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Rapid advances in DNA sequencing promise to enable new diag-
nostics and individualized therapies. Achieving personalized med-
icine, however, will require extensive research on highly reidenti-
fiable, integrated datasets of genomic and health information.
To assist with this, participants in the Personal Genome Project
choose to forgo privacy via our institutional review board-
approved “open consent” process. The contribution of public data
and samples facilitates both scientific discovery and standardiza-
tion of methods. We present our findings after enrollment of more
than 1,800 participants, including whole-genome sequencing of 10
pilot participant genomes (the PGP-10). We introduce the Genome-
Environment-Trait Evidence (GET-Evidence) system. This tool auto-
matically processes genomes and prioritizes both published and
novel variants for interpretation. In the process of reviewing the
presumed healthy PGP-10 genomes, we find numerous literature
references implying serious disease. Although it is sometimes im-
possible to rule out a late-onset effect, stringent evidence require-
ments can address the high rate of incidental findings. To that end
we develop a peer production system for recording and organizing
variant evaluations according to standard evidence guidelines, cre-
ating a public forum for reaching consensus on interpretation of
clinically relevant variants. Genome analysis becomes a two-step
process: using a prioritized list to record variant evaluations, then
automatically sorting reviewed variants using these annotations.
Genome data, health and trait information, participant samples,
and variant interpretations are all shared in the public domain—
we invite others to review our results using our participant sam-
ples and contribute to our interpretations. We offer our public
resource and methods to further personalized medical research.

genome interpretation | genomic medicine | human genetics

As whole genome DNA sequencing costs plummet below
the cost of standard diagnostic genetic testing, personal

genomes promise dramatic changes for science, medicine, and
society. A genome sequence can be a clinical diagnostic that lasts
a lifetime, and personal genomes for every individual are likely
to become standard components of health care. We now face
challenging questions: How do we interpret genome data? Can we

and should we regulate access to personal genetic data and/or in-
terpretations? Can whole-genome data truly be considered ano-
nymizable—even if not combined with other personal data? How
strictly should a promise of privacy made to research subjects limit
our ability to scientifically share their data with other researchers?
The fact that combined genetic and phenotype data are so per-
sonal and reidentifiable creates a tension between standard com-
mitments ensuring research subject privacy and the scientific need
for verification and reproducibility of research findings (1).
The Personal Genome Project (PGP) explores one solution to

these issues in its creation of a public resource where participants
acknowledge and agree to the potential risk of reidentification.
This public resource not only shares genome data publicly but
brings these together with publicly shared phenotype informa-
tion, genetic interpretations, and cell lines; such integrated data
means the PGP can provide common ground for many types
of genome research. Sharing reidentifiable data requires new
instruments for informed consent, as participants explicitly waive
their expectation of privacy to make personal biological and
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health information public (2). This process, now called “open
consent” (3), places a high value on the autonomy of individuals
and on their ability to give open-ended consent for unknown
risks. Our informed consent materials extensively discuss both
risks associated with loss of privacy and the limited options for
restoring privacy once data and cell lines are made public.
Although our goal is to have the broadest possible participa-

tion in the PGP, because of the novel nature of the risks and
research the Committee on Human Studies (Boston, MA) en-
couraged us to initially enroll individuals with a master’s-level
degree or equivalent training in genetics. The “PGP-10” pilot
group was chosen in 2006 from 10 such individuals who vol-
unteered for the project. These individuals have chosen to
publicly associate their names with their PGP accounts—par-
ticipants may voluntarily self-identify in this way, but this is not
required. Samples from these 10 individuals have since been
used to pilot a variety of technologies within our groups and
others, including whole-genome sequencing, induced pluripotent
stem (iPS) cell line generation and genome engineering, allele-
specific expression profiling, epigenetic profiling, and micro-
biome profiling (4–11). These data go beyond the genome se-
quence itself to create additional layers of information that move
into the realm of associated environmental and trait profiling.
Beyond generating an initial public resource of linked geno-

type and phenotype data, a key goal of our pilot was to develop
and prototype methods for interpreting genome information
and making these interpretations public. Early versions of our
methods have already been used by other groups in their own
genome research and interpretations (9, 12–14). Unlike many
published genome interpretation efforts, which have focused on
discovery of novel pathogenic variants in patients with genetic
disease (15–19), this pilot focuses on 10 individuals not believed
to have such diseases. As cohorts with heritable medical con-
ditions join the PGP, our research will extend to disease-focused
interpretations. Nevertheless, interpretation methods for indi-
viduals not suspected of having genetic disease will be essential
for integrating genome data into clinical practice as genome
sequencing becomes increasingly routine.

