
UCSF
UC San Francisco Previously Published Works

Title
TOPAS-Tissue: A Framework for the Simulation of the Biological Response to Ionizing 
Radiation at the Multi-Cellular Level.

Permalink
https://escholarship.org/uc/item/7b06t625

Journal
International Journal of Molecular Sciences, 25(18)

Authors
García García, Omar
Ortiz, Ramon
Moreno-Barbosa, Eduardo
et al.

Publication Date
2024-09-19

DOI
10.3390/ijms251810061
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7b06t625
https://escholarship.org/uc/item/7b06t625#author
https://escholarship.org
http://www.cdlib.org/


Citation: García García, O.R.; Ortiz,

R.; Moreno-Barbosa, E.; D-Kondo, N.;

Faddegon, B.; Ramos-Méndez, J.

TOPAS-Tissue: A Framework for the

Simulation of the Biological Response

to Ionizing Radiation at the Multi-

Cellular Level. Int. J. Mol. Sci. 2024,

25, 10061. https://doi.org/10.3390/

ijms251810061

Academic Editor: Francisco Torrens

Received: 20 July 2024

Revised: 21 August 2024

Accepted: 17 September 2024

Published: 19 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

TOPAS-Tissue: A Framework for the Simulation of the Biological
Response to Ionizing Radiation at the Multi-Cellular Level
Omar Rodrigo García García 1, Ramon Ortiz 2 , Eduardo Moreno-Barbosa 1, Naoki D-Kondo 2, Bruce Faddegon 2

and Jose Ramos-Méndez 2,*

1 Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla,
Puebla 72000, Mexico; omar.garciagarcia@alumno.buap.mx (O.R.G.G.);
eduardo.morenoba@correo.buap.mx (E.M.-B.)

2 Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, USA;
ramon.ortizcatalan@ucsf.edu (R.O.); jorgenaoki.dominguezkondo@ucsf.edu (N.D.-K.);
bruce.faddegon@ucsf.edu (B.F.)

* Correspondence: jose.ramosmendez@ucsf.edu

Abstract: This work aims to develop and validate a framework for the multiscale simulation of
the biological response to ionizing radiation in a population of cells forming a tissue. We present
TOPAS-Tissue, a framework to allow coupling two Monte Carlo (MC) codes: TOPAS with the TOPAS-
nBio extension, capable of handling the track-structure simulation and subsequent chemistry, and
CompuCell3D, an agent-based model simulator for biological and environmental behavior of a
population of cells. We verified the implementation by simulating the experimental conditions for
a clonogenic survival assay of a 2-D PC-3 cell culture model (10 cells in 10,000 µm2) irradiated by
MV X-rays at several absorbed dose values from 0–8 Gy. The simulation considered cell growth and
division, irradiation, DSB induction, DNA repair, and cellular response. The survival was obtained
by counting the number of colonies, defined as a surviving primary (or seeded) cell with progeny,
at 2.7 simulated days after irradiation. DNA repair was simulated with an MC implementation of
the two-lesion kinetic model and the cell response with a p53 protein-pulse model. The simulated
survival curve followed the theoretical linear–quadratic response with dose. The fitted coefficients
α = 0.280 ± 0.025/Gy and β = 0.042 ± 0.006/Gy2 agreed with published experimental data within
two standard deviations. TOPAS-Tissue extends previous works by simulating in an end-to-end way
the effects of radiation in a cell population, from irradiation and DNA damage leading to the cell fate.
In conclusion, TOPAS-Tissue offers an extensible all-in-one simulation framework that successfully
couples Compucell3D and TOPAS for multiscale simulation of the biological response to radiation.

Keywords: Monte Carlo track-structure simulation; agent-based modeling; multiscale modeling;
radiation damage response; PC-3 cell survival

1. Introduction

Monte Carlo (MC) track-structure simulations are essential in the study of radiation
damage to biological matter (see, e.g., [1]). They provide a detailed description of the early
physical and chemical stages of the radiation transport through matter on an event-by-
event basis. Complementary to in vitro experiments, such simulations provide details of
the individual processes that are challenging to measure when the required experimental
spatial–temporal resolution is not achieved due to the subcellular scale.

For decades, MC track-structure codes have been used to simulate the different aspects
of the physical and chemical effects of ionizing radiation at the subcellular level. Such
codes include MOCA8b [2], DBREAK [3], PARTRAC [4], KURBUK [5], Geant4-DNA [6,7],
RITRACKS [8], DaMaRiS [9], and TOPAS-nBio [1]. These codes have been developed to
simulate DNA damage under different irradiation conditions and to explore the spatial
structure of DNA strand breaks and DNA repair. The main target of ionizing radiation
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in biological tissue is the nuclear DNA. It can produce a variety of lesions, including
DNA Double Strand Breaks (DSBs), defined as two DNA Single Strand Breaks (SSBs)
produced on opposite strands of the DNA separated by less than 10 base pairs [5]. DSBs
are difficult to repair by the cell. When DSBs accumulate, unrepaired or mis-repaired, they
can lead to gene mutations and chromosomal aberrations which eventually lead to cellular
death [10,11].

The breaks can be produced directly when ionizing radiation deposits energy on
the DNA molecule, producing physical damage [12], or indirectly, when free radicals
are produced in the medium that can react with the DNA components and produce
chemical damage [3,13]. The initial distribution of lesions depends on the Lineal Energy
Transfer (LET) of the radiation used, which is a parameter that characterizes the density of
ionizations on the medium that the radiation is traversing [2,5].

