
UC San Diego
Technical Reports

Title
Recognizing Cars

Permalink
https://escholarship.org/uc/item/7b13d6cw

Authors
Dlagnekov, Louka
Belongie, Serge

Publication Date
2005-09-28

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7b13d6cw
https://escholarship.org
http://www.cdlib.org/

Recognizing Cars

Louka Dlagnekov, Serge Belongie

Department of Computer Science and Engineering

University of California, San Diego, CA 92093

{ldlagnek,sjb}@cs.ucsd.edu

Abstract

License Plate Recognition (LPR) is a fairly well explored

problem and is already a component of several commer-

cially operational systems. Many of these systems, however,

require sophisticated video capture hardware possibly com-

bined with infrared strobe lights or exploit the large size of

license plates in certain geographical regions and the (ar-

tificially) high discriminability of characters. In this paper,

we describe an LPR system that achieves a high recogni-

tion rate without the need for a high quality video signal

from expensive hardware. We also explore the problem of

car make and model recognition for purposes of searching

surveillance video archives for a partial license plate num-

ber combined with some visual description of a car. Our

proposed methods will provide valuable situational infor-

mation for law enforcement units in a variety of civil infras-

tructures.

1 Introduction

License plate recognition (LPR) is widely regarded to be

a solved problem with many systems already in opera-

tion. Some well-known settings are the London Conges-

tion Charge program in Central London, border patrol du-

ties by the U.S. Customs, and toll road enforcement in parts

of Canada and the United States. Although few details are

released to the public about the accuracy of commercially

deployed LPR systems, it is known that they work well un-

der controlled conditions. However, they have two main

disadvantages which we address in this paper.

Firstly, they require high-resolution and sometimes spe-

cialized imaging hardware. Most of the academic research

in this area also requires high-resolution images or relies on

geographically-specific license plates and takes advantage

of the large spacing between characters in those regions and

even the special character features of commonly misread

characters.

Secondly, LPR systems by their nature treat license

plates as cars’ fingerprints. In other words, they determine

a vehicle’s identity based solely on the plate attached to

it. One can imagine, however, a circumstance where two

plates from completely different make and model cars are

swapped with malicious intent, in which case these systems

would not find a problem. We as humans are also not very

good at reading cars’ license plates unless they are quite

near us, nor are we very good at remembering all the char-

acters. However, we are good at identifying and remem-

bering the appearance of cars, and therefore their makes

and models, even when they are speeding away from us.

In fact, the first bit of information Amber Alert signs show

is the car’s make and model and only then its license plate

number, sometimes not even a complete number. There-

fore, given the description of a car and a partial license plate

number, the authorities should be able to query their surveil-

lance systems for similar vehicles and retrieve a timestamp

of when that vehicle was last seen along with archived video

data for that time.

In this paper, we describe an LPR method that performs

well without the need for expensive imaging hardware and

also explore car make and model recognition (MMR). Be-

cause of the complementary nature of license plate and

make and model information, the use of MMR can not only

boost the LPR accuracy, but allow for a more robust car

surveillance system.

1.1 Previous Work

Most LPR systems employ detection methods such as cor-

ner template matching [11] and Hough transforms [12] [27]

combined with various histogram-based methods. Kim et

al. [13] take advantage of the color and texture of Korean

license plates (white characters on green background, for

instance) and train a Support Vector Machine (SVM) to per-

form detection. Their license plate images range in size

from 79 × 38 to 390 × 185 pixels, and they report pro-

cessing low-resolution input images (320× 240) in over 12

seconds on a Pentium3 800MHz, with a 97.4% detection

rate and a 9.4% false positive rate. Simpler methods, such

as adaptive binarization of an entire input image followed

by character localization, also appear to work as shown by

Naito et al. [15] and [3], but are used in settings with little

background clutter and are most likely not very robust.

1

The most common custom OCR approach used by ex-

isting LPR systems is correlation-based template match-

ing [16], sometimes done on a group of characters [6].

Sometimes, the correlation is done with principal compo-

nent analysis (PCA) [9]. Others [22] apply connected com-

ponent analysis on binarized images to segment the charac-

ters and minimize a custom distance measure between char-

acter candidates and templates. Classification of segmented

characters can also be done using neural networks [17] with

good results.

Instead of explicitly segmenting characters in detected

plates, Amit et al. [2] use a coarse-to-fine approach for both

detection and recognition of characters on license plates.