Results
More than 1,000 Participants Enrolled Through Open Consent with
Public Health Records. The PGP has piloted the use of an open
consent format for collection of combined genome and pheno-
type data, allowing data to be shared publicly. PGP participants
must understand and agree to the following: (i) any genome and
health record data provided to us could be included in an open-
access public database, (ii) no guarantees are made regarding
anonymity, privacy, and confidentiality, (iii) participation may
involve a risk of harm or privacy loss to themselves and their
relatives, (iv) participation does not promise to benefit partic-
ipants in any tangible way, and (v) withdrawal from the study is
possible at any time, but complete removal of data that have been
available in the public domain may not be possible. This process
of making data public means that results are also returned to
participants, and an ongoing relationship with these participants
is maintained to monitor outcomes of participation prospectively.
On the basis of our experiences with the PGP-10, we created

an enrollment system for volunteers that ensures they under-
stand the risks entailed (Fig. 1). Volunteers are provided with
a study guide to inform them of genetic concepts and privacy
risks and are required to pass an entrance examination testing
their understanding of human subjects research, PGP protocols,
and basic genetics. Of volunteers meeting minimum eligibility
criteria, 44% drop out at this step; 87% of those who successfully
complete the examination go on to sign the full consent form and
enroll in the project (SI Appendix, Fig. S1).
The examination and consent form are completed through an

Internet-based system and are electronically signed by volun-
teers; more than 1,800 participants have enrolled through this
process as of May 2012. Because participants are a self-selected
group, they are not representative of the general population (SI
Appendix, Fig. S2); however, we may prioritize participants from

underrepresented groups or who have particular traits and/or
familial relationships to other participants. Participants are able
to extend their profiles with a variety of personal data, including
self-collected genetic data, listing enrolled relatives, health
records and trait information, and answers to trait and ancestry
surveys. These data are made publicly available immediately. As
of May 2012, more than 1,000 participants have imported elec-
tronic health record data. In addition, as of May 2012, more than
800 participants have DNA samples derived from blood or saliva.
These health record data and DNA samples represent the seed
of a public resource integrating phenotype data with genotype
data and include both common and rare diseases (phenotype
data in SI Appendix, Dataset S1).

PGP-10 Pilot Cell Lines and Genome Sequence Data. To enable fol-
low-up functional studies and genome sequence confirmation by
third parties, cell lines are established for PGP participants and
shared publicly alongside whole-genome data. Fibroblast and
EBV-transformed lymphocyte cell lines were established with
samples collected from the PGP-10 pilot cohort and have been
made available through Coriell Cell Repositories (SI Appendix,
Table S1). The PGP-10 genome data were produced using DNA
purified from these cell lines, sequenced by Complete Genomics,
Inc. (CGI) using their 2.0 pipeline (software version 2.0.1.5,
matched against the build 37 reference genome). These genome
data files have been shared publicly via our site (http://www.
personalgenomes.org/data/PGP12.05/).
In addition to calling variants, CGI’s genome files report

which regions of the genome are confidently called as matching
reference and which are “no-call” gaps that are insufficiently
covered (and therefore not called as either variant or reference).

Fig. 1. PGP enrollment and data collection process. Enrollment in the PGP
involves a series of steps meant to ensure informed consent for the public
release of personal, reidentifiable genome and trait data. Current and his-
torical copies of our consent forms are publicly available at http://www.
personalgenomes.org/consent/.
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Using these data, we are able to assess what fraction of the ge-
nome has been successfully genotyped. On average, 96.5% of
assembled reference genome positions were called homozy-
gously in the CGI var files for the PGP-10 (SI Appendix, Table
S2). Coverage is subject to systematic biases: positions called in
one genome are much more likely to have been called in the
other nine genomes (SI Appendix, Fig. S3). A position called
in any given genome has a 92% chance of also being called in
the other nine genomes, whereas a position not covered in
that genome only has a 12% chance of being covered in all of
the other nine.
The high quality of our pilot data is evident from analysis of