Previous works have reported the spatial distribution of DNA breaks induced by
direct and indirect actions of radiation in geometrical models of DNA, ranging from DNA
plasmids, chromatin fibers, and whole cell nucleus, see [4,6,12,14–19] (and references
therein). Subsequent DNA repair in MC can be simulated with, e.g., the Two-Lesion
Kinetics (TLK) model [20] in which fatally mis-repaired DSBs produce lethal lesions that
accumulate as an inevitable side effect of the DNA repair [21,22]. The TLK model has
been implemented in Geant4-DNA to calculate the residual number of DNA breaks and
the cell surviving fraction [23]. Another repair model implemented in Geant4-DNA is
proposed by Belov O., et al. (2015) [24], in which the explicit action of repair proteins
is handled by a kinetic biochemical reaction scheme capable of reproducing the gamma-
H2A histone family member X (γ-H2AX) foci fluorescence curves as DNA is repaired [25].
Cellular outcome modeling after unrepaired DNA damage accumulation, linked to the
production of chromosomal aberrations [10,11] and death by mitotic catastrophe, has also
been reported [21]. However, there is still a modeling gap between the DNA damage, its
response, and cellular outcome. For example, no kinetic simulation was performed of
biological processes such as the trigger of biochemical signals between proteins that can
lead to apoptosis or other cell inactivation pathways [26–29]. In part, this can be attributed
to the fact that MC track-structure simulations require a significant computational effort
(weeks or months) to achieve the desired statistical uncertainty of <1% (one standard
deviation) at the nanometer scale. As a consequence, the computation time is prohibitive
for a cell population scenario due to its spatial dimensions.

On the other hand, agent-based modeling (ABM) codes have been used to simulate
the behavior of complex cellular systems from the bottom up, assigning rules on individual
cells, treated as “agents”, to interact between themselves and their environment. The re-
sponse of the entire system results from the combined contributions of the individual agents.
ABM has been used in multiple contexts, from epidemiology to cellular automata [30]. For
research in cellular biology, ABM has been used to simulate mechanistically the behaviors
of individual cells to entire populations [31].

The detail and scale of ABM depends on the number of agents that represent each cell.
For example, in VCell software [32], an individual cell can be constructed with a large set
of agents that represent several sub-cellular compartments, achieving high geometrical
resolution. In contrast, codes like Biocellion [33] can simulate a vast number of cells (~106)
to reach the tissue scale using a single agent per cell. To accomplish such a number, the
cell geometry is simplified to generic shapes such as spheres or cylinders. Compucell3D
software [34,35] provides a scale in between. In this software, cells are constructed by a
moderate number of agents selected from a compromise of resolution and computational
speed. In Compucell3D, each cell geometry model is dynamic with diverse topologies and
can consider several biological processes explicitly simulated with stochastic methods.

Neither MC track structure nor ABM codes are tailored for the complete simulation
of the action of radiation in biological tissues, from the early physical interactions to
long-term biological responses. Existing ABM codes are not designed to simulate the
interaction of radiation with matter, and MC track-structure simulations take too much
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time to simulate cell populations. Therefore, the specialized functions of MC track structure
and ABM approaches are complementary. A multiscale platform that couples both types
of code was developed by Lui R., et al. (2021) [36]. In Lui et al., a vascular tumor model
was simulated with CompuCell3D, and the geometry was translated to the Geant4-DNA
application RADCELL to simulate irradiation. In their platform, the cell’s nucleus and
cytoplasm were represented by two concentric spheres. This geometrical approximation
was reasonably accurate for scoring absorbed dose in the cell’s compartments [36,37]. After
cell irradiation, SSBs and DSBs were quantified with the Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) clustering algorithm [38]. Three cell states were
considered: arrested, healthy, and dead. The transition between the three states was
handled by random sampling of a probability distribution, where parameters were adjusted
with biological data. Nevertheless, DNA repair and the explicit cell damage response were
not simulated. In this way, the computational simulation was efficient, whereas the authors
remarked on the extension capabilities of their platform for the implementation of external
models in future works.

The biological response to radiation involves intricate networks of proteins that con-
trol the intra- and extra-cellular processes, which are determinants of the outcome of
damaged cells. For instance, the p53 tumor control protein has been identified as the
central component of biological radiation response [26,28,29]. When DNA is damaged,
the Ataxia Telangiectasia Mutated (ATM) protein activates, responding to DSB-repair sites
from both the Non-Homologous End Joining (NHEJ) and Homologous Recombination
(HR) pathways [39]. ATM initiates a chain of protein reactions that result in a series of
discrete p53-pulsed signals while DNA is being repaired. p53 protein mediates between
cycle arrest, promoting survival, or apoptosis signaling, like the Caspase3 (Casp3) enzyme
activation, for cells that are beyond repair [29,40]; alterations in the p53 pathways are linked
to carcinogenesis and other cell abnormalities [41]. Kinetic models for this protein reaction
network, coupled with DNA repair models, have been published elsewhere [42–44]. For
Monte Carlo modeling, Hu et al. [45] presented a multiscale platform to simulate the
radiation and cell response in a single-cell approach that integrates the Nanodosimetry
Simulation Code (NASIC) for calculating the initial distribution of DNA lesions, followed
by a DNA damage repair model based on an NHEJ pathway [46] and a model for the p53
protein network [47], including the influence on cell cycle regulation. Incorporation of such
models into a coupled MC track structure–ABM framework would allow the exploration
of effects from a sub-cellular scale to a multi-cellar scale while quantifying observables also
measured in experimental setups.

We present TOPAS-Tissue, a framework with functionalities coded in C++ and Python
(version 3), to couple two MC codes specialized in particular aspects of cell irradiation
and cellular behavior: Tool for Particle Simulation (TOPAS) (version OpenTOPAS.4.0), an
open-source MC code capable of simulating interaction between radiation with complex
biological geometrical models [48,49], using the TOPAS-nBio (version 3.0) extension to
enable track structure simulation [1]; and CompuCell3D (CC3D) (version 4.5), an open-
access platform written on Python for the simulation of cellular biological behaviors [50].
The framework allows the integration of CC3D cellular models in TOPAS, processing
scored physical quantities, quantifying DSBs to each cell, and inputting back to CC3D
for the simulation of cell growth, DNA repair, and cellular response. This is archived by
combining and complementing the capabilities of TOPAS-nBio and CC3D to simulate the
initial radiation damage in detail into the biological consequences and cellular outcome. We
integrate into the framework a DNA repair model based on the TLK model [20,42] coupled
with a cellular response model based on the biochemical response network centered around
the p53 protein [44]. We verified the framework by replicating the experimental conditions
of an in vitro PC-3 cell culture irradiated by MV X-ray within the range of 0–8 Gy.
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2. Results
2.1. TOPAS-Tissue: Workflow

