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Critical Parameter Identification of Fuel-Cell Models Using
Sensitivity Analysis
Lalit M. Pant,1,*,z Sarah Stewart,2 Nathan Craig,2 and Adam Z. Weber1,**

1Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California
94720, United States of America
2Robert Bosch LLC, Sunnyvale, California 94085, United States of America

Numerical modeling has been a vital tool in proton-exchange-membrane fuel-cell (PEMFC) analysis; however, the predictive
capabilities of these models depend on the input physical parameters, several of which are either not experimentally measured or
have large scatter in measured values. This article presents an uncertainty propagation-based sensitivity analysis to identify the
model parameters that impact the model predictions most. A comprehensive 2-D membrane electrode assembly (MEA) model is
used to perform local sensitivity analysis at multiple operating conditions, which encompass the range of environments and
operating conditions a cell can encounter. While at lower humidities, cathode kinetics and membrane-ohmic-loss related
parameters are crucial, gas transport and porous-media saturation behavior are more important at humidified conditions. Several of
these findings are different from previous studies presented in literature. Identifying the crucial parameters helps focus future
material and cell optimization studies as well as experimental studies to quantify these parameters with higher accuracy.
© 2021 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access
article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/
1945-7111/ac0d68]
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Proton-exchange-membrane fuel cells (PEMFCs) are a promising
energy-conversion technology for the 21st century; however, further
improvements in performance and durability are required for large
scale commercialization of this technology.1 Modeling, especially
continuum modeling has been vital in providing insights on
phenomena governing cell-level performance.2–4 A variety of
continuum models have been developed and used in literature.5–18

The accuracy and predictive power of these models is dependent
upon the implemented physics and the associated parameters. A
majority of the work in literature has focused on improving the
accuracy and complexity of the implemented physics, where models
with higher dimensions,10,11,16,17 non-isothermal and two-phase
physics,9 more rigorous kinetics,19,20 and other improvements have
been developed.2 However, there has been little work on under-
standing the effect of model parameters on the accuracy and
predictive power of mathematical models21–23 even though these
validated models can provide material design, integration, and
optimization guidance.

Vetter and Schumacher24 recently presented a through literature
review of the parameters used in PEMFC models. A significant
spread is observed in the measurements of properties such as
membrane water uptake, membrane conductivity, porous-media
transport parameters, etc. In addition, certain parameters such as
evaporation rates and membrane adsorption/desorption rates are not
known accurately, with assumptions spanning several orders of
magnitude. Vetter and Schumacher24 also showed that these
uncertainties in input parameters lead to significant variations in
model predicted cell polarization curves. It is worth noting that a
parameter that is crucial in one modeling framework may not be so
important in a different model. However, for any model, it is
important to understand the impact of modeling parameters on its
predictions, i.e., the sensitivity of the model outputs towards its input
parameters must be identified.

Sensitivity analysis-based parameter estimation has been prevalent in
battery modeling.25–27 Initial sensitivity analysis on PEMFC models has
also focused on model parameter estimation.28,29 Later PEMFC
sensitivity analyses have been focused on understanding impact of

model parameters’ uncertainty on model predictions.22,23,30–40 However,
these models have either been empirical stack based models or simplistic
cell models and therefore have not been able to elucidate the issues in
detailed physics-based models. Vetter and Schumacher41 recently
presented one of the first PEMFC sensitivity analysis on a complete
1-D multi-physics model. While the article presented a valuable
framework and a thorough analysis of parameter uncertainty impacts,
the model still did not encompass the complete complexity of
membrane-electrode-assembly (MEA) physics, e. g., coupled water
and proton transport in membrane, agglomerate effects in cathode, etc.
Furthermore, the 1-D model was not able to account for land-channel
effects or along-the-channel impacts. Recently, Goshtasbi, et al.21,42

presented a detailed sensitivity analysis that focused on estimating cell
parameters from simple polarization-curve data. While the analysis itself
was thorough, the MEA physics was simplified to account for along-the-
channel effects.

This article presents a detailed sensitivity analysis based on
framework using our previously developed comprehensive 2-D
MEA model.18 Compared to the other models used in sensitivity
analysis, this model accounts for detailed macroscale physics and
therefore is capable of providing a better insight on the impact of
different physical parameters on model predictions. The rest of the
article is organized as follows: the next section presents the
methodology used for cell modeling and sensitivity analysis,
followed by evaluation of the parameter sensitivity in 2-D model.
Finally, the article summary and conclusion are presented.

Methodology

PEMFC modeling.—An in-house developed 2-D MEA model is
used for simulating PEMFC performance.15,18 Figure 1 shows the
schematic of the simulation domain used. While the detailed
description of the model is presented by Pant, et al.,18 a brief
summary and unique parameters are discussed in the following
paragraphs. Pant, et al.18 have shown both: a 2-D model and a
pseudo-3D (1+2D) model, but this article only utilizes the 2-D
model, as using the pseudo 3-D model for sensitivity analysis is
currently computationally costly compared to the benefits since the
governing physics and phenomena are well captured by the 2-D
model itself.

