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SLIP: Self-supervision meets Language-Image
Pre-training

Norman Mu1, Alexander Kirillov2, David Wagner1, and Saining Xie2

1 UC Berkeley
2 Meta AI

Abstract Recent work has shown that self-supervised pre-training leads
to improvements over supervised learning on challenging visual recogni-
tion tasks. CLIP, an exciting new approach to learning with language
supervision, demonstrates promising performance on a wide variety of
benchmarks. In this work, we explore whether self-supervised learning
can aid in the use of language supervision for visual representation learn-
ing with Vision Transformers. We introduce SLIP, a multi-task learning
framework for combining self-supervised learning and CLIP pre-training.
After pre-training, we thoroughly evaluate representation quality and
compare performance to both CLIP and self-supervised learning under
three distinct settings: zero-shot transfer, linear classification, and end-
to-end finetuning. Across ImageNet and a battery of additional datasets,
we find that SLIP improves accuracy by a large margin. We validate our
results further with experiments on different model sizes, training sched-
ules, and pre-training datasets. Our findings show that SLIP enjoys the
best of both worlds: better performance than self-supervision (+8.1%
linear accuracy) and language supervision (+5.2% zero-shot accuracy).
Our code is available at github.com/facebookresearch/SLIP

1 Introduction

Much of recent progress in deep learning has been driven by the paradigm of pre-
training powerful, general-purpose representations that transfer well to a variety
of specific applications. Within computer vision, supervised learning on image
classification and self-supervised learning on unlabeled images comprise the two
primary approaches to representation learning. After AlexNet [23], researchers
soon realized that supervised pre-training yields a generic visual backbone which
can be repurposed for many different tasks [13]. Today, most state-of-the-art re-
sults still depend on supervised pre-training, and scaling to massive amounts of
data, such as Google’s proprietary JFT dataset, remains one of the most reli-
able methods for improving downstream performance. Self-supervised learning,
a form of unsupervised learning, found tremendous success first in the domain of
language [9,29], but has also made significant recent progress in vision. A major
motivation for studying self-supervised learning has been a desire to supersede
supervised pre-training and its reliance on labor-intensive human annotation. In-
deed, self-supervised pre-training has outperformed supervised learning for some

https://github.com/facebookresearch/SLIP
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time now on small datasets, but only recently with the development of con-
trastive methods [5,18] has it begun to improve performance on larger datasets
such as ImageNet.
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Figure 1: SLIP pre-training on
YFCC15M. Combining image-only
self-supervision and image-text supervi-
sion simultaneously improves zero-shot
transfer and linear classification on
ImageNet.

Both supervised and self-
supervised pre-training today rely
heavily on ImageNet (i.e. ImageNet-
1K) [30], a highly curated dataset
with particular idiosyncrasies and
biases [35]. The YFCC100M dataset
[33] was released in 2015 and remains
the largest publicly-accessible col-
lection of images. To date, the field
of representation learning has found
much less use for this dataset. On the
other hand, the full ImageNet dataset
of 14M images (i.e. ImageNet-22K)
has become very popular for its
role in training Vision Transformer
models which require a larger amount
of data than ImageNet-1K [10,1].
Why are uncurated datasets not
more common in the study of repre-
sentation learning? There are a few
possible reasons. Most immediately,
uncurated datasets also lack labels
and so long as supervised pre-training
remains the simpler and more accessible option for most researchers, datasets
like YFCC100M are a non-starter. As we confirm again in our work, the
standard self-supervised evaluation task of ImageNet classification from frozen
features heavily biases results against models not also pre-trained on ImageNet
[2]. Finally, while progress on ImageNet has been encouraging, there has not
been strong evidence that current self-supervised methods scale well to larger
uncurated datasets [34,11].

Recently, CLIP [28] introduced an exciting new approach to representation
learning. It re-examines language supervision for learning visual representations,
and catapults it into contention with label supervision and self-supervision. CLIP
requires only images and free-form text captions, thus revitalizing the use of
YFCC100M in representation learning. In addition to no longer requiring label
annotations, CLIP accuracy also scales well to large datasets and models. The
best results for CLIP are achieved with big models on a curated dataset of
400M image-text pairs, though promising results are also shown on a subset of
YFCC100M. CLIP also enables many exciting new applications with its flexible
language-guided capabilities.

