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Abstract

Widely used models in genetics include the Wright-Fisher diffusion and its moment dual, 

Kingman’s coalescent. Each has a multilocus extension but under neither extension is the 

sampling distribution available in closed-form, and their computation is extremely difficult. In this 

paper we derive two new multilocus population genetic models, one a diffusion and the other a 

coalescent process, which are much simpler than the standard models, but which capture their key 

properties for large recombination rates. The diffusion model is based on a central limit theorem 

for density dependent population processes, and we show that the sampling distribution is a linear 

combination of moments of Gaussian distributions and hence available in closed-form. The 

coalescent process is based on a probabilistic coupling of the ancestral recombination graph to a 

simpler genealogical process which exposes the leading dynamics of the former. We further 

demonstrate that when we consider the sampling distribution as an asymptotic expansion in 

inverse powers of the recombination parameter, the sampling distributions of the new models 

agree with the standard ones up to the first two orders.

Keywords and phrases

population genetics; recombination; sampling distribution; diffusion; coupling

 1. Introduction

The basis of many important problems in genetics is to find an expression for a sampling 

distribution or likelihood. Valuable tools in this endeavour are stochastic models of allele 

frequency evolution forwards in time, and their dual genealogical processes backwards in 

time. In particular, the numerous variants of the Wright-Fisher diffusion and Kingman’s 
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coalescent, respectively, have focused attention on the scaling limit as the population size 

goes to infinity, leading from a (complicated) finite-population model of reproduction to a 

(simpler) infinite-population limit. At a single genetic locus, the problem of computing 

sampling distributions in these models is well studied, with even some closed-form formulas 

available (Wright, 1949; Ewens, 1972; Jenkins and Song, 2011; Bhaskar, Kamm and Song, 

2012). However, with ongoing technological developments in high-throughput DNA 

sequencing, large genomic datasets are becoming available and it is necessary to consider 

multilocus models. Inter-locus recombination quickly makes such models intractable; for 

neither the Wright-Fisher diffusion with recombination nor the coalescent with 

recombination—or ancestral recombination graph (ARG)—is it possible to obtain a closed-

form expression for the sampling distribution. This has remained a notoriously difficult 

problem, and to make progress using these models it has usually been necessary to resort to 

computationally-intensive techniques such as importance sampling (Griffiths and Marjoram, 

1996; Fearnhead and Donnelly, 2001; Griffiths, Jenkins and Song, 2008; Jenkins and 

Griffiths, 2011), Markov chain Monte Carlo (Kuhner, Yamato and Felsenstein, 2000; 

Nielsen, 2000; Wang and Rannala, 2008; Rasmussen et al., 2014), or other numerical 

approximations (Boitard and Loisel, 2007; Miura, 2011). Denoting the population-scaled 

recombination parameter by ρ, only in the special cases of ρ = 0 or ρ = ∞ is it possible to 

make progress analytically, since then we are back to a single locus, or to many independent 

single loci, respectively.

In another direction, we have considered an analytic approach to the problem, as follows. 

Denote the observed sample configuration at two loci by n and its sampling probability by 

q(n; ρ) (to be defined precisely below). Consider the asymptotic expansion in inverse powers 

of ρ:

(1)

where for convenience we suppress the dependence of these terms on other parameters of 

the model. Under an infinite-alleles type of mutation, we obtained closed-form formulas for 

q0(n) and q1(n) in terms of the marginal one-locus sampling probabilities, and a 

decomposition of q2(n) into a closed-form term plus a second part which is evaluated easily 

by dynamic programming (Jenkins and Song, 2010). (The result is stated more precisely in 

Theorem 2.1 below.) This provides the first closed-form extension of Ewens’ Sampling 

Formula (Ewens, 1972) to handle finite amounts of recombination. It has been extended 

subsequently to include more general models of mutation (Jenkins and Song, 2009), natural 

selection (Jenkins and Song, 2012), higher-order terms (Jenkins and Song, 2012), and more 

than two loci (Bhaskar and Song, 2012), and has had practical implications for genomic 

inference (Chan, Jenkins and Song, 2012). One particularly appealing conclusion of these 

works is that both q0(n) and q1(n) are universal; that is, their functional form is invariant to 

our assumptions about mutation and selection acting marginally at each locus. The effects of 

these marginal processes are entirely subsumed into the relevant one-locus sampling 

distributions.
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The simple and universal forms for q0(n) and q1(n) provide strong circumstantial evidence 

that there exists an underlying stochastic process which is much simpler than the standard 

models for finite amounts of recombination. In particular, we previously conjectured 

(Jenkins and Song, 2010) the existence of a process which is both much simpler than the 

standard models based on the Wright-Fisher diffusion or on the ARG, and is in agreement 

with the sampling distribution (1) up to O(ρ−2). The goal of this paper is to describe such a 

process. In fact, using different arguments we describe two such processes, obtaining both a 

limiting diffusion and a coalescent process with these properties. In the diffusion 

approximation, the key idea is to suppose that the probability r of a recombination per 

individual per generation scales as N−β as the population size N → ∞, for 0 < β < 1, rather 

than the usual choice of β = 1. Interest in asymptotically large recombination rates is 

reasonable because of extensive recombination rate heterogeneity along chromosomes in 

e.g. humans, strong recombination rates in some species such as Drosophila melanogaster 
(Chan, Jenkins and Song, 2012), and because of the need to understand the long-range 

dependencies between well-separated loci. Our diffusion in this scaling is intimately related 

to the central limit theorem for density dependent population processes (see Ethier and 

