrepancy in the graphical comparison may occur when

data lacks representativeness. To clarify the source of discrepancies, we should also

conduct the following comparison:

• the histogram of immigrant points and the normalized immigrant intensity; and

• the histogram of distances between offspring and their parents and the normalized

offspring intensity.

Unlike the simple-form normalized immigrant intensity µ(t)/
∫ T
0 µ(u)du, the normal-

ized offspring intensity corresponding to the histogram of the distances is a mixture of

offspring density functions supported on (0, T − ti), where {ti} is a set of all parents.

The shape of the offspring function arises from a sampling method for the offspring

points. In a HP sampling method based on the cluster representation (e.g., Møller and

Rasmussen, 2005, 2006), we draw the offspring distances from a parent ti using the

offspring density function defined on (0, T − ti). So, the collection of all the offspring
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distances has a mixture of the offspring density functions. We come up with a function,

named the aggregate offspring density function, that is a mixture of offspring densities

comparable with the histogram of the offspring distances. Denoted by t an observed

point pattern, {t1, t2, . . . , tn}, the aggregate offspring density function is

q(x|t, ỹ, h) =

∑ñ
k=1H(T − tỹk)×

(
h(x)

H(T−tỹk )
1(0,T−tỹk )

(x)
)

∑ñ
k=1

∫ T−tỹk
0 h(s)ds

=

∑ñ
k=1 h(x)1(0,T−tỹk )

(x)∑ñ
k=1H(T − tỹk)

.

(3.14)

where H(t) denotes the cumulative excitation function, defined as H(t) =
∫ t
0 h(s)ds,

and ỹ = {ỹk}, k = 1, 2, . . . , ñ, the set of unique values of the branching structure

{y1, . . . , yn} with ñ < n. In the numerator,
(

h(x)
H(T−tỹk )

1(0,T−tỹk )
(x)
)

represents the

offspring density function of the offspring distance from parent tỹk , as in the cluster

representation-based sampling algorithm. The unnormalized weight H(T − tỹk) is also

taken from the algorithm, indicating the expected number of points that will be drawn

from the offspring density function. To cover all offspring distances, we add up the

unnormalized mixtures. Hence, normalizing the mixture yields a distribution to which

the offspring histogram can conform.

During the remainder of this section, we will discuss some numerical criteria

that enable quantitative model comparisons. The first is the total variation distance

(TVD). Based on the target functions to which our estimated cumulative distributions

are matched, we define three TVDs:

• TVDa for the immigrant cumulative distribution;

• TVDb for the offspring cumulative distribution; and

70



• TVDc for the empirical offspring distribution.

TVDc has a target function based on data, while the other TVDs compute the targets

using the underlying intensity functions, such that
∫ t
0 µ(u)du/

∫ T
0 µ(s)ds, t ∈ (0, T ) for

TVDa and
∫ x
0 g(u)du, x > 0 for TVDb. So, we can use TVDc as a goodness-of-fit

measure as well as the aggregate offspring density function. We calculate TVDc by

matching the cumulative aggregate offspring density function to the empirical offspring

distribution.

As another quantitative tool for model assessment, we consider two criteria

based on the branching structure: the immigrant/offspring cluster sizes and the im-

migrant/offspring misclassification with its standardized summary, the misclassification

rate.

The cluster sizes are defined as nI = |{i : yi = 0, i = 1, . . . , n}| for the immi-

grant size and nO = |{i : yi 6= 0, i = 1, . . . , n}| for the offspring size. We can compute

the sizes by plugging the branching structure, sampled at each MCMC iteration, into

the equations. Then, we can compare their posterior means with observed counts of

immigrant/offspring points to evaluate the model.

Next, we introduce the three different misclassification evaluation tools as fol-

lows:

• MI = |{i : yi = 0, ytruei 6= 0, i = 1, . . . , n}| for the immigrant misclassification;

• MO = |{i : yi 6= 0, ytruei = 0, i = 1, . . . , n}| for the offspring misclassification;

• R = (MI +MO)/n for the misclassification rate,
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where ytruei , i = 1, . . . , n denotes the observed branching structure. The immigrant

misclassification identifies how many points classified as immigrants by the branching

structure are actually not immigrants. In a similar way, the offspring misclassification is

also explicable. The misclassification rate gives aggregate and standardized information

about the misclassification criteria.

3.3.2 Synthetic data examples for Erlang mixture models

3.3.2.1 Illustration of immigrant Erlang mixture model

We generated 504 points (397 for immigrants and 107 for offspring) from a HP

with intensity λ∗(t) = 400[0.6We(t|1.5, 2000)+0.4We(t|7, 8000)]+0.2
∑

ti<t
Exp(t−ti|2),

t ∈ (0, 10000). The immigrant intensity function has a non-standard shape, based on

a mixture of two Weibull densities. The simulation study is designed to examine the

flexibility of the immigrant Erlang mixture of the semiparametric model given by (3.1).

Following the prior specification in Section 3.1.1, we took the set of priors: the

Lo(2, 500) prior for θ with L = 80; Exp(0.1) for c0; Exp(0.0252) for bG0 , Ga(2, 4) for γ,

and Exp(1) for a.

Prior specification provides enough prior uncertainty to cover the true function

and even the entire panel (left of Figure 3.1). This is the case for all models with the

immigrant Erlang mixture. Therefore, in the following examples, we omit the prior

uncertainty bands from the panels for immigrant intensity estimates.

The posterior mean for the immigrant intensity function reveals the bimodality

of the underlying intensity, the interval estimates encompassing the true values (left
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Figure 3.1: Weibull mixture immigrant and exponential offspring example. Semipara-
metric model with Erlang mixture immigrant intensity. The left panel displays the
posterior mean (dashed) and the posterior 95% interval estimates (light gray) for the
immigrant intensity function with: the prior 95% uncertainty bands (dark gray); the
underlying immigrant intensity (red solid); and the point pattern (bar) at the bottom.
Similarly, the right panel demonstrates the prior uncertainty bands (dark gray), the
posterior mean (dashed), and the interval estimates (light gray) with the underlying
offspring density function (red solid).

of Figure 3.1). As in the underlying function, the model has an exponential density

function for the offspring density. As a result of choosing such a model, the posterior

mean offspring density function is almost identical to the actual value (right of Figure

3.1). For both cluster sizes, the posterior means for nI and nO are 392 and 112 with

a standard deviation of 6. The estimates are comparable with the true immigrant and

offspring sizes, 397 and 107. The posterior means of the misclassification are MI = 22,

MO = 27, and R = 0.098, respectively. The branching ratio, γ, has the posterior mean

of 0.225 and the posterior 95% interval estimates of (0.180,0.275), which contains true

γ = 0.2. The inferences are made on the basis of 20, 000 posterior samples taken after

20, 000 burn-in steps.
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3.3.2.2 Illustration of offspring Erlang mixture model

We explore the semiparametric model appearing in (3.2) with two examples,

in which the underlying offspring density functions are either the unimodal Weibull or

the two-component Weibull mixture. The offspring functions simulate two possibilities.

Secondary events may be activated after a period of idleness or secondary events may

be intensified twice at specific times.

The HP intensity function of the first example is defined as

λ∗(t) = 0.01 + 0.8
∑
ti<t

We(t− ti|2, 2), t ∈ (0, 10000).

We sampled 534 time points (105 for immigrants and 429 for offspring) from the intensity

function. The priors we used for model fitting are : Exp(37.5) for µ, Lo(2, 0.3) for θ

with L = 50, Exp(0.168) for bF0 , and fixed hyperparameters (2, 4) for (α0, η).

The second example intensity function is defined as

λ∗(t) = 0.01 + 0.8
∑
ti<t

[0.6We(t− ti|2, 2) + 0.4We(t− ti|5, 10)], t ∈ (0, 10000),

from which we generated 500 points (101 for immigrants 399 for offspring). We placed

priors Exp(38.6) on µ, Lo(2, 0.7) on θ with L = 50, Exp(0.0673) on bF0 , and fixed

hyperparameters (2, 4) on (α0, η) for model fitting.

Table 3.1 provides posterior estimates of the immigrant intensity, the branching

ratio, the cluster sizes, and the misclassification. The posterior means of µ and γ

are close to the true values of (0.01, 0.8). The estimated cluster sizes are comparable

to the true sizes: immigrant/offspring sizes (105/429) for the Weibull example and
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µ γ Cluster size Misclassification
nI nO MI MO R

Ex1 0.011(0.001) 0.798(0.039) 107(3) 427(3) 8(3) 6(1) 0.026(0.006)
Ex2 0.011(0.001) 0.786(0.041) 106(5) 394(5) 20(5) 15(1) 0.071(0.010)

Table 3.1: Weibull (top) and Weibull mixture (bottom) examples. Semiparametric
model with Erlang mixture offspring intensity. The posterior means and standard de-
viations for parameters (µ, γ) and quantitative measures.
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Figure 3.2: Weibull (top) and Weibull mixture (bottom) examples. Semiparametric
model with Erlang mixture offspring intensity. The left panels present the posterior
means (dashed) and posterior 95% interval estimates (light gray) for offspring density
functions with: prior uncertainty bands (dark gray) and underlying density functions
(red solid). The right panels display the posterior means and interval estimates for
aggregate offspring density functions as well as data histograms.
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(101/399) for the Weibull mixture example. The estimated functions corresponding to

the non-standard-shape underlying offspring densities corroborate the model flexibility

for the offspring density function (left of Figure 3.2). In the right column are shown the

differences between the aggregate offspring density function and the data histogram.

The top-right panel indicates that the local discrepancy around x = 1.8 in offspring

density estimation on the left is due to the (non-representative) data set. For inference,

we used 20, 000 posterior samples, obtained by 20, 000 burn-in.

3.3.2.3 Illustration of fully NPB model

The section involves three examples with underlying HP intensity functions:

• λ∗(t) = 0.02 + 0.8
∑
ti<t

Exp(t− ti|1), t ∈ (0, 5000)

• λ∗(t) = 200We(t|3, 5000) + 0.6
∑
ti<t

[0.6We(t− ti|2, 2) + 0.4We(t− ti|5, 10)], t ∈ (0, 10000)

• λ∗(t) = 200[0.6We(t|1.5, 2000)+0.4We(t|7, 7500)]+0.6
∑
ti<t

[0.6We(t−ti|2, 2)+0.4We(t−ti|5, 10)],

t ∈ (0, 10000)

Each of the HPs generates 534 (105 for immigrants/429 for offspring), 500 (202/298),

and 542 (206/336) point observations, respectively. We made the following inferences

based on: 30, 000 posterior samples (after 10,000 burn-in) for the first two examples;

and 10, 000 posterior samples (after 30,000 burn-in) for the last example.

In the first example, the data-generating HP uses a conventional choice for

conditional intensity. Hawkes (1971a) introduced the HP with the intensity function,

and Adamopoulos (1976) utilized the HP intensity function in earthquake modeling.

The exponential density function remains a common choice to account for the time
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behavior in the excitation function (e.g., Mohler, 2014). In this section, we will compare

our nonparametric model with a parametric model with the conventional intensity. Since

the data set is derived from the parametric model, the parametric model serves as the

gold standard. We also fit the semiparametric model (3.2) (a simpler alternative to the

nonparametric model with constant immigrant) to the data for the comparison.

The prior for each model is as follows: (parametric model) Exp(18.7) for µ,

Ga(1, 5) for γ, and Exp(1) for rate parameter of the exponential offspring density;

(semiparametric model) Exp(18.7) for µ, Lo(2, 0.5) for θ with L = 50, Exp(0.101) for

bF0 , and fixed hyperparameters (2, 4) for (α0, η); (nonparametric model) Lo(2, 250) for

θI with LI = 50, Exp(0.1) for c0, Exp(0.0534) for bG0 , Lo(2, 0.5) for θO with LO = 50,

Exp(0.101) for bF0 , and fixed hyperparameters (2, 4) for (α0, η).

Figure 3.3 illustrates that our models perform well when it comes to inten-

sity/density estimation. The Erlang mixtures of our models, however, have relatively

large posterior interval estimates compared to the parametric model. Despite the fact

that the immigrant Erlang mixture of the nonparametric model consists of decreasing or

unimodal components, the posterior estimated intensity function captures well the un-

derlying constant function. Furthermore, the Erlang mixture-based immigrant function

retrieves the constant function without over-fitting.

Table 3.2 presents quantitative evaluations of the models. The results of our

semiparametric and nonparametric models are comparable to those of the parametric

model, with the exception of relatively large TVDs.

Figure 3.4 compares estimated first- and second-order intensity functions with
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Figure 3.3: Constant immigrant and exponential offspring example. Parametric (top
row), semiparametric (middle row), and nonparametric (bottom row) models. The left
column represents immigrant intensity estimates. The middle and right columns display
offspring density and aggregate offspring density estimates.

the true functions, which are analytically available in Hawkes (1971a). All models

overestimate the true functions. Nevertheless, we found that their posterior interval

estimates covered the true intensities (not shown). As the parametric model is consid-

ered to be the gold standard, our proposed models are justified in light of comparable

results.