Although they present high recognition rates, the license

plate images they worked with were of high-resolution, and

it is not clear whether their method will be as effective on

the low-resolution images in our datasets.

To the best of our knowledge, MMR is a fairly unex-

plored recognition problem. Various work has been done

on car detection in street scene images [10] [21] [19] and

aerial photographs [20]. Dorko and Schmid [7] use scale

invariant features to detect cars in images with 50% back-

ground on average. Agarwal et al. [1] automatically create a

vocabulary of car parts, such as tires and windshields, from

training images and detect cars by finding individual parts

and comparing their spatial relations. Interestingly, most

of the car detection literature only deals with side-views of

cars, perhaps because from a large distance the side profile

provides richer and thus more discriminating features.

The work of Ferencz et al. [8] is most closely related

to our problem statement. Their work is helping develop

a wide-area car tracking system and is not formulated as a

recognition problem, but what they call an object identifica-

tion problem. In our system we are interested in determin-

ing to which make and model class a new vehicle belongs,

and although all classes consist of cars, there is fair amount

of variation within each of the make and model classes.

In contrast, Ferencz et al. are interested in determining

whether two images taken at different times and camera ori-

entations are of the exact same car, where there is really

only a single example that serves as a model. They solve

this problem by automatically finding good features on side

views of cars from several hundred pairs of training exam-

ples, where good features refer to features that are good at

discriminating between cars from many small classes.

1.2 Datasets

Video data for training and testing was captured from a digi-

tal video camera mounted on a street lamp pole overlooking

a stop sign. Figure 1 shows a typical frame captured from

the camera. The video stream has a resolution of 640 × 480

and is sampled at 6 frames per second.

Figure 1: A frame from the video stream used for extracting

training sets and test sets.

Using this video source, we sampled images of 419 cars,

each at approximately the same location in the intersection,

such that the size of the license plate was 104 × 31 pixels.

The plates were then manually extracted from these images

and split into a training set of 359 images and a test set of

60 images.

2 License Plate Detection

In any object recognition system, there are two major prob-

lems that need to be solved – that of detecting an object in

a scene and that of recognizing it; detection being an im-

portant requisite. We approached the license plate detec-

tion problem as a text extraction problem [5]. The detection

method can be described as follows. A window of interest,

of roughly the dimensions of a license plate image, is placed

over each frame of the video stream and its image contents

are passed as input to a classifier whose output is 1 if the

window appears to contain a license plate and 0 otherwise.

The window is then placed over all possible locations in the

frame and candidate license plate locations are recorded for

which the classifier outputs a 1.

In reality, this classifier, which we shall call a strong clas-

sifier, weighs the decisions of many weak classifiers, each

specialized for a different feature of license plates, thereby

making a much more accurate decision. This strong classi-

fier is trained using the AdaBoost algorithm, and the weak

classifiers are considered weak since they only need be over

50% accurate. Over several rounds, AdaBoost selects the

best performing weak classifier from a set of weak classi-

fiers, each acting on a single feature.

2

Figure 2: Types of features selected by AdaBoost. The

sum of values computed over colored regions are subtracted

from the sum of values over non-colored regions.

2.1 Feature Selection

The features to which the weak classifiers respond are im-

portant in terms of overall accuracy and should be cho-

sen to discriminate well between license plates and non-

license plates. Viola and Jones use Haar-like features,

where sums of pixel intensities are computed over rectan-

gular sub-windows [26]. Chen and Yuille argue that, while

this technique may be useful for face detection, text has lit-

tle in common with faces [5]. To support their assumption,

they perform principal component analysis (PCA) on their

training examples and find that about 150 components are

necessary to capture 90 percent of the variance, whereas in

typical face datasets, only a handful would be necessary.

A total of 2,400 features were generated as input to the

AdaBoost algorithm. These were a variation of the Haar-

like features used by Viola and Jones [26], but more gener-

alized, yet still computationally efficient. A scanning win-

dow was evenly divided into between 2 and 7 regions of

equal size, either horizontal or vertical. Each feature was

then a variation on the sum of values computed in a set of

the regions subtracted from the sum of values in the remain-

ing set of regions. Therefore, each feature applied a thresh-

olding function on a scalar value. Some of these features

are shown in Figure 2.