A steady-state, macro-homogeneous, multiphase and multiphy-
sics modeling approach is used with spatially volume averagedzE-mail: LMPant@lbl.gov
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effective properties of each layer. The model accounts for multi-
component gas diffusion, liquid and gas convection, electron
transport, heat transport, and proton & water transport in ionomer
in the catalyst layers and membrane. The anode hydrogen-oxidation
reaction (HOR) is modeled using a Butler-Volmer reaction.18 The
cathode oxygen-reduction reaction (ORR) is modeled using a Tafel
equation combined with an agglomerate modeling approach.18 To
understand the impact of reaction order on sensitivity, reaction
orders are varied over a range for ORR. Since the conventional
agglomerate formulation is only applicable for first order
ORR,20,43,44 a semi-analytical formulation is used to enable one to
examine the impact of different reaction orders;43 an overview of the
agglomerate-based cathode kinetics model is provided in supple-
mentary material section 1.

Sensitivity analysis.—To understand the sensitivity of a function
or model to its input parameters, a condition number can be utilized,
which is frequently applied in linear algebra and regression
analysis.45,46 The cell model can be approximated as a model
function from an n- dimensional input space to an m-dimensional

output space (  ⃗ →f : n m). The sensitivity of any ith output of ⃗f
with respect to jth input (xj) is then obtained with the relative
condition number, defined as41,45,46
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space.a For a non-differentiable function, the relative condition
number can be defined as41
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where ⃗ej is the unit vector for j
th parameter and Δxj is the magnitude

of perturbation in the jth parameter. The relative condition number
can be thought of as the uncertainty amplification/dampening factor
from input to output. For example, if the jth input changes by x%,

then the ith output will change by xκij%. If κij is large, then the
output fi is sensitive to input xj and vice versa.

For implementation purpose, Vetter and Schumacher41 suggested
to fix Δxj = δxj and keeping δ very small. Equation 2 can be then
expressed as
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κij is not only an uncertainty propagation factor in the model, it can
also be used for optimization purposes. For this, not only the
magnitude of κij is necessary but also the sign is needed. Therefore,
in this article, κij is redefined as
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Assuming that the model represents the physical system accurately,
κij can be used to understand whether an input can be changed to
affect an output in a desired way. For example, if κij is positive then
increasing xj will increase fi as well.

For sensitivity analysis, first the output variables need to be
selected. In this article, variables that are representative of the cell’s
performance and internal state are used. For this purpose, cell current
(icell), minimum water content in ionomer (λmin), average water
content in ionomer (λav), maximum cell temperature (Tmax),
minimum overpotential (ηmin), maximum overpotential (ηmax), and
maximum liquid saturation in all porous layers (SL,max) are used.
While most of these variables except cell current (icell) are not
directly measurable, they can be inferred from other measurements
such as HFR, cell water balance and cell/coolant temperature. Even
though these variables are not directly measurable, they convey
crucial information about cell health/state and are composite para-
meters depending on several measurable properties. The relevance of
each of these output variables is discussed in Table I. The cell model
can be simulated in both: potentio-static (fixed potential) and
galvano-static (fixed current) modes. While galvano-static mode
allows one to control the water production and therefore hydration
state of cell, the potentio-static mode controls the overpotentials.
Furthermore, given that this article is focused on steady-state
performance, galvano-dynamic simulations are beyond the scope
of current work. To ensure that the cell’s sensitivity is evaluated in
the three main operating regimes: kinetics, ohmic and transport
limited, the model is simulated at potentio-static conditions and
output variables are evaluated at three potentials: 0.8, 0.67, and

Figure 1. Schematic of the modeling domain of a 2-D MEA cross-section. Image not to scale.

aFor example, think of a cell simulation model function which computes cell current
(icell) and average membrane water content (λ̄ ) as a function of cell temperature (T)
and cell voltage (V). Then the function can be defined as  ⎯→

→f : .2 2 A sample
point ⃗x is a given temperature and cell voltage ( ⃗ = { }x T V,l m ). Sensitivity of
average membrane water content with respect to temperature at the sample point
can be obtained as: κ =λ
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0.3 V. These potentials are also consistent with Department of
Energy’s benchmarking conditions for low-temperature fuel
cells.47 Overall, 21 (7 × 3) output variables are evaluated for
sensitivity analysis of the model.

Table A·I shows the input parameters used in this article, with
respect to which the sensitivities of the output variables are
evaluated. Either the values of inputs themselves are changed or
the inputs are adjusted using a pre-factor. The definition of the
parameters is consistent with the original model as described by
Pant, et al.18 Overall, the sensitivity is analyzed with respect to
operating conditions and geometric, kinetics, and transport para-
meters. Given the number of input parameters, a true global
sensitivity analysis would be infeasible. Therefore, local sensitivity
analysis is performed in which a single parameter is varied at a time
while keeping the rest at a fixed value. To account for the cell
operation at different conditions, the sensitivity analysis is per-
formed at six operating conditions: 80 °C, 80%RH, air, 150 kPa;
80 °C, 40% RH, air, 150kPa; 80 °C, 100%RH, air, 150 kPa; 80 °C,
80% RH, 5% O2, 150 kPa; 80 °C, 80%RH, air, 250 kPa; and 95 °C,
80%RH, air, 250 kPa, which represent normal, dry, flooded, fuel-
starved, high-back pressure, and heavy-duty conditions. Overall,
18 base-case studies (3 potentials × 6 operating conditions) are
performed.