Kurtz, 1986, Theorem 11.2.3), which has been analyzed in genetics—for models of strong 

mutation rather than strong recombination—by Feller (1951) and Norman (1975a). A 

closely related scaling in the context of Ξ-coalescent processes was also recently explored 

by Birkner, Blath and Eldon (2013) (in that paper β = 1 but with timescale N2). The 

coalescent approach, meanwhile, uses a coupling argument. Intuitively, we would like to 

couple the ARG to the limiting case of two independent coalescent trees (ρ = ∞). To 

account for contributions to the sampling distribution of O(ρ−1), we must quantify the 

“leading order reasons” for such a coupling to fail. When ρ is large but finite, lineages in the 

ARG ancestral to both loci undergo recombination backwards in time very rapidly, until the 

first time U that no such lineage survives. In this paper we show that, roughly speaking, in 

order to recover the sampling distribution up to O(ρ−1) we need consider only the following 

type of exceptional event: a coalescence occurs more recently than time U in the ARG, and 
the coalescence is between two lineages each of which is ancestral to both of the two loci. 
This observation enables us to define a simple coalescent process which allows for at most 

one of these events but is otherwise very similar to the easy limiting process corresponding 

to ρ = ∞.

The paper is organized as follows. In Section 2 we specify our notation and summarize 

previous research. Novel diffusion and coalescent processes are introduced in Sections 3 and 

4, respectively, and we conclude in Section 5 with a brief discussion.

 2. Notation and previous results

For M ∈ ℕ = {0, 1, 2, …}, let [M] ≔ {1, 2, …, M}. The complement of a set J is written J𝖢. 

Denote the Kronecker delta by δij which takes the value 1 if i = j and 0 otherwise. Let ei 

denote a unit vector whose jth entry is δij, and let eij denote a matrix with (k, l)th entry equal 

to δikδjl. For a vector υ ∈ ℝd we denote by |υ| the usual Euclidean norm. Denote the k × l 
zero matrix by 0k×l and the k × k identity matrix by Ik. We will replace a subscript with a “·” 

to denote summation over that index. A prime symbol ′ will denote vector or matrix 

transpose. For z ∈ ℝ≥0 and n ∈ ℕ, (z)n↑ ≔ z(z + 1) ⋯ (z + n − 1) denotes the nth ascending 
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factorial of z. Finally, for a matrix R of processes we let [R]t = ([Ri, Rj]t)i,j denote the matrix 

of corresponding covariation processes.

Consider the usual diffusion limit of an exchangeable model of random mating with constant 

population size of N haplotypes. Our interest will be in a sample from this population at two 

loci, which we call A and B, with the probability of mutation per haplotype per generation 

denoted by uA and uB respectively. In the diffusion limit we let N → ∞ and uA, uB → 0 

while the population-scaled parameters θA = 2NuA and θB = 2NuB remain fixed. In this 

paper we will suppose a finite-alleles model of mutation such that a mutation to an allele i in 

type space EA = [K], K ∈ ℕ, takes it to allele k ∈ [K] with probability , with EB = [L] 

and , j, l ∈ [L] defined analogously. (As we discover below, the mutation model is not 

important and we could pose something more complicated with little extra effort.) The 

probability of a recombination between the two loci per haplotype per generation is denoted 

by r, and we assume that ρβ = 2Nβr is fixed as N → ∞, for some fixed β ∈ (0, 1]. Previous 

work has focused on the case β = 1 with time measured in units of N generations. For 

consistency with the usual notation we write ρ = ρ1.

A sample from this model comprises a haplotypes observed only at locus A, b haplotypes 

observed only at locus B, and c haplotypes observed at both loci. The sample configuration 

is denoted by n = (a, b, c) where a = (ai)i∈[K] and ai is the number of haplotypes observed to 

exhibit allele i at locus A; b = (bj)j∈[L] where bj is the number of haplotypes observed to 

exhibit allele j at locus B; and c = (cij)i∈[K],j∈[L] where cij is the number of haplotypes with 

allele i at locus A and allele j at locus B. Thus,

and we let n = a + b + c. We further write cA = (ci·)i∈[K] and cB = (c·j)j∈[L] to denote the 

marginal sample configurations of c restricted to locus A and locus B respectively. Finally, 

we use q(a, b, c) to denote the probability that when we sample n haplotypes in some order 

from the population at stationarity we obtain the unordered configuration (a, b, c); by 

sampling exchangeability this is indeed a function only of the unordered configuration (a, b, 
c). For convenience we suppress the dependence of this quantity on the model parameters 

and on β. The main result motivating this work is an expansion for q(a, b, c) for the case of β 

= 1, and later we will show that this expansion holds for all β ∈ (0, 1].

 Theorem 2.1 (See Jenkins and Song (2009))

Consider the following asymptotic expansion for q(a, b, c) under the diffusion limit with β = 

1:

with q0, q1, … independent of ρ. Then the zeroth order term is given by
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(2)

and the first order term is given by

(3)

where qA, qB are the marginal sampling distributions at locus A and locus B, respectively.

 Remark 2.1

Under a neutral, finite-alleles model of mutation, if mutation is parent independent—that is, 

, i, k ∈ [K], and , j, l ∈ [L], then qA(a) and qB(b) are known in closed-form:

These expressions follow, for example, from the moments of the Wright-Fisher diffusion 
with parent-independent mutation, whose stationary distribution at locus A is 

 (Wright, 1949), and similarly at locus B.

 Remark 2.2

The zeroth-order decomposition is well known (e.g. Ethier, 1979) and also intuitive, since 
the two loci become independent as ρ → ∞.

Theorem 2.1 can be obtained by diffusion (Jenkins and Song, 2012) or by coalescent 

(Jenkins and Song, 2009, 2010) arguments. In this paper we address both approaches in 

further detail.

