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Abstract 

Previous work showed that people‟s causal judgments are 
modeled better as estimates of the probability that a causal 
relationship exists (a qualitative inference) than as estimates 
of the strength of that relationship (a quantitative inference). 
Here, using a novel task, we present experimental evidence in 
support of the importance of qualitative causal inference. Our 
findings cannot be explained through the use of parameter 
estimation and related quantitative inference. These findings 
suggest the role of qualitative inference in causal reasoning 
has been understudied despite its unique role in cognition. 
Further, we suggest these findings open interesting questions 
about the role of qualitative inference in many domains. 

Keywords: Causal Reasoning, Qualitative Inference, 
Categorization 

Qualitative and Quantitative Causal Inference 

Studies have distinguished between two types of causal 

inferences: qualitative inferences (“whether an event X is or 

is not a cause of Y”) and quantitative inferences (“to what 

extent is X a cause of Y”; Griffiths & Tenenbaum, 2005; 

Waldmann & Martignon, 1998). Causal reasoning has been 

traditionally construed as making quantitative inferences of 

causal strengths (e.g., Cheng, 1997; Rescorla & Wagner, 

1972), in which data on presence or absence of two events
1
 

are used to estimate parameters, which describe the degree 

of a relationship between the cause and effect.  

Within this causal strength paradigm, qualitative 

inferences are made by assessing the parameter estimates 

relative to a threshold. If the estimate is above that 

threshold, then it is a cause; if it is below, then it is not a 

cause. Such an approach casts qualitative causal inference as 

a process dependent upon quantitative inference. In the 

current study, we demonstrate that qualitative causal 

inference may play an important role such that people will 

make judgments which conflict with the judgments 

warranted by quantitative inference. 

Quantitative and Non-Quantitative Data in Causal 

Inference 

While quantitative data can be used in making qualitative 

                                                 
1 We refer to the type of information captured in simple 

contingency tables as quantitative information. 

causal inferences of whether one event causes another, non-

quantitative data
2
 can also be used in making qualitative 

inferences. Previous studies (e.g., Griffiths & Tenenbaum, 

2005; 2009; Kuhn 1997; Waldmann & Martignon, 1998) 

have proposed that qualitative inference utilizes information 

such as intuitive theories (e.g., an inductive bias such as 

“novel foods may have unusual causal features, but common 

foods do not”), temporal information (e.g., events exert their 

influence on the future, not the past), or explicit claims (e.g., 

“X causes Y and Z”). 

For instance, if a person‟s lips turn green after eating a 

novel fruit, she may conclude from this single observation 

that the fruit caused the discoloration. However, it is 

unlikely that she will infer that the symptoms caused her to 

eat the fruit or that a fruit with which she had a great deal of 

experience (e.g. an apple) caused it.  Additionally, if no 

abnormal symptoms present after eating the novel fruit, she 

may not think the fruit has any unusual causal features. Low 

probability events (e.g. green lips) prompt people to seek 

out causal explanations (e.g., Weiner, 1985), and if there is a 

novel, preceding event, that event may be identified as the 

cause even if quantitative data do not support that inference 

(e.g., Hilton & Slugoski, 1986; Kahneman & Miller, 1986). 

The Role of Qualitative and Quantitative Inference  

What remain unknown are details of how qualitative and 

quantitative inferences interact with one another (Griffiths 

& Tenenbaum, 2009), or whether one is more fundamental 

to inference generally. Previous work on causal inferences 

could be thought of as assuming that quantitative causal 

inferences are more fundamental, with qualitative inferences 

generally treated as an afterthought to be computed using a 

threshold and prior quantitative inferences.  

Griffiths and Tenenbaum (2005) took another approach. 

Rather than estimating a single value for the strength of the 

causal relationship, Griffiths & Tenenbaum‟s model asks 

“whether or not a causal relationship exists” (i.e. a 

qualitative inference). In order to answer this, their model 

uses a large number of possible values for the strength of the 

causal relationship. In this way, their model gives the 

probability of the existence of a causal relationship without 

                                                 
2 By non-quantitative we simply mean any type of data that 

cannot be captured in a simple contingency table. 
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making assumptions about its strength. Peoples‟ judgments 

of causal strength actually better fit this type of qualitative 

model than previous quantitative ones (but see, Lu, Yuille, 

Liljeholm, Cheng & Holyoak, 2008). Like Griffiths and 

Tenenbaum, we argue that qualitative causal inference is 

important, perhaps fundamental to causal cognition, but our 

hypothesis includes no assumptions associated with any 

particular model. 