The values of the regions of each window were the

means of pixel intensities, derivatives, or variance of deriva-

tives. None of the features actually selected by AdaBoost

used raw pixel intensities, however, probably because of

their poor discriminating ability with respect to wide illumi-

nation differences. Each weak classifier was a Bayes clas-

sifier, trained on a single feature by forming class condi-

tional densities (CCD) from the training examples. When

making a decision, regions where the license plate CCD is

larger than the non-license plate CCD are classified as li-

cense plate and vice-versa, instead of using a simple one-

dimensional threshold.

2.2 AdaBoost Training

In its original form, AdaBoost is used to boost the classifica-

tion accuracy of a single classifier, such as a perceptron, by

combining a set of classification functions to form a strong

classifier. As applied to this project, AdaBoost is used to

select a combination of weak classifiers to form a strong

classifier. The weak classifiers are called weak because they

only need to be correct 51% of the time.

At the start of training, each training example (xi, yi) is

assigned a weight wi = 1

2m
for negatives and wi = 1

2l
for

positives, where y ∈ {0, 1}, m is the number of negatives,

and l is the number of positives. The uneven initial distribu-

tion of weights leads to the name ”Asymmetric AdaBoost”

for this boosting technique.

Then, for t = 1, ..., T rounds, each weak classi-

fier hj is trained and its error is computedd as ǫt =
∑

i wi |hj(xi) − yi|. The hj with lowest error is selected,

and the weights are updated according to:

wt+1,i = wt,i

(

ǫt

1 − ǫt

)

if xi is classified correctly, and not modified if classified

incorrectly. This essentially forces the weak classifiers to

concentrate on ”harder” examples that are most often mis-

classified.

After T rounds, T weak classifiers are selected and the

strong classifier makes classifications according to

h(x) =

{

1
∑T

t=1
αtht(x) ≥ 1

2

∑T

t=1
αt

0 otherwise
(1)

where, αt = ln
(

1−ǫt

ǫt

)

.

In addition to the 359 manually cropped positive train-

ing examples, we generated additional positive examples by

extracting images from 10 random offsets (up to 1/8 of the

width and 1/4 of the height of license plates) of each li-

cense plate location (for a total of 3,590). We found that

this yielded better results than just using the license plate

location for a single positive example per hand-labeled re-

gion. Of course, when the detector was in operation, it fired

at many regions around a license plate, which we in fact

used as an indication of the quality of a detection.

To generate negative examples, we picked 28 license

plate-sized images from random regions known not to con-

tain license plates in each positive frame, which resulted in

10,052 per set. We then applied a sequence of two bootstrap

operations where false positives obtained from testing on

the training data were used as additional negative examples

for re-training the cascade, and obtained 9,948 additional

negative examples.

2.3 Results

Scanning every possible location of every frame would be

very slow were it not for two key optimization techniques

introduced by Viola and Jones – integral images and cas-

caded classifiers [26]. The integral image technique allows

3

60

68

76

84

92

100

0 0.004 0.008 0.012 0.016 0.02

D
e
te

c
ti

o
n

 R
a
te

 (
%

)

False Positive Rate (%)

Figure 3: ROC curve for a 6-stage cascaded detector, with

2, 3, 6, 12, 40, and 60 features per stage respectively.

Figure 4: Examples of regions incorrectly labeled as license

plates.

for an efficient implementation and the cascaded classifiers

greatly speed up the detection process, as not all classi-

fiers need be evaluated to rule out most non-license plate

sub-regions. With these optimizations in place, the system

was able to process 10 frames per second at a resolution of

640 × 480 pixels.

Figure 3 shows a receiver operating characteristic (ROC)

curve for our cascaded detector. We did not achieve as low a

false positive rate per detection rate on our datasets as either

Chen and Yuille, or Viola and Jones, but the false positive

rate of 0.002% for a detection rate of 96.67% in set 3 is

quite tolerable. In practice, the number false positives per

region of each frame is small compared to the number of

detections around a license plate in the frame. Therefore, in

our final detector we do not consider a region to contain a

license plate unless the number of detections in the region

is above a threshold.

Figure 4 shows a few examples of regions that our detec-

tor incorrectly labeled as license plates in our test dataset.

Perhaps not surprisingly, a large number of them are text

from advertising on city buses, or the UCSD shuttle. Those

that contain taillights can easily be pruned by applying a

color threshold.

3 License Plate Recognition

In this section, we present a process to recognize the char-

acters on detected license plates. We begin by describing

a method for tracking license plates over time and then de-

scribe our optical character recognition (OCR) algorithm.