Results and Discussion

For every operating condition, each sensitivity parameter is
varied within the range specified in Table A·I, while the remaining
parameters are fixed at their base value. The range of values is
chosen based on the spread observed in literature. The base values of
all the parameters and operating conditions are given in Table SI
(supplementary information). The model is implemented in
COMSOL™ framework and cell operation is simulated at given
parameters. At any given parameter value, the sensitivity is obtained
by perturbation analysis as shown in Eq. [4]. For each parameter,
except layer thickness, sensitivity evaluation is done at 40 uniformly
distributed intermediate points between minimum and maximum
value of the parameter. For thickness, only 10 points are evaluated
due to higher computational time. The overall computation time for
sensitivity analysis of all parameters at a given operating condition is
approximately 84 h. Figure 2A shows an example of sensitivity of
cell current at 0.3 V towards gas diffusion layer (GDL) porosity for a
cell at 80 °C, 40% RH, 150kPa cell pressure, and air cathode. The
sensitivity towards a parameter can be positive and/or negative
depending on different system behavior at different parameter
values. For example, at lower GDL porosity the cell is limited by
oxygen transport at high current densities (0.3 V), therefore an
increase in the porosity results in increased transport and therefore
shows a positive sensitivity. For high GDL porosity however,
oxygen transport is not limiting. Instead, higher GDL diffusion
leads to more water diffusing outwards from the catalyst layers,
leading to membrane dehydration and a reduction in cell current
densities; therefore, it exhibits a negative sensitivity.

For faster analysis and easier comparison of sensitivity between
different input-output pairs, each sensitivity profile is converted into

a heatmap. The heatmap equivalent of Fig. 2(A) is shown in Fig. 2B.
The heatmap is generated by plotting the log of the sensitivity
magnitude. Positive sensitivity values are plotted in blue color at the
center and negative sensitivities are plotted in red color towards the
outer edge. The intensity of the color represents the log magnitude as
shown in the colorbar. Figure 2C shows the complete map of the
sensitivity of the different model outputs to the most sensitive input
parameters. The heatmap provides ways for analysis, discussion and
importance ranking of each input-output pair; however, since
evaluating exact values in heatmaps is difficult, the readers are
referred to supplementary material for detailed plots of sensitivity
for each parameter. Detailed sensitivity plots for each input para-
meter at 80 °C, 40% RH, 150kPa cell pressure, and air are given in
supplementary information Figs. S1-S6 (available online at stacks.
iop.org/JES/168/074501/mmedia).

For an air-based cell at 80 °C, 40% RH, several model parameters
exhibit significant impact on the model outputs. As expected, the model
is sensitive to cathode kinetics parameters due to slow ORR, especially
to the cathodic transfer coefficient. Anode kinetics plays a minor role
and is sensitive only when the anode kinetics is slowed by an order of
magnitude with respect to reference value (see Fig. S1a). Due to dry
conditions (40% RH), membrane hydration is low and therefore ionomer
properties related to proton conduction show significant impact on the
outputs. The model outputs also exhibit sensitivity to cell geometry at
these conditions. An increase in cathode catalyst layer (CL) thickness
improves performance due to increased electrochemically active surface
area (ECSA) and increasing membrane thickness shows negative impact
due to increased ohmic losses. The cell performance also shows
significant sensitivity to operating conditions, e.g., cell temperature
and humidity. While cell conditions are usually measured accurately
during experimentation, several issues such as location of thermocouple,
feedline insulation, cooling system efficiency, etc can cause the
operating conditions within cell to be different than the measured
values. Given the high sensitivity of model outputs towards the
operating conditions, this can cause large discrepancies between model
predictions and experimental data, which can cast an unnecessary doubt
in the model capabilities even though the errors are due to incorrect
input parameters.

To understand the impact of a particular sensitivity magnitude on
cell performance, polarization curves are simulated with varying
values of sensitive parameters. Figure 3 shows the impact of varying
cathode ECSA (Av,c) and ORR cathodic transfer coefficient (αc,ORR)
by 10% and 50%. Figures S1f and S1h show the sensitivity of model
outputs to these parameters. Since the impact is analyzed in
comparison to reference values, we are primarily concerned with
the sensitivity of these parameters at relative values (with respect to
reference) near 1. While the sensitivity of cell current with respect to
αc,ORR is between 2 to 6 near the reference value, the sensitivity with
respect to Av,c is lower (closer to 0.25 to 0.75). It can therefore be
seen in Fig. 3 that at 0.3 V, changing the αc,ORR by 10% results in a
current change by approximately 50% (∼5 × 10), while changing
Av,c by same amount increases the current by only 7% (∼0.7 × 10).
This shows that even a small uncertainty in the input parameters can
result in significant output changes for sensitive parameters. To
achieve the same amount of impact on the polarization behavior for
less sensitive parameters requires a much higher perturbation range;
however, as discussed earlier, uncertainties of several orders of
magnitudes exist for some input parameters that can significantly
impact the model outputs.