A scheme of the implemented simulation workflow of TOPAS-Tissue is presented
in Figure 1. The workflow goes through three stages: pre-irradiation, irradiation, and
post-irradiation. In the pre-irradiation stage, the CC3D simulation starts creating the
initial geometrical distribution and shape of the cells; cells can grow and replicate during
a user-defined time limit. In the second stage (irradiation), TOPAS-Tissue converts the
geometrical information from CC3D into ready-to-run TOPAS-parameter control files and
sets the irradiation conditions such as dose, particle type, radiation source shape, and
energy spectrum. Then, the simulation of the irradiation is performed in TOPAS. The
current implementation performs the irradiation in a single CC3D Monte Carlo Step (MCS).
Nevertheless, developments are ongoing to allow irradiating during an MCS interval
through the TOPAS time feature [51]. In the current implementation, the number of DSBs is
assigned via the absorbed dose in each cell nucleus (see Section 4.2.3). In the post-irradiation
stage, growth is paused for each cell with at least one DSB, and DNA and cellular repair
models start simulating. The cell growth and division pause mimic the cell cycle arrest
during damage repairing [29]. A more in-depth explanation of each stage is described in
the Section 4.2.
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Figure 1. TOPAS-Tissue workflow showing the three stages of the simulation handled by CC3D (gray),
TOPAS (black), and TOPAS-Tissue (white). Stages are delimited with vertical dashed lines. Arrows
with solid lines indicate the process flow, while with dotted lines indicate the reported quantities.

2.2. Cell Culture Evolution during the Pre-Irradiation Stage

In the pre-irradiation stage, the experimental in vitro PC-3 cell culture setup from
Wakisaka Y. et al. (2023) [52] was reproduced. The initial number of randomly placed cells
was 2.48 cells per 100 µm2 as reported for the initial experimental seeded density in [52],
4 days before irradiation. The cell colonies replicated until the confluence reached 10.2 cells
per 100 µm2, at the irradiation time of 4.1 days after seeding, equivalent to 2500 Monte
Carlo Steps (MCS), which agreed within 1.6% from the value reported in the experimental
setup [52].
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In addition, we determined a set of adhesion values (Table 1) that reproduced the
experimental conditions providing a stable geometry model of rounded cells in sparse
groups that allowed safe mobility between neighbor cells. The time evolution of the
geometrical model for the cell culture is shown in Figure 2.

Table 1. Adhesion parameters between PC-3 cells, their environment, and the flask interface.

Type Medium Flask Alive PC-3 Dead PC-3

Medium 0.0 0.0 1.0 10.0
Flask - 0.0 100.0 100.0

Alive PC-3 - - 10.0 1.0
Dead PC-3 - - - 100.0
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undergo mitosis. The red scaling bar is 18 µm length, which is the average diameter of the PC-3 cells.

2.3. Irradiation Stage and Execution Time

The dose distribution computed with TOPAS in the cell compartments irradiated by
electrons from 4 MV X-rays is shown in Figure 3A. The average number of DSBs followed
a linear response with dose, with a slope of 25.1 DSBs/Gy, as shown in Figure 3B. The
computation time per CPU for the execution of the TOPAS simulation, TTOPAS, scaled lin-
early with the number of simulated electrons, and consequently, with the dose D, following
TTOPAS = 2.9 h·D/Gy + 1.4 h. On the other hand, CC3D execution time remained almost
constant between 1 Gy to 4 Gy (9.13 h) and decreased linearly from 4 Gy to 8 Gy with a
slope of −0.55 h/Gy, as shown in Figure 3C. The reduction of computing time was caused
by the decrease in the number of simulated cells due to the increase in killing with the
increase in dose.
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2.4. Cell-Survival Curve

Results from the multiscale simulation of cell survival as a function of the dose are
shown in Figure 4. Each point corresponds to individual simulations at specific radiation
doses. Error bars represent statistical uncertainties, measuring two standard deviations.
Experimental values from [52] for a 4 MV X-ray beam are also displayed. As depicted,
the simulated curve followed an exponential response. We fitted a linear–quadratic expo-
nential function, obtaining parameters α = 0.280 ± 0.025/Gy and β = 0.042 ± 0.006/Gy2.
These values agreed within one standard deviation from the experimental parameters
α0 = 0.302 ± 0.008/Gy and β0 = 0.0417 ± 0.0049/Gy2 [52].
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3. Discussion

The TOPAS-Tissue framework for the coupling of two MC-based software, TOPAS
and CompuCell3D, was implemented and verified. The framework allowed the multiscale
simulation of cell survival from irradiation to the biological impact on cellular outcome.
Verification included a comparison between simulated and measured cell survival of PC-3
cells under X-ray irradiation.

CC3D, managed by TOPAS-Tissue, was able to reproduce the evolution of the cell
culture during the pre-irradiation stage, archiving a similar value for the final cell density
at the same time period reported in the experiment. Since the setup is based on an in vitro
assay, we assumed optimal conditions for the cell culture in this first approach. In particular,
all cell stages were synchronized, and cell growth followed a constant rate. However, these
and further factors linked to the cell cycle alter biochemical conditions, such as biochemical
signaling in the cellular environment and oxygen availability [53], affecting the cell’s
development and radiosensitivity [54]. To incorporate these considerations in TOPAS-
Tissue, ongoing integration of the PhenoCellPy [55] package for CC3D will follow for
improving the modeling detail of biological behavior. In addition, the effect of oxygen or
the biochemical signaling to neighborhood cells can be modeled with CC3D chemical field
diffusion tools. These tools can be used to simulate the Prostaglandin E2 (PGE2) pro-mitotic
factor that is produced by Casp3 on dying cancer cells and stimulates the repopulation of
surviving cells [56]. CC3D functions also allow for a growth rate that is influenced by the
concentration of such signals [50,53]. In this regard, the perturbation of oxygen fields by
physical–chemical parameters, e.g., dose rate, can be precomputed and incorporated into
simulations through TOPAS-Tissue look-up tables; for applications in FLASH radiotherapy,
see [17].

There are several factors that influence the cell radiosensitivity, such as oxygen avail-
ability, nutrient gradients, and mechanical stress. CC3D has tools to handle all these factors
as diffusive chemical fields. In this way, oxygen and nutrient distribution and cellular
intake–uptake can be accounted for [53]. Mechanical stress is simulated with the Potts
algorithm of CC3D by, e.g., automatically tracking quantities like the internal pressure of
each cell, which is directly related to the mechanical stress [50].