The second example is an extension of the second example in Section 3.3.2.2. In
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Ex1 γ Cluster size Misclassification
nI nO MI MO R

Para 0.798(0.039) 105(4) 429(4) 10(3) 10(2) 0.036(0.006)
Semi 0.808(0.040) 101(5) 433(5) 9(3) 13(4) 0.041(0.008)
NPB 0.805(0.039) 103(5) 431(5) 10(3) 12(3) 0.040(0.008)

TVDa TVDb TVDc

Para 0 0.038(0.025) 0.052(0.021)
Semi 0 0.053(0.024) 0.055(0.020)
NPB 0.037(0.029) 0.056(0.024) 0.056(0.021)

Ex2 γ Cluster size Misclassification
nI nO MI MO R

Semi 0.604(0.042) 198(12) 302(12) 56(9) 60(6) 0.231(0.017)
NPB 0.603(0.042) 198(12) 302(12) 56(9) 60(6) 0.231(0.017)

TVDa TVDb TVDc

Semi 0.035(0.020) 0.082(0.029) 0.093(0.029)
NPB 0.047(0.020) 0.080(0.028) 0.090(0.028)

Ex3 γ Cluster size Misclassification
nI nO MI MO R

NPB 0.622(0.039) 205(10) 337(10) 53(8) 55(4) 0.199(0.014)

TVDa TVDb TVDc

NPB 0.064(0.023) 0.072(0.025) 0.080(0.026)

Table 3.2: The posterior means and standard deviations for γ and quantitative mea-
sures (Ex1: constant immigrant and exponential offspring, Ex2: Weibull immigrant
and Weibull mixture offspring, and Ex3: Weibull mixtures for both immigrant and
offspring).

this example, we have replaced the constant immigrant intensity function with a Weibull

density-based intensity function. Comparison is made between semiparametric and

nonparametric models, where the constant immigrant of the semiparametric model is

replaced by Weibull density-based intensity. Due to the analogy between the immigrant

intensity function and the underlying intensity, the semiparametric model will perform

better in immigrant intensity estimation, serving as a benchmark for evaluating the

nonparametric model.
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Figure 3.4: Constant immigrant and exponential offspring example. First-order (left)
and second-order (right) intensity estimates from each model. Bars at the bottom of
the left panel indicate the observed point pattern.

We set the model parameters to the following priors and values: (semipara-

metric model) Exp(0.0018), Exp(0.1), and Exp(0.0001) for (µ, aψ, bψ), Lo(2, 0.7) for θ

with L = 50, Exp(0.0673) for bF0 , and fixed hyperparameters (2, 4) for (α0, η); (non-

parametric model) Lo(2, 500) for θI with LI = 50, Exp(0.1) for c0, and Exp(0.025) for

bG0 , Lo(2, 0.7) for θ with L = 50, Exp(0.0673) for bF0 , and fixed hyperparameters (2, 4)

for (α0, η).

For the immigrant and offspring functions in Figure 3.5, the posterior estimates

retrieve the Weibull and the Weibull mixture global patterns and contain the true

functions within their 95% posterior interval estimates. In Table 3.2, the relatively

lower TVDa of the semiparametric model is explained by the fact that it has the same

immigrant intensity as the underlying function. Each model struggles to find the second

mode of the offspring density function (second column of Figure 3.5). The estimated
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Figure 3.5: Weibull immigrant and Weibull mixture offspring example. Semiparametric
(top) and nonparametric (bottom) models. Estimates for the immigrant intensity (left),
offspring density (middle), and aggregate offspring density (right) functions.

aggregate offspring density functions of the figure suggest that the difficulty is unrelated

to the data set. Large TVDc also supports this claim with a large discrepancy between

the estimated function and the data. The reason for this could be found from the

relatively large misclassification rate in Table 3.2, compared to the other examples.

From the fact that MO = 60 of nO = 302 points classified as offspring were actually

immigrants, it can be conjectured that the misclassified offspring points contributed to

the shift in the second mode.

The intensity function of the last example is more challenging for standard

parametric models to cover. We fit only the nonparametric model to the data to see
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Figure 3.6: Example of Weibull mixtures for both immigrant and offspring. Nonpara-
metric model. Estimates of the immigrant intensity (left), offspring density (middle),
and aggregate offspring density (right) functions.

the model flexibility.

We specified the model with prior choices: Lo(2, 500) for θI with LI = 50,

Exp(0.1) for c0, Exp(0.0271) for bG0 , Lo(2, 0.7) for θO with LO = 50, Exp(0.0673) for

bF0 , and fixed hyperparameters (2, 4) for (α0, η).

The estimated functions shown in Figure 3.6, reproduce the global pattern

of two bimodalities with interval estimates covering the underlying functions. But,

there are some discrepancies in immigrant intensity estimation, in particular around

t = 5, 000, as well as the relatively large TVDa in Table 3.2, compared to other examples.

As illustrated in the last panel of Figure 3.6, it is not surprising that the estimated

density function in the middle panel has larger scales than the true values at the modes.

In the middle panel, one can also observe a small rightward shift of the first mode. In the

right panel, we are also able to see a slight shift to the right from the data at the mode,

indicating that the shift is not connected with the data. The large TVDc in Table

3.2 supports the claim, as it implies substantial discrepancies between the estimated
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function and the observed data. Possibly, the large misclassification MO = 55 in the

table contributed to the movement.

3.3.3 Synthetic data examples for uniform-mixture-based models

To illustrate the other type of semiparametric model given in Section 3.1.2.2,

we present two examples where the offspring density functions are decreasing. The

intensity functions are defined as

• λ∗(t) = 0.02 + 0.8
∑

ti<t
2/(1 + t− ti)3 for t ∈ (0, 5000); and

• λ∗(t) = 0.01 + 0.8
∑

ti<t
We(t− ti|0.5, 2) for t ∈ (0, 10000).

The power-law and the Weibull (with shape < 1) densities in the excitation functions

have heavy-tailed distributions with polynomial tails. The power-law offspring den-

sity has been widely used for HP modeling in many applications, such as the ETAS

model for earthquake occurrences in Ogata (1988). We generated 534 points (105 for

immigrants/429 for offspring) from each HP intensity function.

Following the prior specification in Section 3.1.2.2, we assigned, in the first

example, priors Exp(18.7) to µ, Ga(2, 4) to γ, Exp(0.0667) to β, Ga(5, 0.25) to α, and

L = 200 for the DP-based model; and the same priors to the common parameters,

(µ,γ,β), and Be(3, 3) to ζ with L = 50 for the GW-based model. The second example

took priors: Exp(37.5) for µ, Ga(2, 4) for γ, Exp(0.0143) for β, Ga(5, 0.25) for α, and

L = 200 for the DP-based model; and, with the same priors for the common parameters,

Be(3, 3) for ζ and L = 50 for the GW-based model.
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Example Model µ γ Cluster size
nI nO MI

Power-law DP 0.022(0.002) 0.797(0.040) 107(4) 427(4) 12(3)
GW 0.022(0.002) 0.797(0.039) 107(4) 427(4) 11(3)

Weibull DP 0.010(0.001) 0.805(0.040) 103(5) 431(5) 18(4)
GW 0.010(0.001) 0.806(0.041) 103(6) 431(6) 18(4)

Misclassification TVDb TVDc

MO R

Power-law DP 9(2) 0.039(0.007) 0.062(0.023) 0.065(0.020)
GW 9(1) 0.039(0.006) 0.059(0.021) 0.057(0.017)

Weibull DP 20(2) 0.072(0.009) 0.070(0.018) 0.071(0.018)
GW 20(3) 0.072(0.008) 0.074(0.016) 0.076(0.018)

Table 3.3: Decreasing offspring density examples. Semiparametric models based on
the Dirichlet process (DP) or geometric weights (GW) prior. The posterior means and
standard deviations of (µ,γ) and quantitative measures.

In Figure 3.7, the left two columns illustrate the flexibility of semiparametric

models in covering the underlying density functions with their interval estimates. Ac-

cording to the estimated aggregate offspring density functions in the right two columns,

the shapes of the posterior mean density functions are justified. For instance, the L-

shaped decreasing pattern around x = 1 in the second example can be explained by the

relatively small sample size at the point, relative to the underlying Weibull density.

Both semiparametric models produce similar inferences. In addition to the

comparable results in offspring density estimation, the quantitative measures in Ta-

ble 3.3 provide analogous values as well. For instance, the posterior estimates of

(µ, γ, nI , nO) from each model are almost identical to each other, which corresponds to

the true values: (0.02, 0.8, 105, 429) for the power-law example and (0.01, 0.8, 105, 429)

for the Weibull example. Accordingly, we will use the DP-based model as the semipara-
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Figure 3.7: Decreasing offspring density examples with: power-law density (top) and
Weibull density (bottom) functions. Semiparametric models based on the Dirichlet
process (DP) or geometric weights (GW) prior. The first two columns present posterior
point (dashed) and posterior 95% interval (light-gray) estimates for the offspring density
function with prior 95% uncertainty bands (dark-gray) and underlying functions (red
solid). The last two columns display posterior point (dashed) and interval (light-gray)
estimates for the aggregate offspring density function with the histogram of all distances
between offspring points and their parents.

metric model for the following real data analysis and simply extend it to the nonpara-

metric model by replacing the constant immigrant with the immigrant Erlang mixture.

All the inferences are based on 20, 000 posterior samples, obtained by discard-

ing 20, 000 burn-in samples.

3.4 Real data analysis

Ogata (1988) provided a catalog of earthquakes with a magnitude of six or

greater that occurred in Japan and its vicinity from 1885 through 1980 (over approx-

imately 34, 711 days). We analyzed 458 point observations (258 main shocks and 200
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aftershocks), which resulted from removing 25 foreshocks from a total of 483 observa-

tions.

In order to evaluate the proposed models, we compared our semiparametric

(Semipara) and nonparametric (Nonpara) models with the ETAS model (Para-P). We

have added the classical parametric HP model (Para-E), which has the exponential

density for the offspring density function, to the comparison. The semiparametric model

was derived by substituting the uniform DP mixture for the power-law formed offspring

density in the ETAS model. The nonparametric model replaced the constant immigrant

intensity of the semiparametric model with the immigrant Erlang mixture. The nested

relationships among the models allow us to examine the effect of immigrant intensity and

offspring density substitution. Since the seismic statistical literature suggests decreasing

functions in time for the excitation function (e.g., Ogata, 1988; Kagan, 1991; Musmeci

and Vere-Jones, 1992; Ogata, 1998), we modeled the offspring density function using

the uniform DP mixture, which focuses on non-increasing densities.

We chose the following set of priors for models’ parameters: Exp(1) for the

rate parameter of the exponential density function for Para-E; and Exp(1) for the two

parameters p and c of the power-law density function for Para-P; Exp(0.15) for β and

Ga(5, 0.25) for α with L = 200 for Semipara; Lo(2, 1800) for θI , LI = 80, Exp(0.1) for

c0, and Exp(0.0065) for bG0 , along with the priors for the uniform DP mixture in the

semiparametric model for Nonpara. We assigned Exp(153) and Ga(2, 4) priors to the

common parameters µ and γ.

We can categorize the quantitative results in Table 3.4 into the ETAS model
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γ Cluster size Misclassification
nI nO MI MO R

Para-P 0.9(0.359) 223(21) 235(21) 48(7) 83(16) 0.288(0.026)
Para-E 0.29(0.029) 326(6) 132(6) 83(5) 15(3) 0.213(0.009)

Semipara 0.299(0.028) 322(5) 136(5) 81(4) 17(3) 0.215(0.009)
Nonpara 0.295(0.028) 324(6) 134(6) 82(4) 16(3) 0.216(0.009)

Table 3.4: The posterior means and standard deviations of the branching ratio, cluster
sizes, and misclassification under each model.

(Para-P) and the other models. Para-P has a large branching ratio estimate compared

to the alternatives, resulting in more points being classified as descendants. It is also

noteworthy that the estimate of offspring misclassification under Para-P is greater than

that of the other group; more importantly, the misclassification rate (R) of the Para-P

group is relatively high. In spite of the fact that the estimated cluster sizes from Para-

P are better (closer to the observed values of 258/200), its large R makes one doubt

the results of classification. Additionally, Para-P has larger posterior variances for all

quantitative measures in the table.

The first row of Figure 3.8 shows Q-Q plots for the time-rescaling theorem,

a graphical measure of model validity (e.g., Daley and Vere-Jones, 2003). Para-E, for

example, performs worse than the other models in the criterion by missing the standard

line around 0.5. In this respect, the nonparametric model would be preferred because

of its wide posterior uncertainty bands, which help contain the standard line within the

interval estimates.

On the second row of the figure are the estimated immigrant intensities from

each model and an estimated function based on the data (purple solid line). The pos-
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Figure 3.8: Earthquake example. Parametric models with the power-law density func-
tion (first column) and the exponential density function (second column), the semipara-
metric model (third column), and the nonparametric model (fourth column). Q-Q plots
in the first row display results from applying the time-rescaling theorem. The next
two rows demonstrate estimated functions for the immigrant intensity and the offspring
density. The solid line (purple) in the second row indicates a data-based estimate µ̃ of

µ, such that
∫ T
0 µ̃dt = 258, the number of immigrant points. Bars at the bottom of the

panel indicate a point pattern of main shocks.

terior interval estimates from Para-E do not cover the purple line, which indicates that

Para-E has a larger immigrant intensity estimated function than the data set suggests.

Unlike the other models, the nonparametric model, due to the immigrant Erlang mix-

ture, yields estimates of the immigrant intensity that are nonstandard in shape. We

should note that the shape of the immigrant intensity estimates is associated with the

shape of estimated first-order intensities, as seen in Figure 3.9. Further discussion will
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Figure 3.9: Earthquake example. The posterior means for the first-order (left) and the
second-order (right) intensities. The left panel includes all point observations (bar) and
a data-based estimate (purple-dotted), defined as λ̃(u) = c with a constant c such that∫ T
0 λ̃(u)du = n = 458.

follow.

In the last row of the figure, the first two panels demonstrate how drastically

different the estimated offspring density functions can be. The difference in offspring

density modeling between the two parametric competitors causes huge discrepancies in

all inferences: the quantitative measures, the Q-Q plot for model validity, the immigrant

intensity function, and the offspring density function. The results highlight a distortion

that may result from the parametric model misspecification, supporting a nonparametric

model for the offspring density function. As indicated by the last two panels of the row,

the change in immigrant intensity modeling has a negligible effect on offspring density

estimation. Furthermore, the change does not produce notable differences in inference

about the quantitative measures. The immigrant Erlang mixture of the nonparametric

model, however, impacts immigrant intensity estimates and associated functions, such
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as the first- and second-order intensities.