Next, the model sensitivity was analyzed at 80 °C, 80% RH,
150 kPa cell pressure, and air cathode to understand the model
behavior at more humid conditions (referred here as standard
conditions). Figure 4 shows the sensitivity heatmap of the model
for the most sensitive parameters. Detailed sensitivity analysis for all
parameters at 80 °C, 80% RH, 150 kPa cell pressure, and air are
given in supplementary information Figs. S7–S12. The kinetics and
ionomer properties exhibit similar behavior as in 80 °C and 40% RH
case, as slow ORR and ionomer proton conduction are still an issue

Table I. Relevance of the selected output variables for cell health
analysis.

Output Relevance

icell Cell performance
λmin State of driest parts of membrane
λav Average membrane hydration
Tmax Cell overheating
ηmin Catalyst layer utilization
ηmax Catalyst layer utilization
SL,max Electrode flooding condition
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at 80% RH. However, unlike at the drier conditions, the partial
pressure of O2 is lower due to higher humidity. This results in some
of the GDL gas-transport parameters and ORR order also becoming
critical parameters. The thermal properties of GDL, micro-porous
layer (MPL) and coolant also impact the model output, especially at
higher current densities. Most of the heat in PEMFCs is generated in
the membrane and CLs due to ohmic heating and reactions. The
thermal properties of GDL, MPL and coolant control the rate of heat
escape and therefore the CL local temperature. This in turn affects
the local water activity and membrane hydration, especially at near
saturation conditions, which exist at high humidity and high current-
density operation.

To further understand the effect of operating conditions on model
sensitivity, analysis was performed at oxygen starved conditions:
80 °C, 80% RH, 150 kPa cell pressure, and 5% O2 in the cathode.
This condition represents an oxygen starved cell, which can occur
during low stoichiometry operation or at channel exits. Figure 5
shows the sensitivity heatmap of the model for the most sensitive
parameters in this condition. A detailed sensitivity analysis with
respect to each parameter is shown in supplementary information
Figs. S13–S18. The sensitivity behavior of most parameters is
similar to the sensitivity map shown in Fig. 4 for higher O2

concentration. Due to the oxygen-starved conditions, reaction order
(γO2) demonstrates a much higher impact on cell performance

Figure 2. Sensitivity analysis of the model at 80 °C, 40% RH (dry conditions), 150kPa cell pressure, and air. (a) An example of complete sensitivity profile of a
single input-output pair showing sensitivity of cell current at 0.3 V towards GDL porosity, (b) Representation of the same sensitivity profile as a heatmap. Blue
colour represents positive sensitivity values (+ve κij) and red colour represents negative sensitivity values (−ve κij). The centre of the circular grid shows the
maximum positive sensitivity, and the edges shows the maximum negative sensitivity, (c) Sensitivity map of the model outputs with respect to the most sensitive
model inputs. The heatmap shows logarithmic values of the sensitivity magnitude. The parameters are defined in Table A·I.
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compared to the air-fed cathode. Not only do the GDL transport
properties show higher sensitivity compared to Fig. 4, transport
properties of MPL and cathode CL, which were not crucial for air-
fed cell, also show an appreciable impact on cell performance. The
thicknesses of all the porous layers are also important in this case, as
increasing thickness increases the transport losses, which impacts
the cell performance significantly in an already reactant-starved cell.

To understand the cell behavior at saturated conditions, the
model sensitivity was analyzed at 80 °C, 100% RH, 150 kPa cell
pressure, and air in the cathode. Figure 6 shows the sensitivity
analysis heatmap of the model for the most sensitive parameters. The
detailed sensitivity analysis for each parameter is given in

supplementary material Figs. S19–S24. While the maximum sensi-
tivity of the model outputs towards any input parameter is in the
range of 100.7−100.9 for non-flooded conditions, it can be seen in
Fig. 6 that for saturated conditions, some parameters show much
higher sensitivity value—in the order of 102.35. Furthermore, a
significantly higher number of input parameters become impactful
for the model predictions at saturated conditions. Due to flooded
conditions, reactant transport becomes a limiting factor in both
cathode and anode. Due to low reactant concentration in the CL, the
model displays sensitivity to both anode and cathode kinetic

Figure 3. Impact of varying cathode ECSA (Av,c) and ORR cathodic transfer
coefficient (αc,ORR) by 10% and 50% on cell performance at 80 °C, 40%RH
(dry conditions), 150 kPa cell pressure, and air cathode. The base curve uses
reference properties described in Table SI.

Figure 4. Sensitivity analysis heatmap of the model at 80 °C, 80% RH
(standard conditions), 150 kPa cell pressure, and air. The heatmap shows
logarithmic values of the sensitivity magnitude. The parameters are defined
in Table A·I.