 3. Diffusion model

In this section we extend the above results by obtaining a full description of a simple 

diffusion process such that its sampling distribution is known exactly and has a Taylor 

expansion about ρ = ∞ consistent with (2) and (3). For simplicity we will obtain our 

diffusion as the limit of an appropriately rescaled Moran model, although we expect our 
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results to hold for a more general class of discrete models of reproduction within the domain 

of convergence of the Wright-Fisher diffusion.

 3.1. Neutral Moran model

A population of N haploid, monoecious individuals evolves as a multitype birth-and-death 

process in continuous time. Each individual carries a haplotype comprising a pair of alleles 

(i, j) ∈ [K] × [L], one at locus A and one at locus B. Let Zij(τ) ∈ {0, 1, …, N} denote the 

number of (i, j) haplotypes in the population at time τ ∈ ℝ≥0, and Z(τ) = (Zij(τ))i∈[K],j∈ [L]. 

The population evolves as follows. At rate N2/2 a reproduction event occurs, in which an 

individual is chosen uniformly at random from the population to die. It is replaced by a copy 

of another individual also chosen uniformly at random (the same individual could be chosen; 

whether sampling is with or without replacement does not affect the diffusion limit). 

Independently, each locus of each haplotype undergoes mutation: any locus A mutates at 

rate θA/2 and its allele is updated according to the transition matrix ; 

similarly any locus B mutates at rate θB/2 and its allele is updated according to 

. Finally, each haplotype independently undergoes recombination at rate 

ρ/2: at such an event, it is replaced by a haplotype formed by sampling two alleles (one for 

each locus) independently from the population. Putting all this together, the rate at which a 

haplotype (i, j) dies and is replaced by a haplotype (k, l) when Z(τ) = z is given by

Notice that, as is standard (e.g. Baake and Herms, 2008), we decouple the mutation and 

recombination mechanisms from reproduction (and from each other). This simplifies the 

analysis without unduly affecting the diffusion limit.

We will change variables by introducing the collection

where
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That is, we describe the state of the Moran model at time τ by the marginal allele 

frequencies and the coefficients of linkage disequilibrium (see, e.g. Ewens, 2004, p69, 

p227). We will write this succinctly by arranging the variables in a linear order:

and thinking of M(N)(τ) as a vector of length Λ ≔ K + L + KL. The process (M(N)(τ) : τ = 0, 

1, …) is then Markov on a state space we denote by , which is a rational subset (those 

points consistent with ) of the (KL − 1)-dimensional shifted simplex

To find the diffusion limit we first need the conditional means and covariances of the 

increments

From these, and under the assumption that θA, θB, and ρ are fixed as N → ∞, it is possible 

to show that the model converges to a (Wright-Fisher) diffusion limit (Ethier and Kurtz, 

1986, Example 10.3.9, p433). Recall however that our interest is when ρβ, rather than ρ, is 

fixed, so below we write these increments in terms of ρβ using ρ = ρβN1−β.

In the following, for convenience we drop the dependence on τ.

 Proposition 3.1—In the neutral two-locus Moran model with mutation and 
recombination, the conditional means and covariances of increments of M(N) are given by

(4)

(5)
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(6)

Higher order moments of order m ≥ 2 are O(N−(m−2)).

 Proof: These expressions follow directly from the first four moments of Z(τ + dτ) | Z(τ), 

which are easily computed by noting that
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For example, choosing f(z) = zuυ we find

and hence we recover (4) via

The remaining terms follow similarly; we omit the straightforward but lengthy algebraic 

details.

To prepare for our diffusion limit, we must rescale time; from (6) it is clear that to obtain a 

nontrivial limit we should let t = N1−βτ. Now introduce the conditional mean vector w(N) and 

conditional covariance matrix s(N) on this timescale, defined by

(7)

(8)

with entries determined by Proposition 3.1. Thus, with m = (x1, …, xK, y1, …, yL, d11, …, 

dKL), equations (4)–(6) show that

(9)

with s(N)(m) = s(m) + O(N−β) determined in a similar fashion:
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where

Notice in particular the different leading orders of the two quantities in (7) and (8): the mean 

increments are of O(1) on this timescale while the covariances are of O(Nβ−1). It is this 

difference, which is a consequence of our assumption that the recombination probability r is 

O(N−β) for β < 1, that leads to a novel diffusion limit. Under the usual choice of β = 1 it is 

well known that we see convergence to a diffusion process after a linear rescaling of time. In 

the special case of a Wright-Fisher model and K = L = 2, the diffusion limit for M(N)(⌊Nτ⌋) 

as N → ∞ was obtained by Ohta and Kimura (1969a,b). Our interest is however in β ∈ (0, 

1), for which r is larger, and the loss of linkage disequilibrium (LD) is subsequently much 

faster. Intuitively, we should expect such loss to resemble the exponential decay predicted in 

an infinitely large population, but with small fluctuations about this deterministic behaviour. 

The diffusion process we define below quantifies these fluctuations precisely.

 3.2. Gaussian diffusion limit of fluctuations in linkage disequilibrium

We first provide a heuristic description of the diffusion limit. First, observe from (7) and (8) 

that, provided M(N)(0) → M(0) as N → ∞ and that β ∈ [0, 1), then
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(10)

the deterministic exponential decay in LD typical of an infinitely large population. See 

Baake and Herms (2008) for a formal statement of this law-of-large-numbers type result for 

the Moran model with recombination. For the corresponding central limit theorem, we seek 

a diffusion limit for

(11)

for some rescaling rN → ∞. In our application the appropriate choice is

which can be regarded as the one on which both recombination and genetic drift are 

observable on the fastest timescale (Jenkins and Song, 2012). We will assume this scaling 

henceforward. To find the limit U = limN→∞ U(N), write

(12)

where

describes the deviations of M(N)(t) from its expected behaviour and is a martingale. It 

suffices to characterize the limits of each of the three grouped terms on the right of (12). For 

the first term we assume that it converges to a limit,  as N → ∞. For the 

second term, from (9) we should expect

(13)

Jenkins et al. Page 11

Electron J Probab. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, we obtain a complete description of the limit  as N → ∞ by an 

application of the martingale central limit theorem (Ethier and Kurtz, 1986, Theorem 7.1.4); 

we find

where σσ′ = s, and W is a (KL − 1)-dimensional Brownian motion. In summary then, we 

expect U to satisfy

(14)

Our main result formalizes this argument, as follows.