The left panel of Figure 3.9 demonstrates the posterior means for the first-

order intensity under each model. It indicates an association between the shapes of

the estimated immigrant intensity function and the estimated first-order intensity. The

point pattern at the bottom of the panel can help explain the non-standard shape of the

estimated first-order intensity under the nonparametric model. For example, the points

congregated around t = 0 and t = 5000 exhibit large intensities near those positions,

which correspond to the first two modes.

Unlike the models, our common prior choice Ga(2, 4) for γ in the ETAS model

leads to some posterior samples of γ > 1, despite the prior placing almost all probabilities

on (0, 1). Under the model, a branching ratio greater than 1 results in a negative

first-order intensity, defined as µ/(1 − γ). Attempts were made to avoid the negative

intensity sampling by using priors supported by (0, 1). However, the posterior samples

of γ ≈ 1, induced by the priors, brought about outliers and highly right-skewed posterior

distributions. Consequently, the outliers contributed to relatively large posterior means,

as shown in Figure 3.9.

The right panel of Figure 3.9 presents estimates of the second-order intensity

at t = 17, 000 for τ ranging from 0 to 20. To empirically examine the estimates from

each model, we extracted the data points lying in (17400,17600). For the collected 12

points, we computed the distance dij = ti − tj , i = 2, . . . , 12, j = 1, . . . , 11, i > j. It

was followed by counting D(k) = |{dij : k− 0.5 < dij < k+ 0.5}|, k = 0, 1, . . . , 20. As a

result, D(0) = 16, D(1) = 20, D(5) = 8 were found to be the three largest values. The
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Figure 3.10: Earthquake example. Posterior predictive distributions, under each model,
for the total count (first row) and associated immigrant (second row) and offspring
(third row) counts of earthquakes that occurred in (1970,1980). The red dashed lines
in each panel indicate the observed counts (27/22/5).

less sharp decreasing rate around τ = 5 under the semiparametric and nonparametric

models can be explained by the large D(5).

Figure 3.10 shows the results of the predicted count, introduced in Section

3.2.2.2. We split the observation window into two sub-intervals: (1885, 1969) for the

training set and (1970, 1980) for the test set. A comparison was made between the pre-

dictive counts and the observed numbers, ntest = 27 (22 main shocks and 5 aftershocks),

of earthquakes that occurred during the last 11 years (about 4000 days). The nonpara-

metric model (last column of the figure) has superior predictive performance, providing

posterior predictive means that are closer to the observed counts. Considering the pre-

diction of immigrants, the ETAS model achieves a competitive result, but its severe

overprediction of the offspring count (aftershock) renders the model no longer competi-
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tive. The nonparametric model has the best performance in predicting offspring counts,

as the mean is closer to the actual count and the variance is smaller, as well as the sec-

ond best prediction result for immigrant counts. Lastly, even though the nonparametric

model performs better than the alternatives, it still overpredicts the test size. It may

be the result of the relatively small test set size averaged over time, ntest/11 = 2.45

earthquakes/year, compared to the averaged training set size, ntraining/85 = 5.07, where

ntraining is the number of earthquakes that occurred from 1885 through 1969.

3.5 Discussion

We have proposed Bayesian nonparametric modeling approaches for the HP

conditional intensity function. Using the cluster representation, the HP can be modeled

through independent NHPPs for immigrants and offspring. Therefore, we can utilize

the Erlang mixture introduced for NHPPs for the immigrant intensity and the excita-

tion function (with modifications). In this study, we have developed semiparametric

models for either the immigrant intensity or the excitation function, which employ the

Erlang mixture modeling framework. Additionally, we have proposed a semiparametric

modeling approach for decreasing offspring densities based on uniform mixtures with

the DP/GW prior. Finally, we have developed nonparametric modelling methods by

combining the immigrant intensity model with one of the offspring models.

We have presented two types of mixture models pertaining to offspring func-

tions, as well as an Erlang mixture for the immigrant intensity. Therefore, the question
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arises as to which model should be utilized when. The data can assist in determining the

immigrant intensity to be used. This intensity is modeled via either a constant function

or an Erlang mixture. Experimental results have revealed a connection between the

shape of immigrant intensity and that of first-order intensity. The first-order intensity

is a non-conditional (averaged over the history) intensity function for the complete data

set. As such, the data histogram provides insight into the shape of first-order intensity

and, by extension, the shape of immigrant intensity. The excitation function is chosen

either based on expert advice or relevant theories in the field to which the model is ap-

plied. A uniform-mixture-based model can, for example, be a flexible option, provided

the offspring density is expected to decrease over time. The Erlang mixture excitation

function, on the other hand, provides a less structured choice because it can depict

functions of more general shapes.

Bayesian nonparametric models for HPs have rarely been explored (some of

the methods were briefly discussed in the Introduction). Donnet et al. (2020) studied

nonparametric models for multivariate HPs with an emphasis on theoretical properties,

such as posterior concentration rates, but without practical discussion on the models.

Inference methods based on Gaussian process (GP) priors have been investigated in the

machine learning literature (e.g., Zhang et al., 2018; Zhou et al., 2019, 2020). Zhang et al.

(2018) transformed the excitation function such that h(x) = g(f(x)), where g(y) = y2

and f(·) is assigned a GP prior. They utilized a specific covariance function in the form of

the Mercer expansion, which facilitated the establishment of closed-form HP likelihood

along with the squared link function, g(y). Zhou et al. (2019) further developed the GP
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model by applying the GP structure to the immigrant intensity for a more flexible model.

Furthermore, they used a variational inference method to achieve efficient inference.

With the squared link function, the variational method allows one to bypass intractable

integrals of exponential terms in the HP likelihood. Note that, given the branching

structure (which is used by all GP-based models), the HP likelihood is decomposed

into NHPP intensities, which contain intractable integrals in the likelihood normalizing

term. Zhou et al. (2020) employed the sigmoid link function rather than the squared link

for the immigrant intensity and excitation functions, that is, h(x) = λ∗g(f(x)), where

g(y) = (1 + e−y)−1, and λ∗ > 0, is an upper bound on h(x). The use of a Gaussian

mixture representation of the link function, involving the Pólya-Gamma distribution,

(Polson et al., 2013) allows efficient handling of the intractable normalizing term in

conjunction with the Campbell’s theorem.

The GP-based approaches have been developed in such a way as to improve

posterior inferences. However, the computational complexity associated with inference

remains the greatest obstacle to their application. For example, the most recent model

in Zhou et al. (2020) has a time complexity greater than O(N3
I + N3

O) for sampling

multivariate normal function values, driven by GPs, in its Gibbs sampling approach,

where NI or NO are the number of points classified as immigrants or offspring based

upon the branching structure. To reduce the time complexity, they applied a sparse GP

approximation by inducing points. But, such an approximation in Zhou et al. (2019)

and Zhou et al. (2020) has a limitation that the inference results vary depending on the

method of locating the inducing points as well as the number of inducing points. In
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contrast, our modeling approach offers significant computational advantages. We have

a parameter for the number of mixture components that may increase time complexity,

but it has no bearing on the size of the point pattern. Moreover, each of the mixture

components in our model has just a single common parameter, and the mixture weights

have ready prior-to-posterior updating by independent gamma conjugate priors. Turn-

ing back to the GP-based methods, a lack of prior sensitivity analysis in the literature

raises questions regarding the prior for model parameters and the choice of covariance

function. More importantly, such modeling approaches do not provide information re-

garding the branching ratio, which is crucial to checking the HP stability condition,

whereas our model allows us to control the prior for this key parameter. In addition

to the conditional intensity function estimation, one may be interested in estimating

the first- or second-order intensity, which also characterizes HPs. Our model framework

enables tractable inference for these intensities as well.
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Chapter 4

Marked Hawkes processes for

earthquake occurrences: A Bayesian

semiparametric modeling approach

4.1 Introduction

The marked Hawkes process (MHP) is an extension of the HP obtained by

adding marks, observable variables associated with each time point (Hawkes, 1971a,b).

The marks provide additional features beyond time to the point pattern. For instance,

the magnitude of an earthquake is an important mark for the MHP in seismology

applications. Parametric models, e.g., the Epidemic Type Aftershock-Sequences (ETAS)

model, have been widely used to represent and estimate the MHP intensity function for

forecasting earthquakes (e.g., Ogata, 1988, 1998). As another example, the type of crime

serves as a mark for the MHP to detect the dynamics of crime in criminology (Mohler,
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2014). Each type of crime is assigned a parameter, which gives a constant multiplicative

effect on the intensity function. Meyer et al. (2012) introduced a spatio-temporal MHP

model for predicting the incidence of an infectious disease, called invasive meningococcal

disease. They defined the mark as finetype, a unique combination of serogroup; each

finetype had a different level of an exponential multiplicative effect on the intensity

function.

This chapter develops models for temporal MHPs with a single continuous

mark. The focus is on applications to estimation of the intensity of earthquake occur-

rences, with earthquake magnitude providing the mark.

Regarding inference about the MHP intensity function in seismology applica-

tions, Ogata (1988) introduced a temporal MHP model referred to as the (ordinary)

ETAS model, which was later extended to spatio-temporal MHP models (e.g., Ka-

gan, 1991; Musmeci and Vere-Jones, 1992; Ogata, 1998). The temporal model and the

spatio-temporal extension have been further extended by making some model parame-

ters to vary in time (Kumazawa and Ogata, 2014) or space (Ogata et al., 2003; Nandan

et al., 2017). When it comes to Bayesian approaches, Rasmussen (2013) illustrated

Bayesian inference for the ETAS model with methods based on: the MHP intensity

function; the cluster representation and NHPP intensity functions. Ebrahimian et al.

(2014) and Ebrahimian and Jalayer (2017) proposed seismicity forecasting approaches

based on Bayesian inference under the ETAS model. Ross (2021) applied the cluster

representation-based method for a more computationally efficient algorithm.

Here, we propose a flexible and computationally efficient model for temporal
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MHP intensity functions, motivated by earthquake modeling applications. Our model

represents a key part of the intensity function, the ground process excitation function,

as a weighted combination of basis functions. Each basis has a multiplicative form of

an Erlang density for time and a polynomial function for the mark. The non-negative

mixture weights are defined through increments of a random measure H, to which

we assign a gamma process prior. Mixture weights driven by the prior specification

on H result in flexible shapes for the excitation function, and in tractable posterior

sampling for the primary model parameters (i.e, the mixture weights). To the best of

our knowledge, the proposed model is the first nonparametric method for marked HPs

applied to earthquake data. Moreover, unlike all existing ETAS models, our model does

not assume factorization of the excitation function into two separate functions for time

and the mark. As an important practical consequence, we can estimate magnitude-

dependent aftershock densities.

The outline of the chapter is as follows. Section 4.2 provides background for

the MHP, including the definition of the MHP intensity function, the likelihood, and

stability conditions MHPs. Section 4.3 presents the modeling and inference methodology

for MHP intensities. The modeling approach is illustrated with synthetic and real data

in Sections 4.4 and 4.5. Finally, Section 4.6 concludes with a summary and a general

discussion.
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4.2 Background

Denote by κ the mark for the process, assumed to be a continuous and positive-

valued variable (the earthquake magnitude in our motivating application). Then, the

conditional intensity function λ∗(t, κ) of the MHP is defined as λ∗(t, κ) = λ∗g(t)f
∗(κ|t),

where λ∗g(t) denotes the intensity function of the ground process. The difference is in

the history H(t) of the intensity function: in the ground process intensity, the history

consists of previous times ti and marks κi such that H(t) = {(ti, κi) : ti < t} not just a

sequence of times as in the HP intensity function. More specifically, the ground process

intensity function takes the form

λ∗g(t) = λg(t|H(t)) = µ(t) +
∑
ti<t

h(t− ti, κi),

with µ(t) > 0 for t > 0 and h(xi, κi) > 0 for xi = t− ti > 0.

The other factor of the MHP intensity is the mark density function f∗(κ|t);

generally, the density function is conditioned on both time and the history. But, the

mark density function independent of the history, such that f∗(κ|t) = f(κ|t), has been

widely used. Such a mark is named the unpredictable mark, and, as a representative

example, the ETAS model has a special-type unpredictable mark whose density function

is defined as f∗(κ|t) = f(κ). Separately, if a process has the mark density independent

of the history, but also the ground process is independent of the mark history (still,

dependent on the time history), the mark is called the independent mark (Daley and

Vere-Jones, 2003, Proposition 7.3.V). We will focus on the special-type unpredictable

mark as in the ETAS model.
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Denote by {(ti, κi)}, i = 1, . . . , n, a realization from a MHP with intensity

λ∗(t, κ) = λ∗g(t)f(κ) on (0, T )×K. The likelihood of the MHP realization is defined as

(Daley and Vere-Jones, 2003, Proposition 7.3.III)

[ n∏
i=1

f(κi)
][ n∏

i=1

λ∗g(ti)
]

exp
{
−
∫ T

0
λ∗g(u)du

}
.

Since the ground process intensity is in the form of the HP intensity function, the

cluster representation is applicable to the intensity. With the branching structure {yi :

i = 1, . . . , n}, the MHP likelihood can be represented as[ n∏
i=1

f∗(κi|ti)
][

exp
{
−
∫ T

0
µ(u)du

} ∏
{ti∈I}

µ(ti)
]

×
[

exp
{
−

n∑
i=1

∫ T−ti

0
h(u, κi)du

} ∏
{i:ti∈O}

h(t− tyi , κyi)
]
,

(4.1)

where I is the immigrant process such that I = {ti : yi = 0, i = 1, . . . , n}, and O the

superposition of the offspring processes such that O = {ti : yi 6= 0, i = 1, . . . , n}.

As in the HP intensity function modeling in Chapter 3, the excitation function

h(xi, κi) of the ground process requires conditions to prevent the MHP from exploding.