Figure 5. Sensitivity analysis heatmap of the model at 80 °C, 80% RH,
150kPa cell pressure, and 5% O2 in cathode (oxygen starved). The heatmap
shows logarithmic values of the sensitivity magnitude. The parameters are
defined in Table A·I.

Figure 6. Sensitivity analysis heatmap of the model at 80 °C, 100% RH
(flooded condition), 150 kPa cell pressure, and air in cathode. The heatmap
shows logarithmic values of the sensitivity magnitude. The parameters are
defined in Table A·I.

Journal of The Electrochemical Society, 2021 168 074501



parameters. In terms of gas transport, it is seen that transport
properties of all porous layers in cathode and anode show impact
on the model outputs at 100% RH, while in dry conditions only
cathode was crucial, as the anode is only transport limited at 100%

RH. Similarly, thicknesses of all layers become critical as they
contribute to the transport resistance. Due to the fully humidified
conditions, the liquid-equilibrated ionomer properties also exhibit
impact on the outputs, while for drier conditions, only the vapor-
equilibrated ionomer properties were crucial. Finally, saturation
characteristics of the GDL and catalyst layers also become critical
as they control the liquid saturation and thus the effective transport
properties.

All the aforementioned studies were conducted at a cell pressure
of 150 kPa in both anode and cathode. To understand the impact of
cell pressure, sensitivity analysis was also performed at 80 °C, 80%
RH, air in cathode and 250 kPa cell pressure. The heatmap
(Fig. S25) and detailed plots are provided in the supplementary
material (Figs. S26–S31). Overall, no major difference was seen in
sensitivity profile at 250 kPa (Fig. S25) compared to the one at
150 kPa (Fig. 4). This suggests that at the given operating
conditions, cell pressure, which is primarily a surrogate for reactant
concentration, is not as crucial, as oxygen concentration is not
limiting. This will be different when operating at low oxygen mole
fractions as shown earlier in 5% O2 analysis.

Recently there has been a lot of interest in using PEMFCs for
heavy duty vehicles. For performance and efficiency considerations,
these cells usually operate at higher temperatures and pressures. To
understand the cell behavior at such conditions, sensitivity analysis
was performed at 95 °C, 80%RH, air in cathode and 250 kPa cell
pressure. Figure 7 shows the sensitivity analysis heatmap for the
most sensitive parameters. The detailed sensitivity analysis for each
parameter is given in supplementary material Figs. S32–S37.
Compared to the 80 °C, 80%RH case shown in Fig. 4, the sensitivity
map at 95 °C, 80%RH looks similar. Agglomerate properties and
evaporation/condensation coefficient are critical at 95 °C and not at
80 °C and rest of the parameters show similar behavior.

Figure 7. Sensitivity analysis heatmap of the model at 95 °C, 80% RH
(heavy duty condition), 250kPa cell pressure, and air in cathode. The
heatmap shows logarithmic values of the sensitivity magnitude. The
parameters are defined in Table A·I.

Table II. Summary of five most sensitive parameters affecting cell current at different operating conditions and uncertainties in their available
values in literature. Parameters with similar sensitivity magnitudes are grouped together resulting in more than five sensitive parameters at several
operating conditions. The uncertainty values are characterized as: low uncertainty- less than 10% uncertainty, medium- 10 to 50% uncertainty, and
high- more than 50% uncertainty.

Operating condition Most sensitive parameters Sensitivity valuemagnitude range Uncertainty in literature

αc,ORR 1–6 Low
80 °C, 150 kPa λV 0–5 High
40% RH, air Av,c,i0,c 0.25–1 Medium

κH ,O m m V, ,2 0–0.85 Medium/High
ϵ L L, ,V GDL cCL mem, 0–0.75 Medium

αc,ORR 0–5 Low
80 °C, 150 kPa λV 0–5 High
80% RH, air ϵV GDL, 0–3 Medium

Av,c,i0,c 0.25–1 Medium
κH ,O m m V, ,2 0–0.85 Medium/High

αc,ORR 0–6 Low
80 °C, 150 kPa λV 0–5 High
80% RH, 5% O2 ϵV GDL, 0–4 Medium

γA i, ,v c c O, 0, 2
0–1.5 Medium

βτ GDL, 0–1.1 Medium

SL CL, 0–40 High
80 °C, 150 kPa θm 0–30 Medium
100% RH, air αc ORR, 0–6 Low

ϵV GDL, 0–3.5 Medium
βτ GDL, 0–3 Medium

αc,ORR 0–5 Low
95 °C, 250 kPa λV 0–5 High
80% RH, air ϵV GDL, 0–4 Medium

A i i, ,v c c a, 0, 0, 0.25–1 Medium
κH L, ,O m m V cCL, ,2 0–0.85 Medium/High
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Furthermore, given that heavy duty vehicles usually operate at
higher cell potential ( ≃E 0.8Vcell ) for increased efficiency, the
output parameters of interest in Fig. 7 are the ones at 0.8 V. In terms
of design parameters, it can be seen that cathode and anode ECSA,
ionomer water uptake and conductivity, oxygen dissolution in
ionomer (HO m,2 ), thickness of cathode catalyst layer and membrane,
and cell humidity can be manipulated to get the largest impact on
cell performance at 0.8 V. A cost, power, and efficiency optimization
can be easily done using this small set of crucial parameters at
conditions relevant to heavy duty vehicles.

