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ABSTRACT

Some recently discovered short-period Earth- to Neptune-sized exoplanets (super-Earths) have low observed mean
densities that can only be explained by voluminous gaseous atmospheres. Here, we study the conditions allowing
the accretion and retention of such atmospheres. We self-consistently couple the nebular gas accretion onto rocky
cores and the subsequent evolution of gas envelopes following the dispersal of the protoplanetary disk.
Specifically, we address mass-loss due to both photo-evaporation and cooling of the planet. We find that planets
shed their outer layers (dozens of percent in mass) following the diskʼs dispersal (even without photo-evaporation),
and their atmospheres shrink in a few Myr to a thickness comparable to the radius of the underlying rocky core. At
this stage, atmospheres containing less particles than the core (equivalently, lighter than a few percent of the
planetʼs mass) can be blown away by heat coming from the cooling core, while heavier atmospheres cool and
contract on a timescale of Gyr at most. By relating the mass-loss timescale to the accretion time, we analytically
identify a Goldilocks region in the mass-temperature plane in which low-density super-Earths can be found:
planets have to be massive and cold enough to accrete and retain their atmospheres, but not too massive or cold,
such that they do not enter runaway accretion and become gas giants (Jupiters). We compare our results to the
observed super-Earth population and find that low-density planets are indeed concentrated in the theoretically
allowed region. Our analytical and intuitive model can be used to investigate possible super-Earth formation
scenarios.

Key words: planets and satellites: formation – planets and satellites: physical evolution

1. INTRODUCTION

In recent years, the Kepler mission has discovered many
Earth- to Neptune-sized exoplanets (see, e.g., Weiss &
Marcy 2014). Some of these “super-Earths,” or “mini
Neptunes,” have low densities that rule out a purely rocky
composition. The low density can be explained by either a
gaseous hydrogen/helium envelope atop a rocky core or by a
water-rich composition. However, at least some super-Earths
have densities low enough that a gaseous atmosphere is
essential to explain their inferred masses and radii (Lopez
et al. 2012; Lissauer et al. 2013).

The existence of significant gaseous envelopes surrounding
rocky cores fits in naturally in the context of core-nucleated
accretion theory. According to this theory, gas giants such as
Jupiter formed by gas accretion onto solid cores from the gas-
rich nebula that surrounded the young Sun (Perri &
Cameron 1974; Harris 1978; Mizuno et al. 1978; Mizuno 1980;
Stevenson 1982). The rate by which a rocky core accumulates
gas is determined by the atmosphereʼs cooling rate (Kelvin–
Helmholtz contraction) until the acquired atmosphere is
comparable in mass to the core, at which stage a runaway
accretion initiates and the planet explodes into a gas giant
(Bodenheimer & Pollack 1986; Pollack et al. 1996; Lee
et al. 2014; Piso & Youdin 2014; Lee & Chiang 2015; Piso
et al. 2015). The amount of gas a rocky core embedded in the
protoplanetary gas nebula acquires (and whether it will explode
into a gas giant) is therefore determined by comparing the
atmosphereʼs cooling timescale to the gas disk lifetime (a few
Myr; see, e.g., Mamajek 2009; Williams & Cieza 2011;
Alexander et al. 2014). In some cases, however, the assembly
of the rocky core cannot be decoupled from the accretion of

gas, and the effects of planetesimal impacts (Pollack
et al. 1996; Rafikov 2006, 2011), or even giant collisions of
protoplanets (Inamdar & Schlichting 2015), have to be taken
into account, depending on the orbital separation from the
parent star.
In this work, we focus on super-Earths in close orbits of

∼0.1 au, with the Kepler-11 system (Lissauer et al. 2011) as a
well-studied example. At least some of these planets require
hydrogen/helium envelopes that constitute ∼1% to 10% of the
planetʼs mass to explain the observations (Lopez et al. 2012).
While some works argue that such heavy atmospheres are
difficult to accrete in situ during the gas diskʼs lifetime
(Inamdar & Schlichting 2015), other works (Lee et al. 2014)
raise the opposite concern, that accretion is too efficient,
making super-Earths vulnerable to runaway and becoming gas
giants. Nonetheless, by examining the atmosphere mass growth
with time in both Lee et al. (2014) and Inamdar & Schlichting
(2015), we find that rocky cores of a few M⊕ acquire gas
envelopes of a few percent during a disk lifetime of a few Myr,
at least for some plausible nebula parameters, and disregarding
the effects of giant impacts (perhaps due to inward migration of
an assembled core during the disk lifetime or a solid-enhanced
nebula). Therefore, low-density planets with such masses are a
natural “missing link” between smaller rocky planets, which
did not manage to accrete a substantial atmosphere, and more
massive cores (a fiducial critical value of» ÅM10 is often cited;
see, e.g., Rafikov 2006, 2011; Lee et al. 2014), which gathered
their own mass in gas and exploded into gas giants.
Although super-Earths with gas envelopes of a few percent

are a plausible outcome of nebular gas accretion, their
evolution continues after the disk dispersal. In particular, many
studies have demonstrated that these gas envelopes are
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susceptible to significant evaporation and mass loss due to
high-energy stellar photons once the nebula has dispersed
(Lopez et al. 2012; Owen & Jackson 2012; Owen & Wu 2013).

In this work we emphasize the role of the planetʼs cooling
luminosity as an additional energy source for driving mass loss
(see also Ikoma & Hori 2012; Owen & Wu 2016), and relate
the post-dispersal evolution to the preceding accretion in order
to obtain constraints on the possible formation scenarios of
these planets. By self-consistently coupling the nebular
accretion to the subsequent mass-loss once the nebula has
dispersed (see also Rogers et al. 2011), we find limiting
conditions in which super-Earths can acquire and hold on to
their atmospheres.

The outline of the paper is as follows. In Section 2 we
discuss the accretion of gas from the nebula. In Section 3 we
study the subsequent evolution once the gas nebula has
dispersed. Section 4 is devoted to atmosphere evaporation by
high-energy photons and to how it sculpts the super-Earth
population. Section 5 compares our theoretical constraints to
the observations, and our conclusions are summarized in
Section 6.

2. NEBULAR GAS ACCRETION

Gas accretion by rocky cores has been studied extensively,
both numerically and analytically (Bodenheimer & Pollack
1986; Pollack et al. 1996; Bodenheimer & Lissauer 2014; Lee
et al. 2014; Piso & Youdin 2014; Lee & Chiang 2015; Piso
et al. 2015). Here, we briefly summarize the main concepts
outlined in these works and provide a simplified analytical
description of nebular gas accretion. Since our main goal is to
provide intuition for the subsequent phases of planetary
evolution, we adopt many simplifying assumptions in compar-
ison with previous studies.

The formation timescale of a rocky protoplanet is much
shorter than the gas nebula lifetime in the inner disk (Goldreich
et al. 2004; Lee et al. 2014), leading us to ignore the impact of
planetesimals during gas accretion. However, the isolation
mass of a protoplanet is also small in the inner disk (Goldreich
et al. 2004; Inamdar & Schlichting 2015), leading Inamdar &
Schlichting (2015) to consider giant impacts of protoplanets
once the gas has begun to disperse. Here, we ignore giant
impacts and assume that gas accumulates onto an assembled
rocky core (which may have migrated from larger distances or
formed in a solid-enhanced nebula).