Under the assumption of f∗(κ|t) = f(κ), the conditions are (Daley and Vere-Jones,

2003, Proposition 6.4.VII)

(i) α(κ) =
∫∞
0 h(u, κ)du <∞ for any κ ∈ K; and

(ii) ρ = E(α(κ)) =
∫
K α(κ)f(κ)dκ <∞ is a necessary condition for MHP. Restricting

the value of ρ to the unit interval ensures MHP stability.

The first condition enables the excitation function to be factorized into the total offspring

intensity function α(κ), and the mark-dependent offspring density function gκ(x) =
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h(x, κ)/α(κ). The condition is required for defining MHPs. α(κ) determines the ex-

pected number of points of the offspring Poisson process with intensity h(x, κ) for any

mark κ ∈ K. The quantity, ρ = E(α(κ)) of the second condition provides the expected

offspring count that is averaged over the mark. Therefore, ρ plays the same role as the

branching ratio for unmarked HPs; using ρ, we can define the expected size of a cluster

arising from an immigrant as an infinite sum
∑∞

r=0 ρ
r. The stability condition ρ ∈ (0, 1)

guarantees the geometric series is finite.

We review the ETAS model (Ogata, 1988) to clarify its limitation and the

motivation for our model. Denote by Powlaw(x|p, c) the power-law density function,

defined as pcp/(c+ x)p+1 for p, c > 0. The ETAS model is given by

λ∗g(t) = µ+
∑
ti<t

aα exp{η(κi − κ0)}Powlaw(t− ti|p, c)

f∗(κ|t) = f(κ) = ψ exp{−ψκ}, κ ∈ [κ0,∞) = K,

(4.2)

with positive parameters aα, η, and ψ to be estimated and fixed κ0 > 0.

It makes sense for the occurrence of aftershocks to be affected by the magnitude

of the main shock (or of other precedent aftershocks). For example, the main shock

with a larger magnitude may have more aftershocks occur sooner than later. It may be

possible for subsequent shocks after such a main earthquake to take place in a long time,

over a week or even a month. Therefore, we plan to develop a model for mark-dependent

offspring densities, which also allows flexible increasing shape for α(κ). The exponential

function of α(κ) in the ETAS model may be too restrictive, and indeed, different formed

α(κ) has been introduced for seismic MHP modeling (Ogata and Zhuang, 2006). In that
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sense, our model benefits by providing a more flexible framework for α(κ).

4.3 Methodology

4.3.1 Model formulation

In this section, we propose a Bayesian nonparametric model for h(x, κ) of

the MHP for earthquake applications. Unlike other disciplines, α(κ) is supposed to

increase over κ, earthquake magnitude. In view of the fact that an earthquake of greater

magnitude generates more aftershocks, the increasing total offspring intensity function

makes sense. Notice that α(κ) determines the number of offspring for κ ∈ K. We propose

a model that takes into consideration the trait of α(κ) for aftershock occurrences.

The chapter focuses on modeling the excitation function with a constant immi-

grant intensity function for simplicity. By substituting the immigrant Erlang mixture in

Section 3.1.1 for the constant intensity, one obtains a fully nonparametric model for the

ground process intensity function, with additional flexibility for the immigrant intensity

function.

We consider a parametric mark density function for the special type of unpre-

dictable marks that are independent of both the current time and the MHP history.

Such a parametric mark density provides a ready expression for ρ, the key quantity

related to the HP stability condition as described in Section 4.2. This expression illus-

trates clearly how the integrability modeling condition is satisfied, which will be shown

in Section 4.3.2. Moreover, it allows for efficient handling of the MHP stability condition
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by tuning hyperparameters. Section 4.3.3 provides a strategy for the prior specification

based on the expression and the condition.

Denote by Ga(x|a, b) for x ∈ R+, the gamma density function with shape

a, rate b (or scale b−1), and mean ab. Ga(x|a, b) is also called the Erlang density with

integer shape a. Our model for h(x, κ) is a weighted combination of basis functions, each

of which is constructed by a product of two functions: an Erlang density Ga(x|l, θ−1) and

a polynomial function bm(κ; d). The mixture weights are defined through increments of

a measure H on R+ ×K, assigned a gamma process prior. That is,

h(x, κ) =

L∑
l=1

M∑
m=1

νlmGa(x|l, θ−1)bm(κ; d), x ∈ R+ and κ ∈ (κ0, κmax) = K

νlm = H(Alm), H ∼ G(H0, c0),

(4.3)

where Alm = [(l − 1)θ, lθ) × [(m − 1)/M,m/M), l = 1, . . . , L and m = 1, . . . ,M . Let

uκ ≡ u(κ;κ0, κmax) = (κ−κ0)/(κmax−κ0) for κ ∈ (κ0, κmax). Then, bm(κ; d) is defined

as

bm(κ; d) ≡ b(κ; d,m,M) = mdMum−1κ ,

with a real-valued scalar d. Under the modeling framework, the total offspring intensity

is derived as α(κ) =
∑M

m=1 Vmbm(κ; d), where Vm =
∑L

l=1 νlm. Since the total offspring

intensity function is a mixture of increasing functions bm(κ; d), m = 1, . . . ,M , it satisfies

the increasing characteristic of α(κ) regarding aftershock occurrences. The polynomial

function involves coefficients md and M , and we will next discuss their role in the

modeling framework.

We desired more flexibility on α(κ) for larger M , so introduced a multiplicative
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Figure 4.1: Polynomial functions bm(κ; d): for different values of m under fixed d = 0
(left) and −0.5 (middle); for different values of d under fixed m = 3 (right). M is
constant at 5 in all three panels.

effect M into the function bm(κ; d). The effect ensures that the flexibility of α(κ) is

enhanced with increasing M (shown in Section 4.3.2). The use of md is associated with

the increasing rate of bm(κ; d). The first two panels of Figure 4.1 show the effect of md

on bm(κ; d) by comparison, where the functions in the middle panel are built by adding

the md effect to the functions in the left panel. Contrary to the second panel, a positive

value of d under M = 5 will result in bm(κ; d) that has the relatively large increasing

rate, as compared to the first panel. The third panel of the figure describes the md

effect on bm(κ; d) for different values of d under fixed m = 3 and M = 5. We will make

d random to have the best set of bm(κ; d), m = 1, . . . ,M for fixed M , in terms of the

increasing rate.

The gamma process, G(H0, c0), in (4.3) has a centering measure H0 on R+ ×

(0, 1) and a precision parameter c0 > 0. Placing the prior on H implies that H(Alm),

l = 1, . . . , L, m = 1, . . . ,M follow independent gamma distributions with mean H0(Alm)

and variance H0(Alm)/c0 for any Alm of a partition of (0, Lθ) × (0, 1). Let Alm =
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Al ×Am = [(l− 1)θ, lθ)× [(m− 1)/M,m/M). We consider a productive-form centering

measure, H0(Alm) = H0x(Al)×H0κ(Am), such that

H0x(Al) = (lθ)b1 − ((l − 1)θ)b1 ; H0κ(Am) = b2/M.

The Weibull cumulative hazard with shape b1 (and scale 1) and the expo-

nential cumulative hazard with rate b2 underlie the two separate measures, H0x(Al)

and H0κ(Am). Unlike the Erlang mixture modeling for the NHPP or HP intensities,

the MHP modeling approach does not hold any convergence of the mixture h(x, κ) (cf.

Lemma in Section 2.1.1). Yet, the centering measure is linked to the prior mean of

gκ(x), for example the shape of the hazard function of H0x(Al) determines the shape

of the prior mean for gκ(x). In earthquake applications, because gκ(x) is generally ex-

pected to decrease over x (the distance between an aftershock and its parent), we apply

the Weibull hazard function, which decreases over x under a shape parameter b1 < 1.

Unlike H0x(Al), the exponential cumulative hazard function for H0κ(Am) was chosen for

the sake of brevity (providing a simple-form H0κ(Am) = b2/M with a single parameter

b2). Following is a discussion of the effect of model parameters (b1, b2, c0, L, θ,M, d) on

gκ(x) and α(κ).

Figure 4.2 illustrates the results of 1, 000 realizations of the offspring density

function for different values of the model parameters. In comparison to the first panel,

which represents the baseline model, we can observe the impact of each parameter on

the prior mean or the prior model uncertainty. For example, the first two panels of

the top row indicate that the shape parameter, b1, of H0x(Al) plays a key role in the
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Figure 4.2: Prior mean (solid line) and prior 95% uncertainty bands (shaded area) for the
offspring density function, gκ(x), κ = 5.5, under different choices of model parameters.

shape of gκ(x). The first two panels at the bottom confirm that L and θ still provide a

rough guess about effective support for the offspring density function, as in the NHPP

modeling.

As a result, our model provides the prior mean Eν(α(κ)) and the prior variance

Varν(α(κ)) for α(κ) over the weights νlm in closed-form so that we can detect the effect

of model parameters on α(κ) more explicitly. Under the gamma process prior for H,

the mean and variance are derived as

Eν(α(κ)) =

L∑
l=1

M∑
m=1

E(νlm)bm(κ; d) = (Lθ)b1b2

M∑
m=1

mdum−1κ

Varν(α(κ)) =
L∑
l=1

M∑
m=1

Var(νlm)(bm(κ; d))2 =
(Lθ)b1b2M

c0

M∑
m=1

(mdum−1κ )2.

(4.4)

The precision parameter, c0, of the gamma process is a key parameter for the prior

uncertainty of α(κ). Also, as intended, the prior uncertainty increases as M , the number
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of basis functions that compose α(κ), increases.

We utilize a beta density for transformed marks such that f(κ) = Be(uκ|aβ, bβ),

which facilitates an analytical form of ρ, as shown in the following section.

4.3.2 Model property

The proposed model provides a parsimonious representation of the excitation

function with a common scale parameter, θ, for Ga(x|l, θ−1) and a common single

parameter, d, for bm(κ; d).

The model also exhibits a good balance between model flexibility and compu-

tational efficiency in its implementation of posterior inference: for example, the gamma

prior for the mixture weight, driven by the gamma process prior for H, is conjugate,

which allows us to derive the posterior sample for νlm from independent gamma distri-

butions. Our model can be implemented with an efficient Markov chain Monte Carlo

(MCMC) algorithm that does not require complex computational methods or approxi-

mations to handle the normalizing constant term (provided in Section 4.3.4).

Under the model, we can obtain ready expressions for key functions. For

instance, the total offspring intensity function is derived as

α(κ) =

∫ ∞
0

h(x, κ)dx =

L∑
l=1

M∑
m=1

νlmbm(κ; d) =

M∑
m=1

Vm(mdMum−1κ ), (4.5)

where Vm =
∑L

l=1 νlm. It is a weighted combination of bm(κ; d) with the mixture

weights of gamma random variables Vm ∼ Ga(c0
∑L

l=1H0(Alm), c0). As expected in

earthquake applications, we can observe an increasing pattern over κ. Furthermore, the
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representation establishes that α(κ) satisfies the first MHP stability condition in Section

4.2.

The expectation of α(κ) over κ in terms of the beta mark density is available

in analytical form. That is

ρ =

∫ κmax

κ0

α(κ)f∗(κ)dκ =

M∑
m=1

Vmm
dMBeta(aβ +m− 1, bβ)/Beta(aβ, bβ), (4.6)

where Beta(a, b) is a beta function. The finite mixture fulfills the necessary MHP condi-

tion, the finite expectation of the excitation function. As the equation contains random

variables, such as Vm, the second stability condition, ρ ∈ (0, 1), cannot be strictly en-

forced. Instead, our model allows us to control random ρ by tuning hyperparameters,

placing most probabilities on (0,1).

Most importantly, the offspring density function can be expressed as a weighted

combination of Erlang densities, as follows:

gκ(x) =
h(x, κ)

α(κ)
=

L∑
l=1

(∑M
m=1 νlmbm(κ; d)∑M
m=1 Vmbm(κ; d)

)
Ga(x|l, θ−1) =

L∑
l=1

Wl(κ)Ga(x|l, θ−1).

(4.7)

The mixture weight becomes a function of κ, which permits a mark-dependent offspring

density function.

4.3.3 Prior specification

This section outlines a strategy for specifying two fixed parameters L and

M and the prior for (θ, d, b1, b2, c0, aβ, bβ) of the proposed model. We adopt the prior

specification given in Section 2.1.2 for the parameters θ, L (equivalent to J of the NHPP
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model), and c0. For example, we place, on θ, a Lomax prior with shape 2 (implying

infinite variance), scale dθ, and median dθ(
√

2 − 1), for which we specify dθ such that

Pr(0 < θ < TO) ≈ 0.9, where TO is the upper bound of effective support for gκ(x).

By matching a rough guess Lθ about the effective support to its proxy (0, TO),

we set L to the integer part of TO/θ
∗, where θ∗ is the prior median of θ. A selected L

may serve as a lower bound for sensitivity analysis in applications that require a more

conservative choice of L, i.e., where an intensity function will have non-standard shapes.

The precision parameter, c0, of the gamma process prior takes an exponential

prior with rate ac0 . The hyperparameter is set to a value that gives a conservative upper

bound (empirically chosen) for c0. The following examples of Sections 4.4 and 4.5 have

been performed with ac0 = 0.005, and we observed significant prior-posterior learning

toward 0.

Two independent exponential priors are assigned to (aβ,bβ), taking into con-

sideration their brevity with only two single parameters needed to define them. To

specify the hyperparameters, we compute the mean, κavg, of the observed marks and

match it to the expectation of the beta mark density such that aβ/(aβ + bβ) = (κavg −

κ0)/(κmax − κ0). We replace aβ and bβ with their respective expectations E(aβ) and

E(bβ). With a simple choice E(aβ) = 1, E(bβ) can be derived as E(bβ) = E(aβ)(κmax−

κ0)/(κavg − κ0) − E(aβ) = (κmax − κ0)/(κavg − κ0) − 1. With regard to the equation

for E(bβ), we investigated other values of E(aβ) and observed robustness to the choice

in the examples of Sections 4.4 and 4.5.