several genomes derived from the same individual. PGP1 genomes
were produced using DNA from three different cell lines: EBV-
transformed lymphocytes, fibroblasts, and fibroblast-derived iPS
cells. We use these data to assess overlap in variant calls because
the underlying DNA sequences are expected to be mostly iden-
tical. When analysis is limited to positions explicitly called ref-
erence or variant in all three genomes (2,993,691 variant posi-
tions, 2.65 Gb total), 98.5% of variant positions are shared in all
three genomes (Fig. 2A). When reference positions are taken
into account, the three genomes have matching calls for 99.998%
of these positions.
Which positions are sufficiently covered, and thus explicitly

called as reference or variant, varies between genomes. Within
one of the three PGP1 genomes 87% of variant positions, on
average, are also called by the other two genomes. From this set
of positions we can estimate the error rate due to random (rather
than systematic) causes within a given genome: 99.6% of these
variant positions are also called variant by at least one of the
other two genomes (i.e., called variant by at least two out of
three). When reference positions are included in analysis, 96%
of positions called in one genome are called in all three, and
99.9994% of genotype calls in that genome match the call made
by at least two out of the three genomes.
In total, 3,815,237 different variant positions were reported in

the three genomes, 77% of which were called in all three (Fig.
2B). When these diagrams are constructed separately by variant
type, we find that more complex length-changing variant calls
also have high consistency, with 99.0% of such variants in a given

genome called as variant by at least two out of three (SI Ap-
pendix, Fig. S4). In Fig. 2B, most positions where variant calls do
not match are due to differences in coverage or base call quality
that result in a “no-call” in one or more of the three sequences,
as opposed to actual inconsistency in the variant vs. reference
calls. This demonstrates the importance of respecting the logical
inequivalence between the predicates “is not called as variant”
and “is called as reference” and the need for correspondingly
precise bookkeeping, possibly through the use of three or four
valued logics (20, 21).
All of the PGP-10 had genome data produced from EBV-

transformed lymphocyte cell lines, and these are used in all
remaining genome analyses. Because the cost difference between
exomes and whole genomes is already small, and may eventually
vanish entirely, we preferred whole-genome sequencing over
targeted approaches. On average these genomes have 3.2 million
substitution variant calls relative to the build 37 reference ge-
nome and 300,000 short length-changing variants (SI Appendix,
Table S2). Each individual has on average 8,250 single base
substitution variants predicted to be nonsynonymous in a ca-
nonical transcript from University of California, Santa Cruz
Known Genes (Table 1) (22). Of these, almost all (99.97%) are
found in either dbSNP (build 132) or Exome Variant Server data
(ESP5400) (23, 24). Notably, this novel variant rate (0.03%) is
lower than the rate of random error we would predict on the
basis of PGP1 genome comparisons (Fig. 2 and SI Appendix, Fig.
S4); this may be due to increased accuracy in coding regions
or due to common errors shared by both our data and
other databases.
Genome variant statistics can vary depending on a given

genome’s coverage and the stringency used to identify variations,
but our data are generally similar to whole-genome sequencing
numbers reported elsewhere. Our counts for the number of mis-
sense variants in a single individual are somewhat lower than in
other publications: this may be due to differences in coverage,
stringency in variant calls, or the transcript annotations used for
predictions (25, 26). MacArthur et al. (27) reported, on average,
304 nonsense and frameshift variants per individual with Euro-
pean ancestry (compared with our average of 166); their count was
reduced to 64 after filtering to increase both variant confidence

A B

Fig. 2. Venn diagram comparisons of variant calls in PGP1 genomes. Analysis of PGP1 genome variant calls from three different tissues: fibroblast cells,
fibroblast-derived iPS cells, and EBV-transformed lymphocyte cells. (A) Overlap of all variant calls, limited to positions that are explicitly called as reference or
variant in all three genomes. Positions where any of the three genomes have a no-call (lacking coverage to make a confident call) are discarded from analysis.
The low residual discordance consists of sequencing errors or real differences between these three tissues and indicates high sequence quality in each of these
samples. (B) Overlap of all variant calls; positions not called in other genomes are included in the analysis. Most locations that were called as “variant” by one
genome and not by other genomes were due to a lack of coverage in the other genomes. Reporting the regions confidently called as matching reference (as
opposed to regions lacking sufficient coverage) is critical to genome interpretation and data comparisons.
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and likelihood of functional effect (i.e., not terminal or rescued by
splice variants; this latter filtering was not performed by us).