Throughout the paper, we assume that the self-gravity of
the atmosphere is negligible. Naively, when this condition
breaks down, runaway accretion occurs, leading to the
formation of gas giants, which are not the focus of this work.
More concretely, by inspecting Figure 2 of Piso & Youdin
(2014), we find that self-gravity affects the results by more than
a factor of two for atmosphere mass fractions as low as 20%,
which are at the high end of the gas envelopes that we consider.
For these atmospheres, our approximation is marginal.

2.1. Adiabatic Atmosphere

The initial atmosphere a core of mass Mc and radius Rc
accretes in a short (dynamical) timescale is given by
an adiabatic profile, which did not have time to cool,
and has the same entropy as the surrounding nebula.
Hydrostatic equilibrium sets the following adiabatic temper-
ature profile (see also Rafikov 2006; Piso & Youdin 2014;

Inamdar & Schlichting 2015)
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constant, kB is Boltzmannʼs constant, μ the molecular mass,
and γ the adiabatic index, which we choose as g = 7 5,
suitable for diatomic gas. Lee et al. (2014) and Piso et al.
(2015) incorporate more elaborate equations of state into their
numerical calculations, in which γ varies with temperature and
pressure. Nonetheless, we approximate here γ as a constant for
simplicity and discuss the sensitivity of the results to this
choice below. =r R Rmin ,out B H( ) denotes the radius where the
planetʼs atmosphere blends in with the surrounding nebula,
which is taken to be the minimum of the Bondi radius and the
Hill radius � :R a M McH

1 3( ) , with a denoting the semimajor
axis. For a few ÅM core at ∼0.1 au, » ~R R 10 cmB H
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with less massive or more distant cores having <R RB H

(see, e.g., Rafikov 2006; Inamdar & Schlichting 2015).
Note that the nebular scale height is 2= Wz c 10 cmd s

10 ,
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1 2( ) denoting the sound speed and
W = :GM a3 1 2( ) the orbital period (see, e.g., Hayashi 1981).
Therefore, we may assume spherical accretion, although this
assumption is marginal. The adiabatic density profile is
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although the Kepler planets might have formed in a more
massive or solid-enhanced nebula (Chiang & Laughlin 2013;
Schlichting 2014).
By integrating Equation (2) we find that for g > 4 3 the

mass fraction of the atmosphere is given by
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where we emphasize the transition between Bondi and Hill
boundary conditions at a few ÅM , and where the factor

g-R rB out
1 1( ) ( ) is a correction to similar expressions by Chiang

& Laughlin (2013) and Inamdar & Schlichting (2015) for
=r Rout H, due to the density jump at »r rout, evident in

Equation (2). Equation (3) shows that adiabatic gas accretion is
insufficient and cannot explain observed envelope mass
fractions without invoking a massive nebula (by 1–2 orders
of magnitude; see, e.g., Chiang & Laughlin 2013; Bodenheimer
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& Lissauer 2014; Inamdar & Schlichting 2015). Equation (3)
also indicates that the assembly of N small envelopes
(especially in the =r Rout B regime) into a large one during
the giant-collisions phase is inefficient (as -N 2), even if we
ignore mass loss due to collisions.

The gas fraction for = ~r R Rout H B (relevant for a few ÅM
cores at ∼0.1 au) can be written as (see Chiang &
Laughlin 2013)

r s
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where >Q 1 is Toomreʼs stability criterion for the gas disk.
Chiang & Laughlin (2013) disregard the g-R rB out

1 1( ) ( ) factor
in Equation (3), leading to a constant f as a function of Mc in
the >R RB H regime, and to their claim that Equation (4)
represents the maximal gas fraction, in contrast to Equation (3)
which predicts a further increase in f for larger core
masses ( >R RB H).

Equation (4) demonstrates that cores a few times the mass of
Earth can accrete arbitrarily large (up to runaway) adiabatic
atmospheres, if embedded in a massive enough nebula (as
invoked by Chiang & Laughlin 2013; Schlichting 2014).
Nonetheless, we assume a light (MMSN, or more precisely, its
extrapolation beyond Mercuryʼs orbit) gas nebula, in which
adiabatic atmospheres are small, as indicated by Equation (3),
and further accretion by the cooling of the envelope has to be
considered. In order to reconcile this gas-poor nebula with the
Kepler observations (specifically, the high solid surface
densities required to assemble large cores at close distances),
it might be necessary to consider either a large solid/gas ratio
or inward migration of rocky cores (Schlichting 2014).

2.2. Accretion by Cooling

As the gas envelope cools through radiation, an outer
radiative layer develops, while the interior remains isentropic
due to convection (see, e.g., Lee et al. 2014; Piso &
Youdin 2014; Lee & Chiang 2015). The convective profile is
similar to Equation (1)
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with rrcb marking the density at the RCB. Lee et al. (2014) find
that the RCB is determined by H2 dissociation at an almost
fixed temperature of 2500 K. Here, we adopt a different
approach and assume power-law opacities (similar to Rafi-
kov 2006; Piso & Youdin 2014), which are relevant for dust-
free models (Lee & Chiang 2015), and lead to ~T Trcb eq, up to

an order of unity coefficient, which we omit in our approximate
analysis. For < ¢�r R Rrcb B (we make a further approximation
and assume that the outer boundary condition is always
dictated by RB)
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or intuitively, the scale height is ~h r (leading to a power-law
density profile), and specifically, the temperature at the
atmosphere-core boundary T Rc( ) remains constant at

m~k T R GM Rc c cB ( ) , with ~ �R R10 cmc
9

B. At this temp-
erature, the rocky core is molten, and is therefore convective.
Since the core is convective (i.e., has a uniform entropy) and
almost incompressible, we approximate it as isothermal. This
simplification is in accordance with realistic adiabatic profiles,
in which the temperature changes only by a factor of order
unity, while the pressure varies by orders of magnitude (e.g.,
Katsura et al. 2010). Because T Rc( ) is constant, as explained
above, core cooling plays no role in the energy budget as long
as �R Rc rcb. The specific energy in the interior is therefore
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implying that for g < 3 2 the total energy is concentrated in
the inside and is given by
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Figure 1. Schematic temperature vs. density profiles (logarithmic scale) of a
super-Earth atmosphere during the nebular accretion phase. The initial
adiabatic atmosphere (solid black line) is isentropic, while at later stages
(two successive profiles are plotted) the cooling (and accreting) envelope is
characterized by a nearly isothermal radiative outer layer and a convective
interior (dashed blue lines). Typical values of the density and temperature are
provided.
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According to Equation (10), as the envelope cools, its density
increases, and therefore the radiative (and nearly isothermal)
region thickens, as depicted schematically in Figure 1.