In this work, we explore whether the momentum of self-supervised learning
on images carries into the setting of language supervision. In particular, we
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investigate whether language supervision in the form of CLIP also benefits from
image self-supervision. We note that it is not immediately clear that jointly
training on these two objectives should improve representation quality, since
the objectives require the model to encode different and possibly conflicting
information about the image.

In order to explore these questions, we introduce SLIP (Self-supervision
meets Language-Image Pre-training), a multi-task framework combining lan-
guage supervision and self-supervision. We pre-train various SLIP models on
a subset of YFCC100M, and thoroughly evaluate representation quality under
three distinct settings: zero-shot transfer, linear classification, and end-to-end
finetuning. We evaluate downstream performance on ImageNet, in addition to a
battery of 25 other classification benchmarks. Additionally, we further validate
our findings with experiments on different model sizes, training schedules, and
pre-training datasets. Our findings conclusively show that SLIP improves perfor-
mance across most evaluations by a significant margin, an encouraging signal for
the general utility of self-supervision in the context of language supervision. Ad-
ditionally, we analyze various components of our method in further detail such
as the choices of pre-training dataset and data processing method. We conclude
with a discussion of our evaluations.

2 Related Work

Language supervision. Early work explored learning visual representations
from image captions, even before the advent of deep learning [27]. DeViSE [12]
jointly embeds images and textual class labels within a shared semantic space,
allowing the model to recognize classes that were not explicitly trained for. Ini-
tial attempts at leveraging the YFCC100M dataset for representation learning
included predicting the bag-of-words representation [22] or n-gram occurrence
[24] from images. ICMLM [31] and VirTex [8] showed that language supervision
on COCO Captions produced useful visual representations. Prior to CLIP, Mul-
timodal Contrastive Training [38] adds contrastive image-image and language-
image losses to VirTex which further improve performance. CLIP [28] quickly
garnered significant attention for its simplicity, scale, and strong results. Devel-
oped concurrently, ALIGN [21], uses a larger but noisier uncurated dataset and
shows similar results.
Self-supervised learning. Earlier self-supervised learning methods have shown
subpar scaling with dataset size [15]. Contrastive learning methods ushered in
rapid progress [26,37,18,5] due to their simplicity and effectiveness. Recent meth-
ods for self-supervised learning also propose a variety of alternatives to the con-
trastive objective such as self-distillation [16,3], or input reconstruction [1,17].
Multi-modal multi-task learning.MURAL [20] extends ALIGN to the multi-
lingual setting and introduces a cross-lingual objective to improve multi-lingual
image and text retrieval. Concurrently to this work, DeCLIP [25] adds several
additional training objectives and more data collected in-house to CLIP in order
to improve data efficiency.
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3 SLIP Framework

We introduce SLIP, a framework for combining language supervision and image
self-supervision to learn visual representations without category labels. During
pre-training, separate views of each input image are constructed for the language
supervision and image self-supervision branches, then fed through a shared image
encoder. Through the course of training, the image encoder learns to represent
visual input in a semantically meaningful manner. We then measure the quality
of these representations through performance on downstream tasks.

3.1 Contrastive Language-Image Pre-training

Radford et al. [28] demonstrated the ability of contrastive learning (CLIP) on
corresponding images and captions to learn powerful representations. CLIP em-
beds images and text with separate modality-specific models. These vectors are
then projected into a shared embedding space and normalized. The InfoNCE loss
is computed using these embeddings, with corresponding images and captions
as positive pairs and all non-matching images and captions as negative pairs.

Non-contrastive alternatives for language supervision include predicting a
bag-of-words representation of the caption [22] or the original caption [31,8]
from the image. However, the authors of [29] find that these methods to be less
effective than CLIP. The contrastive objective also enables image classification
without re-training (zero-shot transfer).