 Theorem 3.1—Suppose that  as N → ∞. Then for each t > 0, as N → 

∞,

, where R has Gaussian, independent increments with mean zero, and 
with

(15)

and , satisfying (14).

 Proof of Theorem 3.1: This is an application of a central limit theorem for density 

dependent population processes; for textbook coverage see Ethier and Kurtz (1986, Chapter 

11) and for a recent treatment see Kang, Kurtz and Popovic (2014). We apply Theorem 2.11 

of Kang, Kurtz and Popovic (2014). To do so we need to validate each of the assertions that 

led to (14) above by checking the following sufficient conditions (i)–(iv). (Kang, Kurtz and 

Popovic (2014, Theorem 2.11) is rather more general than is required here: it permits the 

state space of M(N) to be unbounded, and for M(N) to depend on other processes that evolve 

on faster timescales than that of the diffusion. We omit those conditions which are not 

needed.)

i. The Moran process converges to an identifiable, deterministic limit. This is 
guaranteed by the following: the infinitesimal generator N of M(N) satisfies
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for a generator  with domain ( ).

ii. Fluctuations about the deterministic limit are well behaved. More precisely, 

R(N) is a local martingale and the covariations processes .

iii. Contributions of  to the error w(N) − w can be identified. These 
would contribute to the limiting drift of U (t), and a sufficient condition to 
identify them is: there exists a continuous function G0: ΔKL−1 → ℝΛ (recall Λ 

= K + L + KL) such that

iv. The martingale central limit theorem applies to rNR(N). This is guaranteed 
by the following:

(16)

and there exists a continuous G : ΔKL−1 → ℝΛ×Λ such that for each t > 0,

(17)

We address each of these requirements in turn.

i. Convergence of N f(m) to f(m) ≔ w·∇f(m), the generator of M [see (10)], 

is immediate from Proposition 3.1. Convergence is uniform in m because the 

O(N−β) terms in Proposition 3.1 have coefficients that are polynomials in M(N) 

on a compact space.

ii. Since the state space is bounded, for R(N) to be a martingale it suffices that the 

jump rate is uniformly bounded (Kurtz, 1971, Proposition 2.1), as is the case 

for the Moran process. The covariations process  as a 

consequence of (17), verified below.

iii. From (9), rN[w(N)(m) − w(m)] = O(N(β−1)/2), again uniformly in , 

so here the appropriate choice is G0 ≡ 0. Thus, the only relevant contribution 

to the limit (13) is from the error w(M(N)(s)) − w(M(s)) rather than from 

w(N)(M(N)(s)) − w(M(N)(s)).
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iv. Jumps of any component of M(N) are bounded in magnitude by 2/N, so

and (16) holds. To identify the asymptotic behaviour of , let

denote the total number of jumps of the Moran process into state 

by time t, where  is a collection of independent Poisson 

processes of unit rate and  denotes the rate of transition of the 

process from current state M(N)(s) to m. Then

by (8). Thus we may take G = s in (17) [G identifies the moments appearing in 

(15)].

 Remark 3.1—One could obtain the same diffusion limit starting from a Wright-Fisher 
model rather than a Moran model, since the means and covariances of its increments are 
identical to leading order, up to a rescaling of time. This alternative approach is in some 
respects less appealing since the Wright-Fisher model, when expressed in continuous time, 
is non-Markovian. The additional complications raised by this approach have been 
addressed by Norman (1975a) (see also Ethier and Nagylaki, 1980, 1988), and we have 
checked that the conditions of his theorems still apply when we introduce recombination to 
the Wright-Fisher model. The theory of Norman (1975a) has been used to study strong 
mutation and selection (Norman, 1972, 1975a; Kaplan, Darden and Hudson, 1988; 

Nagylaki, 1986, 1990; Wakeley and Sargsyan, 2009), and a Gaussian diffusion 
approximation of a Moran model with strong selection is developed by Feder, Kryazhimskiy 

and Plotkin (2014), but to the best of our knowledge this is the first time a central limit 
theorem has been obtained for strong recombination.

 Remark 3.2—The exponential decay of linkage disequilibrium implied by M [equation 

(10)] is a classical result; the above theorem further quantifies the fluctuations about this 
deterministic behaviour in a fully time-dependent manner. In particular, the definition of U 
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[equation (11)] shows that fluctuations are of order N(1 − β)/2 on a timescale of Nβ − 1 units of 
the Moran process. If we designate the expected lifetime of an individual, 2/N, as one 
generation, then these fluctuations can be said to occur on a timescale of order Nβ 

generations. (This definition of “generation” is consistent with uA, uB, and r in Section 2 
provided we replace N with the effective population size of the Moran model, N/2, in the 
definitions of θA, θB, and ρ (Ewens, 2004, p121).)