In this work, the DSB assignment to individual cells was derived from the absorbed
dose to each cell nucleus. This approach is a reasonable estimate for MV X-ray irradia-
tion considering the homogeneity of energy deposition events by this radiation quality.
However, the lack of spatial detail distribution of complex damages through the cells must
be considered for other particle types for which the energy is more densely distributed
along their primary track, e.g., proton or carbon ions. Ongoing implementations in TOPAS-
Tissue include alternative methods for DNA damage assignment. For example, clustering
algorithms including DBSCAN are available in TOPAS-nBio for the damage distribution
calculation [12,38] and were used in RADCELL via Geant4-DNA, which was the first work
in reporting the interface between CC3D and Geant4-DNA. In addition, precomputed
lookup tables that relate accumulated micro- and nano-dosimetric quantities with the
probability of lesion inductions and their spatial distribution have been proposed [57].
TOPAS-Tissue has the flexibility and extensibility to compute other relevant physical and
chemical quantities through different TOPAS and TOPAS-nBio scorers to directly calculate
the number of DSBs and their complexity from the incident radiation.

The TLK model used in this work considers two repair pathways corresponding
to slow and fast kinetics. This is a simplification of the actual repair pathways, as it
does not consider explicitly the reactions of the involved proteins. Therefore, cells with
deficient protein expressions, like the XPF-deficient human fibroblasts (XFE), cannot be
simulated with this model. Models that consider an extended set of protein reactions have
been reported elsewhere [24]. However, the pathway for cell fate in the previous work is
not considered.

In this work, the cell fate is simulated with a p53 protein network model that captures
the general dynamics of the biological response to radiation. Mutations on the p53 path-
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way, like the ones on the TP53 gene sensory layer that influence the DNA repair process
activation [58], and other cell behaviors induced by radiation like cell cycle regulation, such
as the phosphorylation of the checkpoint kinases (Chk1 and Chk2) by ATM [56,59], are not
considered. These key players are important for the simulation of normal cells. A model
describing the effect on cell cycle regulation, including the action of Chk1 on cell arrest, has
been reported elsewhere [60]. This and other models to simulate distinct cell behaviors can
be added to TOPAS-tissue in SBML format through CC3D.

The simulated results for the survival curve agreed with experimental data within
two standard deviations, validating the performance of TOPAS-Tissue and the models im-
plemented. However, the current implementation of the cell response only considered one
cell death mechanism (apoptosis) integrated into the p53 pulse model. Future works using
TOPAS-Tissue might consider other cell fate models with different pathways, including
products of mis-repaired damage such as chromosome aberrations [10,11]. In addition,
a model that considers the cell cycle is needed to improve the description of the death
pathways. Future work also consists of integrating the model proposed in Iwamoto et al.
(2011) [60]. In that kinetic model, the protein reactions that control the cell cycle and its
response to radiation damage are considered.

4. Materials and Methods
4.1. Software
4.1.1. CompuCell3D

Compucell3D (version 4.5, accessed on December 2023) is a well-established code for
agent-based modeling of cell behavior. It is based on the Glazier–Graner–Howeg (GGH)
algorithm [61], an evolution of the Cellular Potts Model [62]. Briefly, in the Cellular Potts
Model, the simulation space is discretized in identical geometrical elements or voxels.
A cell is represented by a subset of these voxels identified by a unique index. The time
evolution of the system is managed on a step-by-step basis using Monte Carlo Steps (MCSs).
At each step, a set of voxels from every cell attempt to copy themselves to neighborhood
voxels in a process called an index copy attempt. The probability of success is randomly
sampled from a Boltzmann distribution in terms of the effective energy of each cell. The
effective energy encompasses several constrictions on the cell’s volume, surface, adhesion
to neighbor cells, or response to external chemical stimuli. Growth and mitosis can be
explicitly simulated in this way, for example, by modifying the volume constriction as a
function of time and establishing division conditions. CC3D can handle both the chemical
diffusion of substances in the cell environment and inner biochemical networks in the
individual cell’s microenvironment [63].

In the context of cancer research, this software has been employed to simulate the
invasion of malignant cells into normal tissue [64], vascularized tumors, and the angiogen-
esis process induced by hypoxic cells on its core [53], as well as multiscale models for the
evolution of a tumor’s growth under chemotherapy and the interaction between the drug
and the malignant cell’s biochemical signaling network [65]

4.1.2. TOPAS

The TOPAS version used in this work is OpenTOPAS v4.0 (based on Geant4 v11.1.3)
available on the TOPAS collaboration GitHub (https://github.com/OpenTOPAS, accessed
10 October 2023). This version of the TOPAS code is a continuous development from TOPAS
version 3.9.

TOPAS [48,49] wraps and extends the general-purpose MC toolkit Geant4 [66] via a
user-friendly interface. It has been used extensively to study radiation transport in the field
of medical physics. In radiation biology, its MC track-structure extension TOPAS-nBio has
been validated for the simulation of the physical, pre-chemical, and chemical stages of ioniz-
ing radiation [1,67,68]. TOPAS-nBio has been used to simulate the induction of DNA lesions
by radiation in plasmids under different conditions, including temperature, scavenging
capacity of solutes, and DNA plasmid supercoiling grade [17,19]. For cellular geometries,

https://github.com/OpenTOPAS
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TOPAS-nBio has shown full flexibility to simulate SSB and DSB yields, repair, and dicentric
and acentric fragments [69], dose and ROS enhancement by gold nanoparticles [55], and
nucleus damage by novel radioisotopes [70], among many other applications.

4.2. TOPAS-Tissue: Simulation Stages and Models

TOPAS-Tissue simulations are separated into three stages: pre-irradiation stage, ir-
radiation stage, and post-irradiation stage, explained in more detail in the next sections.
The necessary parameters input into CC3D include the space grid size, initial number of
cells, equivalence between metric units and CC3D internal units (voxels to length units and
MCSs to time units), cell’s volume growth rate, adhesion energy between neighbor cells
and the cell’s environment, and several others shown in Table 2.

Table 2. List of the user tunable parameters and a brief description for each one.