While the detailed analysis above looked at the impact of model
parameters on several outputs, in most experimental conditions only
the cell performance (polarization behavior) is usually measured.
Therefore, to summarize the study, five parameters were identified at
each operating condition that exhibit the maximum impact on cell
current density as given in Table II. Parameters with similar
sensitivity magnitudes are grouped together. The uncertainty in
available values of these parameters in literature is also summarized
based on summary by Vetter and Schumacher.24 It can be observed
in Table II that several parameters can impact the model outputs
significantly, although the most sensitive parameters vary between
operating conditions. Given that in an integral cell (low-stoichio-
metry real-life operation) many of the operating conditions can be
encountered along the flow path,18 all of these parameters can be
critical for determining and optimizing overall cell performance.
Furthermore, cell parameters such as thicknesses, ECSA, ionomer
fractions, saturation etc can also change during cell operation due to
catalyst coarsening, carbon corrosion and other mechanisms.
Therefore, this sensitivity analysis can also be critical to understand
the durability and aging behavior of a cell. These observations are
different from the ones made by Vetter and Schumacher41 where
they determined only the membrane properties to be of main
importance. This is primarily due to the fact that the model used
by Vetter and Schumacher41 uses a simple 1-D model, which doesn’t
take into account land/channel effects, along-the-channel effects,
Schroeder’s paradox,48 and detailed reaction kinetics. Furthermore,
unlike current work, the study by Vetter and Schumacher41 did not
consider varying operating conditions. The recent work by
Goshtasbi, et al.21 however, also shows high sensitivity predictions
for some of the other parameters identified in this study, especially
for cathode kinetics parameters and effective diffusivities of
different layers. Even though the study by Goshtasbi, et al.21 uses
a less rigorous MEA model, it does take into account most of the
physics. Furthermore, it is a transient model which also accounts for
along-the-channel effects resulting in it being more sensitive to
stoichiometry, pressure and porous layer properties compared to
current work. Overall, it is observed that regardless of the frame-
work, some parameters show similar sensitivities in different studies,
e.g., membrane properties are crucial in all frameworks. In our
opinion, this is due to the fact that all the modeling frameworks rely
on the same conservation and transport equations. Therefore, even
though some models have simpler physics, they may still be useful
to predict parameter sensitivity; albeit in a more local sense
compared to a more detailed physical model which can estimate
the sensitivities in a more global manner.

It can be seen in Table II that all the sensitive parameters except
cathode transfer coefficient have medium to high uncertainty in
available literature values. Therefore, it is even more crucial to direct
future experimental studies towards measuring these properties with
high accuracy and certainty. Finally, properties such as permeability
of different layers, MPL saturation properties, rate of evaporation
and channel heat transfer show almost negligible impact on model
outputs at all operating conditions, making them the least significant
parameters in this framework. It must be noted however, that these
parameters are less impactful only in this framework under steady-
state conditions. The sensitivity of cell parameters maybe different
in another framework or in transient conditions.

The sensitivity analysis is not only useful for understanding
which parameters are most significant and need to be measured
accurately, it can also be used to shortlist design and optimization
parameters. The most sensitive parameters are also the ones which
can impact the cell’s performance the most and therefore can be
selectively manipulated to optimize performance. While several of
the parameters identified in Table II cannot be changed easily (e.g.,
transfer coefficient and exchange current density) most of them can
be manipulated by changing fuel cell geometry, ionomer material,
catalyst loading, porous materials, and operating conditions. This
study provides a manageable set of crucial parameters at each
operating condition which can be used for fast cell optimization.

A major issue in parameter uncertainty analysis is the high
correlation between certain parameters. Two parameters are said to
be correlated when they impact the model outputs in the same way,
i.e., the sensitivity profiles are the same, which is also noted by
Goshtasbi et al.21 For example, exchange current density and
catalyst specific area always appear as a product. Therefore, it is
not possible to deconvolute their individual uncertainty impacts.
Looking at the sensitivity profiles of cell current density with respect
to different parameters, several of the sensitivity profiles look
similar. For example, most of the ionomer properties impact the
ohmic losses in the cell and therefore have similar impact. Relying
only on cell polarization performance alone can be therefore
problematic for parameter identification and data fitting. However,
the parameters that show similar sensitivity to current density, may
exhibit different sensitivity to other model outputs, thereby making
their effects discernible. It is therefore advisable to experimentally
measure other cell characteristics as well. While variables such as
membrane hydration and overpotential can be difficult to measure,
properties such as outlet temperature, high frequency resistance
(HFR) and outlet liquid flow rate can be used for deconvoluting the
effects of different parameters and identifying them. The sensitivity
analysis can further benefit in parameter identification and fitting by
identifying the parameters that are most likely to affect the model
output and eliminating non-consequential parameters from fitting.