 3.3. Stationary distribution

Although U is described completely by (14), the volatility term σ(M(t)) is neither simple nor 

time-independent. On the other hand, our main interest is in stationary behaviour, and 

σ(M(∞)) takes on a much simpler form. First note that the components of U(t) 
corresponding to each Xi and Yj undergo Brownian motions (with nonunit volatility), so we 

restrict our attention to the stationary distribution of the component corresponding to D, 

which we denote UD. Conditions of Norman (1975b) confirm convergence of UD(t) to its 

stationary distribution. Setting σ(M(s)) = σ(M(∞)) in (14), we find

(18)

where σ∞ is a constant defined by

The process (18) is much simpler to describe. Marginally, UDij is an Ornstein-Uhlenbeck 

process with damping towards linkage equilibrium at rate ρβ/2 and constant volatility 

[σ∞]ij, ij. UD has stationary distribution

This is a slightly different idea of stationarity than usual, since it depends on X(0) and Y (0). 

An immediate question is: what should be the distributions for X(0) and Y (0)? We address 

this by reconsidering the usual two-locus Wright-Fisher diffusion limit operating on a slower 

timescale. We can exploit (18) to obtain a simple approximation of this diffusion limit, as 

follows. First, we have derived the Gaussian diffusion approximation

for D(N)(t). Thus the stationary distribution of this approximation is

(19)
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Notice that this description does not depend on the particular choice of β. Under the usual 

“Wright-Fisher” regime we treat ρ as fixed. It remains to specify the stationary distributions 

for the marginal allele frequencies X and Y, which we suppose to have reached their usual 

(independent) stationary distributions in the Wright-Fisher diffusion limit, which we refer to 

as πA and πB, respectively (and whose respective sampling distributions are qA and qB). 

Then we can complete the picture for (19) by specifying (X(0), Y (0)) ~ πA ⊗ πB.

The distribution (19) therefore provides a simple, explicit method for the approximate 

simulation of haplotype frequencies under a stationary, two-locus Wright-Fisher diffusion, 

which we summarize in the algorithm below. (When mutation is parent independent, as in 

Remark 2.1, πA and πB take on a particularly simple form, but we note that these 

distributions are not known in general.)

Algorithm to simulate from a Gaussian approximation to
the stationary Wright-Fisher diffusion with recombination.

1 Simulate marginal allele frequencies at locus A, X(0) ~ πA.

2 Independently simulate marginal allele frequencies at locus B, Y (0) ~ πB.

3 Conditionally simulate D from (19) given X(0) and Y (0).

4 Calculate two-locus haplotype frequencies via

Xi j = Di j + Xi(0)Y j(0),   for each i ∈ [K], j ∈ [L] .

 3.4. Sampling distribution

The significance of the Gaussian diffusion approximation UD is further evident from the 

following theorem. First we need some further notation. Let

for m ∈ ℕ, and let l(r) ∈ ([K] × [L])m denote a sequence of m haplotypes (in some arbitrary, 

fixed order) with multiplicities specified by r ∈ m. Further let l(r)A ∈ [K]m denote the 

corresponding list of alleles obtained by looking at the first entry of each element of l(r), and 

define l(r)B similarly. For λ ∈ ℕ denote by 2λ the set of partitions of [2λ] with precisely λ 

blocks of size 2, and write a representative element as ξμν = {{μk, νk}: k = 1, …, λ} ∈ 2λ; μ 
= (μk) and ν = (νk) are sequences of length λ. For J ⊆ [λ], denote by μJ, νJ the subsequences 

obtained by looking only at the indices in J, and denote by  the subsequence of l(r) 

obtained by looking only at the indices in μ. The matrix of multiplicities of  is denoted by 

r(μ), so that r(μ) + r(ν) = r. For example, if  then a representative list of 

haplotypes is l(r) = ((1, 1), (1, 2), (1, 2), (2, 2)) with marginal allele lists l(r)A = (1, 1, 1, 2) 

and l(r)B = (1, 2, 2, 2). Here, m = 2λ = 4, and 4 = {{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 
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4}, {2, 3}}}. Then for example the first element in 4 is the partition ξμν constructed from μ 

= (1, 3) and ν = (2, 4), and so  and .

 Theorem 3.2

Suppose that X ~ πA, Y ~ πB independently, and conditional on X and Y, D is distributed 
according to the Gaussian distribution in (19). Then the sampling distribution is given 
exactly by

(20)

with q0 and q1 given by (2) and (3) respectively (and we impose the convention that the 
empty summations for λ = 0 have a single term, with (−1)|∅\∅| = 1).

 Proof—With respect to the diffusion in the transformed co-ordinate system, the sampling 

distribution is
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The second equality follows from the multinomial theorem and the tower property, the third 

equality follows from Isserlis’ theorem (Michalowicz et al., 2011), and the fourth equality 

follows from (19):

The fifth equality follows from expanding the final product (using the convention δ∅∅ = 1), 

while (20) follows from (X, Y) ~ πA ⊗ πB. The equalities still hold for λ = 0 provided we 

take ∏∅ = 1.

Extracting the two leading order terms λ = 0 and λ = 1, the expression simplifies to
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as required.

 3.5. Accuracy of the diffusion process

A natural question to ask is: to what extent does the process of Theorem 3.2 capture the 

dynamics of the full process? To address this we consider the accuracy of the sampling 

distribution (20) as an approximation to the “true” distribution, q(a, b, c). For moderate 

sample sizes it is possible to compute the latter as the solution to a system of recursive 

equations (Golding, 1984; Ethier and Griffiths, 1990; Jenkins and Song, 2009). The number 

of summands in (20) grows rapidly with λ (as long as ), so we define an 

approximate sampling distribution  by truncating the outer sum in (20) at a fixed 

index λ. This is analogous to the asymptotic sampling formulae for the full model which are 

obtained by truncating equation (1) (Jenkins and Song, 2012). As our measure of accuracy 

we define the relative error,

(21)

where  is the staircase Padé approximant to . (The former is used for 

its superior convergence properties; see Jenkins and Song, 2012, for details.) We define 

analogously, replacing  in (21) with the Padé approximant to the partial sum of 

(1), computed up to O(ρ−(λ+1)) by the method of Jenkins and Song (2012).