The parameter d is assigned the normal distribution N(0, 100) prior with mean
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0 and variance 100. We set the prior mean to 0, which implies bm(κ; d) has no md effect.

We observe that the variance of 100 provides effective support of (−30, 30) for d, which

is empirically large enough for inferences regarding d: in the examples of this chapter,

we saw that the posterior distribution of d was more condensed, with means ranging

from −5 to 5.

Unlike the other fixed parameter L, choosing M is challenging for the model.

The strategy for selecting relevant M for the prior model is unavailable. d and M do

not have any proxies to which their functions can be compared, whereas θ and L have

(0, TO) for effective support, and comparing it to Lθ justifies the choice of L. So, we

determine the value for M by conducting sensitivity analysis, which requires multiple

runs of MCMC. For example, we begin the posterior simulation with a small value of

M , such as 3 or 4, iterate with increasing M values until the impact of increase in

M on estimating the excitation function becomes negligible. Additionally, we may use

the Q-Q plot that is derived from the time-rescaling theorem, terminating the iteration

based on the graphical evaluation of the Q-Q plot.

The shape parameter b1 of H0x determines the shape of gκ(x), as seen Section

4.3.1. One can attain the decreasing characteristic of gκ(x) by setting b1 to less than 1 for

earthquake data sets. We assign the Exp(1) prior to b1, which places large probabilities

on the unit interval.

We employ an exponential prior for b2 and specify the rate parameter using

the stability condition ρ ∈ (0, 1). We can achieve random ρ by substituting selected

values of L and M , and prior means for all parameters into the equation for ρ given
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in (4.6) along with gamma priors for Vm. Then, the hyperparameter for b2 is chosen

using the distribution of ρ, which should cover as much of the unit interval as possible

together with Pr(0 < ρ < 1) ≈ 1.

4.3.4 Posterior inference

Denote by {0 < t1 < t2 < · · · < tn < T} the point pattern observed in time

window (0, T ) and by {κi ∈ K: i = 1, . . . , n} the observed marks. Note that, unlike the

ETAS model, our model defines the mark space as a bounded interval K = (κ0, κmax),

and the additional information about the upper bound κmax is used to transform a mark

κi to uκi . Under our modeling framework with the constant immigrant intensity and

the beta mark density, the MHP likelihood is derived as

[ n∏
i=1

Be(uκi |aβ, bβ)
]

exp
{
−
∫ T

0
µdu

}
exp

{
−

L∑
l=1

M∑
m=1

νlmKlm(θ, d)
}

×
∏
ti∈I

µ
∏
ti∈O

{ L∑
l=1

M∑
m=1

νlmGa(ti − tyi |l, θ−1)bm(κyi ; d)
}
,

(4.8)

where Klm(θ, d) ≡ K(θ, d, l,m) =
∑n

i=1 bm(κi; d)
∫ T−ti
0 Ga(s|l, θ−1)ds. I and O are an

immigrant process and the superposition of offspring processes, respectively.

We augment the likelihood with auxiliary variables ξ = {ξi : i = 1, . . . , n},

where ξi = (ξi1, ξi2) identifies the basis function to which an event (ti, κi) ∈ O is

assigned. Then, the hierarchical model, with the branching structure y = (y1, . . . , yn),
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for the augmented data can be represented as

(t,κ)|y, µ, ξ, θ,ν, d, aβ, bβ ∼
[ n∏
i=1

Be(uκi |aβ, bβ)
]

exp
{
− Tµ

}
µnI

×
L∏
l=1

M∏
m=1

exp
{
− νlmKlm(θ, d)

}
×
∏
ti∈O

{( L∑
r1=1

M∑
r2=1

νr1r2
)
Ga(ti − tyi |ξi1, θ−1)bξi2(κyi ; d)

}

ξi|ν
i.i.d.∼

L∑
l=1

M∑
m=1

νlm( L∑
r1=1

M∑
r2=1

νr1r2

)δ(l,m)(ξi1, ξi2), i = 1, . . . , nO

y ∼ δ0(y1)
n∏
i=2

Unif(yi|0, 1, . . . , i− 1)

νlm|c0, b1, b2, θ
ind.∼ Ga(νlm|c0H0(Alm), c0), l = 1, . . . , L, m = 1, . . . ,M,

(4.9)

where nI/nO individually indicates the number of immigrant/offspring points cate-

gorized by the branching structure. δ(a,b)(x, y) is the Dirac delta function such that

δ(a,b)(x, y) = 1 if x = a and y = b. Unif(x|0, 1, . . . , i − 1) is the discrete uniform prob-

ability mass function. We assign an exponential distribution Exp(aµ) prior to µ, and

the other model parameters (θ, d, aβ, bβ, c0, b1, b2) have the priors enunciated in Section

4.3.3.

Gibbs sampling method is used to undertake posterior inference, resulting

in ready updates for y, ξ, µ, and ν through standard-form posterior full conditional

distributions.

Denoted by D = {t,k} the data set, the posterior full conditional for the
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branching structure y is a discrete distribution such that

Pr(yi = k|µ, θ,ν, d,D) =



µ

µ+
∑i−1

r=1

∑L
l=1

∑M
m=1 νlmGa(ti − tr|l, θ−1)bm(κr; d)

, k = 0;

∑L
l=1

∑M
m=1 νlmGa(ti − tk|l, θ−1)bm(κk; d)

µ+
∑i−1

r=1

∑L
l=1

∑M
m=1 νlmGa(ti − tr|l, θ−1)bm(κr; d)

, k = 1, . . . , i− 1.

The posterior full conditional for each ξi is an independent discrete distribution

on {(l,m) : l = 1, . . . , L, m = 1, . . . ,M} such that Pr((ξi1 = l, ξi2 = m)|θ,ν, d,y,D) ∝

νlmGa(ti − tyi |l, θ−1)bm(κyi ; d).

With the Exp(aµ) prior, the immigrant intensity µ is given a gamma posterior

full conditional distribution with shape nI + 1 and rate T + aµ.

Denote by nlm = |{ti ∈ O : ξi1 = l, ξi2 = m}| for l = 1, . . . , L and m =

1, . . . ,M , the number of offspring points assigned to (l,m)-th basis. The posterior full

conditional distribution for ν is derived as p(ν|ξ, θ, c0, b1, b2,κ) ∝
∏L
l=1

∏M
m=1

[
exp

{
−

νlmKlm(θ, d)
}
νnlmlm Ga(νlm|c0H0(Alm), c0)

]
. Therefore, the mixture weights are inde-

pendently gamma distributed, Ga(νlm|c0H0(Alm)+nlm, c0 +Klm(θ, d)) for l = 1, . . . , L,

m = 1, . . . ,M .

Finally, each of the remaining parameters, θ, d, aβ, bβ, c0, b1, and b2 is updated

with a Metropolis-Hastings (M-H) step, using a log-normal proposal distribution in each

case except for d, for which we use a normal proposal distribution.
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4.4 Simulation study

Using three synthetic data sets, we illustrate the proposed model and present

its characteristics by comparison with two alternative models: the (parametric) ETAS

model and a semiparametric model defined as follows:

h(x, κ) = α(κ)g(x) = aα exp{η(κ− κ0)}
∫
R+

θ−11[0,θ)(x)dG(θ), G ∼ DP(G0, α0).

The semiparametric model shares α(κ) with the ETAS model, and we adopt

the uniform DP mixture in Section 3.1.2.2 to model g(x). The mark density function for

the alternative models assumes an exponential density for κ ≥ κ0, whereas our proposed

model has a beta density function for the transformed mark uκ = (κ−κ0)/(κmax−κ0).

Since our nonparametric modeling framework targets the excitation function,

h(x, κ), the section focuses on inference about α(κ) and gκ(x).

Priors for the alternative models are chosen, considering their prior uncertainty.

In light of the fact that our nonparametric model features a high degree of flexibility, it

is not feasible to make all models’ uncertainty consistent. For the alternatives, we select

priors that may not have the same level of uncertainty as the proposed model, but that

cover at least true α(κ) and gκ(x). The ETAS model has a set of priors as following:

Exp(4) for aα, Exp(1) for η, Exp(0.1) for p and c, and Exp(0.5, η) with support ψ > η

for ψ. The semiparametric model takes the priors, Ga(5, 0.25) for α0, Exp(1) for aZ ,

Exp(1.5) for bZ , and L = 200, along with the analogous priors for aα, η, and ψ. Priors for

the nonparametric model will be given later in each section. The constant immigrant

intensity µ, common for all models, takes exponential priors: Exp(12.4) for the first
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example, Exp(9.8) for the second example, and Exp(11.34) for the third example. We

set the mark space to K = (4, 10) for the nonparametric model and K = [4,∞) for the

ETAS and semiparametric models.

For inference, we collect 2, 000 posterior samples by taking every 9th element

after 2, 000 burn-in from the total 20, 000 MCMC iterations.

4.4.1 Power-law density example

The first data set comprises 808 time points (92 immigrants/716 offspring),

observed over (0, T ) = (0, 5000). They arose from a MHP with ground intensity

λ∗g(t) = 0.02 +
∑

ti<t
0.8 exp{0.1(κi − κ0)}Powlaw(t− ti|20, 2) for t > 0 and mark den-

sity Exp(κ|1, 4, 10), a truncated exponential density function with rate 1 and support

κ ∈ [4, 10]. The offspring density function in the ground process intensity is independent

of κ, so we can detect if the mark-dependent structure of gκ(x) in the nonparametric

model distorts the density estimation.

Following the strategy for the prior specification in Section 4.3.3, we chose the

following priors for the nonparametric model parameters: Lo(2, 0.2) for θ with L = 5;

Exp(1) and Exp(2.5) for b1 and b2; N(0, 100) for d with M = 6; Exp(0.005) for c0;

Exp(1) and Exp(0.2) for aβ and bβ.

In Figure 4.3, all models contain true α(κ) within their interval estimates,

while the nonparametric model has a relatively large posterior variance. Note that the

alternative models have the same form of α(κ) as the true exponential function. Yet, the

nonparametric model yields a competitive posterior estimated function, relatively close
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Figure 4.3: Power-law density example. ETAS (first column), semiparametric (second
column), and nonparametric (third and fourth columns) models. The posterior means
(black line) and 95% interval estimates (shaded area) for: α(κ) with the true intensity
(red line) in the first row; gκ(x) with the true densities (red and blue lines) in the second
row. (b) denotes the Kullback-Leibler divergence under different values of κ.

to the true at some κ. When it comes to gκ(x) estimation, the nonparametric model

encompasses posterior mean estimated functions that correspond to true gκ(x), covered

by the interval estimates, regardless of the κ values (see, (c) and (d) of Figure 4.3). They

are comparable with the parametric estimated function, whose prior model for gκ(x)

has the analogous framework to the true function. Additionally, we calculated the K-L

divergence to quantify the difference between the true and nonparametric estimated

density functions (panel (b) of the figure). There is very little divergence across all

models: they are all roughly 0.004 in median.

Unlike the other models, the absence of a decreasing function in the semipara-

metric modeling framework for gκ(x) results in posterior estimates missing true densities
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at some initial points of the grid.

4.4.2 Mark-dependent power-law density example

We generated a point pattern of size 1020 (207 immigrants and 813 offspring)

from a MHP with ground intensity λ∗g(t) = 0.04+
∑

ti<t
0.35 exp{0.6(κi−κ0)}Powlaw(t−

ti|10 +κi, 1) for t ∈ (0, 5000) and mark density Exp(κ|1, 4, 10). The power-law offspring

density function of the example has dependence on the mark history κi in the shape

parameter.

The intensity function expresses a plausible seismic pattern that aftershocks

associated with greater magnitudes of their parents will probably occur sooner rather

than later, which results in an offspring density function that is more concentrated

around 0.

The nonparametric model took the following priors: Lo(2, 0.03) for θ with

L = 30; Exp(1) and Exp(2.5) for b1 and b2; N(0, 100) for d with M = 6; Exp(0.005) for

c0; Exp(1) and Exp(0.2) for aβ and bβ.

In Figure 4.4, estimated α(κ) of the nonparametric model is comparable with

those of the alternatives, whose prior models for α(κ) are analogous to the true function.

The ETAS and semiparametric models struggle to recapture the underlying gκ(x) for

κ = 9, but the mark-dependent offspring density estimates under the nonparametric

model cover well both the true functions for κ = 5 and 9 (see, (c) and (d) of Figure

4.4). Panel (b) of the figure presents the posterior distributions of the probability mass

in (0, 0.1) for different values of κ. Their increasing pattern over κ corresponds to the

117



4 5 6 7 8 9 10

0
5

10
15

Grid for κ

α(
κ)

4 5 6 7 8 9 10

0
5

10
15

Grid for κ

α(
κ)

4 5 6 7 8 9 10

0
5

10
15

(a)

Grid for κ

α(
κ)

κ  = 5 κ  = 6 κ  = 7 κ  = 8 κ  = 9

0
.7

5
0

.8
0

0
.8

5
0

.9
0

(b)

C
u
m

u
la

tiv
e
 p

ro
b
a
b
ili

ty
: 

P
(X

 <
 0

.1
)

True probability

0.0 0.1 0.2 0.3 0.4

0
5

10
15

20

Grid for x

g κ
(x

)

κ = 5
κ = 9

0.0 0.1 0.2 0.3 0.4

0
5

10
15

20

Grid for x

g κ
(x

)

0.0 0.1 0.2 0.3 0.4

0
5

10
15

20

(c)

Grid for x

g κ
(x

), 
κ 

=
 5

0.0 0.1 0.2 0.3 0.4

0
5

10
15

20

(d)

Grid for x

g κ
(x

), 
κ 

=
 9

Figure 4.4: Mark-dependent power-law density example. ETAS (first column), semi-
parametric (second column), and nonparametric (third and fourth columns) models.
The posterior means (black line) and 95% interval estimates (shaded area) for: α(κ)
with the true intensity (red line) in the first row; gκ(x) with the true densities (red and
blue lines) in the second row. (b) denotes cumulative probabilities for X < 0.1 under
different values of κ.

mark-dependent behavior of the underlying density function.