The total envelope mass, on the other hand, is concentrated
in the outside of the convective region, ~r Rrcb, for g > 4 3.
By integrating Equation (7) we find

⎛
⎝⎜

⎞
⎠⎟g p r=

¢ g-

M A R
R
R

4 , 11atm rcb
3

rcb
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where the numerical coefficient g p= =A 7 5 5 16( ) . The
factor of ¢ g-R RB rcb

1 1( ) ( ) is due to the temperature and density
jump at »r Rrcb (where the scale height is <R R Rrcb

2
B rcb).

The mass in the radiative (nearly isothermal) region is
negligible due to the exponentially decreasing density (see
also Piso & Youdin 2014). Lee & Chiang (2015) argue for
g < 4 3 due to H2 dissociation (see also Piso et al. 2015) and
based on numerical calculations in Lee et al. (2014). For such
values of γ, the mass is also concentrated in the inside (as the
energy) and some of our results change. Nonetheless, we
ignore hydrogen dissociation here for simplicity and present
results for the diatomic g = 7 5 (see Piso & Youdin 2014, for
a similar model). Qualitative conclusions that are sensitive to
our choice of g > 4 3 are discussed below, and the alternative
solution for g < 4 3 is also provided. We relate r Rc( ) to rrcb
adiabatically (see Figure 1) and combine Equations (10) and
(11)
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Equation (12) demonstrates that cooling of the envelope
corresponds either to mass increase (“to cool is to accrete,”
as phrased by Lee & Chiang 2015) or to radius decrease. As we
show below, up to logarithmic factors, cooling is indeed
equivalent to gas accretion.

We relate the radius Rrcb to the RCB density rrcb using
hydrostatic equilibrium of the radiative region between Rrcb and
RB (see also Piso & Youdin 2014)
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Equation (13) implies that the atmosphere can increase in
density by orders of magnitude, while the radius shrinks only
by a logarithmic factor. Therefore, the simplest approximation
for the gas accretion phase is to assume that the radius remains
roughly constant »R Rrcb B. The atmosphere mass in this
approximation, using Equation (11), is given by

r»M Ratm rcb B
3, and by comparison with Equation (3) we find

that the gas fraction f increases by a ratio of r rdrcb relative to
the adiabatic atmosphere. Since we are interested in atmo-
spheres of a few percent in mass, and adiabatic atmospheres
have ~ -f 10 3, we deduce that r r ~ -10 10drcb

1 2 and Rrcb

decreases (from an initial RB) by a factor of a few. With this
approximation, Equation (12) can be written as
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emphasizing that cooling is equivalent to gas accretion. This
result differs from Lee & Chiang (2015) by a factor of a few,
given by ¢R RcB

1 2( ) , due to their effective choice of g < 4 3.
The cooling rate (luminosity) of the envelope is given by

combining the diffusion equation and hydrostatic equilibrium
at the RCB:
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with σ denoting the Stephan–Boltzmann constant and κ the
opacity at the RCB. This result can be intuitively understood by
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2 , with t kr~ hrcb denoting the optical depth
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B the scale height there. We write
an evolution equation = -L Ė , and combine Equations (11),
(12), and (15) to obtain the time it takes the envelope to reach a
mass Matm
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and evaluated for g = 7 5. By substituting k » -0.1 cm g2 1

(Allard et al. 2001; Freedman et al. 2008), and using the
»R Rrcb B approximation, we rewrite Equation (16) and find

the gas mass fraction at the time of disk dispersal tdisk
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where we have ignored, for simplicity, the weak dependence of
the opacity on density and temperature in the relevant regime,
although it enables the transition into a convective region (see
Lee & Chiang 2015 for a more elaborate discussion of
opacities). In the derivation of Equation (18), and throughout
the paper, we used µR Mc c

1 4 rather than the constant-density
relation µR Mc c

1 3 for the rocky core, in order to take into
account the slight gravitational compression (see, e.g., Valencia
et al. 2006), although both mass-radius relations yield a similar
result due to the weak dependence on the coreʼs
radius µf Rc

1 4.
Equation (18) roughly reproduces the results of previous

studies (Lee et al. 2014; Inamdar & Schlichting 2015; Lee &
Chiang 2015). Specifically, we emphasize that the amount of
accreted gas does not depend on the density of the nebula rd,
except for logarithmic factors due to Equation (13), which we
have neglected. Instead, the mass accretion is regulated by the
envelopeʼs own cooling time, while the radiative layer
decouples the bulk envelope from the surrounding nebulaʼs
density boundary condition (see Figure 1). This logarithmic
dependence on the nebular density allows Lee & Chiang (2016)
to accrete substantial gas envelopes even in highly depleted
transitional disks. The power law µf t1 2 (see also Piso &
Youdin 2014; Lee & Chiang 2015) is intuitively understood by
noticing that while the energy is proportional to Matm, so is the
optical depth, and therefore the luminosity is proportional to

-Matm
1 . Quantitatively, Equation (18) predicts that super-Earths

will acquire atmospheres of a few percent in mass during the
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gas diskʼs lifetime, outweighing their initial adiabatic envel-
opes (which are proportional to rd) in an MMSN (see
Section 2.1).

Equation (18) predicts that cooler cores (lower Teq) accrete
more mass. Using Equation (11) we attribute this larger mass to
the large Bondi radius r r~ µ -M R R Tcatm rcb B

3
eq

1 2( ) . The
central density, on the other hand, increases with temperature
r µR Tc eq

1 4( ) , as seen by combining Equations (10) and (15).
This distinction (which is sensitive to the opacity power law, as
discussed below) between dense and puffed-up atmospheres
will be useful in interpreting the results of post-dispersal mass
loss, which we discuss in Section 3.

3. EVOLUTION FOLLOWING DISK DISPERSAL

In Section 2 we affirmed that super-Earth atmospheres grow
to a few percent in mass until the nebula disperses after a few
Myr (Mamajek 2009; Williams & Cieza 2011; Alexander
et al. 2014). Here we discuss the evolution of these
atmospheres after (and during) disk dispersal.

The post dispersal evolution is characterized by two
processes: cooling and mass loss. In this phase, cooling is
equivalent to shrinking and it occurs on a timescale

= g g- - -t t R Rdisk rcb B
2 3 4 1( ) ( ) ( ) according to Equation (16) if

Matm is constant. We emphasize that the shrinking radius of the
RCB Rrcb is a good approximation for the radius of the planet
since the scale height of the radiative layer is much smaller,

~ <h R R R 1rcb rcb B . The above cooling timescale estimate is
valid until ~R Rcrcb , and our approximation of �r Rrcb in the
inner envelope (see Section 2) breaks down. However, as we
show in Section 3.2, thick envelopes shed part of their mass
and shrink to the thin regime on shorter timescales, so their
cooling can be ignored. Before we discuss mass loss though,
we analyze the structure of thin atmospheres.

3.1. Thin Atmosphere

We now define Rrcb more generally as º -R R Rcrcb , where
R is the radius of the planet (or the RCB). This definition
coincides with the previous one for the thick atmosphere
regime, �R Rcrcb , and allows us to study thin envelopes with

~R Rc, or equivalently 1R Rcrcb , which are observationally
interesting (Lopez et al. 2012). For a thin atmosphere,
Equation (5) can be approximated as
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with ¢r measuring the distance from the RCB ( < ¢ <r R0 rcb)
and where we can ignore the thin isothermal layer of
width ¢ ~ ¢r R Rc

2
B if the atmosphere is not ultra thin,

> ¢R R R Rc crcb B (ultra thin atmospheres of exoplanets are
currently observationally irrelevant). Equation (19) immedi-
ately demonstrates a fundamental difference between the thin
and thick regimes. A rocky core surrounded by a thick
atmosphere does not cool and stays at a constant temperature,

= ¢T T R Rcrcb B (see Section 2.2). A thin envelope, on the
other hand, allows the rocky core beneath it to cool, and the
coreʼs temperature decreases as the atmosphere shrinks

= ¢T T R R Rcrcb B rcb
2. Therefore, in contrast to the thick regime,

we expect the rocky core in the thin case to play a role in the
energy budget of the cooling envelope, as we show below.