We computed the distribution of  and of  across all sample configurations of size 

c = 20 for which both alleles are observed at each locus; results are shown in Table 1. For a 

collection of this size it was straightforward to compute up to λ = 6 for every possible 

sample configuration. Using a partial sum to approximate (1) contributes to both errors; 

 has additional contributions reflecting its use of an approximate model. Of course, 

the two errors agree up to λ = 1. However, Table 1 shows that they are comparable more 

broadly, particularly for large recombination rates. As λ increases,  converges 

rapidly (even without Padé summation; not shown), and becomes a reasonable 
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approximation to q(a, b, c). For example, for ρ = 50,  is within 10% of q(a, b, c) 

with probability 0.79, though it is within 1% only with probability 0.50. When we consider 

the highest levels of accuracy, as in Φ(1) in Table 1,  actually increases with λ when λ 

> 1. This suggests that the Gaussian model typically cannot approximate the true model to 

the same level of precision as a first order asymptotic approximation of the true model, 

though its behaviour as a coarser approximation (as reflected in the columns for Φ(100), for 

example) is comparable.

 4. Coalescent process

 4.1. A coupling argument

In this section we derive a coalescent process which is much simpler than the ARG but 

whose sampling distribution agrees with (2) and (3). We first provide an informal 

description. Let  denote the standard, neutral, two-locus coalescent process a time t 
back from a sample taken at time t = 0, with a, b, and c counting the three types of sample as 

defined in Section 2. Recombination occurs at the usual rate of ρc/2, where ρ = 2Nr. 
Lineages ancestral to the three types are sometimes referred to as representing left half-
fragments, right half-fragments, and full fragments, respectively. Our strategy is to define a 

coupling on a joint probability space for the pair of processes 

, where (∞) is a simple process closely 

related to (∞) and defined below. (ρ)(ω) is said to be coupled to (∞)(ω) if the two 

realizations have the same marginal coalescent tree at locus A and the same marginal 

coalescent tree at locus B. Since it is the marginal trees which govern the mutation process at 

each locus, coupled processes therefore have the same sampling distribution. (There should 

be no ambiguity arising from the fact that our coupling is not on pairs of realizations but on 

pairs of equivalence classes, where an equivalence class of (ρ) or of (∞) is a set of 

realizations with the same marginal tree at locus A and the same marginal tree at locus B.)

A complete description of a coalescent process is one taking values in partitions of [n], as 

introduced by Kingman (1982), with natural extensions to incorporate recombination. We 

opt instead to represent (ρ) only by its ancestral process; that is, as a birth-death process on 

the number of each type of lineage. Such a process is studied in depth by Ethier and Griffiths 

(1990) and Griffiths (1991). In what follows it is understood implicitly that for any given 

realization of the ancestral process one could reconstruct a complete coalescent process—an 

ARG—given some additional independent randomness. Provided the ancestral processes of 
(ρ) and (∞) remain coupled, then it is also always possible to couple their respective 

coalescent processes. For example, a decrease by one in the ancestral process corresponds to 

a coalescence event in the coalescent process, which can be realized by merging two 

uniformly chosen blocks in the partition of [n]. A coupling of two ancestral processes lets us 

couple the corresponding coalescent processes if we always pick the same pair of blocks to 

merge in the two processes. With this kept in mind, it is sufficient for the argument 

developed below to consider the simpler ancestral process representation.
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Recall the two-locus ancestral process for the coalescent with recombination: Going 

backwards in time, each pair of lineages coalesces independently at rate 1, and each lineage 

ancestral at both loci recombines at rate ρ/2. When two lineages coalesce, they are replaced 

with a single lineage, and this lineage is ancestral at a given locus if either of its two 

progenitors were ancestral at this locus. Thus for example, with a, b, and c defined as above 

the total rate of coalescence involving one left-half fragment and one right-half fragment is 

ab, resulting in a transition of the form (a, b, c) ↦ (a − 1, b − 1, c + 1). The remaining 

transitions are given in Table 2. We can now make the following concise definition.

 Definition 4.1—The ancestral process  is a continuous-time 

Markov process on ℕ4 such that  a.s., and with infinitesimal generator

(22)

where

and f : ℕ4 → ℝ is an appropriate test function.

Regard the third and fourth entries in f as the number of left- and right-halves of full 

fragments; these entries are always equal. This representation is seemingly redundant, but it 

will make the coupling with the corresponding process (∞) (for which we allow c ≠ d) 

transparent. We will define (∞) via the following recipe. First, take (ρ) and let ρ → ∞. 

Ordinarily,  moves instantaneously to the state  and evolves thereafter 

according to ℒf(a + c, b + c, 0, 0). However, our second step is to make a notational change: 

we reuse the third and fourth entries of f by separately tracking the half-fragment lineages 

that originated as full fragments: we write it as a process initiated at (a, b, c, c) and evolving 

according to the generator
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(23)

Third, we introduce an artificial recombination process which induces transitions of the form 

(a, b, c, c) ↦ (a + 1, b + 1, c − 1, c − 1) at rate ρc/2. This does not reflect any concrete 

evolutionary dynamic but merely acts as a mathematical device to facilitate a coupling 

between the two processes. (As a minor technical detail, we should like to allow the process 

ultimately to reach a state of the form (a, b, 0, 0). We therefore make a minor adjustment, 

below, to this artificial process to allow for it to act even if one of c or d is 0.) We therefore 

have the following definition.

 Definition 4.2—The ancestral process  is a continuous-time 

Markov process on ℕ4 such that  a.s., and with infinitesimal generator

(24)

where f : ℕ4 → ℝ is an appropriate test function.