4.4.3 Mixture of mark-dependent power-law densities example

We consider a data set consisting of 882 points (109 immigrants and 773 off-

spring), generated from a MHP with more complex ground intensity, λ∗g(t) = 0.02 +∑
ti<t

0.25 exp{0.8(κi − κ0)}[0.6Powlaw(t− ti|10 + κi, 1) + 0.4Powlaw(t− ti|10, 1 + κi)]

for t ∈ (0, 5000). Each power-law density of gκ(x) has a mark-dependence either on

the shape or the scale parameter. With a larger mark κi, the density function has

more probabilities near 0 and a longer tail. Such a pattern is another possible behavior

of aftershocks. In particular, the longer tail allows aftershocks to occur weeks or even
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Figure 4.5: Mixture of mark-dependent power-law densities example. ETAS (first col-
umn), semiparametric (second column), and nonparametric (third and fourth columns)
models. The posterior means (black line) and 95% interval estimates (shaded area) for:
α(κ) with the true intensity (red line) in the first row; gκ(x) with the true densities
(red and blue lines) in the second row. (b) denotes tail probabilities for X > 4 under
different values of κ.

months after the parent earthquake with a large magnitude has occurred. The truncated

exponential density Exp(κ|1, 4, 10) is still used as the mark density function.

As for the prior for the nonparametric model, we assigned Lo(2, 0.005) to θ

with L = 200; Exp(1) and Exp(2.5) to b1 and b2; N(0, 100) to d with M = 6; Exp(0.005)

to c0; Exp(1) and Exp(0.2) to aβ and bβ.

In Figure 4.5, the nonparametric model outperforms the alternatives for α(κ)

estimation, providing the posterior mean intensity closest to the true function. Limita-

tion of the ETAS model becomes manifest in gκ(x) estimation: the estimated density

function struggles to retrieve true gκ(x) for the two κ values, especially for κ = 9. The

semiparametric model works better with larger posterior interval estimates to cover
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most of the true values except for the densities near 0 for κ = 9. The nonparametric

model exhibits the most accurate performance in gκ(x) estimation, with its posterior

intervals covering the true densities for both κ = 5 and 9. With various κ values, we

observed that each estimated function had a true gκ(x) within the 95% posterior inter-

val estimates. Panel (b) of Figure 4.5 indicates the posterior distributions of the tail

probability for X > 0.4 in terms of gκ(x) for different κ values. The nonparametric

model provides tail probabilities that increase over κ, as intended by the true density

function.

4.5 Real data analysis

In order to illustrate the proposed model, we present two earthquake examples.

In addition to the analysis of the Japan earthquake catalog discussed in Section 3.4,

we also analyze Southwestern USA earthquakes that have occurred in California and

Nevada over the course of the past century in Section 4.5.2.

In the synthetic data analysis, we compare the ETAS, semiparametric, and

proposed nonparametric models. In order to assess the models, we primarily use the

predictive count criterion, described in Section 3.2.2.2.

We took the following priors for the ETAS and semiparametric models: Exp(4)

for aα, Exp(1) for η, Exp(0.1) for p and c, and Exp(0.5, η) with support ψ > η for ψ for

the ETAS model; Ga(5, 0.25) for α0, Exp(1) for aZ , Exp(1.5) for bZ , and L = 200, along

with analogous priors for aα, η, and ψ, for the semiparametric model. The constant
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Figure 4.6: Japan earthquake point pattern split into main shocks (blue) and aftershocks
(red).

immigrant intensity µ of all models is assigned Exp(139) for the Japan data set and

Exp(181) for the USA data set.

All the following inferences are based on 2, 000 posterior samples, obtained

after 2000 burn-in and 9 step-sized thinning.

4.5.1 Japan earthquake

The earthquake data set used for unmarked HP models is reused here. This

study deals with earthquake occurrence times as well as the magnitudes of earthquakes

associated with them. We split the data and targeted earthquakes (118 points) that

occurred after 1950/01/01 as a test set for prediction, and fitted the models to the

remaining 340 data points (Figure 4.6). The predictive count allows for the evaluation

of models by matching the count with the test set and, as a consequence, for model

comparison.

According to the prior specification in Section 4.3.3, we assigned the following
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priors to the nonparametric model: Lo(2, 0.03) for θ with L = 30; Exp(1) and Exp(3)

for b1 and b2; N(0, 100) for d with M = 12; Exp(0.005) for c0; Exp(1) and Exp(0.2) for

aβ and bβ; Exp(139) for µ. Our selection of L and M was based on sensitivity analysis

through multiple MCMC runs with increasing parameters. We also consider how much

the posterior results on Q-Q plots for the time-rescaling theorem improve with larger L

and M . In the prior, L = 30 and M = 12 are practical choices. For larger L and M , for

example, the improvement in the Q-Q plot was indistinguishable while computing time

grew. We set the mark space to K = (κ0, κmax) ≈ [6, 8.5], the minimum and maximum

of observed marks κi, for the nonparametric model and K = [6,∞) for the ETAS and

semiparametric models.

From a modeling perspective, the ETAS and semiparametric models differ in

the form for gκ(x). As a result, the semiparametric model has a smaller increasing rate

in α(κ) and more probability near 0 in the estimated offspring density function than

does the ETAS model (Figure 4.7). The mixture-form α(κ) of the nonparametric model

yields a relatively small increasing rate in α(κ), compared to the exponential-form α(κ)

in the other models. Since the function refers to the number of aftershocks at κ in

earthquake applications, the smaller rate of increase implies that the model would have

relatively few aftershocks. The mark-dependent offspring density estimates derived from

the nonparametric model indicate that the time between an aftershock and its parent

gets shorter as the magnitude of the parent increases. Therefore, an earthquake with a

large magnitude is more likely to cause aftershocks that occur sooner rather than later.

This pattern results in a higher concentration of the offspring density function at 0 for
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Figure 4.7: Japan earthquakes. The posterior means for: the total offspring intensity
function in the left panel; the offspring density function in the right panel under each
model.

larger κ.

For model comparison, we apply the misclassification criteria described in Sec-

tion 3.3.1 and specifically compute the misclassification rate R = (MI + MO)/n. We

found that the nonparametric model has the smallest posterior mean and standard de-

viation for R: 0.226 and 0.011 for the nonparametric model; 0.232 and 0.023 for the

semiparametric model; and 0.265 and 0.025 for the ETAS model.

In this example, we can evaluate the misclassification rate because the infor-

mation about the type of earthquake (main shock/aftershock) is provided. But, the

predictive count can serve as a more general tool for model comparison, since it can be

calculated solely from the data without any further information. Denote by Npred(B)

the predictive count in B ⊆ [1950, 1980]× [6, 8.5]. We can obtain Npred(B) by counting
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Predictive count: Npred(B), B = [1950,1980]x[6.0,8.5]
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Predictive count: Npred(B), B = [1950,1980]x[6.0,8.5]
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Figure 4.8: Japan earthquakes. Posterior distributions (histogram) for the predictive
count, Npred(B), under the ETAS (left), semiparametric (middle), and nonparametric
(right) models, along with the observed count (i.e., the test set size), Nobs(B) = 118
(red line).

the number of points of a MHP realization that lie in B at every MCMC iteration.

Figure 4.8 displays the posterior distributions of Npred(B) under each model. The semi-

parametric model outperforms the ETAS model when it comes to prediction, with the

posterior predictive mean being nearer the observed value and with a smaller variance.

While all models overpredict the test set size, the nonparametric model yields smaller

posterior predictive variance. Furthermore, we conducted the prediction using another

training and test sets that were divided by a different time, 1970/01/01. The nonpara-

metric model retained its effectiveness with regard to posterior predictive variability.

While in this chapter, we work with a constant immigrant intensity to focus

on excitation function estimation, the data revealed non-constant intensities for the

immigrant point pattern in Section 3.4, where the nonparametric model led to a more

accurate prediction result. We thus extend the MHP model using the Erlang mixture

immigrant intensity prior from Section 3.1.1. The first panel of Figure 4.9 shows the
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Predictive count: Npred(B), B = [1950,1980]x[6.0,8.5]
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Figure 4.9: Japan earthquakes. Fully nonparametric model with non-constant immi-
grant intensity. Posterior mean (gray line) and 95% interval (gray shaded area) esti-
mates of: immigrant intensity (left); and α(κ) and gκ(x) under different κ values (four
panels in the middle). The histogram (gray) in the right panel presents the posterior
predictive distribution. For comparison, the results of the nonparametric model with
constant immigrant intensity are displayed in purple.

result of the immigrant intensity estimation, which indicates a non-constant shape. The

panels in the middle present α(κ) and gκ(x) posterior estimates, which are similar to

the ones (the posterior means in purple) from the nonparametric model with constant

immigrant intensity. The posterior predictive distribution in the last panel highlights the

utility of using the Erlang mixture immigrant intensity. The posterior predictive mean

is much closer to the observed count, with little increase in the variance. The inferences

for the fully nonparametric model are based on 2,000 posterior samples, derived from

40,000 MCMC iterations by 4,000 burn-in and 18 steps thinning.

4.5.2 Southwestern USA (California and Nevada) earthquake

The data set contains 423 earthquakes that occurred from 1921/1/1 to 2020/12/31

in the southwestern USA, with a rectangular region from 32.2◦ to 41◦ latitude and from
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Figure 4.10: Southwestern USA earthquakes (red circle). The radius of the circle indi-
cates the magnitude of the earthquake.

−125◦ to −114◦ longitude. The earthquake catalog contains the magnitude, as well as

the occurrence time and location. We only consider earthquakes of magnitude greater

than 5 in our analysis. Figure 4.10 exhibits the epicenters of earthquakes with their mag-

nitudes shown as radii. As a test set for prediction, we selected the last 170 earthquakes,

which occurred within the last 40 years. A model was then fitted to the remaining 253

earthquakes. Our data set comes from a publicly available earthquake repository at

https://earthquake.usgs.gov/earthquakes/search/.

We considered the following priors for the nonparametric model: Lo(2, 0.005)

for θ with L = 200; Exp(1) and Exp(2.5) for b1 and b2; N(0, 100) for d with M = 12;

Exp(0.005) for c0; Exp(1) and Exp(0.25) for aβ and bβ; Exp(173) for µ. Considering

observed marks with minimum 5.01 and maximum 7.5, we set the mark space to (5, 7.6)
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Figure 4.11: Southwestern USA earthquakes. The posterior means for: the total off-
spring intensity function in the left panel; the offspring density function in the right
panel under each model.

for the nonparametric model and [5,∞) for the alternative models.

In Figure 4.11, the nonparametric model indicates relatively small offspring

intensity estimates and, consequently, fewer aftershocks for each κ. Estimates of off-

spring density from the nonparametric model show small but varying rates of decline in

κ. Increasing κ results in a slower rate of decrease with a smaller probability near 0 and

a longer tail. This pattern suggests that aftershocks from earthquakes of higher mag-

nitude are more likely to occur over a longer period of time. Further, compared to the

Japan earthquakes, the estimated offspring density functions from all models are more

centered around 0. From the results, we can infer that southwestern US earthquakes

have relatively short intervals between aftershocks and their parents.

Plotted in Figure 4.12 are prediction results from each model under three
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Predictive count: Npred(B1), B1 = [1981,2020]x[5.0,7.6]
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Predictive count: Npred(B2), B2 = [1981,2020]x[5.0,6.5)
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Predictive count: Npred(B2), B2 = [1981,2020]x[5.0,6.5)
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Predictive count: Npred(B2), B2 = [1981,2020]x[5.0,6.5)
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Predictive count: Npred(B3), B3 = [1981,2020]x[6.5,7.6]
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Figure 4.12: Southwestern USA earthquakes. Posterior distributions (histogram) for
the predictive count, Npred(B), under the nonparametric (first column), semiparametric
(second column), and ETAS (third column) models, for different domains of B: B1 =
[1981, 2020]× [5.0, 7.6] in the first row; B2 = [1981, 2020]× [5.0, 6.5) in the second row;
B3 = [1981, 2020]× [6.5, 7.6] in the third row. The red line denotes the observed count
in each B.

different prediction domains distinguished by mark intervals (but with a common time

interval): the whole grid [5.0, 7.6] for κ in B1; an initial part of the grid [5.0, 6.5) in B2;
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the remainder of the grid [6.5, 7.6] in B3.

The nonparametric model outperforms the alternatives with a predictive count

corresponding to Nobs(B) with a smaller variance (top row of the figure). For a compre-

hensive prediction result, we separated the mark grid into sub-domains and calculated

the predictive counts in each sub-domain. In nearly all sub-domains, the nonparametric

model provides the best performance, except for the tails of the mark grid. In par-

ticular, the proposed model underpredicts the count Nobs(B3) = 10 compared to the

alternatives (bottom row of the figure).

Furthermore, we have applied the fully nonparametric model in which the Er-

lang mixture immigrant intensity replaces the constant immigrant intensity (results not

shown). The immigrant intensity estimates depart from a constant function less signif-

icantly than those for the Japan earthquake data set. Consequently, the use of mixture

immigrant intensity does not improve prediction accuracy. The fully nonparametric

model may nonetheless be verified as a useful tool for examining the assumption of

constant immigrant intensity underpinning the ETAS model.

4.6 Discussion

We have proposed a Bayesian nonparametric model for the MHP excitation

function. The nonparametric model is defined as a mixture of basis functions, each

of which is composed of an Erlang density for time and a polynomial function for the

mark. Mixture weights are defined through increments of a measure, to which we assign
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a gamma process prior.