We developed a paradigm which allows us to determine 

whether qualitative or quantitative inference is more 

predominantly used. The paradigm utilizes categorization 

judgments to infer participants‟ causal inferences, based on 

studies showing that background knowledge about causal 

features of category members determine categorization (e.g., 

Ahn, 1999; Ahn, Kim, Lassaline, & Dennis, 2000; Rehder 

& Hastie, 2001). We developed a novel problem in which 

different categorical judgments would be made depending 

on whether people engage in quantitative or qualitative 

causal inference. Participants‟ judgments can be used to 

determine which inference people used, as explained below.  

In our experiments, participants read about two groups of 

ten people. One group ate mushrooms from Bag A, and nine 

people became sick, and one did not. The other group ate 

mushrooms from Bag B, and one person became sick and 

nine people did not.  

Then participants read of a third group of ten people (Bag 

X group, henceforth), who after eating mushrooms either 

from Bag A or Bag B, five people became sick and five did 

not. Participants were asked from which of the two bags 

(Bag A or B) they thought the Bag X group likely ate. 

Predictions of a Quantitative Approach 

Formally, we treat this by comparing the probability of 

two hypotheses conditional on a set of data. We can use 

Bayes‟ rule (i.e. posterior   likelihood*prior, or P(H|D)   
P(D|H)*P(H)) to calculate the posterior odds of the two 

hypotheses given the known data. For our particular 

problem the equation (1) looks as follows
3
: 
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Then to continue with our calculations we need to find the 

likelihoods for both hypotheses (Bag A and Bag B). We 

assume there is a unique, unknown value for the probability 

of an event (e) given some cause (ci) (p(e|ci)), which can be 

estimated (p̂(e|ci)).
4
 In this scenario, p(e|ci) is the probability 

of getting sick given that the person ate a mushroom from 

Bag i.  We estimate p̂(e|ci) using maximum likelihood 

                                                 
3 Where Bag A and Bag B are the events where the Bag X group 

ate from Bag A and Bag B, respectively, DX is the data from the 

Bag X group (i.e. that 5 people got sick and 5 people did not get 

sick), and DA,B is the data from the Bag A and B groups, 
4 Other models of quantitative causal inference (e.g. P (Cheng 

& Novick, 1992) and Power–PC (Cheng, 1997)) also estimate        

p̂(e|ci) with MLE. 

estimation (MLE) . Under these assumptions, the 

probability of someone getting sick given that they ate from 

Bags A and B are, respectively, p̂(e|cA) = .9 and p̂(e|cB) = .1.  

Then if we treat the incidence of each person getting sick 

as an independent random variable, conditional on the 

person haven eaten from Bag i, our likelihood function is 

distributed as a Bin(10, p̂(e|ci)). Under these assumptions, 

the odds-likelihood equation is (2): 
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That is, the likelihoods are equal to one another.  

Because of this equality, we can surmise that, under this 

model, if we are to predict any preference for one 

hypothesis over another (i.e. not saying that Bag X is 

equally likely to be either Bag A or B), then this preference 

must derive from the prior. Since an equal number of people 

ate from each bag originally, it is reasonable to say that the 

priors are equal (i.e. P(Bag A) = P(Bag B)). There seems 

little reason to assume a priori that people are more likely to 

eat from either bag
5
. Using this model and its assumptions, 

the posterior prediction is that the probabilities that the 

people who ate from Bag X actually ate from Bag A or B 

are equal (i.e. P(Bag A|DA,B,X)  = P(Bag B|DA,B,X)). 

Predictions of a Qualitative Approach: the 

Importance of Qualitative Inference Hypothesis 

 The model above is one with strong ties to the tradition 

of quantitative causal inference, in that it uses MLE to 

estimate parameters used in its predictions and that it 

effectively assumes the existence of a causal relationship 

between at least one of the bags and getting sick
6
. The 

alternative hypothesis we wish to propose emphasizes the 

importance of qualitative inference (IQI).  