3.2 Image Self-Supervision

View-based self-supervised learning, in which models are trained to represent
different views or augmentations of the same image similarly, has yielded strong
results across a variety of different formulations. In this work we primarily use an
adaptation of SimCLR [5,6], a representative example of these methods, as the
self-supervised objective in SLIP. However, other frameworks can be swapped in
quite easily, and we explore this in Section 6. We focus on the Vision Transformer
[10] architecture for its simplicity and good performance. We follow hyperparam-
eter settings from MoCo v3 [7] for training self-supervised Vision Transformers,
which will be described later in Section 4.1.

3.3 Our Method

We outline SLIP with SimCLR for self-supervision (i.e. SLIP-SimCLR). The
pseudo-code for our algorithm can be found in the appendix. During each forward
pass in SLIP, all images are fed through the image encoder. The CLIP and
SSL objectives are computed on the relevant embeddings and then summed
together into a single scalar loss. The two objectives can be balanced differently
by rescaling the SSL objective. We find that a scale of 1.0 for the self-supervised
objective, i.e. no re-scaling, works well for SimCLR. Unless otherwise noted, we
refer to SLIP-SimCLR simply as SLIP.
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SLIP increases the number of images processed which results in approxi-
mately 3× more activations. This expands the model’s memory footprint and
slows down the forward pass during training. See Section 7 for further discussion.

4 Improved Training Procedure

The authors of CLIP focus primarily on training with a large private dataset of
400M image-text pairs, where the large scale of data lessens the need for regu-
larization and data augmentation. While re-implementing CLIP, we found some
simple adjustments (mostly to data processing) which significantly improved
model performance when pre-trained on YFCC15M. Our improved training pro-
cedure, detailed in the appendix, achieves 34.6% zero-shot transfer to ImageNet
with a modified3 ResNet-50, exceeding the original result of 31.3% [28]. Another
re-implementation achieves 32.7% accuracy on ImageNet [19]. In our experiments
we focus primarily on the Vision Transformer model family for their strong scal-
ing behavior [10]. We train all Vision Transformer models with our improved
procedure as well, in order to set strong baselines for comparing our methods.

4.1 Implementation Details

Datasets. We focus primarily on a 15M subset of YFCC100M [33] filtered by
Radford et al. [28] consisting of English-only titles and descriptions, which we
refer to as YFCC15M. We also evaluate on Conceptual Captions 3M (CC3M)
[32] and Conceptual Captions 12M (CC12M) [4].
Data Augmentation. During training, we randomly sample a valid caption for
each image (i.e. title or description for YFCC15M). Images for the CLIP branch
are randomly resized and cropped to between 50% and 100% of the original
image, which we refer to as global cropping. In the self-supervised branch we
sample two views with the augmentation from MoCo v3 [5].
Architecture. We use the original ViT-B/16 and ViT-L/16 architectures from
the ViT paper [10] for our image encoders, as well as a ViT-S/16 architecture [36]
which is comparable to ResNet-50 in FLOPs and parameters. For our text en-
coders, we use the smallest text Transformer model from CLIP which contains
63M parameters and uses byte-pair encoding with a 49K token vocabulary, and
maximum context length of 77.

For the CLIP objective, our model projects the image and caption embed-
dings into a 512-dim space with separate learned linear projections. In the self-
supervised branch, we use the 3-layer MLP projection head with 4096-dim hidden
layers to transform the image embeddings into a 256-dim output space.
Training. We train with a batch size of 4096 and the AdamW optimizer in all
our experiments. Both the image and text encoders are randomly initialized.
Following CLIP, we set the β2 = 0.98 to improve training stability, but we keep