Prioritization of Variants with Potential Clinical Relevance. Creating
public methods for genome interpretation and returning inter-
preted results to participants are core goals of the PGP. Our
system facilitates interpretation of whole-genome data by pri-
oritizing variants for review. Preliminary versions of the system
have been used in previous publications (9, 12–14). Here we
apply the system to our pilot PGP-10 genomes.
To assist discovery of variants with potential phenotypic effects,

potential amino acid changes are predicted for all variants occur-
ring within gene coding regions. Variants are thenmatched against
a variety of publicly available datasets: allele frequency data
from 1,000 Genomes Project and Exome Variant Server data (24,
28), Polyphen 2 predictions (29), Human Genome Epidemiology
Network (HuGENet) (30), Pharmacogenetics Knowledge Base
(PharmGKB) (31), GeneTests (32), and Online Mendelian In-
heritance in Man (OMIM) (33). After processing, there are many
variants that potentially have clinically important consequences
(Table 1). On average 635 variants are predicted as “probably
damaging” by Polyphen 2, and another 166 are predicted to be
severely disruptive nonsense or frameshift variants. When match-
ing variants against our imported databases, each genome on av-
erage was found to have 1,815 variants with dbSNP IDs matched
to a PharmGKB or HuGENet entry, 45 nonsynonymous variants
matched to an OMIM entry, and 835 nonsynonymous variants
occurring within genes that have clinical testing available (Gen-
eTests). In total, these variants represented thousands of locations
of potential significance when searching a presumed-healthy ge-
nome for clinically significant findings.
More complete evaluation of these variants requires in-

corporating information from the literature, but there are too
many variants to do this comprehensively; variant interpretation
is inefficient because automatic literature interpretation is
computationally refractory—literature analysis requires human
attention. To address this, we sought to prioritize variants for
review. Review prioritization is implemented through an au-
tomatic “prioritization score” heuristic that uses these data to
score variants in three categories: computational information,
published gene-specific information, and published variant-
specific information (SI Appendix, Table S3). Each category
assigns up to two points, for a total of up to six points for a given
variant. On average we found that each of the PGP-10 genomes
had 29 variants with prioritization scores of 4 or more, and 131
variants with scores of 3 or more. Because our system accumu-
lates data (see below), the burden of variant review drops dra-
matically when evaluations from prior genome interpretations
can be reused: after 64 genomes we find that there are on av-
erage only 8 variants with a prioritization score of 4 or more, and
44 with a score of 3 or more (Fig. 3).

To test how well prioritization scores performed in prioritizing
known disease-causing variants, we evaluated the prioritization
scores that would be assigned to variants taken from a variety of
disease-causing mutation databases (34–38) (lists downloaded
September 2011). Although the findings reported in these
databases may also be found in the databases used by our pri-
oritization calculation (OMIM, Genetests, PharmGKB, and
HuGENet), they are otherwise independent and are not
themselves used in generating prioritization scores. We com-
pared the prioritization scores assigned to variants from these
databases with scores given to all nonsynonymous variants in
PGP genomes (Fig. 4). On average, 44.0% of variants from these
disease databases had prioritization scores or 4 or more, and
90.2% had scores of 3 or more. In contrast, only 0.22% of
nonsynonymous variants in the PGP-10 have scores of 4 or more,
and 1.1% have scores of 3 or more.
We applied our prioritization score system to prioritize genetic

variants within the PGP-10 genomes for review. Our analysis
focused on the discovery of unexpected variants predicted to
have clinically significant consequences with moderate or high
penetrance, because these potentially actionable variants were
seen as the most important to return. Using the prioritization
scores and presence in databases to guide our review of rare
variants, we found 10 variants predicted to cause notable traits
or pathogenic effects with moderate or high penetrance (SI
Appendix, Table S4) and 21 variants predicted to cause moderate
or severe disease in a recessive manner (SI Appendix, Table S5).