It is a key characteristic of this methodology that it strikes a good balance

between model flexibility and computational efficiency. Using the gamma random mea-

sure allows flexibility in the excitation function, so the prior model is able to model

a wide range of offspring intensity and density functions. Additionally, the use of the

gamma process prior enables prior-to-posterior updating of the mixture weight using

gamma posterior full conditional distributions. In our modeling approach, the likelihood

normalization term is handled by an efficient MCMC algorithm that does not require

approximations or advanced computational methods. Moreover, the proposed model

has a parsimonious design; all the basis functions of the mixture model have just two

common parameters θ and d.

More importantly, the proposed model can accommodate mark-dependence for

the offspring density function. The ETAS model in Ogata (1988) assumes a factorization

of the excitation function into the two key functions, α(κ) and g(x). Spatio-temporal

MHP models for earthquake applications also contain structures for the excitation func-

tion from which separate functions for the mark and time are derived (e.g., Ogata, 1988;

Kagan, 1991; Musmeci and Vere-Jones, 1992; Ogata, 1998; Kumazawa and Ogata, 2014;

Nandan et al., 2017). In contrast to existing models, our model results in a mark-

dependent offspring density function, allowing us to explore the aftershocks’ density in

relation to their parents’ magnitude. Indeed, we have applied the model to the Japan

and California earthquakes and found two different patterns in the density function

for the aftershocks. Japan’s earthquakes with larger magnitudes have their aftershocks
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more likely to occur near the parent, resulting in a more concentrated density around

zero. Contrary to this, the larger magnitude earthquakes in California are associated

with aftershocks that occur over a longer period of time, resulting in a longer tail density

for aftershocks.

We have evaluated the model by forecasting earthquakes using the predictive

count. The nonparametric model offers improvement regarding posterior predictive

variability. For brevity, we adopt the assumption of a constant immigrant intensity that

is part of the ETAS model. However, when the actual immigrant intensity is expected

to be non-constant, the fully nonparametric model, which replaces the constant function

with the Erlang mixture, would improve prediction accuracy as in the Japan earthquake

data set.

Even though the proposed model has a number of positive attributes, there

are a few downsides as well. We provide the priors for all parameters of the nonpara-

metric model except for M , which poses a challenge. Accordingly, the selection of M

in this study results from sensitivity analysis with increasing M , thereby necessitating

multiple MCMC runs. Compared to the ETAS model, the proposed model involves

an upper bound for the mark space to transform marks. Although such a bound may

be a restriction for general settings, this is not the case for applications to earthquake

modeling for which it is natural to set an upper bound on earthquake magnitude.

The focus of this chapter is on modeling the excitation function based on the

unpredictable mark assumption, wherein the mark density is independent of the current

time and the MHP history. A future research direction involves models with more
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general mark density functions that are dependent upon the history and are allowed

to be different for main shocks and aftershocks. Model development in this direction

is prompted by the finding that main shocks tend to be of greater magnitude than

aftershocks. The model should provide better estimates of the total offspring intensity

and enhance the prediction of aftershocks.
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Chapter 5

Conclusions

The main objective of this dissertation is to provide a Bayesian nonparametric

modeling and inference framework for Hawkes processes. The methods extend the

inferential scope for the Hawkes process (HP), enabling flexible modeling and tractable

inference for its conditional intensity function.

In Chapter 2, we have developed a Bayesian nonparametric model for NHPP

intensity functions. The method builds from a mixture representation for the intensity

function, for which the basis functions are defined as Erlang densities with common

shape parameter. We assign a gamma process prior to the cumulative intensity function

the increments of which become the mixture weights. The gamma process prior is

the key for model flexibility and computational efficiency in posterior inference. The

cumulative intensity can have large prior uncertainty due to the gamma process prior

with small precision parameter. The model convergence to the intensity function verifies

the model flexibility. The gamma process prior implies independent gamma priors for
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the weights. Along with the simple representation of the normalizing constant under

the model, the conjugate gamma priors facilitate efficient model implementation for

posterior inference.

In Chapter 3, we have proposed Bayesian nonparametric modeling approaches

to HP intensities, based on the Erlang mixture model. The HP cluster representation

with its factorization of the conditional intensity function allows the flexible prior models

to bring their benefits to the HP immigrant intensity and excitation function, including

efficient handling of the likelihood normalizing constant. As an alternative method to

the offspring Erlang mixture, we have developed a nonparametric mixture model based

on the Dirichlet process or the geometric weights prior. The alternative approach focuses

on estimating non-increasing offspring densities. In addition to inference methods for

model parameters, we provide numerical approaches to inference about the HP first-

and second-order intensities. We have considered several criteria for model assessment

and comparison, including branching structure estimators and the predictive count for

future events.

We have further elaborated the Erlang mixture model for the MHP condi-

tional intensity function in Chapter 4, with focus on MHPs for earthquake modeling.

The basis function, whose mixture forms the ground process excitation function, has a

multiplicative form consisting of an Erlang density for time and a polynomial function

for the mark, which corresponds to earthquake magnitude. The beta density function

was chosen as the mark density for its benefit of ready expressions for key functions,

such as the total offspring intensity. The mixture weights are defined through incre-
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ments of a measure, assigned a gamma process prior for flexible modeling and efficient

handling of the likelihood normalizing constant. In addition, since we model the entire

excitation function (not separate functions of the excitation as in the ETAS model), the

proposed method allows the offspring density to vary with the mark. In the context

of earthquake modeling applications, such an offspring density function enables one to

explore the density of an aftershock, whose decreasing rate and/or tail behavior change

according to earthquake magnitude.

Through the thesis, we have introduced and detailed new modeling methods

for HP intensities along with several illustrations with synthetic and real data. A

practically important area for future work involves development of comparison tools

applicable to real data analyses. Graphical comparison using Q-Q plots for the time-

rescaling theorem may not be very informative. For instance, the earthquake data

used for model illustration in real data analyses did not provide remarkable differences

in the plots. A restriction of our quantitative evaluation methods is that it requires,

for model comparison, the immigrant-offspring clustering information for each observed

point. Unlike the Japan earthquake data set, the US earthquake catalog does not involve

the clustering information, so we compared models only though the predictive count.

Developing other comparison criteria will help to study and describe model differences

in real data analyses from different perspectives.

Fixed mixture size L of the Erlang mixture models for NHPP and HP in-

tensities can be justified by brevity in modeling framework and by efficiency in model

implementation. We also have a strategy to choose a relevant L, which can be further
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improved by sensitivity analysis. But, we do not have such a general strategy to specify

M (the number of mixture components for the total offspring intensity) of the MHP

modeling framework, which is a limitation of our model.

Since the modern ETAS model involves spatial information in the excitation

function (e.g., Ogata, 1998; Ogata and Zhuang, 2006), nonparametric models for spatio-

temporal HPs will be a natural and practical extension. In addition, it will be interesting

to study nonparametric MHPs with more general mark densities that depend on the

history, in particular, allowing main shocks and aftershocks to have different mark

distributions for earthquake magnitude.
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Appendix A

Computational performance of the

NHPP Erlang mixture model

To report on computing time for implementing the Erlang mixture model, we

consider the three synthetic data examples of Section 2.2, which allows us to study

the effect of the point pattern size (n) and the number of Erlang basis densities (J).

Tables A.1 and A.2 include computing times (in minutes) for 70,000 MCMC posterior

samples. We also provide estimates for the effective sample size (ESS), that is, the

MCMC sample size adjusted for autocorrelation, thus estimating how many uncorrelated

samples the posterior samples are equivalent to. The ESS was computed using function

effectiveSize of the R coda package. Results for the ESS are based on 60,000 posterior

samples obtained after discarding the first 10,000 samples. The “mean ESS” reported in

the tables is the average of 51 effective sample sizes for λ(tk), for k = 1, . . . , 51, where tk

are equally-spaced points on a grid over (0, T ). All MCMC posterior simulations were
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J = 50 J = 75 J = 100

Computing Time 19.6 25.8 33.9

Mean ESS 3391 3065 2984

Table A.1: Synthetic data from temporal NHPP with bimodal intensity (Section 2.2.3).
Computing time (in minutes) for 70,000 MCMC iterations, and average of effective
sample sizes for the intensity evaluated at 51 grid points in (0, T ), under three different
values of J .

Bimodal (n = 112) Decreasing (n = 491) Increasing (n = 565)

Computing Time 19.6 28.5 29.5

Mean ESS 3391 5792 2122

Table A.2: Synthetic data from temporal NHPP with bimodal/decreasing/increasing
intensity (Section 2.2). Computing time (in minutes) for 70,000 MCMC iterations, and
average of effective sample sizes for the intensity evaluated at 51 grid points in (0, T ),
under J = 50 for all three data examples.

performed on a laptop with an Intel i5-8250U 1.6GHz (8 CPUs) processor.

Increasing J increases the dimension of the parameter space. Table A.1 indi-

cates the corresponding rate of increase in computing time, and decrease in mean ESS.

Under J = 50 for the three synthetic data examples of Section 2.2, Table A.2 shows

how computing time increases with the point pattern size. Note that there is no evident

relationship between mean ESS and the point pattern size.

Figure A.1 provides an illustration of autocorrelation in the MCMC posterior

samples. Plotted for the synthetic data of Sections 2.2.1 and 2.2.2 are averages of

autocorrelation functions (at 48 lags) for the intensity function evaluated at the 51

equally-spaced grid points in (0, T ). The difference in the autocorrelations in the two
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Figure A.1: Synthetic data from temporal NHPP with decreasing/increasing intensity
(Sections 2.2.1 and 2.2.2). Average of autocorrelation functions for the intensity evalu-
ated at 51 grid points in (0, T ).

panels of Figure A.1 is compatible with the corresponding mean ESS given in Table

A.2.

Convergence and mixing of the MCMC algorithm can also be assessed graph-

ically through trace plots of the intensity function evaluated at specific time points

within the observation window. An example is given in Figure A.2 for the synthetic

data of Section 2.2.1. The plots in Figure A.2 are representative of intensity trace plots

obtained for all other data examples.
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Figure A.2: Synthetic data from temporal NHPP with decreasing intensity (Section
2.2.1). Trace plots of posterior samples for the intensity function evaluated at time
points t = 5, 10, 15, 20.
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Appendix B

Comparison with log-Gaussian Cox

process models for spatial NHPP

intensity function

Here, we compare our model with Bayesian nonparametric models based on

Gaussian process (GP) priors for logarithmic or logit transformations of the NHPP

intensity (e.g., Møller et al., 1998; Brix and Diggle, 2001; Adams et al., 2009). Software

in the form of R packages is available for spatial and spatio-temporal log-Gaussian Cox

process (LGCP) models (Baddeley and Turner, 2005; Taylor et al., 2013), although its

output is limited in terms of inferences that are of interest in our setting. Therefore, for

the spatial NHPP case, this section focuses on graphical comparison of point estimates

for the intensity surface in the context of the synthetic data considered in Section 2.3.3.

The LGCP model for spatial NHPP intensities can be expressed as λ(s) =
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λ̃(s) exp(g(s)), where function g is assigned a GP prior with isotropic correlation func-

tion, and variance σ2. The correlation function includes parameter φ > 0, which controls

the rate at which correlation decreases with distance, and it may contain additional pa-

rameters (as in, e.g., the Matérn case). The mean of the GP prior is set to −σ2/2,

which implies E(exp(g(s))) = 1, and thus E(λ(s)) = λ̃(s).

To obtain point estimates for the spatial intensity function under the LGCP

model, one can use two R packages: spatstat (Baddeley and Turner, 2005) for param-

eter estimation, and lgcp (Taylor et al., 2013) for intensity estimation.

The function lgcpPredictSpatial of the lgcp package performs posterior in-

ference for the intensity, obtaining posterior samples for a discretized version of function

g through Metropolis-adjusted Langevin algorithms (Taylor and Diggle, 2014). How-

ever, to use lgcpPredictSpatial, values for σ2 and φ, and function λ̃(s) need to be

provided. Since the lgcp package does not contain any functions for inference about

the LGCP model hyperparameters, we use the spatstat package, which provides non-

Bayesian estimates for σ2, φ, and λ̃(s). In particular, spatstat function density.ppp

computes a nonparametric kernel intensity estimator, which can be used to estimate

λ̃(s). Moreover, function lgcp.estpcf yields estimates for σ2 and φ through a non-

parametric kernel estimator for the pair correlation function.

Evidently, the approach described above is not fully Bayesian. And, since it in-

volves a two-stage estimation procedure, comparison with the Erlang mixture model in

terms of uncertainty estimates is not particularly meaningful. We thus consider graph-

ical comparison of the Erlang mixture model posterior mean intensity estimate with
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Figure B.1: Synthetic data from spatial NHPP with bimodal intensity defined through a
two-component mixture of bivariate logit-normal densities (Section 2.3.3). The top left
panel plots the true intensity function, the top right panel the posterior mean intensity
under the Erlang mixture model, and the two bottom panels the point estimate for the
intensity under the LGCP model with exponential and Matérn GP correlation function.

the point estimates obtained from the LGCP model under two different GP correlation

functions. The comparison is based on the synthetic data example presented in Section

2.3.3, for which we have the true underlying intensity as the point of reference.

The top row of Figure B.1 shows the true intensity, and the posterior mean
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intensity under the Erlang mixture model, obtained under the prior specification dis-

cussed in Section 2.3.3. Note that the Erlang mixture model estimates are fairly robust

to the prior choice for the model hyperparameters, indeed, there is substantial learning

for the hyperparameters under very dispersed priors (refer to Figure 7 of the paper).

The bottom row of Figure B.1 plots the LGCP model point estimates for the

intensity, using either an exponential or a Matérn GP correlation function. We note

that a further challenge with the use of LGCP models is that the spatstat package

does not provide estimation for the additional parameters of correlation functions more

general than the exponential, in particular, it does not provide an estimate for the

smoothness parameter (ν) of the Matérn correlation function. As suggested in Taylor

et al. (2013), we selected the value for ν by comparing graphically the pair correlation

function estimator and the covariance function (with σ2 and φ estimated).