3.1 Tracking

More often than not, the false positive detections from our

license plate detector were erratic, and if on the car body,

their position was not temporally consistent. We use this

fact to our advantage by tracking candidate license plate re-

gions over as many frames as possible. Then, only those re-

gions with a smooth trajectory are deemed valid. The track-

ing of license plates also yields a sequence of samplings

of the license plate, which can be used as input to a super-

resolution pre-processing step before OCR is performed on

them.

Numerous tracking algorithms exist that could be ap-

plied to our problem. Perhaps the most well-known and

popular is the Kanade-Lucas-Tomasi (KLT) tracker [23].

The KLT tracker makes use of a Harris corner detector to

detect good features to track in a region of interest (our li-

cense plate) and measures the similarity of every frame to

the first allowing for an affine transformation. Sullivan et

al. [25] make use of a still camera for the purposes of track-

ing vehicles by defining regions of interest (ROI) chosen to

span individual lanes. They initiate tracking when a certain

edge characteristic is observed in the ROI and make predic-

tions on future positions of vehicles. Those tracks with a

majority of accurate predictions are deemed valid. Okuma

et al. [18] use the Viola and Jones [26] framework to detect

hockey players and then apply a mixture particle filter using

the detections as hypotheses to keep track of the players.

Although each of these tracking methods would prob-

ably have worked well in our application, we chose a far

simpler approach which worked well in practice. Because

detecting license plates is efficient we simply run our de-

tector on each frame and for each detected plate we deter-

mine whether that detection is a new plate or an instance

of a plate already being tracked. To determine whether a

detected plate is new or not, the following conditions are

checked:

• the plate is within T pixels of an existing tracker

• the plate is within T ′ pixels of an existing tracker and

the plate is within θ degrees of the general direction of

motion of the plates in the tracker’s history

4

If any of these are true, the plate is added to the cor-

responding tracker, otherwise a new tracker is created for

that plate. In our application T ′ was an order of magni-

tude larger than T . Our tracking algorithm was also useful

for discarding false positives from the license plate detector.

The erratic motion of erroneous detections usually resulted

in the initiation of several trackers each of which stored few

image sequences. Image sequences of 5 frames or fewer

were discarded.

3.2 Character Recognition

It was our initial intent to apply a binarization algorithm,

such as a modified version of Niblack’s algorithm as used

by Chen and Yuille [5], on the extracted license plate im-

ages from our detector, and then use the binarized image as

input to a commercial OCR package. We found, however,

that even at a resolution of 104 × 31 the OCR packages we

experimented with yielded very poor results. Perhaps this

should not come as a surprise considering the many custom

OCR solutions used in existing LPR systems.

Unless text to be read is in hand-written form, it is com-

mon for OCR software to segment the characters and then

perform recognition on the segmented image. The simplest

methods for segmentation usually involve the projection of

row and column pixels and placing divisions at local min-

ima of the projection functions. In our data, the resolution

is too low to segment characters reliably in this fashion, and

we therefore decided to apply simple template matching in-

stead, which can simultaneously find both the location of

characters and their identity.

The algorithm can be described as follows. For each ex-

ample of each character, we search all possible offsets of the

template image in the license plate image and record the top

N best matches. The searching is done using normalized

cross correlation (NCC), and a threshold on the NCC score

is applied before considering a location a possible match.

If more than one character matches a region the size of the

average character, the character with the higher correlation

is chosen and the character with the lower correlation is dis-

carded. Once all templates have been searched, the charac-

ters for each region found are read left to right forming a

string. N is dependent on the resolution of the license plate

image and should be chosen such that not all N matches

are around a single character when the same character oc-

curs more than once on a plate, and not too large so that not

all possible regions are processed.

This method may seem inefficient, however, the recog-

nition process takes on the order of half a second for a res-

olution of 104 × 31, which we found to be acceptable.

0

30

60

90

120

150

0 1 2 3 4 5 6 7

Edit Distance

N
u
m

b
e
r

o
f
P

la
te

s

Figure 5: Character recognition results showing the number

of license plates recognized with 0, 1, 2, 3, 4, 5, 6, and 7

mistakes.

3.3 Results

Training and test data for character recognition was ob-

tained by running our license plate detector on several

hours of video and extracting sequences of images for each

tracked license plate. This process resulted in a total of 879

plate sequences each of which was labeled by hand. Of

these, 121 were chosen at random to form an alphabet of

characters for training. These 121 sequences contained the

necessary distribution of characters to form 10 examples per

character, for a total of 360 examples (26 letters and 10 dig-

its). The remaining 758 plates were used for testing the

OCR rate.