Parameter Description Parameter Description

Xmax Number of voxels on the X direction tdoub Cell’s doubling volume time

Ymax Number of voxels on the Y direction kgrowth Cell’s growth rate

Zmax Number of voxels on the Z direction Tpre Pre-irradiation period duration

voxeq
Equivalence from voxels to length

units NDSB Average number of DSBs per Gy

dt Equivalence from MCSs to time units Np Number of primary particles

rcell Cell radius D Prescribed dose to the phantom

Vcell Cell volume f Fraction of complex DSBs

rnuc Nuclear radius

4.2.1. Pre-Irradiation Cell Culture Growth Stage

In the pre-irradiation stage, CC3D was used to generate the cell population’s geometry
and handle the individual cells’ biological behavior. The TOPAS-Tissue code was designed
to be imported as a Python object in the initialization function of the so-called Steppable
class of CC3D.

CC3D did not provide a system of units. Thus, a function to set the equivalence of unity
voxels to units of length was provided in TOPAS-Tissue. This facilitated the translation of
CC3D geometrical parameters to TOPAS components. The equivalence from the MCSs to
units of time allowed for the synchronization of all the time-dependent processes simulated,
with default parameters set as 1 voxel = 1 µm and 1 MCS = 1 min.

CC3D handled the pre-irradiation stage in which the cell population evolves from
an initial number of seeded cells to a desired confluence (percentage of the surface area
covered by cells). The information for the cell types, their volumes Vi and doubling times
tv, were input to define the growth and division process. These values were stored in a
dictionary, which was accessed and modified by TOPAS-Tissue. One central parameter for
any CC3D simulation is the adhesion energy between different cells and their environment.
This parameter defined the shape, mobility, and proximity to neighbors of a given cell
type. In this work, we determined the optimal adhesion energy value as the value that
allowed us to reconstruct a stable geometric model for the use-case described below. The
geometric model was stored in Potts Initial Format (PIF), a standard data input file in CC3D
simulations [63], which served as a starting point for each simulated irradiation.

4.2.2. Irradiation Stage

At the irradiation stage, TOPAS-Tissue automatically transferred from CC3D to TOPAS
the geometrical information in the form of a voxelated phantom using the TsImageCube
component of TOPAS. The phantom dimensions were inherited from CC3D, whereas the
orientation was set according to the TOPAS coordinate system. The phantom contained
the cell and cell compartment identification numbers as information in each voxel, which
facilitated cell identification in the postprocessing. We assumed the cell’s volume and its
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environment were made of water, thus the TsImageCube component allowed to set water
material to all voxels independently of the voxel value. TOPAS parameter files were created
automatically for the radiation source specifications (particle type, spatial distribution,
angular momentum, and energy spectrum), scoring of physical quantities (e.g., absorbed
dose), visualization, and simulation control. TOPAS was automatically called for a run.
After the irradiation simulation, the output file was processed by TOPAS-Tissue before
sending it back to CompuCell3D to continue the simulation. The output file with the
dose distribution was processed to retrieve the dose on each cell’s compartment (nucleus
and cytoplasm). To this end, a subroutine was provided in TOPAS-Tissue, which takes
advantage of the CC3D capability to track the indices of the subset of voxels composing
every cell and associate them with the indices of a TOPAS volumetric scorer.

Due to the CC3D intrinsic nature of implementing geometrical models in a grid ge-
ometry and the capabilities of TOPAS/TOPAS-nBio to generate voxelized geometries,
TOPAS-Tissue offers a flexible platform to irradiate any CC3D geometrical model. Other
types of cells, cell population arrangements (tissue), and their behavior can be incorpo-
rated by defining new phenotypes in CC3D. The parameters to define such phenotypes
might include, the growth rate, volume, and topological shape, among many others; on-
going developments to incorporate PhenoCellPy (version 1.0) [71] shall be presented in
future works.

4.2.3. DSB Assignment

In a cell population irradiated with a uniform particle field at low LET (~0.2 keV/µm)
radiation, a reasonable approximation to compute the number of DSBs is from a Poisson
distribution, where the mean number of lesions increases linearly with the absorbed
dose [72]. This approach was adopted in the current work to facilitate the coupling and
speed-up the testing of the p53 network model. Nevertheless, TOPAS-Tissue is not limited
to the assignment of initial DNA damage using the Poisson distribution approach. More
advanced methods to compute DSBs are available in TOPAS-nBio and can be accessed
through the proposed framework. For example, the DBSCAN algorithm and a whole DNA
cellular nucleus model are available in the TOPAS-nBio suite of scorers, among several
others [1]. Therefore, for each cell, once the dose to the nucleus Dnuc was acquired, DSBs
were randomly sampled from a Poisson distribution with an expectation value equal to
NDSB Dnuc. The mean number of DSBs per unit dose, NDSB, depended on the radiation
quality. A NDSB value of 27.5 DSBs/Gy was used in this work [24]. Complex DSBs (DSB2s)
were considered given by a fraction f from the total number of DSBs. Consequently, simple
DSBs were calculated as DSB1 = (1 − f ) DSB. We used a fraction value f = 0.51 for X-rays,
obtained from [24,72]. DSBs were assigned to each cell using a Python dictionary provided
by CC3D, which allowed the use of user-defined parameters during the simulation. We
used such information to dynamically input the DNA repair model during each MCS.

4.2.4. DNA Repair and Cell Response Models

Of note, the homologous rejoin and non-homologous end-join repair mechanisms
perform the DNA repair and thus are not directly linked to the p53 pulses [58]. How-
ever, the model used in this study was based on the one proposed by Zhang, X.P. et al.
(2011) [44], where the two lesion kinetic DNA repair model works in parallel and influ-
ences the p53 protein network through the activation of the ATM protein by the DSBC
complex. The DNA repair model consisted of an MC version of the TLK model for DSB
rejoining [42]. In this model, individual DSBs could transition between three states: an
intact DSB (DSB), a DSB attached to a repair protein complex (DSBC), and a DSB repaired
or fixed (DSBF) [42–44]. The interest of this model was put exclusively on the DSBs being
repaired (state C), since they influence the activation of certain proteins on the cellular
response model, but no distinction was made on the lethality of fixed lesions on the last
state [42–44], shown in Equation (1); although, the authors recognized that the accumula-
tion of lethal lesions had profound consequences on the final cell viability [42]. In contrast,
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the original TLK model [20] separated the non-lethal fraction of lesions from the lethal
ones that accumulated in the repair process. In our implementation, the DNA repair model
used in Zhang’s work was modified to differentiate non-lethal DSBs (DSBN) from lethal
lesions (DSBL), considered in this work as non-repairable DSBs, shown in Equation (2). The
DSBN occurred at a probability given by 1 − plethal, where plethal (1.5% in this work) is the
probability of producing a DSBL (Figure 5A). This value of plethal comes from the fraction
of γ-H2AX foci at 24 h post-irradiation, considered as the fraction of non-repairable DSBs.
The experimentally measured value for 1 Gy γ-ray irradiation (LET ~ 0.2 keV/µm) was
1.35 ± 1.25% [73].