3 The initial 7×7 conv is replaced by three 3×3 convs; global average pooling is re-
placed by a self-attention pooling layer with 14M parameters.
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ϵ = 1e−8. We use a weight decay of 0.5 for CLIP and 0.1 for SLIP. Instead of the
custom mixed-precision recipe used in CLIP, we opt for the built-in automatic
mixed precision library in PyTorch.
Zero-shot Transfer Evaluation. We evaluate zero-shot transfer to various
classification benchmarks including ImageNet. We perform prompt ensembling
by averaging the caption embeddings for each class across the prompt templates.
This average caption embedding is then used to compute cosine similarity with
the image embeddings. CLIP provides prompt templates and class names for
these benchmarks, which we use directly for ease of comparison.
Linear Classification Evaluation. We use the same setup as MoCo v3 to
evaluate linear classification performance. We use SGD w/ momentum and no
weight decay. On ImageNet, we use a learning rate of 0.01 and on the other
downstream datasets we tune the learning rate and report the best result. We
train for 100 epochs and perform standard cropping and flipping augmentations.
End-to-end Finetuning Evaluation. To finetune our models on ImageNet,
we use the training procedure from BEiT [1]. This procedure employs strong
regularization and data augmentation, as well as layerwise learning rate decay.
We disable relative positional embedding, layer scaling, and average pooling
across tokens. For ViT-B and ViT-S we train for 100 epochs, while on ViT-L we
train for 50 epochs. For finetuning on smaller downstream datasets, we use the
simpler DeiT training procedure [36].

5 Empirical Evaluations

5.1 ImageNet Classification
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Figure 2: ImageNet results. We evaluate the representation quality by testing
the performance on ImageNet under different settings: zero-shot transfer using
text prompts, linear classification, and end-to-end finetuning. SLIP improves
upon the zero-shot transfer and linear classification performance of CLIP by
significant margin across all vision Transformer model sizes.

We evaluate performance on ImageNet under three distinct settings: zero-
shot transfer, linear classification, and end-to-end finetuning. The zero-shot
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transfer task evaluates model performance on classification benchmarks directly
after pre-training without updating any of the model weights. A model trained
with contrastive language supervision can be used as an image classifier by se-
lecting the class whose caption embedding aligns most closely with the input
image. Linear classification, also called linear probing, is a standard evaluation
method used to evaluate unsupervised or self-supervised representations. A ran-
domly initialized final classification layer is trained while all other model weights
are frozen. Finally, another way of evaluating representation quality is whether
a pre-trained model can improve upon the performance of supervised learning
when finetuning the model end-to-end.

Dataset Method Linear Finetuning

ImageNet SimCLR 74.5 82.8

MoCo v3 76.6 83.1

YFCC15M SimCLR 64.0 (-10.5) 82.5 (-0.3)

MoCo v3 66.1 (-10.5) 82.8 (-0.3)

Table 1: We train ViT-B/16 with two self-supervised frameworks. Both linear
classification and end-to-end finetuning accuracy on ImageNet suffers when pre-
training on YFCC15M instead of ImageNet. Accuracy drop show in (red).

One common evaluation setup in the self-supervised learning literature is to
train both the model and the linear classifier on ImageNet (i.e. ImageNet-1K),
which even without labels is a highly curated and class-balanced dataset. In Ta-
ble 1 we train ViT-B/16 with SimCLR and MoCo v3 on both YFCC15M and
ImageNet. The resulting models are evaluated on ImageNet using linear classifi-
cation and end-to-end finetuning. Both SimCLR and MoCo v3 experience a more
than 10% drop in linear classification accuracy when pretrained on YFCC15M
instead of ImageNet, a dramatic degradation in performance. For this reason,
the baseline linear results in our experiments are lower than what is typically
reported in the self-supervised literature. Similarly, we observe a less severe but
consistent degradation for end-to-end finetuning results as well. We argue that
training on uncurated data is a more realistic and informative setting, especially
given the original motivations of learning vision from less supervision.

In Table 2, we provide evaluation results for CLIP, SimCLR, and SLIP across
three sizes of Vision Transformer and on all three ImageNet settings. All models
are trained for 25 epochs on YFCC15M. We find that language supervision
and image self-supervision interact constructively in SLIP, improving upon the
performance of both methods alone.
Zero-shot transfer. Self-supervised models do not support zero-shot transfer
evaluation since there is no way to directly map the learned representations
onto categorical labels. SLIP consistently outperforms CLIP by around +5%
on zero-shot transfer across all three model sizes, a very large margin relative
to the original number. The gap between SLIP and CLIP does close slightly



8 N. Mu et al.

Model Method 0-shot Linear Finetuned

ViT-S/16 CLIP 32.7 59.3 78.2

SimCLR - 58.1 79.9

SLIP 38.3 (+5.6) 66.4 (+7.1) 80.3 (+0.4)