To test the accuracy of the character recognition, we used

the edit distance to measure how similar our recognized

text was to the labeled plates in the test set. Because cer-

tain characters are easily confused with others, even by hu-

mans, we applied a ‘loose’ character equality test whenever

the edit distance algorithm compared two characters. The

groups of characters {‘O’, ‘0’, ‘D’, ‘Q’}, {‘E’, ‘F’}, {‘I’,

‘T’, ‘1’}, {‘B’, ‘8’}, and {‘Z’, ‘2’} were each considered

of the same type and no penalty was applied for incorrect

readings within the group. Figure 5 shows the number of

license plates read with various numbers of mistakes with

and without using the ‘loose’ comparison measure. Note

that over half of the test set was recognized with two or

fewer mistakes.

4 Make and Model Recognition

As with the license plate recognition problem, detecting the

car is the first step to performing make and model recogni-

tion (MMR). To this end, one can apply a motion segmenta-

tion method to estimate a region of interest (ROI) containing

5

the car. Instead, we decided to use the location of detected

license plates as an indication of the presence and location

of a car in the video stream and to crop an ROI of the car for

recognition. This method would also be useful for make and

model recognition in static images, where the segmentation

problem is more difficult.

4.1 Datasets

We automatically generated a database of car images by

running our license plate detector and tracker on several

hours of video data and cropping a fixed window of size

400 × 220 pixels around the license plate of the middle

frame of each tracked sequence. This method yielded 1,140

images in which cars of each make and model were of

roughly the same size. The crop window was positioned

such that the license plate was centered in the bottom third

of the image. We chose this position as a reference point

to ensure matching was done with only car features and

not background features. Had we centered the license plate

both vertically and horizontally, cars that have their plates

mounted on their bumper would have exposed the road in

the image.

After collecting these images, we manually assigned

make, model, and year labels to 790 of the 1,140 images.

We were unable to label the remaining 350 images due to

our limited familiarity with those cars. We often made use

of the California Department of Motor Vehicles’ web site

to determine the makes and models of cars with which we

were not familiar. The web site allows users to enter a li-

cense plate or vehicle identification number for the purposes

of checking whether or not a car has passed recent smog

checks. For each query, the web site returns smog history

as well as the car’s make and model description if available.

The State of California requires all vehicles older than three

years to pass a smog check every two years. Therefore, we

were unable to query cars that were three years old or newer

and relied on our personal experience to label them.

We split the 1,140 labeled images into a query set and

a database set. The query set contains 38 images chosen

to represent a variety of make and model classes, in some

cases with multiple queries of the same make and model

but different year in order to capture the variation of model

designs over time. We evaluated the performance of each

of the recognition methods by finding the best match in the

database for each of the query images.

4.2 SIFT Matching

Scale invariant feature transform (SIFT) features recently

developed by Lowe [14] are invariant to scale, rotation and

even partially invariant to illumination differences, which

makes them well suited for object recognition. We applied

SIFT matching to the problem of MMR as follows:

1. For each image d in the database and a query image

q, perform keypoint localization and descriptor assign-

ment.

2. For each database image d:

(a) For each keypoint kq in q find the keypoint kd in

d that has the smallest L2 distance to kq and is

at least a factor of α smaller than the distance to

the next closest descriptor. If no such kd exists,

examine the next kq.

(b) Count the number of descriptors n that success-

fully matched in d.

3. Choose the d that has the largest n and consider that

the best match.

4.3 Discussion

We found that a few types of keypoint matches resulting

from the above algorithm did not contribute to the selection

of a best car match. For example, some matching keypoints

corresponded to entire groups of digits and letters on the li-

cense plates of a query image and a database image even

though the the cars to which they belonged looked quite

different. Since the best car match in the database is deter-

mined based on the number of matched keypoints, spurious

matches should be ignored. We, therefore, applied the fol-

lowing keypoint pruning procedures:

• Limit horizontal distance between matching keypoints.

This helps remove outliers when estimating an affine

transformation between the query and database im-

ages.

• Ignore keypoints that occur in the license plate region.

• Do not allow multiple query keypoints to match to the

same database keypoint.

• Compute an affine transformation from the query to

the database image when there are more than three

matching keypoints. If the scale, shear, or translation

parameters of the transformation are outside a thresh-

old, set the number of matching keypoints n to 0.