Conclusions

This article presented a comprehensive parameter sensitivity
analysis using a multiphysics 2-D MEA model. The PEMFC model
used in this article is physically and mathematically more robust than
used in previous similar studies. An uncertainty propagation analysis
was used to estimate the sensitivity of 21 model outputs to nearly 50
model input parameters. The analysis was performed at multiple
operating conditions to encompass several possible conditions that
can be encountered in PEMFC operation.

It was observed that the most crucial parameters of the model are
different for each operating condition. While at non-flooded (RH <
100%) conditions, cathode kinetics and membrane-ohmic-loss
related parameters are critical; gas transport and porous-media
saturation behavior are more crucial at fully humidified conditions.
Several of these identified parameters, such as cathode exchange
current density, membrane water uptake, membrane conductivity
and GDL tortuosity have significant uncertainty associated in
literature values. This makes them prime candidates for focused
experimental efforts, which can lead to better model prediction
capabilities. The sensitivity analysis can also help in improving data-
fitting by deconvoluting correlated parameters and by eliminating
redundant parameters from the fitting. An understanding of most
crucial parameters can also help with designing stack-level control
systems, material design for desired properties and to identify crucial
aging and durability behavior of the cell. Finally, a knowledge of the
crucial cell parameters at each operating condition provides ways for
fast optimization and for designing better PEFCs.

While this study encompassed several parameters and operating
conditions, it still remains a local sensitivity study. Due to this,

Journal of The Electrochemical Society, 2021 168 074501



several parameters which are only crucial in certain operating conditions,
or potentials, or parameter combinations may not have been identified.
Furthermore, the impact of the identified crucial parameters maybe
different in a full 3-D model at low stoichiometry where operating
conditions continuously change along the channel. Performing a truly
global sensitivity or a local sensitivity analysis on a 3-D model is
currently infeasible as the computation times will be impractical. Efforts
are currently underway to develop more efficient data-driven PEMFC
models, which can be then used for these detailed studies.
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Table A·I. List of input parameters and parameter ranges for sensitivity analysis. All input parameters except the operating conditions and geometric parameters retain their basic functional forms
and are varied using pre-factor k (k = f/fref). The values provided in this table are all pre-factors, except the operating conditions and geometric parameters, which are the actual values of the input
parameters.

Parameter class Input parameter Parameter name Minimum value Maximum value Scaling

Operating conditions Tcell Cell temperature (Celsius) 50 90 Linear
=RH RHca Anode/cathode humidity 0.4 0.9 Linear

βτ G GDL, , Bruggeman tortuosity exponent for GDL 0.5 4 Linear

βτ G MPL, , Bruggeman tortuosity exponent for MPL 0.5 4 Linear

βτ G aCL, , Bruggeman tortuosity exponent for anode CL 0.5 3 Linear

βτ G cCL, , Bruggeman tortuosity exponent for anode CL 0.5 3 Linear

ϵv GDL, Void volume fraction for GDL 0.5 0.9 Linear
ϵv MPL, Void volume fraction for MPL 0.45 0.8 Linear
ϵv aCL, Void volume fraction for anode CL 0.3 0.75 Linear

Geometric parameters ϵv cCL, Void volume fraction for cathode CL 0.3 0.75 Linear
ϵm agg, Ionomer volume fraction in agglomerate core 0.1 0.75 Linear
ϵm aCL, Ionomer volume fraction in anode CL 0.06 0.3 Linear
ϵm cCL, Ionomer volume fraction in cathode CL 0.06 0.3 Linear
LGDL GDL thickness (μm) 50 400 Linear
LMPL MPL thickness (μm) 10 100 Linear
LaCL Anode CL thickness (μm) 0.5 20 Linear
LcCL Cathode CL thickness (μm) 0.5 20 Linear
Lmem Membrane thickness (μm) 1 75 Linear

i Aa v a0, , Anode (Exchange current density x Catalyst specific area) 0.001 10 Log
i Ac v c0, , Cathode (Exchange current density x Catalyst specific area) 0.001 10 Log
αa HOR, Anodic transfer coefficient for hydrogen oxidation reaction 0.4 1.1 Linear

Kinetics parameters pre-factor αc HOR, Cathodic transfer coefficient for hydrogen oxidation reaction 0.4 1.1 Linear
αc ORR, Cathodic transfer coefficient for oxygen reduction reaction 0.8 2.2 Linear
γH2

Hydrogen reaction order 0.45 1 Linear

γO2
Oxygen reaction order 0.45 1 Linear

SL GDL, Liquid saturation in GDL 0.75 1.25 Linear
Saturation properties pre-factor SL MPL, Liquid saturation in MPL 0.75 1.25 Linear

SL CL, Liquid saturation in CL 0.75 1.25 Linear

Agglomerate prop. pre-factor δagg Ionomer film thickness on agglomerate 0.25 5 Linear
ragg Agglomerate radius 0.2 2 Linear