Generally put, our hypothesis is that, qualitative causal 

inference (i.e. inference whether or not a cause exists) can 

play a unique role in judgment not able to be described by 

quantitative inference. In this case, we predict that 

participants will prefer to say those from group X are more 

likely to have eaten from Bag A than B.  

In group A, nine of ten people became sick; this seems to 

be a fairly low probability event. This potentially suggests 

that there is some explanation, likely a causal one, for this 

anomaly. The common cause principle (Reichenbach, 1956) 

suggests that people would prefer in this case to appeal to a 

common cause instead of multiple causes varying over nine 

people. The common property across the nine people in this 

scenario is eating mushroom. Thus, people would infer that 

the mushroom had the causal feature of causing sickness.  

As a result, mushrooms from Bag A are categorized as 

being causes of sickness; this is a qualitative inference. 

On the other hand, of those who ate mushrooms from bag 

                                                 
5 Even non-equal priors would predict no differences between 

conditions if the quantitative data are held constant. 
6 This assumption comes from allowing that p̂(e|cA) ≠ p̂(e|cB). 
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B, only one of the ten became sick. This is more probable to 

have occurred just incidentally in the world than nine of ten 

becoming sick. People do not need to search for a causal 

explanation including a common cause, since only one 

person became sick. As a result, people will be less likely to 

include “causes sickness” as a feature of mushrooms from 

Bag B; this too is a qualitative inference. 

Now, consider the group who ate from the unknown Bag 

X. Five of these ten individuals became sick. This event, as 

in the case of Bag A, is rather unusual. It may even suggest 

that some underlying common cause for all five people‟s 

sicknesses. People may infer that the mushrooms from Bag 

X had the same feature of causing people to fall ill. Since 

only Bag A had been inferred to contain mushrooms with 

this property, people would conclude that Bag X is more 

likely to be Bag A. This judgment contradicts judgments 

based solely on quantitative inference, and we argue that it 

arises because of the inference that Bag A and Bag X share 

a qualitative causal feature.  

Note, however, that according to IQI, if Bag B were to 

also share a causal feature with Bag X, then both Bags A 

and B would be judged to be equally likely to be Bag X. 

This can be accomplished by creating a new causal feature, 

which Bags B and X share, but which A does not. For 

example, we alter the scenario so that the people who do not 

get sick instead become high. That is, instead of 1 of the 

people who ate from Bag B becoming sick and 9 of them 

not becoming sick, 1 becomes sick and 9 become high. This 

change extends to those who did not get sick when eating 

from Bags X and A – of those who ate from Bag X, 5 

became sick and 5 became high, and of those who ate from 

Bag A, 9 became sick and 1 became high. In such a 

scenario, the IQI hypothesis would predict the same thing as 

the quantitative model (assuming equal priors): no 

preference for either bag. Because these scenarios 

effectively discriminate our hypotheses, we use them in 

Experiment 1.  

Experiment 1 

Method 

One hundred twenty Yale University undergraduates 

participated in exchange for candy. Participants received 

one of the two stimuli, as illustrated in Figure 1. In each 

stimulus, participants read about two bags of mushrooms, 

which contained one type of mushrooms. One group of 10 

people ate mushrooms from each bag, and participants were 

told the events that occurred to the members of each group. 

They were then told about a new group of 10 individuals 

who ate from only one of the two bags (Bag X). They were 

given information about these individuals (e.g. “5 got sick 

and 5 did not get sick”). Last, they were asked to estimate 

either the likelihood that Bag X was Bag A, or the 

likelihood that Bag X was Bag B. Varying the question in 

this way controls for any potential biases inherent in the 

scale. Participants made a vertical mark on a line denoting 

the likelihood of the hypotheses, from 0 to 100%.  

 
 

Figure 1: Scenario used in Experiment 1, 1-effect, Bag A 

condition, with the differences to the 2-effect condition in 

brackets (“[]”) and the Bag B condition in curly brackets 

(“{}”).  