DSBC
kfix→ DSBF (1)

DSBC
kfix→


DSBN

(
1 − plethal

)
DSBL plethal

(2)
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Figure 5. (A) DNA repair model. (B) Scheme for the cell response model. (C,D) Time evolution of
DNA repair kinetics at 3 Gy (C) and 5 Gy (D); time evolution of p53 pulses is shown in the bottom
panels. For the 3 Gy, DNA was repaired on time and no lethal DSBs were produced, leading to
cell survival. For 5 Gy, lethal lesions were produced, and the sustained oscillation of p53 triggered
Casp3, leading to cell death. Arrows with solid lines represent the process flow, while the dashed line
represents the influence by the repair model on the cell response model through the total number of
DSBC. The color scheme on the graphs (C,D) match the corresponding box states on panels (A,B).

The probabilities of transitioning between states were regulated by association–
dissociation rates ki, the number of available repair proteins NR, and the number of
DSBs in each state. In addition, the repair of simple lesions (DSB1) was handled by a fast
kinetics component, while the repair of complex lesions (DSB2) was handled by a slow
kinetics component of the model.

During the simulation, the DNA repair module communicated with the cell response
model as follows: In the damage sensor module (Figure 5B), the number of DSBs in state C
influenced the activation rate of the ATM protein (d[ATM*]/dt). This activation followed
Michaelis–Menten kinetics, as follows:

d[ATM∗]

dt
= kact·[ATM∗]

DSBC

DSBC + jDSBC

· [ATM]

[ATM] + jact
(3)
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where kact, jDSBc, and jact were the maximum activation rate, and thresholds for the number
of repairing DSBs and the ATM concentration, respectively. Next, in the feedback control
module, multiple proteins were activated and deactivated at specific rates, producing pulses
in the concentration of the p53 protein (Figure 5C). Lastly, in the cell outcome decision
module, if the DNA repairs on time (~30 h after five p53 pulses) the cell cycle arrest
was paused; otherwise, the sustained oscillations of p53 lead to the triggering of Casp3
(Figure 5D). The coupled model was validated elsewhere for MCF7 human breast cancer
cell assays treated with the radiomimetic drug doxorubicin. The parameters, reported
in [44], are listed in the Supplementary Material on Tables S1–S4 and are followed by a
scheme of the interaction between all the systems, presented on Figure S1. To verify the
implementation of the model, the time evolution curves of the concentration, its amplitude
and period from p53, ATM*, and Wip1 pulses were compared with those from [44], a
comparison between the TLK and MC repair models was performed as well, results are
shown in Figures S2–S4 on Supplementary Material. Experimentally it was reported that
a maximum of 5 pulses was observed for apoptotic cells over a period of 6 h between
oscillations [27,29].

We implemented the coupled model in the Systems Biology Markup Language (SBML)
format [74] using Moccasin software (version 1.3.0) [75]. CC3D has the capability to read
models in SBML format and assign them to each individual cell [63,76]. To synchronize
the cell population growth, the DNA repair, and cell response models, an equivalence of
1 MSC equal to 0.5 min was determined. The simulation was run by 8000 MCSs, equivalent
to 2.7 days after irradiation. The time limit was enough to allow every cell to finish its DNA
repair or death process [44] and perform at least one cell division.

4.2.5. Cell Survival Quantification

The two individual conditions to evaluate cell death were considered per cell: the
presence of at least one lethal lesion and the triggering of a Casp3 signal. In the absence
of DNA damage or complete DNA repairing, the Casp3 level remained close to its initial
value of 0.05 µM. However, once it was triggered by p53 sustained oscillations, it rapidly
increased and saturated at a concentration of 2.7 µM (Figure 5D). We set this value as the
threshold to consider the cells dead for apoptosis. The Casp3 level was checked at every
MCS while the cell’s DNA DSB(s) was being repaired. The presence of lethal lesions was
checked at the end of the DNA repair. As part of the apoptotic process, the cells reduced
their volume [77]. To simulate this process, the loss of volume until cell disappearance was
modeled as a constant rate [53] of −1.54 µm3/min, which corresponded to the negative of
the growth rate. On the other hand, if all the DSBs of a cell were repaired, the cell survived
and returned to its proliferative state.

The simulation tracked internally the information for every cell at each MCS, including
the number of DSBs, the concentration of p53 and Casp3, and a colony ID number. We
assigned a unique colony ID to each primary seeded cell at the time of irradiation as an
attribute. After cell division, the clones (daughter cells) were assigned the same colony
ID as the primary (mother) cell. This attribute allowed colony identification and counting.
The time evolution of the number of cells was scored at user-defined steps (100 MCSs
by default). The end of the simulation was dictated by the MCS at which the kinetic
models have reached equilibrium (~30 h after irradiation). After this time, the survival was
quantified from the number of remaining colonies as a function of the absorbed dose at
66 h, corresponding to 2 division cycles after irradiation.

4.3. Simulation Setup

The input parameter values used in the simulation framework are shown in Table 3.
A detailed description of the culture and radiation source models is presented in the
following sections.
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Table 3. Values for the parameters used in the simulation’s configuration.