Follow-Up of Findings in the PGP-10. In the course of our review of
the PGP-10 variants we observed multiple instances in which
literature reports suggested that highly penetrant pathogenic
phenotypes were caused by, or associated with, variants in the
PGP-10 genomes. We found that such reports must be carefully
appraised. Although some of these can be discarded because of
clear phenotype discordance or unusual allele frequencies, some
variants are rare and predict severe late-onset disease: partic-
ipants could have undetected early stages of possibly clinically
serious conditions. Because the PGP-10 genome analyses were
not driven by medical or family history, follow-up evaluation
of such findings entails issues very similar to follow-up of “in-
cidental” findings; this potentially leads participants to incur
unnecessary medical procedures, risks, and costs (39). However,
after considerable discussion within the PGP team, we pursued
additional communications and noninvasive clinical testing, with
the thought that the public nature of our data and interpretations
would inform researchers and clinicians who have similar find-
ings in the future.
Focused follow-up was performed for one of the first variants

found, MYL2-A13T in PGP6, which has been reported to cause
familial hypertrophic cardiomyopathy in a dominant manner (40–
44). Because this disease is potentially lethal and because there

Table 1. PGP-10 variants with potential functional consequences

Individual (huID)

No. of nonsyn.
single base
substitution

(nsSNPs) variants

No. of nsSNPs
not present in
dbSNP132 or

ESP5400

No. of nonsyn.
with “probably

damaging” Polyphen
2 prediction

No. of
variants in

PharmGKB or
HuGENet

No. of nonsyn.
variants in genes

with clinical testing
(GeneTests)

No. of nonsyn.
variants
matching

OMIM entries

No. of
nonsense and
frameshift
mutations

No. with
prioritization
score of 4 or

more

PGP1 (hu43860C) 7,781 4 610 1,853 773 34 170 23
PGP2 (huC30901) 8,170 5 618 1,747 809 46 148 29
PGP3 (huBEDA0B) 7,899 1 582 1,793 780 46 169 35
PGP4 (huE80E3D) 8,042 2 606 1,820 829 47 147 26
PGP5 (hu9385BA) 8,312 1 652 1,865 873 53 172 27
PGP6 (hu04FD18) 8,008 3 596 1,810 832 46 167 29
PGP7 (hu0D879F) 8,380 4 649 1,917 868 48 167 25
PGP8 (huAE6220) 8,551 3 694 1,879 876 50 157 30
PGP9 (hu034DB1) 7,542 2 575 1,740 752 41 166 27
PGP10 (hu604D39) 9,810 2 769 1,723 956 42 199 37
Average 8,250 2.7 635 1,815 835 45 166 29

nonsyn., nonsynonymous; nsSNP, nonsynonymous SNP.
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were several publications supporting a pathogenic effect for the
variant (SI Appendix, Fig. S5A), we confirmed the presence of this
variant in a Clinical Laboratory Improvement Amendments-ap-
proved laboratory and consultedwith researchers at the Laboratory
for Molecular Medicine (LMM). LMM’s internal data contained
an additional pedigree of hypertrophic cardiomyopathy involving
this variant (SI Appendix, Fig. S5B). Combined with published
pedigrees the familial evidence is weak: both this pedigree and one
of the published pedigrees each had one affected individual who
was not a carrier of the MYL2-A13T variant, demonstrating that
segregation of the variant was inconsistent with disease and sig-
nificantly weakening the pathogenic hypothesis.
We informed PGP6 of our findings, reviewed the literature with

him, and recommended cardiac follow-up for a noninvasive, non-
urgent, baseline echocardiogram—this echocardiogram proved to
be normal. Because he seems to be unaffected and his parents had
no medical history of cardiac disease, this rare variant could be
interpreted as a false-positive finding. However, familial hyper-
trophic cardiomyopathy is known to have incomplete penetrance,

and the participant reports maternal and paternal uncles with
early cardiac disease—uncertainty remains regarding the effect of
this variant. It remains possible that this participant will develop
symptoms at some later date; because the PGPmaintains ongoing
relationships with participants, such health updates can be added
to participant records.
Less intensive follow-up, in the form of self-reported personal