The density in the convective region is given by
r r¢ = ¢ g-r T r Trcb rcb

1 1( ) ( ( ) ) ( ). By integrating the density
profile and using Equation (19), we obtain the atmospheric
mass,
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M R R
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Similar to Equation (9), and using the temperature and density
profiles given by Equation (19), we calculate the total
(gravitational and thermal) energy available for cooling
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crcb atm ( )

with ºg GM Rc c
2 denoting the surface gravity. The first term

in Equation (21) represents the energy of the gaseous envelope,
while the second term accounts for the cooling of the rocky
core, as discussed above. mc and gc mark the rocky coreʼs
molecular weight and adiabatic index, respectively. For
simplicity, we take g = 4 3c , in accordance with the Dulong-
Petit law. We see from Equation (21) that although the core is
more massive than the envelope, it may contain fewer particles
due to its larger molecular weight, and therefore may have a
lower energy capacity. We note that Equation (21) assumes that
the core remains molten and therefore roughly isothermal.
However, if the atmosphere is thin enough, the temperature at
the atmosphere–core boundary decreases, and an insulating
solid crust forms. Nonetheless, in this work we focus on
sufficiently massive planets and atmospheres, for which the
formation of a solid crust can be ignored up to late times.
By combining Equations (15), (20), and (21) we write an

evolution equation ( = -L Ė) for the thin regime and obtain the
time it takes the atmosphere to shrink to a width Rrcb, assuming
Matm remains constant
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Equation (22) coincides with the thick regime Equation (16) for
~R Rcrcb , up to numerical coefficients and the heat capacity of

the core. According to Equation (22) envelopes shrink with
time in the thin regime as µ g- -t Rrcb

1 1( ).

3.2. Spontaneous Mass Loss

In previous sections we calculated the radius evolution of the
planet after disk dispersal, assuming that the envelope mass
remains constant. In particular, we found that the cooling time
to envelope thickness Rrcb is µ -t Rrcb

1 for >R Rcrcb (thick
regime) and µ -t Rrcb

5 2 for <R Rcrcb (thin regime), assuming
g = 7 5. However, as we show below, mass loss is inherent to
post-dispersal evolution. By comparing the mass-loss timescale
and the cooling time, we find below that thick atmospheres are
always governed by mass loss, while thin envelopes can be
either mass-loss- or cooling-dominated, depending on
their mass.
When the disk disperses, the gas density r l 0d . If the

dispersal process is faster than the time it takes the envelope to
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cool, then according to Equation (13), we expect Rrcb to
decrease, while rrcb remains constant since the energy does not
change and the energy of thick atmospheres is determined only
by rrcb, not Rrcb, as seen in Equation (10). Consequently, we
expect the atmosphere to decrease in mass according to
Equation (11) at least until the thin regime is reached.
However, even if the loss of pressure support from the ambient
disk (causing the mass loss) is immediate (see Section 3.3), the
atmosphere adjusts itself to the changing boundary condition
on a finite timescale.

A commonly used criterion to determine the mass-loss rate is
the energy-limited argument. The basic picture is that while the
gas at the Bondi radius can escape to vacuum (the molecule
escape rate at the Bondi radius is discussed below), in order for
mass loss to continue, gas from deeper in the planetʼs potential
well has to reach the Bondi radius and replenish the escaping
gas. However, as gas expands adiabatically to reach the Bondi
radius, its temperature drops to zero after expanding only a
scale height = �h R R Rrcb

2
B rcb (simple adiabatic atmosphere

solution). Therefore, in order to elevate the atmosphere out of
the planetʼs potential well, a constant supply of energy is
required. While most studies focus on ionizing stellar photons,
which we consider in Section 4, as the energy source (Murray-
Clay et al. 2009; Lopez et al. 2012; Owen & Jackson 2012;
Owen & Wu 2013), we first examine the envelopeʼs own
cooling luminosity (see also Owen & Wu 2016) as an energy
source driving mass loss (see also Ikoma & Hori 2012, who
consider the coreʼs luminosity, which we also discuss below).

As we explain in Section 2, for g = 7 5 the mass of the
atmosphere is concentrated at the outside, at ~r Rrcb (see
discussion below for different values of γ). Therefore, the
amount of energy needed to blow most of the atmosphere
away is ~E GM M Rcevap atm rcb, where we approximate

�R R Rmin ,rcb B H( ) for the shrinking phase after disk
dispersal. The energy that the envelope loses by cooling, on
the other hand, is concentrated in the inside, and is given by
Equation (12). By comparing the two results, we find that the
cooling inner envelope can blow off the outer atmosphere
(which contains most of the mass) without changing its energy
by much. Consequently, the planet loses mass while its energy,
and therefore r Rc( ) and rrcb, remain constant due to
Equation (10). The planetʼs radius, according to Equation (11),
shrinks as it loses mass. Explicitly, the ratio of evaporation to
cooling timescales is given by

⎛
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where the first equality ( =t tcool disk) is trivial at disk dispersal
(when 1=R R Rrcb rcb

0
B) since the planet has cooled for tdisk.

This equality continues to be true at later times (when
<R Rrcb rcb

0 ) since both the energy and the luminosity given
by Equation (15) depend only on rrcb (and not Rrcb), which
remains constant during the mass-loss phase. Consequently,
tcool is constant during the mass loss. Equation (23) shows that
envelopes shed mass until they enter the thin regime ~R Rcrcb ,
at a time comparable to tdisk. Since, according to Equation (11),

µM Ratm rcb
1 2 for g = 7 5 and ~R R 0.1c B , atmospheres

retain roughly 30% of their initial mass when they enter the
thin regime.