Parameter CC3D Units Metric Value Parameter CC3D Units Metric Value

Xmax 1000 vox 1000 µm 1 − f ------------------- 49%
Ymax 1000 vox 1000 µm pfatal ------------------- 1.5%
Zmax 60 vox 60 µm

voxeq 1 vox 1 µm Pre-irradiation stage

rPC−3 9 vox 9 µm dt 1 MCS 2.88 min
VPC−3 3053 vox 3053 µm3 Tpre 2050 MCSs 4.1 days

rnuc 4 vox 4 µm tdoub 687 MCSs 33 h
NDSB ----------------- 27.5 DSB/Gy kgrowth 4.44 vox/MCS 1.54 µm3/min

D ----------------- 0–8 Gy Post-irradiation stage

N−
e ----------------- 18.2 × 106/Gy dt 1 MCS 0.5 min
f ----------------- 51% tdoub 3960 MCSs 33 h

kgrowth 0.77 vox/MCS 1.54 µm3/min

4.3.1. PC-3 Cell Culture Phantom Geometric Model

A PC-3 cell culture phantom was constructed in CC3D using a 1000 × 1000 µm2

surface lattice dimension and 60 µm depth. The lattice was thick enough to avoid collisions
between the cells and the phantom upper edge. The average PC-3 cell size was reported
as 18.08 ± 2.69 µm in diameter [78]; therefore, a cell radius of rPC−3 = 9 µm was selected,
yielding a volume of 3053 µm3. The average cellular nucleus radius was reported to be
between 3 to 5 µm [79]. Therefore, in this work, a nuclear radius rnuc = 4 µm was used
for all the cells. The lattice equivalence between a cubic voxel side size and length in µm
was 1:1. The geometry also included a layer of one voxel thickness placed at the bottom
of the phantom to represent the interface between the flask and the cells (see Figure 6C).
In the pre-irradiation stage, the equivalence between the MCS and the time step was set
to 1 day = 500 MCSs, and the cell’s growth rate was 3053 voxels every 687 MCSs. In this
way, the cell doubling time agreed with the reported value of 33 h [52]. At the beginning of
the simulation, to achieve the desired confluence, two to three cells were randomly placed
in subregions of 100 × 100 µm2 within the phantom. The simulation was run to simulate
4.1 days (2050 MCSs) of cell division. Cells were divided in random directions in the X–Y
direction (Figure 6C). For the post-irradiation stage, the time equivalence was changed
to 1 MCS = 0.5 min, and as a consequence, the growth rate changed to 3053 voxels every
3960 MCSs (0.77 vox/MCS).

The default parameters for the cell adhesion, combined with the fact that CC3D
does not have the option to control the adhesion to the lattice frontier, produced cells
accumulated in squared bulks. Therefore, optimal adhesion parameters were determined
by a series of multiple simulations (see Table 1 in Results Section 2.2).
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the top panel of (A) and green lines are photon tracks on the bottom panel) is used to retrieve the
kinetic energy spectrum from the electrons produced at a depth of 10 cm as represented by the red
arrow. (B) Then a volumetric electron source (spectrum in the bottom panel of (B) and red lines are
electron tracks on the top panel) is assigned to the phantom geometric component containing (C) the
geometrical information from the CC3D’s cell culture. Transfer of information is represented by the
green arrow; the red squares represent a zoom on a (200 µm)2 region of the complete culture.

4.3.2. X-ray Irradiation

The phase space file from a 6 MV TrueBeam LINAC was obtained from MyVarian at
www.myvarian.com (accessed 30 November 2023). The phase space (109 histories) was
used in TOPAS to irradiate a water phantom of 10 cm × 10 cm × 20 cm placed with a
5 × 5 cm2 field at 100 cm surface-to-surface distance. A scoring phase space plane was
placed at a depth of 10 cm; a region with transient charged-particle equilibrium. The kinetic
energy at the vertex position from only the secondary electrons reaching the plane was
scored. The TOPAS physics module was “g4em-standard_opt4” with a production cut
for secondary electrons of 1 µm. Later, the kinetic energy spectrum was used to construct
a volumetric and isotropic electron source uniformly distributed within the voxelated
phantom containing the cell culture geometry. On average, 18.2 million source electrons
were needed to retrieve a mean absorbed dose to all the cell nuclei of 0.994 ± 0.001 Gy.
TOPAS-tissue is compatible with the TOPAS-nBio Monte Carlo track structure. In this way,
the SSBs and DSBs required by the DNA model repair (Section 4.2.3) can be simulated
with TOPAS-nBio for a large set of particles and energies, including microdosimetric and
nanodosimetric quantities [80].

Results from 20 simulations using different random seeds run using a Dell Preci-
sion 5820 Tower 20-CPU Intel Xeon W-2155 3.30 Ghz processor (Round Rock, TX, USA)
were performed.

5. Conclusions

A new framework for the multiscale simulation of the irradiation and biological
evolution of a cell population was developed. The framework called TOPAS-Tissue couples
two well-established Monte Carlo-based codes: TOPAS and CC3D. One specializes in
the simulation of radiation transport and its interaction with matter and the other in the
simulation of the cell’s biological behaviors. The framework was used to construct a model

www.myvarian.com
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of a PC-3 cell culture irradiated with an MV X-ray source in the range of 0–8 Gy. Our
framework allowed an easy simulation setup to reproduce the pre-irradiation growth of
the cell culture from an initial number of seeded cells to a final confluency. The dose
was scored in two distinct cellular compartments: cytoplasm and nucleus. DSBs were
randomly sampled, following a Poisson distribution, from the dose in each cell’s nucleus,
and assigned. A coupled model consisting of DNA repair and a cell response model were
implemented. Two cell inactivation conditions were considered: the presence of lethal
lesions and apoptosis triggered by the Caspase3 enzyme signal. The cell survival curve
was simulated from the counting of colonies. The parameters from a fitted linear quadratic
model differed by two standard deviations from published measured data.

The new framework offers an all-in-one multiscale platform for the irradiation of
multi-cellular structures and their biological response modeling. It considers the spatial
distribution of radiation-induced lesions, changes in the cellular environment, such as
oxygen availability, and models for the radiation influence on internal cellular processes
like cell cycle regulation, which is an ongoing work for future publications. Overall, this
work provides the foundation to assist future research on the understanding of tissue
response to radiation, which is crucial for the development of new radiotherapy techniques,
by enabling coupled and versatile simulations of physical and biological processes using
two dedicated and validated softwares.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms251810061/s1.

Author Contributions: Conceptualization, J.R.-M. and O.R.G.G.; methodology, J.R.-M. and O.R.G.G.;
software, J.R.-M. and O.R.G.G.; validation, O.R.G.G., R.O. and J.R.-M.; formal analysis, J.R.-M.,
O.R.G.G., E.M.-B., N.D.-K., R.O. and B.F.; investigation, O.R.G.G. and R.O.; resources, B.F. and
J.R.-M.; data curation, O.R.G.G. and N.D.-K.; writing—original draft preparation, O.R.G.G. and
J.R.-M.; writing—review and editing, R.O., E.M.-B., N.D.-K. and B.F.; supervision, J.R.-M. and E.M.-B.;
funding acquisition, J.R.-M., E.M.-B. and B.F. All authors have read and agreed to the published
version of the manuscript.