and family medical history, was performed for other variants that
had reported or predicted strong phenotype effects. In the case
of SERPINA1 variants found in PGP1 (who is compound het-
erozygous for variants predicted to result in E366K and E288V
substitutions), the participant would be predicted to have in-
creased susceptibility to developing chronic obstructive pulmo-
nary disease (COPD) in response to smoking—the participant
has no history of smoking and no diagnosis of COPD. To min-
imize the influence of confirmation bias, the remaining findings
were combined into a single questionnaire given to all partic-
ipants, without any specific efforts to alert them to which variants
came from which individual (SI Appendix, Table S6). As with
other participant trait surveys, the results of this targeted ques-
tionnaire are now publicly associated with the participant pro-
files. None of the participants reported traits or family histories
consistent with the potential findings.
The SCN5A-G615E variant predicted in PGP9 was of partic-

ular concern: although we assessed the published findings as
lacking statistical significance, it is included in a commercial
genetic test for Long-QT syndrome (which can cause sudden
death) (45). Subsequent to the survey, we contacted the par-
ticipant (a 50-y-old woman) to notify her of our findings. In
addition to no personal diagnosis of Long-QT syndrome and no
family history of sudden death or Long-QT syndrome, she has
had electrocardiogram tests performed in 2010 and 2012, with
normal results.
On the whole, despite the presumed-healthy status of our 10

pilot participants, we found many apparently erroneous hy-
potheses in the literature whereby rare variants were predicted to
have an inconsistent (and sometimes severe) phenotype. We also
found that the process of genome interpretation involved a high
amount of labor, much of which could potentially be reused in
later genomes. These issues led us to extend our genome in-
terpretation system to facilitate and record standardized variant
evaluations with stringent evidence requirements.

Open Software for Variant Detection, Genome Reports, and Assisted
Evaluation. Our Genome-Environment-Trait Evidence (GET-
Evidence) system records variant evaluations using a peer pro-
duction system and is integrated with our automatic genome
processing and variant prioritization. Variant interpretations
can be recorded by editors, categorized, and scored according to
strength of evidence and clinical effect, and relevant papers can
be added using PubMed identifiers. GET-Evidence variant pages
contain links to external data sources where available, including

Fig. 3. Drop in number of new variants in each additional genome. For
each new genome that is analyzed, the number of new variants not already
seen in a previous genome falls dramatically. If editors record variant eval-
uations, the process of genome evaluation becomes easier as the number of
new variants that are prioritized within each new genome is reduced. Data
represent the average of 1,000 simulations using random orderings of a
combined set of 64 genomes (the PGP-10 and 54 unrelated public genomes
released by CGI).

Fig. 4. Assessment of prioritization scores using disease-
specific mutation databases. To demonstrate successful
prioritization of variants with our prioritization score, we
calculated the prioritization scores assigned to variant
lists from a variety of disease-specific mutation data-
bases: the Albinism Database (Albinism), the ALS Online
Genetics Database (ALSOD), the Cardiogenomics Sarco-
mere Protein Gene Mutation Database (Cardiogen), the
Connexins and Deafness Homepage (Cx-Deafness), and
the Autosomal Dominant Polycystic Kidney Disease Mu-
tation Database (PKDB). A variety of factors contribute to
variation in performance for these lists: some diseases,
for example, are more likely to be caused by severe
frameshift or nonsense mutations (which we score
highly), and some lists may include genes that are not yet
used in clinical testing.
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OMIM (33), GeneTests (32), dbSNP (23), PharmGKB (31),
HuGENet (30), and PubMed (46).
GET-Evidence facilitates whole-genome interpretation by cre-

ating an interpretation pipeline that combines genome data pro-
cessing, prioritization of variants for review, and recording of
variant evaluations (Fig. 5A). When a genome data file is uploa-
ded, the genome analysis system calculates the prioritization
scores for all variants in an uploaded genome and matches these
variants against the existing database. Two major reports are
provided: an “insufficiently evaluated variants” report and a “ge-
nome report” (Fig. 5 B and C, respectively). The “genome report”
lists all variants within the genome that have been sufficiently
evaluated within GET-Evidence—variants initially seen here have
likely been seen and evaluated in a genome previously analyzed
through GET-Evidence. The “insufficiently evaluated variants”
report contains all novel and unevaluated variants, sorted by pri-
oritization score and accompanied by information that may guide
evaluation (e.g., allele frequency, presence in databases, Polyphen
2 results, and number of article links added). Editors may then
record or update evaluations of variants; once a variant is suffi-
ciently evaluated, it is displayed within the genome report.
Variant evaluations record diverse information about variants