λV Equilibrium water vapor uptake in ionomer 0.2 1.2 Linear
Ionomer properties pre-factor rpore m, Average pore radius in ionomer 0.1 10 Log

θw m, Contact angle of water in ionomer 1 1.1 Linear

kV m, Vapor adsorption/desorption constant in ionomer 0.012 10 Log
kL m, Liquid adsorption/desorption constant in ionomer 0.01 10 Log
kev Evaporation/condensation rate in pores 0.001 10 Log
HO m,2 Henry’s constant for oxygen dissolution in ionomer 0.1 10 Log
DO m,2 Oxygen diffusivity in ionomer 0.1 10 Log
kT GDL, Thermal conductivity of GDL 0.1 10 Linear
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Table A·I. (Continued).

Parameter class Input parameter Parameter name Minimum value Maximum value Scaling

kT MPL, Thermal conductivity of MPL 0.1 10 Linear
kT CL, Thermal conductivity of CL 0.1 10 Linear
kT m, Thermal conductivity of membrane 0.1 10 Linear
κm L, Liquid equilibrated membrane proton conductivity 0.1 10 Log

Transport properties pre-factor κm V, Vapor equilibrated membrane proton conductivity 0.1 10 Log
αm L, Liquid equilibrated membrane water diffusivity 0.1 10 Log
αm V, Vapor equilibrated membrane water diffusivity 0.1 10 Log
ξm L, Liquid equilibrated membrane electroosmotic coefficient 0.5 2 Linear
k GDL0, Absolute permeability of GDL 0.1 10 Log
k MPL0, Absolute permeability of MPL 0.1 10 Log
k CL0, Absolute permeability of CL 0.1 10 Log
hcool Convective heat transfer coefficient between coolant and plate 0.1 10 Log
hchan Convective heat transfer coefficient between channel and plate 0.1 10 Log
pthru GDL liquid breakthrough pressure 0.25 2.5 Linear
kL GDL/channel liquid breakthrough flux coefficient 0.001 10 Log

Journal
of

T
he

E
lectrochem

ical
Society,

2021
168

074501



ORCID

Lalit M. Pant https://orcid.org/0000-0002-0432-3902
Adam Z. Weber https://orcid.org/0000-0002-7749-1624

References

1. D. Papageorgopoulos, “Fuel Cell R&D Overview.”DOE 2019 Annual Merit Review
and Peer Evaluation Meeting, Crystal City, VA, USA (U. S. Department of Energy,
EERE) (2019).

2. A. Z. Weber et al., J. Electrochem. Soc., 161, F1254 (2014).
3. A. Z. Weber and J. Newman, Chem. Rev., 104, 4679 (2004).
4. M. Secanell, J. Wishart, and P. Dobson, JPS, 196, 3690 (2011).
5. D. M. Bernardi and M. W. Verbrugge, AIChE, 37, 1151 (1991).
6. T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, J. Electrochem. Soc., 138,

2334 (1991).
7. M. Eikerling and A. A. Kornyshev, J. Electroanal. Chem., 453, 89 (1998).
8. C. Y. Wang, W. B. Gu, and B. Y. Liaw, J. Electrochem. Soc., 145, 3407 (1998).
9. A. Z. Weber, Modeling Water Management In Polymer -Electrolyte Fuel Cells

(University of California, Berkeley) (2004).
10. D. Natarajan and T. V. Nguyen, J. Electrochem. Soc., 148, A1324 (2001).
11. W. Sun, B. A. Peppley, and K. Karan, Electrochim. Acta, 50, 3359 (2005).
12. G. Lin and T. V. Nguyen, J. Electrochem. Soc., 153, A372 (2006).
13. R. J. Balliet and J. Newman, J. Electrochem. Soc., 158, B927 (2011).
14. L. Xing, X. Liu, T. Alaje, R. Kumar, M. Mamlouk, and K. Scott, Energy, 73, 618

(2014).
15. I. V. Zenyuk, P. K. Das, and A. Z. Weber, J. Electrochem. Soc., 163, F691 (2016).
16. S. Um and C. Y. Wang, JPS, 125, 40 (2004).
17. A. A. Kulikovsky, J. Electrochem. Soc., 150, A1432 (2003).
18. L. M. Pant, M. R. Gerhardt, N. Macauley, R. Mukundan, R. L. Borup, and

A. Z. Weber, Electrochim. Acta, 326, 134963 (2019).
19. M. Moore, A. Putz, and M. Secanell, J. Electrochem. Soc., 160, F670 (2013).
20. L. M. Pant and A. Z. Weber, J. Electrochem. Soc., 164, E3102 (2017).
21. A. Goshtasbi, J. Chen, J. R. Waldecker, S. Hirano, and T. Ersal, J. Electrochem.

Soc., 167, 044504 (2020).
22. A. Kravos, D. Ritzberger, C. Hametner, S. Jakubek, and T. Katrašnik, IJHE, 46,

13832 (2020).
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