The LGCP model estimates retrieve the bimodal global pattern of the true

intensity, but with localized behavior (especially in the case of the exponential corre-

lation function) that is not present in the underlying intensity surface. In addition to

the challenge of obtaining full inference with appropriate uncertainty quantification, the

sensitivity of the point estimates to the choice of the GP correlation function is evident.
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Appendix C

MCMC posterior simulation for the

immigrant Erlang mixture model

To explore the posterior distribution of parameters of the immigrant Erlang

mixture model, we use Gibbs sampling. Here, we describe MCMC details to complete

the posterior inference outlined in Section 3.2.1.1.

The branching structure latent variables, yi, i = 1, . . . , n, have the discrete

uniform prior with the Dirac delta function for y1. Then, the posterior full conditional

distribution for the latent variables is derived as

Pr(yi = k|ν, θ, γ, α, t) =



∑L
l=1 νlGa(ti|l, θ−1)∑L

l=1 νlGa(ti|l, θ−1) +
∑i−1

r=1 γExp(ti − tr|α)
, k = 0;

γExp(ti − tk|α)∑L
l=1 νlGa(ti|l, θ−1) +

∑i−1
r=1 γExp(ti − tr|α)

, k = 1, . . . , i− 1.

We introduce latent variables {ξi : ti ∈ I} for the hierarchical model repre-

sentation in (3.8). The posterior full conditional of the latent variables is a discrete
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distribution on {1, . . . , L}, such that Pr(ξi = l|ν, θ,y, t) ∝ νlGa(ti|l, θ−1), l = 1, . . . , L.

Let nl = |{ξi = l : ti ∈ I}| for l = 1, . . . , L. Under the Ga(c0θ/b, c0) prior,

induced by the gamma process prior, the posterior full conditional distribution of νl is

given by Ga(nl + c0θ/b,
∫ T
0 Ga(u|l, θ−1)du+ c0).

The branching ratio, γ, has a gamma conjugate prior, given by Ga(aγ , bγ). De-

note by nO the offspring cluster size, defined in Section 3.3.1. The posterior full condi-

tional distribution is available in closed-form, Ga(nO+aγ ,
∑

ti∈t
∫ T−ti
0 Exp(s|α)ds+bγ).

Finally, parameters θ and α and hyperparameters c0 and bG0 of the gamma

process prior are updated with Metropolis-Hastings (M-H) algorithms, using log-normal

proposal distributions.
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Appendix D

MCMC posterior simulation for the

offspring Erlang mixture model

Gibbs sampling plays a central role to explore the posterior distribution of

model parameters. Latent variables of the branching structure, assigned a Dirac delta

function and discrete uniform distributions, as in the immigrant Erlang mixture model,

have the following posterior full conditional distribution

Pr(yi = k|µ,ν, θ, t) =



µ

µ+
∑i−1

r=1

∑L
l=1 νlGa(ti − tr|l, θ−1)

, k = 0;

∑L
l=1 νlGa(ti − tk|l, θ−1)

µ+
∑i−1

r=1

∑L
l=1 νlGa(ti − tr|l, θ−1)

, k = 1, . . . , i− 1.

Under the assumption of constant immigrant intensity, the Exp(aµ) prior pro-

vides the posterior full conditional distribution, Ga(nI + 1, T + aµ), for µ, where nI is

the immigrant cluster size, defined in Section 3.3.1.

Latent variables {ξi : ti ∈ O}, used for the hierarchical representation appear-
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ing in (3.9), have the full conditional distribution in the form of the discrete distribution

on {1, . . . , L}, such that Pr(ξi = l|ν, θ,y, t) ∝ νlGa(ti|l, θ−1) for l = 1, . . . , L.

Under the gamma prior distribution, Ga(Al, η), for the mixture weight νl, the

posterior full conditional distribution is given in closed-form as follows Ga(ã, b̃), where

ã = nl +Al, b̃ =
∫ T
0 Ga(u|l, θ−1)du+ η, and nl = |{ξi = l : ti ∈ I}| for l = 1, . . . , L.

Finally, we use M-H steps with log-normal proposal distributions to sample

parameter θ and hyperparameter bF0 of the gamma process prior.
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Appendix E

MCMC posterior simulation for

uniform-mixture-based models

Posterior inference method for the models is based on the blocked Gibbs sam-

pler, involving additional updating steps for the branching structure, yi, and parameters

µ and γ.

With the priors of a Dirac delta function for y1 and the discrete uniform

distribution yi, i = 2, . . . , n, the posterior full conditional distribution for the latent

variables is defined as

Pr(yi = k|µ,ω,Z, γ, t) =



µ

µ+ γ
∑i−1

r=1

∑L
l=1 ωl

1
Zl

1(0,Zl)(ti − tr)
, k = 0;

γ
∑L

l=1 ωl
1
Zl

1(0,Zl)(ti − tk)

µ+ γ
∑i−1

r=1

∑L
l=1 ωl

1
Zl

1(0,Zl)(ti − tr)
, k = 1, . . . , i− 1

The constant immigrant intensity assumption and the Exp(aµ) prior for µ
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yields the posterior full conditional distribution, Ga(nI + 1, T + aµ).

With the Ga(aγ , bγ) prior for γ, we can derive the posterior full conditional

distribution as Ga(nO + aγ ,
∑L

l=1 ωlK(Zl) + bγ), where nO denotes the offspring cluster

size, defined in Section 3.3.1.

The exponential hyperprior distribution, Exp(aβ), for scale β of the inverse

gamma prior for Zl provides ready prior-to-posterior updating with the posterior full

conditional distribution, Ga(3L+ 1,
∑L

l=1 Z
−1
l + aβ).

Latent variables {ξi : ti ∈ O} for the hierarchical representation of uniform-

mixture-based models have the posterior full conditional distribution derived as Pr(ξi =

l|ω,Z,y, t) ∝ ωl 1
Zl

1(0,Zl)(ti − tyi) for l = 1, . . . , L.

We assign the IG(3, β) prior to scale Zl of the uniform mixtures, which provides

the piecewise truncated inverse gamma distribution as the posterior full conditional

distribution. Denote by ξ∗s distinct values of latent variables {ξi : i ∈ O} for s =

1, . . . , n∗O with the size, n∗O, of the distinct values. Posterior updating Zl is conditioned

on the result, whether l = ξ∗s for any s or not, as follows
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• If l 6= ξ∗s for all s,

Zl|ω, ξ, γ, β,y, t
ind.∼



IG(Zl|3, γωl(
∑n

j=1(T − tj)) + β),

Zl ∈ (T − t1,∞) w/ prob. c0∑n
k=0 ck

;

IG(Zl|3, γωl(
∑n

j=r+1(T − tj)) + β),

Zl ∈ (T − tr+1, T − tr], w/ prob. cr∑n
k=0 ck

;

IG(Zl|3, β), Zl ∈ (0, T − tn], w/ prob. cn∑n
k=0 ck

c0 =
β3

Γ(3)

Γ(3)

(γωl
∑n

k=1(T − tk) + β)3

(∫ ∞
T−t1

IG(s|3, γωl
n∑
k=1

(T − tk) + β)ds
)

cr =
β3

Γ(3)

Γ(3)

(γωl
∑n

k=r+1(T − tk) + β)3

×
(∫ T−tr

T−tr+1

IG(s|3, γωl
n∑

k=r+1

(T − tk) + β)ds
)

exp{−γωlr}, r = 1, . . . , n− 1

cn =
β3

Γ(3)

Γ(3)

β3

(∫ T−tn

0
IG(s|3, β)ds

)
exp{−γωln}

• If l = ξ∗s for any s, s = 1, . . . , n∗O,

Zl|ω, ξ, γ, β,y, t
ind.∼



IG(Zl|3 + nl, γωl(
∑n

j=1(T − tj)) + β),

Zl ∈ (T − t1,∞) w/ prob. c0∑n
k=0 ck

;

IG(Zl|3 + nl, γωl(
∑n

j=r+1(T − tj)) + β),

Zl ∈ (T − tr+1, T − tr] w/ prob. cr∑n
k=0 ck

;

IG(Zl|3 + nl, β), Zl ∈ (0, T − tn], w/ prob. cn∑n
k=0 ck
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c0 =
β3

Γ(3)

Γ(3 + nl)

(γωl
∑n

k=1(T − tk) + β)3+nl

(∫ ∞
b0

IG(s|3 + nl, γωl

n∑
k=1

(T − tk) + β)ds
)

cr =
β3

Γ(3)

Γ(3 + nl)

(γωl
∑n

k=r+1(T − tk) + β)3+nl

×
(∫ T−tr

br

IG(s|3 + nl, γωl

n∑
k=r+1

(T − tk) + β)ds
)

exp{−γωlr}, r = 1, . . . , n− 1

cn =
β3

Γ(3)

Γ(3 + nl)

β3+nl

(∫ T−tn

bn

IG(s|3 + nl, β)ds
)

exp{−γωln}

where nl = |{ξj : ξj = l, tj ∈ O}|, b0 = T − t1, br = min(T − tr,max(T − tr+1,max(tj −

tyj ))), and bn = min(T − tn,max(tj − tyj )).

Under the Dirichlet process prior for the mixing distribution, the posterior full

conditional distribution for ωl is proportional to exp{−
∑L

l=1 γωlK(Zl)}
∏L
l=1 ω

nl
l

∏L−1
l=1 (1−

νl)
α−1. We can represent the distribution through latent variables ν1, . . . , νL−1 as follows

p(ν|ξ,Z, γ, α) ∝ exp{−γ(ν1K(Z1) +
L−1∑
l=2

νl(
l−1∏
r=1

(1− νr))K(Zl) +
L−1∏
l=1

(1− νl)K(ZL))}

× νn1
1

[ L−1∏
l=2

(
νl(

l−1∏
r=1

(1− νr))
)nl]( L−1∏

l=1

(1− νl)
)nL L−1∏

l=1

(1− νl)α−1

We draw the posterior sample of νl from the distribution using slice sampling. It allows

us to sample νl through well-known distributions, the beta and exponential distributions.

The precision parameter, α, of the Dirichlet process, under the Ga(aα, bα)

prior, has the full conditional distribution, Ga(aα + L− 1, bα −
∑L−1

l=1 log(1− νl)).

The geometric weights prior model defines the mixture weight using a single

latent variable ζ. The posterior full conditional distribution for ζ is proportional to

exp{−
∑L−1

l=1 γK(Zl)(1 − ζ)ζ l−1 − γK(ZL)ζL−1}ζ
∑L
l=1(l−1)nl+aζ−1(1 − ζ)

∑L−1
l=1 nl+bζ−1.

We use the M-H algorithm to sample ζ with a Beta proposal distribution to which a

tuning parameter, η, is added for better mixing.
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Appendix F

Derivation of the asymptotic expected

offspring density function under the

offspring Erlang mixture model

Under the offspring Erlang mixture model, taking the expectation of the exci-

tation function h(x) over the weight yields the expected excitation function E(h(x)) =∑L
l=1Alga(x|l, θ−1)/η and thus the expected offspring density function

E(g(x)) =
L∑
l=1

Alga(x|l, θ−1)/α0

=

L−1∑
l=1

[F0(lθ)− F0((l − 1)θ)]ga(x|l, θ−1) + [1− F0((L− 1)θ)]ga(x|L, θ−1),

where Al = α0[F0(lθ)−F0((l−1)θ)], l = 1, . . . , L−1 and AL = α0[1−F0((L−1)θ)]. With

an exponential distribution for F0 such that F0(x) = 1 − exp{−x/bF0}, the expected
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offspring density function can be expressed as

E(g(x)) =
L−1∑
l=1

[exp{−lθ/bF0}(exp{θ/bF0} − 1)]ga(x|l, θ−1)

+ [exp{−Lθ/bF0} exp{θ/bF0}]ga(x|L, θ−1)

=
L∑
l=1

[exp{−lθ/bF0} exp{θ/bF0}]ga(x|l, θ−1)−
L−1∑
l=1

[exp{−lθ/bF0}]ga(x|l, θ−1).

Therefore, the asymptotic density function, as L tends infinity, is derived as

lim
L→∞

E(g(x)) = θ−1 exp{x/θ(exp{−θ/bF0} − 1)}

− θ−1 exp{−θ/bF0} exp{x/θ(exp{−θ/bF0} − 1)}

= [(1− exp{−θ/bF0})/θ] exp{x/θ(exp{−θ/bF0} − 1)},

that is, the exponential density function with rate (1 − exp{−θ/bF0})/θ. Denote by

X the random distance between an offspring point and its parent. The distance X is

distributed according to the offspring density function of HPs. Therefore, the mean

distance under the asymptotic density function is E(X) = θ/(1− exp{−θ/bF0}).
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Appendix G

Derivation of the mean distance for

uniform-mixture-based models

Let F be a random mixing distribution with a DP / GW prior with mean F0.

The expected offspring density over F is given by

E(g(x)) = E
( ∫

θ−11[0,θ)(x)dF (θ)
)

=

∫
θ−11[0,θ)(x)dF0(θ).

Denote by X the random distance between an offspring point and its parent. With

an inverse gamma distribution IG(θ|3, β) with shape 3 and scale β for the centering

function F0, the mean distance is derived as

E(X) =

∫
x
(∫

θ−11[0,θ)(x)IG(θ|3, β)dθ
)
dx =

∫
θ−1
(∫

x1[0,θ)(x)dx
)

IG(θ|3, β)dθ

=

∫
θ−1(θ2/2)β3/γ(3)θ−(3+1) exp{−β/θ}dθ = β3/γ(3)/2

∫
θ−(3+1)+1 exp{−β/θ}dθ

= β3/γ(3)/2× γ(2)/β2 = β/4.
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