Explicitly, by combining the accreted atmosphere mass at
disk dispersal, given by Equation (18), with the factor of

~ R Rc B
1 2( ) due to the outer envelope shedding, we derive the

mass fraction of the atmosphere when it reaches the thick–thin
transition:
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Equation (24) demonstrates that although it is easier to acquire
a heavy atmosphere at larger orbital separations (see, e.g.,
Section 2, or Lee & Chiang 2015), hotter cores (in close orbits)
retain a heavier atmosphere after the disk dispersal and the
shedding of the bloated (and weakly bound) outer envelope
since they reach higher densities, as explained in Section 2, and

r~ µM R R Tc catm
3

eq
1 4( ) at this stage (a strong increase of the

opacity with temperature can change this conclusion, as
discussed below).
For g < 4 3, as effectively chosen by Lee & Chiang (2015),

the mass and the energy are both concentrated in the inside, so
~ ~E E GM M Rc cevap cool atm , and the atmosphere mass is

simply r~M R Rc catm
3( ) . In this case, it is obvious that the

loosely bound outer envelope is shed before the inner layers
cool significantly, on a timescale 1tdisk. Therefore, regardless
of γ, atmospheres shed their outer layers and shrink to

~R Rcrcb after the nebula vanishes. However, if g < 4 3,
these outer layers do not contain significant mass, and
atmospheres retain most of their initial mass when they reach
the thin regime. Quantitatively, atmospheres retain
- »g g- - -1 2 75%4 3 1( ) ( ) of their mass in this case (for

g = 1.2 chosen by Lee & Chiang 2015). The subsequent
thin-regime evolution does not depend qualitatively on γ, as
discussed below.
Once an envelope sheds its outer layers and enters the thin

regime, the energy required to blow away its atmosphere is
given by ~ =E GM M R M gRc c cevap atm atm . In order to check if
the atmosphere continues to shed mass in the thin regime, we
distinguish between two cases, according to Equation (21).
Heavy atmospheres, with 2 m mM Mc catm , regulate their own
cooling, while the heat capacity of light atmospheres, with

1 m mM Mc catm , is negligible, and they are controlled by the
cooling rocky core underneath (which can cool only once the
atmosphere is thin; see Section 3.1). Here Matm is the remaining
mass of the semi-thin atmosphere, not the initial mass.
Assuming an Earth-like composition for the rocky core, the
critical gas-to-solid ratio, which distinguishes between heavy
and light atmospheres, is »f 5%.

3.2.1. Heavy Atmospheres

For heavy atmospheres, initially (when =R Rcrcb ) the
cooling rate and mass-loss rate are equal, since

~ =E E M gRccool evap atm . However, as Rrcb decreases (due to
cooling) the cooling timescale becomes shorter by a factor

<R R 1crcb in comparison with the mass-loss time, according
to Equation (21), so we can consider cooling at a constant
envelope mass, as in Section 3.1.
The envelope contracts with time as µ -t Rrcb

5 2. However,
gas envelopes cannot compress indefinitely, and they reach a
maximum density of r m~ amax 0

3, where a0 is the Bohr radius.
When heavy envelopes reach the thin regime, their density is

2r
p p

m
m

m
m

r r
~ ~ ~

M

R

M

R

3
4 7

3
4 7 7 7
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c c
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with rc marking the rocky coreʼs density (not to be confused
with r Rc( ), which is the gas density at =r Rc), and assuming
that r m~ ac c 0

3 (a crude approximation of roughly the same
radius for all atoms due to electron screening of the nuclear
charge). We conclude that heavy envelopes shrink by a
maximal factor»7 before reaching their maximum gas density.
This contraction lasts for » ~t t7 10 1 Gyr5 2

disk
2

disk· · at
most, since tdisk is the cooling time for ~R Rcrcb . Thus,
atmospheres of Gyr old planets are no longer contracting, and
their density is r» max (we ignore here possible inflation
mechanisms similar to those invoked for inflated hot Jupiters;
see, e.g., Valencia & Pu 2015).

3.2.2. Light Atmospheres

Light atmospheres, on the other hand, enter the thin regime
( =R Rcrcb ) with mass-loss timescales that are shorter than their
cooling times, according to Equation (21). As these envelopes
lose mass, Rrcb remains constant (since the energy does not
decrease), while rrcb decreases, according to Equation (20). As
a result, the energy required for evaporation only decreases
(since it is µMatm), while the cooling energy, which is
dominated by the rocky core, remains constant. In this way,
light atmospheres are lost completely.

An additional timescale limiting the atmospheric loss is due
to the finite escape rate of molecules from the Bondi radius (see
also Owen & Wu 2016) p r=M R R c4 sB

2
B˙ ( ) , which limits the

atmosphere loss time to ~t M Matm ˙ , explicitly
⎛
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where we use Equation (11) and find r RB( ) using Equation (13).
This timescale is longer than the planetʼs age, ~t Gyr, when
the planet reaches the thin regime, if
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We rewrite Equation (27) as a condition on the mass and
equilibrium temperature of the planet:
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In summary, gaseous envelopes shed their outer layers and
reach a radius ~Rc on a timescale of the disk lifetime. At this
stage, the cooling of the rocky core evaporates envelopes
lighter than »M M 5%catm , though this evaporation may take
longer than the current age of the planet if it is massive or cold
enough (see Figure 3). A similar escape-rate constraint can stop
the mass loss at a radius somewhat larger than 2Rc, according
to Equation (26). We note that photo-evaporation due to high-
energy stellar photons does not obey the above escape rate limit
at the Bondi radius, as explained in Section 4.

3.3. Transitional Disks

We have assumed above that the depletion of the disk is
faster than the time it takes the atmosphere to adjust to the
vanishing boundary condition r l 0d . Quantitatively, we
assumed that <t ttrans evap, with ttrans denoting the transition
timescale for the disk to disperse. This assumption is justified

by noticing that, considering Equation (23),
1 1t t1 3 1evap disk , while, by definition, <t ttrans disk, and

observations suggest that »t t 0.1trans disk (Alexander
et al. 2014). We therefore conclude that the finite disk dispersal
time is irrelevant for our above analysis since the mass-loss
bottleneck is the energy release anyway.
Nonetheless, it is interesting to consider the gradual decrease

of the nebulaʼs density rd over time. Because the gas accretion
depends on rd logarithmically (see Section 2), cores can
accumulate gas envelopes even in a depleted nebula, as
suggested by Inamdar & Schlichting (2015) and Lee & Chiang
(2016). Accretion from a gas-poor disk might be important if
collisions of isolation masses (which occur only once the gas
density is low enough that it cannot damp eccentricity
excitations) remove their initial atmospheres (Inamdar &
Schlichting 2015). The atmosphere growth in this case is
determined by a competition between the cooling of the
envelope and the dispersal of the disk.
Quantitatively, we parameterize the disk dispersal over time as

r r= - at t texpd d
0

trans( ) [ ( ) ], allowing for an exponential deple-
tion as modeled by Ikoma & Hori (2012), as well as more or less
gradual processes (see, e.g., Rogers et al. 2011). By combining
Equations (10) and (15) we find that the atmosphereʼs density
increases as r µ trcb

1 2, while its radius decreases approximately
as µ a-R trcb , using Equation (13), and assuming that the nebula
has already depleted significantly. Consequently, using
Equation (11), the mass of the atmosphere grows as

rµ µ a-M R tatm rcb
1 2

rcb
1 2( ) . We conclude that if the dispersal

is gradual enough (a < 1) then an atmosphere can grow while
the disk is being depleted. This analysis is valid only as long as

>R Rcrcb . In the thin regime, Equation (13) implies that
r rµt tdrcb ( ) ( ), preventing further atmosphere growth.