ViT-B/16 CLIP 37.6 66.5 80.5

SimCLR - 64.0 82.5

SLIP 42.8 (+5.2) 72.1 (+5.6) 82.6 (+0.1)

ViT-L/16 CLIP 40.4 70.5 81.0

SimCLR - 66.7 84.0

SLIP 46.2 (+4.8) 76.0 (+5.5) 84.2 (+0.2)

Table 2: Full ImageNet results. SLIP significantly improves performance on Im-
ageNet in the zero-shot transfer, linear classification, and end-to-end finetuning
settings. Improvements over stronger baseline (underlined) shown in (green).

between ViT-Small (22M params) and ViT-Large (300M params) from +5.6%
to +4.8%. This trend suggests that SLIP would continue to yield benefits over
CLIP even for the largest Vision Transformer architectures currently in use.
With ViT-Large SLIP achieves 46.2% top-1 accuracy, which is still significantly
below the performance achieved with larger curated data [28]. In absolute terms
however, this is a surprisingly strong result considering that YFCC15M contains
very little data of the specific form seen during zero-shot transfer evaluation (i.e.
object-centric, or iconic, images labeled with captions of the form “a photo of a
class name.”).

Linear Classification. In this setting we also observe the benefits of combining
language supervision and image self-supervision. CLIP outperforms SimCLR,
but by a much smaller margin than SLIP outperforms SimCLR. We see that
SLIP significantly outperforms SimCLR in linear classification accuracy across
all three model sizes. The gap between SLIP and SimCLR is largest with ViT-L
at almost +10%, suggesting that SLIP continues to scale with larger models
while SimCLR slightly saturates in performance.

End-to-end Finetuning. We see in Table 1 that finetuning performance is
somewhat less affected by pre-training on YFCC15M than linear performance is
affected, possibly because the model is allowed to adapt to the target distribu-
tion. Both SimCLR and MoCo v3 experience -0.3% drops in finetuning accuracy
when pre-trained on YFCC15M instead of ImageNet, which is still quite signif-
icant for this setting. We re-iterate that the results in Table 2 are not directly
comparable with methods which are pre-trained on ImageNet-1K.

When finetuning on ImageNet, CLIP is particularly weak: ViT-S and ViT-B
performance is below even that of training from a random weight initialization
[36]. The performance of CLIP does not scale well with model size either, as
CLIP ViT-L performance is only +0.5% above CLIP ViT-B. On the other hand,
self-supervised learning does quite well in this setting, especially with the larger
models. SimCLR ViT-L enjoys a +3.0% gain in accuracy over CLIP ViT-L, and
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SLIP ViT-L does slightly better than SimCLR ViT-L, though by a very marginal
amount. These results suggest that the low finetuning performance of CLIP is
mostly solved with self-supervision.

5.2 Model and Compute Scaling

We also investigate the scaling behavior of SLIP with more compute (longer
training) and larger vision models. We note that 100 epochs of training on
YFCC15M corresponds to around 1200 epochs of training on ImageNet-1K. In
Table 3 we experimented with holding model size fixed (ViT-B/16) and train-
ing for longer as well as training different model sizes for an extended training
schedule (100 epochs). Our results indicate that SLIP scales well with both
longer training and larger models. We show full results simultaneously varying
model and compute scaling with SLIP in the appendix.

Model #params. 0-shot Linear Finetuned

ViT-S 22M 39.5 68.3 80.7

ViT-B 86M 45.0 73.6 83.4

ViT-L 307M 47.9 75.1 84.8

(a) Comparing ViT model variants of differ-
ent capacities (ViT-S/B/L). All models are pre-
trained for 100 epochs.

Epochs 0-shot Linear Finetuned

25 42.8 72.1 82.6

50 44.1 73.0 82.9

100 45.0 73.6 83.4

(b) ViT-B with longer pre-training
schedules (25/50/100 epochs).

Table 3: SLIP pre-training performance (in terms of zero-shot transfer, linear
classification, and end-to-end finetuning) can scale well with both model size
and number of training epochs.