We used Lowe’s implementation [14] of the keypoint local-

ization part of the algorithm. Unlike in Lowe’s implemen-

tation, the query’s keypoint descriptors were compared with

the keypoint descriptors of each image in the database. This

means that the second best descriptor was not chosen for an

object other than the current database image. Also, modify-

ing the threshold from the 0.36 appearing in the published

code to 0.60 (which is closer to the suggested in Lowe’s

6

paper) increased the number of matches, but had little ef-

fect on the overall recognition rate – misclassified cars us-

ing one method were correctly classified with the other at

the expense of different misclassifications.

When the number of matching descriptors between the

query image and a database image is equal to that of another

database image, we break the tie by selecting the database

image with the smaller overall L2 distance between all the

descriptors. This only occurred when the best matches in

the database had one or two matching descriptors, and ap-

plying the tie-break procedure had little effect on the overall

recognition rate.

4.4 Results

The SIFT matching algorithm described above yielded a

recognition rate of 89.5% on the query set. Recognition

results for some of the queries in the test set are shown in

Figure 6. The top 10 matches were all of the same make

and model for some of the queries with over 20 similar cars

in the database.

Most of the queries SIFT matching was not able to clas-

sify correctly had 5 or fewer entries similar to it in the

database. Based on the results of queries corresponding to

makes and models with many examples in the database, it

is safe to assume that having more examples per make and

model class will increase the recognition rate.

5 Summary and Conclusions

We have presented a useful framework for car recognition

that combines LPR and MMR. Our recognition rates for

both sub-problems are very promising and can serve as an

important foundation to a query-based car surveillance sys-

tem. Our LPR solution is real-time and works well with

inexpensive camera hardware and does not require infrared

lighting or sensors as are normally used in commercial LPR

systems. Our MMR solution is also very accurate, however,

further research is required to make it real-time.

Several possibilities exist that may help in that regard.

Instead of comparing features in the query image with ev-

ery single database image, it would be useful to cluster the

database images into groups of similar type, such as sedan,

SUV, etc. and perform a hierarchical search to reduce the

number of comparisons.

A promising method that is applicable to our situation is

the recent work by Sivic and Zisserman [24]. They formu-

late the object recognition problem as a text retrieval prob-

lem, which itself has been shown to be remarkably efficient

based on our daily experiences with internet search engines.

Future work on MMR should investigate the possibility of

incorporating a similar approach.

Figure 6: Recognition results on 20 query images in test

set and their top 7 matches in the database. Yellow lines

indicate correspondences between matched SIFT features.

7

In addition to searching the surveillance database for cars

using some make and model description and a partial li-

cense plate, it would also be useful to be able to search for a

particular color car as the make and model information may

be incomplete. Various color- and texture-based image seg-

mentation techniques used in content-based image retrieval

such as [4] may be suitable for this purpose.

In our MMR work, we have not explored car pose vari-

ation beyond what normally occurs at the stop signs in our

scenes. A robust MMR system should also work well in

scenes where there is a large variation of poses. This could

require the estimation of a car’s 3-D structure to be used as

additional input to the MMR algorithms.

References

[1] S. Agarwal, A. Awan, and D. Roth. Learning to detect ob-

jects in images via a sparse, part-based representation. PAMI,

26(11):1475–1490, 2004.

[2] Y. Amit, D. Geman, X. Fan. A coarse-to-fine strategy for mul-

ticlass shape detection. IEEE Trans. Pattern Analysis and Ma-

chine Intelligence, 26, 1606–1621. 2004.

[3] G. Cao, J. Chen, J. Jiang, An adaptive approach to vehicle li-

cense plate localization. Industrial Electronics Society, 2003.

IECON ’03. Volume 2, pp 1786- 1791

[4] C. Carson, S. Belongie, H. Greenspan, J. Malik. Blobworld:

color- and texture-based image segmentation using EM and

its Application to image querying and classification. PAMI,

24(8):1026–1038, 2002.

[5] X. Chen, A. Yuille. Detecting and reading text in natural

scenes. CVPR. Volume: 2, pp. 366–373, 2004.

[6] P. Comelli, P. Ferragina, M. Granieri, F. Stabile. Optical

recognition of motor vehicle license plates. IEEE Trans. On

Vehicular Technology, Vol. 44, No. 4, pp. 790–799, 1995.