that contribute to genome interpretation (Fig. 6). Editors can
classify variants according to phenotypic effect (pathogenic, pro-
tective, pharmacogenetic, or benign) and inheritance pattern
(dominant, recessive, or other). Papers may be added by using
PubMed identifiers, creating new fields for entering case/control
data and a field for adding notes regarding what evidence the paper
has regarding the variant. To highlight important findings from
a publication and to gather standardized information for later
development of automatic interpretation, the abstracts of linked
publications can be annotated through highlighting evidence fea-
tures using the BioNotate platform (47). Finally, to record the
overall interpretation of the variant and any additional relevant

information, short summary and longer summary sections provide
regions for free text summary of the variant’s effect and evidence.
In addition to these classifications and text summaries, GET-

Evidence uses a series of scored categories to facilitate automatic
filtering and scoring of variants (SI Appendix, Table S7). These
categories are divided into twomajor sections: (i): variant evidence
scores, which assess how strongly various lines of evidence support
the variant having a hypothesized effect, and (ii) clinical impor-
tance scores, which assess clinical aspects of the variant’s hypoth-
esized effect (Fig. 6). Variant evidence scores and clinical
importance scores are used to generate an overall assessment of
evidence (uncertain, likely, or well-established) and clinical im-
portance (low, moderate, or high) (SI Appendix, Tables S8 and S9).
Notably, variants are only considered “likely” or “well-established”
if they meet minimum statistical significance requirements in either
case/control or familial categories (described in SI Appendix, Table
S9). By segregating evidence from severity we are able to distin-
guish between a well-established variant with a weak pathogenic
effect (“well-established pathogenic, low clinical importance”)
from a poorly understood but potentially severe variant (“uncertain
pathogenic, high clinical importance”).
After evaluating all variants in GET-Evidence, almost all

variants we found with potentially strong phenotypic con-
sequences were evaluated as “uncertain” (Table 2 and SI
Appendix, Table S10). Although it is always possible that one
or more of these variants does cause disease with incomplete
penetrance or late onset, there are clearly some erroneous
associations listed in Table 2 and SI Appendix, Table S4. In-
troducing stringent evidence requirements for interpreting
published data successfully addresses this issue with incidental
findings. In addition, GET-Evidence’s peer production model
for variant evaluation assists genome interpretation by allow-
ing the reuse of variant evaluations by later genome evalua-
tions, thereby minimizing duplication of effort. By creating
such a shared central resource for recording interpretations,

A

B C

Fig. 5. GET-Evidence and genome reports. (A) Using GET-Evidence involves genome upload followed by review of prioritized insufficiently evaluated var-
iants. Combining these reviews with previously reviewed variants produces the final genome report. (B) Insufficiently evaluated variants are ranked according
to prioritization score and are listed with additional information of interest (allele frequency, number of associated articles, presence in databases, and
computational predictions). (C) Sufficiently evaluated variants are presented in the genome report with summary information regarding variant effect,
severity, and evidence.
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GET-Evidence can act as a forum for building consensus on
interpretation. The analysis system and variant interpretations,
along with our public genome interpretations, are available at
http://evidence.personalgenomes.org.

Discussion
With the advent of low-cost whole-genome sequencing and
growing interest in personalized medicine, the research commu-
nity is faced with the challenge of developing tools for interpreting
genome data and using these data to inform lifestyle choices and
clinical care in an effective manner. Doing so will require large,
highly personal datasets: whole-genome data combined with
health records, traits, and personal medical histories. Because
such data are highly reidentifiable, building these datasets results
in a tension between privacy protection and the desire to share and
reuse data.
The approach the PGP takes is a highly public option: en-

rolling participants who agree to the hypothetical and unknown
risks associated with making personal biological data public
through an open consent format. Our public resource enables
the process of scientific discovery and clinical use of genomes. In
addition, we share our open consent documents and methods to
enable other researchers who wish to produce public data in
their own research studies.
As part of these integrated public datasets, the PGP has also