5.3 Additional Benchmarks
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-S CLIP 43.4 61.0 29.9 31.1 43.9 3.1 4.7 17.9 25.0 53.3 47.8 9.8 29.1 86.8 22.3 16.1 9.5 34.1 8.7 64.8 26.0 18.8 14.7 56.1 49.5 32.7 32.3
SLIP (25 ep) 51.6 73.0 35.4 36.3 49.2 4.2 6.1 25.7 30.9 62.8 54.3 9.9 31.3 91.6 22.4 21.9 11.0 39.9 9.6 50.8 32.8 22.9 14.8 49.6 50.1 38.3 35.6
SLIP (100 ep) 53.0 68.4 39.3 36.5 49.8 4.6 5.1 26.6 33.6 68.3 55.8 2.7 37.8 91.9 18.2 22.2 13.8 38.4 8.5 62.8 33.3 23.5 19.2 51.4 49.4 39.5 36.7

V
iT

-B

CLIP 50.6 66.0 34.5 38.8 51.1 4.0 5.4 21.2 28.5 60.9 53.3 8.4 17.3 90.5 30.2 21.5 6.1 35.1 10.5 53.5 28.5 22.1 10.8 52.4 50.7 37.6 34.2
SLIP (25 ep) 59.5 78.6 45.2 38.7 53.4 5.4 5.7 26.1 31.1 71.0 56.6 9.8 19.6 94.4 20.3 28.9 14.5 34.0 11.6 55.4 37.7 26.9 17.5 52.8 51.1 42.8 38.0
SLIP (100 ep) 63.3 79.2 50.4 44.7 52.0 8.1 8.4 26.2 34.7 74.0 61.3 17.1 40.8 95.4 20.8 27.8 11.7 35.2 11.5 52.1 37.1 25.8 13.0 55.1 49.9 45.0 40.0

V
iT

-L CLIP 59.5 72.9 41.5 40.3 53.6 6.9 6.4 20.6 27.9 65.4 55.0 10.3 34.5 94.2 22.7 28.8 5.8 41.4 12.6 54.9 34.3 24.0 12.9 54.3 50.1 40.4 37.4
SLIP (25 ep) 64.4 87.8 56.4 39.8 58.9 8.6 7.8 26.8 32.0 76.6 59.4 13.2 36.0 96.6 27.7 36.5 7.2 28.8 15.6 54.4 42.6 30.0 14.1 53.4 50.1 46.2 41.2
SLIP (100 ep) 69.2 87.5 54.2 39.8 56.0 9.0 9.5 29.9 41.6 80.9 60.2 14.9 39.6 96.2 34.5 46.0 8.6 30.7 14.2 50.6 44.1 30.5 17.4 55.0 49.8 47.9 43.0

Table 4: Zero-shot transfer evaluation with ViT S, B, and L on a variety of clas-
sification benchmarks. Best results in bold. SLIP outperforms CLIP on most of
the tasks, frequently with a significant margin. With longer pre-training epochs,
the performance can be further improved.
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While evaluating classification performance on ImageNet gives a broad
overview of representation quality, it is also informative to measure performance
on a variety of narrowly targeted downstream datasets. In Table 4 we evaluate
zero-shot transfer on a battery of downstream image classification tasks com-
piled by [28]. We also provide linear classification results on these benchmarks
in the appendix. These datasets span many different domains including every-
day scenes such as traffic signs, specialized domains such as medical and satellite
imagery, video frames, rendered text with and without visual context, and more.
We remove Pascal VOC and replace NABirds with CUB-200-2011. To prepro-
cess the datasets into a unified pipeline we use the extra scripts included in
VISSL [14]. We catalog chance performance along with short descriptions of the
datasets in the appendix.

In the zero-shot setting, both CLIP and SLIP models perform well on datasets
whose categories are well represented in YFCC15M, such as Food-101, Oxford
Pets, Caltech-101, and STL-10. On these datasets we see that larger models
and training for longer with SLIP more generally improve zero-shot transfer
accuracy. Datasets with less overlap with the content in YFCC15M, such as
Rendered SST2, KITTI depth, and PatchCamelyon (PCAM) is only around
chance performance.