4. MASS LOSS BY PHOTO-EVAPORATION

In Section 3.2 we examined mass loss that is powered by the
heat from the inner envelope or the rocky core. In this section
we address another energy source—ionizing stellar photons.
Mass lass by photo-ionization has been studied extensively, in
the context of both hot Jupiters and super-Earths (Baraffe
et al. 2004, 2005, 2006; Hubbard et al. 2007a, 2007b; Murray-
Clay et al. 2009; Jackson et al. 2010; Valencia et al. 2010;
Lopez et al. 2012; Owen & Jackson 2012; Owen & Wu 2013).
The basic picture is that ionizing photons release energetic
electrons which in turn heat the gas to high temperatures above
the escape velocity. If the cooling of the gas is slow enough, the
high-temperature gas escapes the planetʼs potential well. We
emphasize that the stellar continuum radiation cannot heat the
gas above the equilibrium temperature, which is lower than the
escape velocity (below the Bondi radius). Therefore, the
continuum radiation can only provide energy to elevate the gas
to the Bondi radius, in a similar manner to the cooling
luminosity, as described in Section 3.2 (see also Owen &
Wu 2016). In fact, the stellar continuum radiation, which heats
the gas, has the same magnitude as the cooling luminos-
ity, s t~ T Rrcb

4
rcb
2 .

Here, we adopt the popular simplified energy-limited model
for the photo-evaporation (see, e.g., Lopez et al. 2012; Owen &
Wu 2013 and references within), which linearly connects the
high-energy flux to the gravitational energy of the escaping
mass. Explicitly, we assume that the photo-evaporating flux can
be written as �p s=L R T4 rcb

2
rcb
4 , with � ~ -10 4, taking into

account both the evaporation efficiency ∼0.1 (see, e.g., Owen
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& Wu 2013) and the small fraction of ionizing radiation out of
the total bolometric stellar flux, which is taken to be a constant
~ -10 3 for the first ~t 100 MyrUV , and then decreases with
time as -t 1.25 (see, e.g., Jackson et al. 2012; Lopez et al. 2012;
Owen & Jackson 2012 and references within). The UV
evaporation timescale can therefore be written as

�p s
=t

M gR

R T4
, 29c

c
evap

atm
2

rcb
4

( )

where we focus on the thin atmosphere regime since thick
atmospheres shed mass even without UV radiation.

We emphasize that even if the condition >t tevap cool is
satisfied for =R Rcrcb , since the cooling time increases as

µ g- -t Rcool rcb
1 1( ) for a constant mass while tevap remains constant

(does not depend on Rrcb or time for <t tUV), planets will lose
their mass at some point. The only way to retain the atmosphere
is to ensure that >t tevap UV. After tUV, the ratio of evaporation
timescale to age scales as µt t tevap

0.25, so if an atmosphere
survived to tUV, it will retain most of its mass afterward.

Although Equation (29) shows that massive envelopes may
survive photo-evaporation, since µt Mevap atm, it is important to
check whether such massive envelopes could have formed during
the diskʼs lifetime tdisk. A similar concern was raised by Lopez
et al. (2012), who find that some of the Kepler-11 planets had to
start with tens of percents of their mass in gas in order for some
of the atmosphere to survive photo-evaporation. Such massive
atmospheres are problematic for two reasons—planets might
have lacked the time to accrete them (see Section 2), and the self-
gravity of these envelopes brings them close to the runaway
accretion regime. We address the problem of nebular gas
accretion followed by photo-evaporation self-consistently, by
writing the evaporation timescale in terms of the diskʼs lifetime

�
2

t
~ »

t

t R
t
t

1
10, 30

c

evap

cool

UV

disk( )
( )

where t kr kr~ ~h R Rcrcb rcb
2

B is the optical depth at the
RCB. Equation (30) simply states that since the evaporation
and cooling energies are the same at =R Rcrcb (assuming the
heavy regime), the ratio between the timescales is given by the
ratio between the evaporation flux �sTrcb

4 and the cooling flux
s tTrcb

4 . t Rccool ( ) is also equal to tdisk (see Section 3.2). By
substituting the density from Equation (11) or (20), we obtain
the condition
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It is initially counterintuitive that a small envelope mass is
required to survive evaporation, since µt Mevap atm. The reason
is that µt Mdisk atm

2 , as explained in Section 2, so for given disk
and UV activity times, lighter envelopes survive evaporation
because µ -t t Mevap disk atm

1 . We substitute the atmosphere mass
from Equation (24), which takes into account self-consistently
both the accretion and the spontaneous shedding of the outer
gas envelope, and rewrite Equation (31) as

⎛
⎝⎜

⎞
⎠⎟2

Å

M
M

T
7.7

10 K
, 32c eq
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showing that cores have to be massive or “cold” (low
equilibrium temperature) to keep an atmosphere. However, as

discussed in Section 2 (see also Lee & Chiang 2015), cores that
are too massive or cold are at the risk of runaway gas accretion.
The overlap between the two conditions is discussed in
Section 5.
It is worthwhile to repeat the derivation of Equation (32),

which is one of our main results, for the case of g < 4 3 due to
hydrogen dissociation, as suggested by Lee & Chiang (2015)
and Piso et al. (2015). The calculation in this case takes a
simpler form since the mass of the atmosphere is concentrated
in the inside, as the energy, so ~E GM M Rc catm , and there is
no significant spontaneous mass loss following the diskʼs
dispersal (see Section 3.2). By repeating the calculation of Matm
with g = 1.2 (Lee & Chiang 2015) and substituting in
Equation (31), we find that the qualitative shape of the critical
curve for mass retention, described by Equation (32), does not
change significantly. Specifically, we find that µM Tc eq

1.9 in
this case.
Equation (30) demonstrates that the RCB density rrcb has to

be low for the optical depth t kr~ hrcb to be low, enabling
accretion to be efficient in comparison with evaporation.
However, as explained in Section 2, rrcb has a lower limit
dictated by the surrounding nebula r r> drcb (note that rrcb does
not change during the thick atmosphere mass-loss phase, since
the energy, which is determined solely by rrcb, remains
constant, as explained in Section 3.2). Close enough to the
star, the gas densities are high

⎛
⎝⎜

⎞
⎠⎟r = - - T

10 g cm
10 K

, 33d
6 3 eq

3
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assuming the MMSN model (see Section 2.1 and Haya-
shi 1981). By substituting this minimal density into
Equation (30) we obtain an additional condition relating the
mass and temperature of planets with atmospheres

� 1kr
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t
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, 34d
c
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B

disk

UV
( )

or quantitatively
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Equation (35) also requires low temperatures (for low disk
densities) and high masses (for a small scale height

m=h k T gB , due to the strong gravity). However, by
comparing Equations (32) and (35), we find that the disk
density constraint, given by Equation (35), is relevant only for

2T 3000 Keq , rendering it irrelevant for the set of observations
(see Section 5). This result remains true even for denser
nebulae (up to a factor of 102), as seen in Equation (34).

4.1. Migration

We have so far assumed that gas accretion and UV
evaporation occur at the same distance from the star, which
allowed us to relate the evaporation time to the nebular
accretion time, and to constrain the formation location and
planet mass. Can separating the accretion from evaporation,
due to migration during the nebulaʼs presence, relax the
constraints on the formation scenario? According to
Equation (24), hotter cores (on closer orbits) retain a more
massive atmosphere after the nebula disperses. Therefore, we
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intuitively expect, due to Equation (29), that these heavy
atmospheres will survive the UV evaporation at later times.