created a public software tool for genome interpretation and
a public database of variant interpretations. Because these
records are freely editable by any registered user, the database
provides a forum for achieving a public consensus interpretation
of genetic variants. Other groups may freely use the GET-Evi-
dence system, and we encourage others to contribute their
interpretations of genetic variants in the public database. These
edits and other data within GET-Evidence are shared, in turn, as
public domain under a CC0 waiver and may be used by academic
and commercial genome interpretation efforts. Future de-
velopment of the GET-Evidence system should move closer to-
ward our goal of a richly interconnected dataset of genomes,
environments, and traits. Planned improvements include coded
phenotypes for genetic variants as well as participant health
records, genome analysis for compound heterozygosity, splicing
mutations, copy number variants, and tracking the biological and
computational provenance of public data.
Our genome interpretation findings highlight one of the eth-

ical issues raised when working toward clinical utilization of
whole genomes: what should be done if potentially severe
pathogenic mutations are found within whole-genome sequence
data? Although stringent evidence guidelines help by classifying

Fig. 6. Sample GET-Evidence variant report. Variant report pages on GET-
Evidence allow editors to record and organize information relevant to
variant interpretation. A scoring system is used for variant evidence and
clinical importance categories to allow automatic sorting of interpreted
variants. On the basis of the strong case/control evidence and high treat-
ability and penetrance, this recessive pathogenic variant carried by PGP4
(listed in Table 2) was evaluated as well-established and high clinical im-
portance.

Table 2. Evaluation of variants reported or predicted to have strong phenotype effects

Variant (heterozygous
unless otherwise noted) Predicted phenotype Allele frequency (%)

Prioritization
score

Evidence assessment
in GET-Evidence

Clinical importance
assessment in GET-

Evidence

SERPINA1-E366K/
SERPINA1-E288V
(compound het)

Moderate α-1 antitrypsin
deficiency

1.2 and 3.0 5 Well-established/
well-established

High/low

WFS1-C426Y Familial depression 0.1 5 Uncertain Moderate
FLG-S761fs Palmar hyperlinearity

and keratosis pilaris
(ichthyosis vulgaris in
recessive manner)

Unknown 4 Uncertain Moderate (for
ichthyosis vulgaris)

PKD1-R4276W Autosomal dominant
polycystic kidney disease

0.2 4 Uncertain High

MYL2-A13T Hypertrophic cardiomyopathy 0.02 5 Uncertain High
SCN5A-G615E Long-QT Syndrome 0.03 4 Uncertain High
PKD2-S804N Autosomal dominant

polycystic kidney disease
0.3 5 Uncertain High

SLC9A3R1-R153Q Kidney stones 0.3 4 Uncertain Moderate
RHO-G51A Autosomal dominant

retinitis pigmentosa
0.2 4 Uncertain Moderate

EVC-R443Q Ellis-van Creveld syndrome 7.9 3 Reevaluated
as benign

Reevaluated
as benign

Additional data regarding these variants, including PGP participant identifiers and Pubmed identifiers for related literature, are available in SI Appendix,
Table S4.
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many findings as uncertain, effects could manifest later in life.
Withholding information from patients is becoming less ac-
ceptable in clinical practice and may become less acceptable for
research data as well. Continuing work with PGP participants
will provide insights into how genome data may be integrated
more generally into both research and clinical settings.
We maintain an ongoing relationship with participants to

monitor the outcomes of publicly sharing personal data. Many
participants are interested in making an ongoing contribution
to science—as part of our study, we can invite participants to
take part in additional research. Thus, subsets of participants
may choose to contribute to disease-specific research and novel
profiling methods (e.g., allele-specific expression, epigenetic,
metabolomic, proteomic, or microbiome profiling). In addition,
biobanked tissues and cell lines may be used by researchers for
additional characterization, follow-up functional studies, and
genome engineering. Each additional study benefits from all
previous data for the same participant, building a further-
enriched dataset and contributing to the development of new
personalized medical diagnostics and therapies. Currently
approved for studying up to 100,000 participants, the PGP has
the potential to be a widely used ongoing resource—a large, rich,

public set of well-characterized individuals with extensive bi-
ological data and an ongoing interest in contributing to research.

Materials and Methods
SI Appendix, SI Materials and Methods provides full details of our enroll-
ment process and open consent protocols. Additional details of Continuity
of Care Record format health record data, cell lines, samples, genome
sequencing, and quality assessment, as well as prioritization score assess-
ment using disease-specific mutation databases, are also presented. Fi-
nally, we elaborate on the GET-Evidence data processing and editing
platform; its development is facilitated through use of a shared compu-
tational and storage infrastructure (48).
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