 

Participants‟ marks on the response line were converted into 

numbers ranging from 0 to 100 by measuring the distance of 

the mark from the left anchor of the line. 

There were two conditions, 1-effect and 2-effect. In the 1-

effect condition, one type of effect was either present or 

absent (i.e., people got sick or did not get sick). In the 2-

effect condition, stimuli were the same except that “did not 

get sick” was replaced with “got high,” resulting in two 

types of effects – getting sick and getting high. To sum, the 

study was a 2 (Question: Bag A or Bag B) × 2 (Condition: 

1-effect vs. 2-effect) between-subjects design. 

Results 

Figure 2 summarizes the results. A 2 (Condition: 1-effect, 

2-effect)  2 (Question: Bag A or Bag B) ANOVA found a 

significant interaction, F (1,116) = 4.42, MSE = 1591.40, p 

< .05, but there were no significant main effects of either 

Condition, F (1,116) = 2.45, MSE = 880.20, p > .1, or 

Question, F (1,116) = 1.80, MSE = 648.68, p > .1. Planned 

comparisons showed that in the 1-effect condition, mean 

likelihood ratings for Bag A (53.3%, SD = 11.67) were 

greater than those for Bag B (41.3%, SD = 21.06), t (58) = 

2.72, p <. 01, d = .70. In the 2-effect condition, however, 

there was no significant difference, t (58) = .49, p > .6 (Bag 

A: M = 51.4%, SD = 20.03; Bag B: M = 54.0%, SD = 21.42). 

These results contradict the quantitative model and 

support the IQI hypothesis in two ways. First, the 

quantitative model predicted that in the 1-effect condition, 

participants should give equal likelihood ratings between 

Bag A and Bag B. Yet, as predicted by the IQI hypothesis, 

they gave higher likelihood ratings to Bag A. According to 

IQI hypothesis, this result was obtained because Bag A 

shared a causal feature with Bag X. Second, the quantitative 

model predicted no difference between the 1-effect and 2-

Suppose that there are two bags of mushrooms Bag A and 

Bag B. In the first bag there are only mushrooms of type A, 

and in the second bag there are only mushrooms of type B. 

If nothing is said about an effect, you can assume there was 

no effect. 

When 10 people ate mushrooms from Bag A, 9 got sick and 

1 did not get sick [got high].  

When 10 people ate mushrooms from Bag B, 1 got sick and 

9 did not get sick [got high]. 

Now, 10 more people ate mushrooms from only one bag, 

either Bag A or Bag B. 

5 got sick and 5 did not get sick [got high]. 

What is the likelihood that these 10 people ate from Bag A 

{Bag B}? Please indicate by marking a vertical line (“|”) on 

the scale below. 
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effect conditions, as the quantitative data are identical. Yet, 

people gave higher ratings to Bag A only in the 1-effect 

condition and not in the 2-effect condition. The IQI 

predicted no difference in preference for the two bags in the 

2-effect condition because both Bags A and B have causal 

features that Bag X has.  

Experiment 2 

Experiment 2 replicates the findings of Experiment 1 

using different manipulations. We developed a new 

condition to compare to the 1-effect condition from 

Experiment 1. This new condition, called 2-cause condition, 

is exactly like the 1-effect condition, except that we 

explicitly state that mushrooms within both bags contain 

chemicals known to cause sickness.  

Because the amount or potency of the chemicals is not 

mentioned, the quantitative model would still predict no 

preference for either Bag A or B in the 2-cause condition, 

just as in the 1-effect condition. The IQI hypothesis predicts 

that in the 2-cause condition participants should be more 

ambivalent about Bag X‟s identity, making participants 

more prone to think that the two bags are equally likely. 

Thus, the quantitative model predicts no difference between 

1-effect and 2-cause conditions, whereas the IQI hypothesis 

predicts that preference for Bag A would be obtained only 

in the 1-effect condition.   

Method 

We recruited one hundred three participants through 

Craigslist. They participated in an online survey using 

Qualtrics®, with the option of entering a lottery for a $20 

gift certificate to an online store.  