Transitions of this process are also summarized in Table 2, and henceforth we will refer to 

the numberings of each type of transition given in the table. It is important to keep in mind 

that although ρ appears as a parameter in (24), the process (∞) acts as if the two loci are 

independent. The process with rate depending on ρ is simply an artificial relabelling of 

lineages. A key observation is that this artificial process does not affect the distribution of 

the marginal coalescent trees, so (∞) and (∞) have the same sampling distribution.

To summarize, we have defined two Markov processes on ℕ4, (ρ) and (∞), which describe 

two-locus ancestral processes going backwards in time and with respective generators ℒ and 

ℋ(∞). ℒ is the generator of a standard process with recombination parameter ρ. ℋ(∞) is the 

generator of a standard process with recombination parameter ∞ and with the additional 

properties that left half-fragments are recorded in two categories (of multiplicity a and c), 

right half-fragments are recorded in two categories (of multiplicity b and d), and there is an 

artificial movement of pairs from the latter to the former as if they were still full fragments. 

This somewhat contrived definition has an important advantage: it is a simple matter to 

attempt to couple the two processes by matching each kind of event in the two generators 

whenever possible. A recombination event in  can be matched by an artificial 
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recombination event in , a coalescence of type IV in  can be matched by a 

coalescence of type IV in , and so on.

The aforementioned description is a probabilistic coupling, which may or may not succeed 

since not all events can be paired off in this way. Comparing (22) and (24), we see that a 

coupling will fail if there is a type I transition in (ρ) or if there is a type II or type III 

transition in (∞). Define the failure times

and

the first time that both loci find a most recent common ancestor in the coupled processes 

(with the convention inf ∅ = ∞). If , we say that the 

coupling has been successful. We are now in a position to verify the observation made in 

Section 1: that we need consider whether or not a coupling has been successful only as far 

back as the first time that no lineages ancestral to both loci survive. For if we reach this point 

then, even further back in time, jointly ancestral lineages may arise again temporarily (with c 
≥ 1), but the coupling can fail only in the unlikely [i.e. O(ρ−2)] event that c ≥ 2. We 

formalize this argument in the following lemma.

 Lemma 4.1—If c ∈ {0, 1}, the coupling between (ρ) and (∞) fails with probability 
O(ρ−2), as ρ → ∞.

 Proof: The three events causing the coupling to fail occur at rates proportional to 

and thus require c ≥ 2. For the pair , we therefore first need to see a transition 

of the form (a′, b′, 1, 1) ↦ (a′ − 1, b′ − 1, 2, 2) for some a′, b′, followed by one of the 

transitions causing the coupling to fail. Reading off the rates from the generators, each of 

these transitions occurs with probability O(ρ−1). The case c = 0 is similar, first needing a 

transition of the form (a′, b′, 0, 0) ↦ (a′ − 1, b′ − 1, 1, 1) whose probability is of O(1).

 Lemma 4.2—The coupling between (ρ) and (∞) fails with the following probabilities:
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(25)

where . Moreover, ℙ(I(k1) ∩ I(k2)) = O(ρ−2) for k1 ≠ k2.

 Proof: For k = 1, by Lemma 4.1 it is enough to show that

where

is the first time (ρ) reaches c = 0. We proceed by induction on c; Lemma 4.1 provides the 

base cases c ∈ {0, 1}. First note that for any c ≥ 1,

(26)

since this event requires at least one transition that is not a recombination. Reading off the 

relevant probabilities from (22), we have for c ≥ 2:

by the inductive hypothesis for the first term on the right and using (26) for the second term. 

By considering

Jenkins et al. Page 24

Electron J Probab. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the cases k = 2, 3 are similar. ℙ(I(k1) ∩ I(k2)) = O(ρ−2) also follows from the fact that this 

event requires at least two transitions which are not recombinations during the time that c > 

0.

Should the coupling fail, we can say much about the sequence of events prior to . 

Intuitively, the probability that more than one transition other than recombinations occurs is 

O(ρ−2). To make this precise we denote by  the jump chain up to time t of (ρ) if k = 

1 and of (∞) if k = 2, 3.

 Lemma 4.3—Let 𝓢a,b,c denote the set of jump chains comprising sequences which start 
at (a, b, c, c), end at the first entry of the form (a′, b′, 0, 0), a′, b′ ∈ ℕ, and with all transitions 
corresponding to recombination events, except for possibly one transition. Then

 Proof: The non-recombination event causing I(k) occurs at time . Inspection of the 

generators (22) and (24) shows that any further transition other than a recombination occurs 

with probability O(ρ−1) during the time that c > 0.

Recall that our purpose is to obtain the sampling distribution for (ρ). For successful 

couplings, this is easy to obtain since it is the same as that of (∞) and hence (∞); thus (ρ) 

| I(1)𝖢 has the same sampling distribution as (∞) | (I(2) ∪ I(3))𝖢. Even if the coupling fails, 

Lemmata 4.1 and 4.3, demonstrate that the behaviour of (ρ) is still predictable enough to 

recover its sampling distribution up to O(ρ−2). Roughly [up to O(ρ−2)], Lemma 4.3 says: if 

there is an event that causes the coupling to fail then this is the only non-recombination 

event in the failing process before ; by Lemma 4.1, if it has not failed by  then the 

coupling will not fail after .

The following theorem is proven in Jenkins and Song (2009); however, the following proof 

gives a coherent, process-level explanation for the result.

 Theorem 4.1—Expressing the sampling distribution for  as in (1), the 
first two terms are given by (2) and (3).

 Proof: Denote by q (ρ)|I(1)(a, b, c) the sampling distribution of the process (ρ) | I(1). By 

Lemmata 4.1 and 4.3, this sampling distribution is obtained up to O(ρ−1) by picking a pair of 

full fragments at random to coalesce, with the remaining c − 1 fragments all undergoing 

recombination, and subsequently running the process as . 