We now consider gas accretion at an initial distance from the
star characterized by an equilibrium temperature Ti for a time
~tdisk, followed by migration on a similar timescale (while gas
is still present), and UV irradiation at a different orbit,
characterized by Tf. In this case, using Equations (15) and
(29), Equation (30) changes to

⎛
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⎠⎟ � 2

t
T
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t
t

1
, 36i

f i

4
UV

disk
( )

with ti denoting the optical depth (which is relevant for
accretion) at Ti. Correspondingly, the condition for a rocky core
to retain its atmosphere, given by Equation (32), changes to
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Equation (37) demonstrates that migration relaxes the critical
mass constraint for atmosphere retention. Specifically, as
expected, cores that migrated outward to a given »T 10 Kf

3

(the planetʼs current location) can have low critical masses
µ -M Tc i

0.15 and still survive evaporation. The effect of
migration takes a more general form, µ - -M Tc i

b0.5 3.37( ) , if
we incorporate a temperature-dependent opacity k µ Tb into
Equation (36). Consequently, if there is a strong increase of the
opacity with temperature, inward migration during the gas
diskʼs lifetime may relax the core mass constraint. The reason
is that in this case colder cores accrete and retain more mass
after the disk disperses, as seen by plugging the temperature-
dependent opacity in Section 2. Specifically, using
Equations (16) and (24) we find µ-

-f T b
semi thin eq

0.5 2( ) .

5. COMPARISON WITH OBSERVATIONS

In previous sections we explained how accretion and
evaporation histories limit the population of planets that can
evolve in situ into low-density super-Earths. Specifically, in
Section 2 and Equation (18), we show that planets that are too
massive or too cold explode into Jupiters (see also Lee &
Chiang 2015), while in Sections 3.2.2 and 4 we show that
planets that are too light or too hot lose their atmosphere due to
UV evaporation or cooling of the rocky core. In this section we
compare the observed super-Earth population to this theoreti-
cally allowed “Goldilocks” regime.

In Figures 2 and 3 we present scatter plots of the observed
planets with < ÅR R4 , orbital periods shorter than 100 days,
and an error of less than 50% in mass from Weiss & Marcy
(2014). We estimate the equilibrium temperature by

=Å ÅT T F F 1 4( ) , with the flux (relative to Earthʼs) F/F⊕
estimated by Weiss & Marcy (2014), and with the Earthʼs
equilibrium temperature »ÅT 260 K. The observed atmo-
spheric mass fraction is estimated by

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

r
r

= -f
R
R

1 , 38
c c

max
3

( )

since Gyr old atmospheres are close to the maximum gas
density (see Section 3.2.1), which we evaluate using the

equation of state of Nettelmann et al. (2008) as

⎜ ⎟⎛
⎝

⎞
⎠r » - P

0.5 g cm
Mbar

, 39max
3

0.4

( )

Figure 2. Observed super-Earth population (see text for details) from Weiss &
Marcy (2014). The planets are grouped according to their gas mass fraction f,
estimated by Equation (38), with low-density planets marked by triangles
( < <f5% 10%) or squares ( >f 10%). The planet markers are also color-
coded according to f. The two dashed black lines mark the radii of the rocky
cores R Mc c( ) and R M2 c c( ). Planets with substantial atmospheres are expected
to be found roughly between the two lines.

Figure 3. Observed super-Earth population (see text for details) from Weiss &
Marcy (2014). The planets are grouped according to their gas mass fraction f,
estimated by Equation (38), with low-density planets marked by triangles
( < <f5% 10%) or squares ( >f 10%). The planet markers are also color-
coded according to f. The top solid line (“Jupiter”) is according to Equation (18)
with =t 10 Myrdisk and =f 0.5, while the dashed “core” line is according to
Equation (24) with =f 5%. The bottom solid line (“Bondi”) follows
Equation (28), and the dashed “UV” line follows Equation (32). Inside the
shaded area, planets manage to accrete and maintain gas envelopes without
exploding into gas giants due to runaway accretion (see text for details).
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with the typical atmosphere pressure given by
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Mbar . 40atm
2

2 4

( )

We take into account the mild compression of the rocky core
(see, e.g., Valencia et al. 2006), and estimate the rocky
coreʼs density and radius by r r »Å ÅM Mc c

1 4( ) and
»Å ÅR R M Mc c

1 4( ) , with r =Å
-5.5 g cm 3. Equation (38)

with the approximation »M Mc (M is the observed mass) is a
valid estimate for �f 1, and indeed all planets in our sample
have estimated -f 20%. Our crude estimate of the gas fraction
is in agreement (approximately) with more elaborate estimates,
e.g., Lopez et al. (2012). We emphasize that an approximate
estimate of f suffices since we are mainly interested in
distinguishing between purely rocky worlds and planets with
substantial atmospheres (above a few percent in mass) which
have a significant volume. We plot in Figure 2 the limits of the
thin envelope regime 1<R R R2c c, which according to our
model, confines super-Earths older than ~10 Myr.

In Figure 3 we present the allowed Goldilocks region in
which super-Earths can hold on to substantial atmospheres,
taking into account all the mass-loss processes mentioned in
previous sections. Specifically, planets below the “core” line in
the figure are left with <f 5% after disk-dispersal, and
therefore lose their atmospheres in less than ∼Gyr due to the
cooling of the core, if they are also below the “Bondi” line (see
Section 3.2.2). Planets below the “UV” line, on the other hand,
lose their atmospheres due to UV irradiation, regardless of the
“Bondi” line (see Section 4). Planets above the “Jupiter” line
explode into gas giants during the diskʼs lifetime (see
Section 2).

As demonstrated in Figure 3, our model defines a relatively
narrow mass/temperature range in which planets are massive
and cold enough to acquire and retain an atmosphere, while not
too massive and cold to go runaway and explode into gas
giants. While it is not perfect, it is seen in Figure 3 that
observed low-density super-Earths seem to be restricted to the
range predicted by our model. Some planets, on the other hand,
seem to remain rocky, although they are in the Goldilocks
region for acquiring and maintaining an atmosphere. A possible
explanation for this diversity inside the Goldilocks region is
giant impacts that remove gas (Inamdar & Schlichting 2016).

An interesting outcome of the spontaneous shedding of the
outer gas envelope after the nebula disperses is that atmo-
spheres of planets just below the top line in Figure 3 (which are
on the verge of runaway accretion) are far from self-gravitating.
For our choice of γ, marginally self-gravitating atmospheres
retain only »30% of their mass after the nebula vanishes, as
discussed in Section 3.2. However, this result is sensitive to our
choice of g > 4 3, and for g < 4 3 we expect marginally self-
gravitating atmospheres to retain most of their mass. Quantita-
tively, for g = 1.2 (as chosen by Lee & Chiang 2015),
atmospheres lose only »25% of their mass (see Section 3.2)
following disk dispersal.

Although Lopez & Fortney (2013) define a mass-flux curve
qualitatively similar to our bottom line of Figure 3, with hot or
small planets losing their atmosphere due to UV evaporation,
the considerations leading to their curve are different from ours.
In our model, we account for the cooling of the rocky core, and

self-consistently couple the evolution prior to disk dispersal to
the subsequent mass-loss.