[7] G. Dorko and C. Schmid. Selection of scale-invariant parts for

object class recognition. Proc. ICCV, 2003.

[8] A. Ferencz, E. Miller, J. Malik. Learning hyper-features for

visual identification. NIPS, 2004.

[9] N. Khan, R. de la Haye, A. Hegt. A license plate recognition

system. SPIE Conf. on Applications of Digital Image Process-

ing. 1998.

[10] B. Leung. Component-based Car Detection in Street Scene

Images. Master’s Thesis, Massachusetts Institute of Technol-

ogy, 2004.

[11] H. Hegt, R. de la Haye, N. Khan. A high performance license

plate recognition system. SMC’98 Conference Proceedings.

1998 IEEE International Conference on Systems, Man, and

Cybernetics (Cat. No.98CH36218). IEEE. Part vol.5, 1998,

pp.4357–62 vol.5. New York, NY, USA.

[12] V. Kamat, S. Ganesan. An efficient implementation of the

Hough transform for detecting vehicle license plates using

DSP’S. Real-Time Technology and Applications Symposium

(Cat. No.95TH8055). IEEE Comput. Soc. Press. 1995, pp.58–

9. Los Alamitos, CA, USA.

[13] K. Kim, K. Jung, and J. Kim, Color texture-based object de-

tection: an application to license plate localization. Lecture

Notes in Computer Science: International Workshop on Pat-

tern Recognition with Support Vector Machines, pp. 293–309,

2002.

[14] D. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 2(60):91–110, 2004.

[15] T. Naito, T. Tsukada, K. Yamada, K. Kozuka, S. Yamamoto,

Robust license-plate recognition method for passing vehicles

underoutside environment. IEEE T VEH TECHNOL 49 (6):

2309–2319 NOV 2000.

[16] T. Naito, T. Tsukuda, K. Yamada, K. Kozuka. Robust recog-

nition methods for inclined license plates under various il-

lumination conditions outdoors. Proc. of IEEE/IEEJ/JSAI In-

ternational Conference on Intelligent Transportation Systems,

pp. 697702,1999.

[17] J. Nijhuis, M. Brugge, K. Helmholt, J. Pluim, L. Spaanen-

burg, R. Venema, M. Westenberg. Car license plate recog-

nition with neural networks and fuzzy logic. Proceedings of

IEEE International Conference on Neural Networks, Perth,

Western Australia, pp 21852903. 1995.

[18] K. Okuma, A. Teleghani, N. de Freitas, J. Little and D. Lowe.

A boosted particle filter: Multitarget detection and tracking,

ECCV, 2004.

[19] C. Papageorgiou, T. Poggio. A trainable object detection

system: car detection in static images. MIT AI Memo, 1673

(CBCL Memo 180), 1999.

[20] C. Schlosser, J. Reitberger, S. Hinz, Automatic car detec-

tion in high-resolution urban scenes based on an adaptive 3D-

model. Proc. IEEE/ISPRS Workshop on ”Remote Sensing and

Data Fusion over Urban Areas”. 2003.

[21] H. Schneiderman, T. Kanade. A statistical method for 3D

object detection applied to faces and cars. IEEE CVPR, 2000.

[22] V. Shapiro, G. Gluhchev. Multinational license plate recog-

nition system: segmentation and classification. Proc. ICPR

1051–4651, 2004.

[23] J. Shi, C. Tomasi, Good Features to track. Proc. IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR94),

Seattle, June 1994.

[24] J. Sivic, A. Zisserman. Video google: a text retrieval ap-

proach to object matching in videos. Proc. ICCV, 2003.

[25] G. Sullivan., K. Baker, A. Worrall, C. Attwood, P. Re-

magnino, Model-based vehicle detection and classification

using orthographic approximations. Image and Vision Com-

puting. 15(8), 649–654.

[26] P. Viola, M. Jones. Rapid object detection using a boosted

cascade of simple features. Computer Vision and Pattern

Recognition, 2001. CVPR 2001. Proceedings of the 2001

IEEE Computer Society Conference on , Volume: 1, 8–14,

pp. 511–518. 2001.

[27] Y. Yanamura, M. Goto, D. Nishiyama, M. Soga, H. Nakatani,

H. Saji. Extraction and tracking of the license plate using

Hough transform and voted block matching. IEEE IV2003 In-

telligent Vehicles Symposium. Proceedings, pp.243–6. Piscat-

away, NJ, USA, 2003.

8