There were two conditions, using either 1-effect or 2-

cause scenario. The 1-effect scenario was the same as in 

Experiment 1. The 2-cause scenario was the same as the 1-

effect scenario except that after the first two sentences, the 

following was inserted:  

Mushrooms of type A contain Adelosinol, mushrooms 

of type B contain Blemosine. Adelosinol and 

Blemosine are known to cause people to become sick.  

Instead of asking participants to give a scalar response, 

we gave participants a 3-alternative-forced-choice question 

(“Please choose whichever bag you think that it is most 

likely that these 10 people ate from.”), with the answer 

choices of “Bag A”, “Bag B”, or “Both bags are equally 

likely.”  That is, we explicitly provided an option for “both 

bags are equally likely” instead of inferring this choice from 

a scalar response. This way, we highlighted to participants 

that both bags could be equally likely, as predicted by the 

quantitative model. Yet, the IQI hypothesis predicted the 

preference for this option only in the 2-cause condition.     

Results 

Figure 3 depicts the proportion of each option chosen by 

condition. Although the stimuli differed only minimally, 

participants‟ responses were significantly different between 

the two conditions, 2
 (2, N = 103) = 6.58, p < .05,  = .25. 

 
 

Figure 2: Mean Likelihood Judgments with SE bars in 

Experiment 1.  

 

Given that the quantitative information was exactly the same 

across scenarios, this finding is unexplainable using our 

quantitative model.  

More importantly, we can verify the IQI predictions using 

a 2
-Goodness of Fit Test to compare the proportion of 

responses within conditions to an uninformed random 

response (i.e. each choice being chosen one-third of the 

time). The IQI predicts that the most frequent response in 

the 1-effect condition would be Bag A, and this was the case 

(“Bag A” chosen 49%, 2 
(2, N = 51) = 8.59, p < .05,  = 

.41). The IQI predicts that in the 2-cause condition, 

however, the most frequent response would be “both bags 

are equally likely”; this too was the case (“Both bags” 

chosen 56%, 2 
(2, N = 52) = 12.04, p < .005,  = .48). Thus 

both predictions of the IQI hypothesis are fulfilled. 

 

 

 
 

Figure 3: Proportion of times participants in Experiment 2 

chose each option in response to the prompt “Please choose 

whichever bag you think that it is most likely that these 10 

people ate from.” 
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Discussion 

Two experiments pitted the predictions of two hypotheses 

for predicting participants‟ categorization judgments against 

one another. One model uses MLE to make quantitative 

inferences based on quantitative information specified in the 

scenarios, just as many models of causal induction estimate 

parameter values of causal strengths based on quantitative 

information. However, the IQI hypothesis uses qualitative 

inferences about objects‟ causal features to guide judgment. 

Participants‟ categorization judgments better fit the 

predictions made by the hypothesis that emphasizes the role 

of qualitative inference than those made by the model that 

considered only quantitative inference.  

 Assuming that equal priors for people choosing to eat 

from Bag A and B
7
, the quantitative model predicts no 

differences in participants‟ judgments across all experiments 

and conditions. Particularly, it predicts that participants 

should claim that Bag X is equally likely to be either Bag A 

or Bag B. This model is unable to explain any of the 

differences found between the conditions, or the general 

preference for Bag A (or against Bag B) found in both 

studies‟ 1-effect conditions.   

However, the results match the predictions made by our 

instantiation of the IQI hypothesis. Participants in the 1-

effect conditions expected that Bag X was more likely to be 

Bag A than Bag B. The IQI predicted this due to the 

inference of a causal feature shared by Bags X and A that 

Bag B lacked. On the other hand, in both the 2-effect and 2-

cause conditions, participants judged that the bags were 

equally likely. The IQI predicted these results because 

participants presumably made qualitative inferences that 

Bag X shared a causal feature with both Bags A and B. By 

using a forced choice paradigm in Experiment 2‟s 2-cause 

condition, we were able to establish not only that 

participants lacked a preference for Bag A or B, but that the 

option, “both bags are equally likely,” was indeed 

participants‟ most preferred response, the strongest possible 

prediction made by our hypothesis. Every prediction made 

by the IQI hypothesis obtained. 