6. CONCLUSIONS AND DISCUSSION

In this work we analyzed the conditions in which rocky cores
of a few ÅM in mass acquire and retain voluminous
atmospheres. Such atmospheres are necessary in order to
explain some of the recently discovered Kepler low-density
super-Earths (see, e.g., Lopez et al. 2012; Lissauer et al. 2013).
We studied a scenario in which a pre-assembled rocky core

accretes gas from the protoplanetary nebula. This scenario is
relevant for the inner disk, where the assembly time for rocky
cores is much shorter than the diskʼs lifetime (Goldreich
et al. 2004; Lee et al. 2014). We also assumed that the gas
density of the nebula is relatively low (MMSN), implying that
atmosphere masses are determined by comparing their Kelvin–
Helmholtz cooling time to the diskʼs dispersal time (the initial
atmospheres that form adiabatically without cooling are
negligible in mass). We found that in this scenario super-
Earths at ∼0.1 au orbits acquire atmospheres of a few percent in
mass, in agreement with previous studies (Lee et al. 2014;
Inamdar & Schlichting 2015; Lee & Chiang 2015). Despite the
apparent consistency of this result with observations (see, e.g.,
Lopez et al. 2012), subsequent evolution of the planets,
following the nebulaʼs dispersal, has to be considered as well.
We found that once the gas disk disperses, at time
~t 10 Myrdisk (Mamajek 2009; Williams & Cieza 2011;

Alexander et al. 2014), atmospheres shed their outer layers
due to loss of pressure support from the disk and due to their
own cooling luminosity (see also Owen & Wu 2016).
Consequently, super-Earth atmospheres shrink to a thickness
comparable to the radius of the rocky core ~R Rcrcb , on a
timescale ~tdisk (equivalently, the planets shrink to a radius
» R2 c). When this thin regime is reached, we distinguish
between two types of atmospheres.

1. Heavy envelopes, with atmospheric masses (as a fraction
of the core mass) 2ºf M M 5%catm , retain their masses
and contract until they reach the maximum gas density
after ∼1 Gyr at most.

2. Light envelopes, on the other hand, with 1f 5%, are lost
entirely due to the cooling of the underlying rocky core,
which dominates the heat capacity (but can cool only
once the atmosphere is thin). In this case, the mass-loss
timescale is determined by the finite escape rate of
molecules traveling at the speed of sound through the
Bondi radius.

In addition to this spontaneous mass shedding, gas envelopes
are also vulnerable to evaporation by high-energy stellar
photons (see, e.g., Lopez et al. 2012; Owen & Wu 2013). In
this work we examined both mass-loss possibilities and
coupled them with the preceding nebular accretion phase.
Our consistent treatment of accretion and evaporation allows

us to relate the mass-loss timescale to the accretion time, and
therefore to the diskʼs lifetime. Using these relations, we
derived theoretical constraints on the planetʼs mass and
equilibrium temperature (or equivalently, distance from the
star) which enable the accretion and preservation of a
significant atmosphere. Explicitly, we analytically identified a
rather limited Goldilocks region in the temperature–mass plane,
in which planets are massive and cold enough to obtain and
retain an atmosphere, while not so massive or cold that
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runaway gas accretion occurs, and the planets do not become
Jupiters. Observed low-density super-Earths (see, e.g., Weiss &
Marcy 2014) are indeed concentrated in this theoretically
allowed region, though some features of the observed super-
Earth population are not explained by our model and may be
due to giant impacts (Inamdar & Schlichting 2016).

It is noteworthy to mention Rogers et al. (2011), who also
coupled self-consistently core-nucleated accretion with the
subsequent post-dispersal evolution, including mass loss.
Despite the similar approach of both studies, we also point
out the main differences. First, Rogers et al. (2011) focus on the
scenario of formation beyond the snow line, at »T 100 Keq ,
followed by migration to the current planet position of

~ -T 500 1000 Keq . We, on the other hand, focus on in situ
formation at the current planet location. This difference affects
both the accretion history and the composition of the rocky
core, which is ice-rich in Rogers et al. (2011). In addition,
although UV-driven evaporation is treated similarly in both
studies, this work also incorporates spontaneous mass loss,
which is absent from Rogers et al. (2011). Finally, we compare
our model to planets that have reasonable constraints on their
masses from transit time variations or radial velocity measure-
ments, while Rogers et al. (2011) take a more general approach
and use only the measured planet radius from Kepler to derive
constraints on the possible mass and atmosphere fraction.

Our analytical model is simple and intuitive and provides a
consistent picture of gas accretion and evaporation, which
seems to agree, at least approximately, with the observations.
Nonetheless, there are several aspects of the model that deserve
further attention:

1. Although we coupled gas accretion and evaporation, we
decoupled these processes from the assembly of rocky
cores. At close orbits, planetesimal impacts may be
ignored, as explained above, but giant impacts of
protoplanets (or alternatively, inward migration of rocky
cores) may be relevant, since isolation masses are small
(see, e.g., Goldreich et al. 2004; Inamdar &
Schlichting 2015).

2. We assumed a sharp decrease in the nebulaʼs gas density,
after which gas accretion terminates. The disk dispersal is
more gradual, and planets may accrete gas from a
depleted nebula (Lee & Chiang 2016). This caveat is
briefly discussed in Section 3.3.

3. This work focused on low-density gas nebulae (MMSN),
while other works (Chiang & Laughlin 2013; Lee
et al. 2014; Inamdar & Schlichting 2015) argue for
higher gas densities (near the Toomre stability limit),
based on high solid disk masses which were invoked to
explain the Kepler observations. A better estimate of the
initial gas density is thus required in order to constrain
super-Earth formation scenarios (if the density is low
enough though, it does not affect the results, as explained
above). Interestingly, our model can be used to test the
presence (or absence) of high-density gas nebulae. In a
dense nebula, the atmosphere mass is determined
adiabatically, with cooling playing a minor role. By
setting the runaway accretion condition ~f 1 in
Equation (3), we find that the maximal stable core mass
scales approximately as µ -M Tc eq

1 in such nebulae (since
cooling is unimportant, this result is robust and does not
depend on the opacity or other details of our cooling
model). In light nebulae, on the other hand, the

atmosphere mass is determined by cooling, and the
maximal stable core mass increases with temperature, as
seen in Figure 3 (top line). An improved set of
observations, with accurate masses and sampling a broad
range of equilibrium temperatures (separations), can
distinguish between the two models and constrain the
typical nebula density.

4. The multi-dimensional flow around an accreting planet
may alter the one-dimensional results presented here
(D’Angelo & Bodenheimer 2013; Fung et al. 2015;
Ormel et al. 2015a, 2015b). Specifically, Ormel et al.
(2015b) and Fung et al. (2015) find that in 3D simulations
the atmosphere gas is replenished from the nebula on
timescales shorter than the Kelvin–Helmholtz cooling
time, resulting in lighter (i.e., higher entropy) envelopes.
D’Angelo & Bodenheimer (2013), however, find that the
envelope mass decreases only by a factor of roughly two.

Addressing these points, together with a more realistic
treatment of UV photo-evaporation (see, e.g., Owen &
Wu 2013), may improve our theoretical constraints on low-
density super-Earth formation scenarios. In addition, a few
extremely low-density “super-puffs” (see, e.g., Lee &
Chiang 2016 and references within) might require a different
formation scenario.
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