Funding: B.F. and N.D.-K. were partially funded by the National Cancer Institute, grant number
R01CA187003. O.R.G.G. is a doctoral student from “Programa de Doctorado en Ciencias Física
Aplicada, Benemérita Universidad Autónoma de Puebla” and received the fellowship 2019-000002-
01NACF-05144 from CONACYT.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article/Supplementary Materials; further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Schuemann, J.; McNamara, A.L.; Ramos-Méndez, J.; Perl, J.; Held, K.D.; Paganetti, H.; Incerti, S.; Faddegon, B. TOPAS-nBio: An

Extension to the TOPAS Simulation Toolkit for Cellular and Sub-cellular Radiobiology. Radiat. Res. 2019, 191, 125–138. [CrossRef]
[PubMed]

2. Charlton, D.; Nikjoo, H.; Humm, J. Calculation of Initial Yields of Single- and Double-strand Breaks in Cell Nuclei from Electrons,
Protons and Alpha Particles. Int. J. Radiat. Biol. 1989, 56, 1–19. [CrossRef] [PubMed]

3. Tomita, H.; Kai, M.; Kusama, T.; Ito, A. Monte Carlo simulation of DNA strand-break induction in supercoiled plasmid pBR322
DNA from indirect effects. Radiat. Environ. Biophys. 1998, 36, 235–241. [CrossRef] [PubMed]

4. Friedland, W.; Jacob, P.; Bernhardt, P.; Paretzke, H.G.; Dingfelder, M. Simulation of DNA Damage after Proton Irradiation. Radiat.
Res. 2003, 159, 401–410. [CrossRef] [PubMed]

5. Nikjoo, H.; Emfietzoglou, D.; Liamsuwan, T.; Taleei, R.; Liljequist, D.; Uehara, S. Radiation track, DNA damage and response—A
review. Rep. Prog. Phys. 2016, 79, 116601. [CrossRef]

https://www.mdpi.com/article/10.3390/ijms251810061/s1
https://www.mdpi.com/article/10.3390/ijms251810061/s1
https://doi.org/10.1667/RR15226.1
https://www.ncbi.nlm.nih.gov/pubmed/30609382
https://doi.org/10.1080/09553008914551141
https://www.ncbi.nlm.nih.gov/pubmed/2569005
https://doi.org/10.1007/s004110050077
https://www.ncbi.nlm.nih.gov/pubmed/9523339
https://doi.org/10.1667/0033-7587(2003)159[0401:SODDAP]2.0.CO;2
https://www.ncbi.nlm.nih.gov/pubmed/12600243
https://doi.org/10.1088/0034-4885/79/11/116601


Int. J. Mol. Sci. 2024, 25, 10061 16 of 18

6. Incerti, S.; Baldacchino, G.; Bernal, M.; Capra, R.; Champion, C.; Francis, Z.; Guèye, P.; Mantero, A.; Mascialino, B.; Moretto, P.;
et al. The GEANT4-DNA Project. Int. J. Model. Simul. Sci. Comput. 2010, 01, 157–178. [CrossRef]

7. Incerti, S.; Kyriakou, I.; Bernal, M.A.; Bordage, M.C.; Francis, Z.; Guatelli, S.; Ivanchenko, V.; Karamitros, M.; Lampe, N.; Lee, S.B.;
et al. Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project.
Med. Phys. 2018, 45, e722–e739. [CrossRef]

8. Plante, I.; Ponomarev, A.; Patel, Z.; Slaba, T.; Hada, M. RITCARD: Radiation-Induced Tracks, Chromosome Aberrations, Repair
and Damage. Radiat. Res. 2019, 192, 282–298. [CrossRef]

9. Warmenhoven, J.W.; Henthorn, N.T.; Ingram, S.P.; Chadwick, A.L.; Sotiropoulos, M.; Korabel, N.; Fedotov, S.; Mackay, R.I.; Kirkby,
K.J.; Merchant, M.J. Insights into the non-homologous end joining pathway and double strand break end mobility provided by
mechanistic in silico modelling. DNA Repair 2019, 85, 102743. [CrossRef]

10. Pfeiffer, P.; Goedecke, W.; Obe, G. Mechanisms of DNA double-strand break repair and their potential to induce chromosomal
aberrations. Mutagenesis 2000, 15, 289–302. [CrossRef]

11. Forster, J.C.; Douglass, M.J.J.; Phillips, W.M.; Bezak, E. Stochastic multicellular modeling of x-ray irradiation, DNA damage
induction, DNA free-end misrejoining and cell death. Sci. Rep. 2019, 9, 18888. [CrossRef] [PubMed]

12. Dos Santos, M.; Clairand, I.; Gruel, G.; Barquinero, J.F.; Incerti, S.; Villagrasa, C. Influence of chromatin condensation on the
number of direct DSB damages induced by ions studied using a Monte Carlo code. Radiat. Prot. Dosim. 2014, 161, 469–473.
[CrossRef] [PubMed]

13. Mumtaz, S.; Rana, J.N.; Choi, E.H.; Han, I. Microwave Radiation and the Brain: Mechanisms, Current Status, and Future Prospects.
Int. J. Mol. Sci. 2022, 23, 9288. [CrossRef] [PubMed]

14. Nikjoo, P.O.H. Computational modelling of low-energy electron-induced DNA damage by early physical and chemical events.
Int. J. Radiat. Biol. 1997, 71, 467–483. [CrossRef] [PubMed]

15. Bernal, M.; Bordage, M.; Brown, J.; Davídková, M.; Delage, E.; El Bitar, Z.; Enger, S.; Francis, Z.; Guatelli, S.; Ivanchenko, V.; et al.
Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo
simulation toolkit. Phys. Medica 2015, 31, 861–874. [CrossRef]

16. Tran, H.N.; Ramos-Méndez, J.; Shin, W.; Perrot, Y.; Faddegon, B.; Okada, S.; Karamitros, M.; Davídková, M.; Štěpán, V.; Incerti, S.;
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