Hence,
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(27)

(We can also ignore the possibility of mutation prior to  since, by the same argument as 

in Lemma 4.3, a mutation occurs during this phase with probability O(ρ−1).) Similarly,

(28)

(29)

and so, together with Lemma 4.2 and the observation that

we obtain

(30)

The key decomposition is then
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(31)

using (25), (27), (28), (29), and (30), with q0, q1 given by (2) and (3), respectively.

 Remark 4.1—It may be possible to use similar arguments to obtain a genealogical 
interpretation of the second-order term, q2 in (1); for example, genealogies with two events 
that cause the coupling to fail would surely contribute. However, as is clear from the 
expression for q2 given in Jenkins and Song (2009, 2010), this is not a simple endeavour and 
it is seems difficult to interpret some of the components of q2.

 4.2. A new “loose-linkage” coalescent process

Equation (31) tells us that, up to O(ρ−2), we can obtain the correct sampling distribution 

using the mixture

provided α < 1. The coupling used to prove Theorem 4.1 demonstrates that we can define a 

simple stochastic process for weakly correlated loci, ℰ(ρ), as follows, whose sampling 

distribution agrees with (2) and (3) up to O(ρ−2).

Algorithm to simulate ℰ(ρ), the loose-linkage coalescent.

1 With probability α, choose a pair uniformly at random from the c full fragments to coalesce, and then 
choose uniformly from the chains in a,b,c compatible with I(1). Such chains are some permutation of 
a sequence corresponding to this sole coalescence and c − 1 recombinations. Inter-event times up to 

 can be sampled according to the rates specified in (22). Go to step 3.

2
Otherwise (w.p. 1 − α), sample from (∞) | (I(2) ∪ I(3))𝖢 up to time , which can be 
achieved by running (∞) as usual according to (24) but banning transitions of the form (a, b, c, d) ↦ 
(a, b, c − 1, d) and (a, b, c, d) ↦ (a, b, c, d − 1). (The rates of these transitions still contribute to the 
overall rate governing inter-event times, however.) Go to step 3.

3
Beyond time  (k = 1 in the first case above and k = 2 in the second), construct the remainder of 

the process independently using  (with the appropriate starting 
configuration) back to the first time both loci have found a most recent common ancestor.

An example is shown in Figure 1. Simulation and inference under ℰ(ρ) should be 

straightforward, since its dynamics are little more complicated than those of a coalescent 

process with ρ = ∞. Unlike our diffusion process of Section 3, it does not seem easy to write 
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down its sampling distribution to all orders in closed-form, since that of (∞) | (I(2) ∪ I(3))𝖢 

is not so obvious.

 5. Discussion

We have described two novel stochastic models of evolution for loosely linked, or weakly 

correlated, loci, using both diffusion- and coalescent-based arguments. As a consequence we 

have obtained deep insight into the simple form of the asymptotic sampling formula given 

by (2) and (3). Our diffusion model is based on a central limit theorem for density dependent 

population processes, which may be viewed as a separation of the timescales Nβ and N (in 

generations), for 0 < β < 1, and pioneered in population genetics by Norman (1975a). This 

contrasts with most research in this area, which focuses on separating the timescales N0 = 1 

and N. Indeed, both diffusion (Ethier and Nagylaki, 1980, 1988) and coalescent (Möhle, 

1998; Wakeley, 2008) limits of this latter regime have been studied in detail. It is also the 

setting of the “loose linkage” limit of Ethier and Nagylaki (1989). Our usage of “loose 

linkage” therefore refers to a scaling intermediate between the usual Wright-Fisher diffusion 

and that of Ethier and Nagylaki (1989). That the pioneering approach of Norman (1975a) to 

investigate recombination does not seem to have been considered until now supports the 

observation that his work is “somewhat neglected” (Wakeley, 2005). It would also be of 

interest to find a coalescent-based analogue of these results along the lines of Möhle (1998), 

or even a duality relationship in the manner of Etheridge and Griffiths (2009).

For simplicity we have focused on a two-locus, finite-alleles, neutral model. Most of this 

article does not hinge heavily on these assumptions, and it should be relatively 

straightforward to extend our results to incorporate things like natural selection and more 

sophisticated models of mutation.
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Fig 1. 
Sampling from the loose-linkage coalescent, ℰ(ρ), from an initial configuration (0, 0, 4). 

Steps of the algorithm in the main text are denoted by circled numbers. Left: Commence 

from step 1 (probability α). Step 1 samples from an approximation to (ρ) | I(1) which is 

correct to O(ρ−2), back as far as time . The jump chain sampled here is 

. Thereafter (step 3) 

the sample is constructed from . Right: Commence from step 2 (probability 

1 − α). Step 2 samples from ; a transition which would cause I(2) is 

banned. Thereafter (step 3) the sample is constructed from .
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Table 2

Transition rates of events in the two ancestral processes (ρ) and (∞).

Transition Rate

Type (a, b, c, d) ↦ (ρ) (∞)

I (a, b, c − 1, d − 1) c(c − 1)/2* 0

II (a, b, c − 1, d) 0 c(c − 1)/2

III (a, b, c, d − 1) 0 d(d − 1)/2

IV (a − 1 b, c, d) a(a + 2c − 1)/2 a(a + 2c − 1)/2

V (a, b, − 1, c, d) b(b + 2d − 1)/2 b(b + 2d − 1)/2

VI (a − 1, b − 1, c + 1, d + 1) ab ab

VII (a + c > 0}, b + d > 0}),
c − c > 0}, d − d > 0}) ρc/2* ρmax{c, d}/2

*
Defined only when c = d.
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