 Previous evidence supporting the idea that qualitative 

causal inferences are not merely a function of quantitative 

inference and a threshold was limited to causal judgment 

tasks, specifically to how well different models fit 

participants‟ responses in these tasks (Griffiths & 

Tenenbaum, 2005; Lu et al., 2008). The experiments 

presented here go one step further and investigate the role of 

qualitative causal inference in other cognitive processes, 

using its effects on a categorization judgment (i.e., should 

Bag X be categorized as Bag A or B?) to infer its presence.   

The current studies demonstrate not only that qualitative 

causal inference can result in judgments that contradict the 

judgments suggested by quantitative inference, but that 

qualitative causal inferences play a larger role in cognition 

than previously suspected. Still, there is much yet to be 

                                                 
7 If priors were unequal, this would have predicted a systematic 

bias for Bag A or B that did not change across conditions.  

learned about the complete role of qualitative inference in 

reasoning. 

Future Work 

There are many open questions in relation to precise 

relationship between qualitative and quantitative causal 

inferences and how they affect other cognitive processes. 

What other types of judgments and inferences rely on 

qualitative inference independent of quantitative inference? 

What is the time course of these inferences? For example, 

are qualitative inferences judged first, only to estimate the 

strength of the relationship later? Does use of one type of 

inference differentially affect causal learning, especially 

with regards to active data search and planned intervention?  

What is the underlying computation that is driving our 

effects? Bayesian models of qualitative causal inference 

exist (Griffiths & Tenenbaum, 2005; 2009), however, much 

work is still needed before we understand how to include 

qualitative inferences into hypotheses tests as in (1).   For 

instance, the task used in the current study did not provide 

all information required to derive predictions of existing 

quantitative models of causal induction, namely, frequencies 

of all four cells in a contingency table. Extensions of our 

studies which provide this data will allow the testing of 

various models‟ predictions. Discovering the roles played 

by qualitative and quantitative inference is an important part 

of all inferential tasks, and as such advances on this problem 

may have wide implications for cognition generally 

(Griffiths & Tenenbaum, 2009). 

Inferential tasks are notoriously difficult and even young 

children are skilled inferential learners. Perhaps the use of 

qualitative inference bestows unique advantages when one 

is learning. And these advantages might change over 

development as one gains more experience and data. For 

example, learners (e.g. children) use qualitative inference to 

guide their exploratory behavior by focusing first on 

gathering information about objects with unknown causal 

structure (Gweon & Schulz, 2008), only to estimate precise 

parameters later.  

There are theoretical similarities between the qualitative 

inference of hidden causal features as we discuss them here 

and essentialism, which some argue plays an integral role in 

categorization (Gelman, 2003). For instance, a raccoon 

transformed to look like a skunk which then shares many 

surface features with the category “skunk” is still classified 

as a raccoon presumably because of people‟s qualitative 

inference to the hidden essence (Keil, 1989). One might 

consider these surface features “quantitative data”. Then, 

this task similarly pits inference which considers only 

quantitative data (something related to quantitative 

inference as we discuss it) against qualitative inference. 

Under this perspective, these essentialist judgments could be 

thought to be in line with our hypothesis that qualitative 

inference sometimes overrides quantitative inference in 

guiding judgment. 

Essentialism has been implicated as a process relevant to 

many different domains of reasoning (Gelman, 2003). Thus 
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if the sorts of qualitative inferences we discuss here are 

related to essentialism, qualitative causal inference may play 

a role in many domains. Yet, what role it plays in each 

domain may vary. Thus further investigation into how the 

role of qualitative inference changes across domains may 

prove very fruitful.  

Conclusions 

Our experiments use categorical judgments to explore the 

roles of qualitative and quantitative causal inference. We 

test the predictions of one computational model using MLE 

to estimate parameters in the spirit of traditional models of 

quantitative inference against the predictions of a hypothesis 

that suggests people infer causal features in objects and will 

use these qualitative inferences in later categorization 

judgments. This hypothesis suggests that qualitative 

inference plays an important, unique role in cognition. The 

results support the notion that qualitative inference can 

result judgments that conflict with the judgments suggested 

by quantitative inference. 

Because of the generality of the problem of inference, and 

the potential role of qualitative inference in other inferential 

tasks, there is need for further study of the role of qualitative 

inference in many varieties of cognitive processes.  
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