Zero-shot performance on the low-resolution datasets (MNIST, CIFAR-10,
CIFAR-100) is also very poor. On many datasets performance is several times
chance performance yet still much lower than what is achievable with a small
supervised model. This suggests that language supervision alone is an inefficient
way of training models for specific tasks of interest. Which method does best
under the zero-shot setting is also somewhat inconsistent and variable across
datasets, unlike the linear setting, and we note this as a caveat in evaluating
representation quality with zero-shot evaluations.

5.4 Additional Pre-training Datasets

Dataset Method 0-shot Linear Finetuned

CC3M CLIP 17.1 53.3 79.5

SimCLR - 55.4 80.9

SLIP 23.0 65.4 81.4

CC12M CLIP 36.5 69.0 82.1

SimCLR - 62.2 82.6

SLIP 40.7 73.7 83.1

Table 5: ImageNet results with ViT-B/16 pre-trained on CC3M [32] and CC12M
[4], two smaller datasets.

In addition to YFCC15M, we experiment with two additional image-text
datasets: CC3M and CC12M. In Table 5, we train ViT-B with CLIP, SimCLR,
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and SLIP. SLIP maintains its margin of improvement over CLIP and SimCLR in
all ImageNet evaluation settings. Notably, pre-training SLIP on CC12M instead
of YCC15M yields lower zero-shot accuracy but results in higher linear and
finetuning performance. CLIP sees a boost to finetuning performance of +1.6%.

Our improved training recipe (see Section 4.1) alleviates overfitting by CLIP
when trained on YFCC15M and CC12M, but on the smaller CC3M dataset
CLIP overfits quite dramatically. This may also be due to the hypernymization
and other aggressive text cleaning used in CC3M to make the captions more
amenable to image captioning but reduces dataset difficulty. CLIP reaches its
highest zero-shot ImageNet accuracy after just 15 out of 40 epochs of training on
CC3M, after which we observe a steady decline in ImageNet zero-shot transfer
accuracy. In contrast, on CC3M SLIP reaches its highest zero-shot ImageNet
performance after 35 epochs.

5.5 Alternative Self-Supervised Frameworks

Method 0-shot Linear Finetuned

SLIP-SimCLR [5] 42.8 72.1 82.6

SLIP-MoCo v3 [7] 41.8 71.4 82.4

SLIP-BYOL [16] 41.3 71.1 82.2

SLIP-BEiT [1] 39.1 66.5 82.2

None (CLIP) 37.6 66.5 80.5

Table 6: We evaluate ViT-B/16 with several SLIP variants using different self-
supervised frameworks. SLIP works the best with SimCLR among several other
self-supervised frameworks, but all variants outperform CLIP.

As noted in Section 3.2, SLIP enables the use of many different self-
supervision methods. We ran several experiments on ViT-B/16 with different
alternatives to SimCLR, in particular MoCo v3 [7], BYOL [16], and BEiT [1].
Similar to how we tuned the hyperparameters for SLIP-SimCLR, we largely keep
the original self-supervised hyperparameters and add in the CLIP objective and
text encoder. MoCo v3 and BEiT hyperparameters are already tuned for ViT,
but with BYOL we tuned the learning rate and weight decay while copying
the data augmentation and projector/predictor heads from MoCo v3. We also
lightly tune different scaling parameters for the self-supervised loss. All models
are trained for 25 epochs on YFCC15M.

Results in Table 6 show that all three alternatives underperform SLIP-
SimCLR, despite being individually stronger self-supervised methods. Nonethe-
less, all SLIP variants still improve performance over CLIP.
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6 Further Analysis

What do language supervised models learn from YFCC15M? We probe
the sources of the image classification abilities of CLIP and SLIP by visualizing
nearest neighbor retrievals from the YFCC15M training data using each model’s
image encoder, shown in the appendix. Our visualizations reveal a surprising
amount of specific and accurate category information in the captions (object
names, plant and animal species, geographic location, etc).

We also estimate an upper bound of zero-shot ImageNet classification per-
formance using YFCC15M with a simple image retrieval baseline. With a strong
ImageNet classifier (BEiT-Large @ 384px4), we retrieve the 50 nearest neighbors
of each validation image from the YFCC15M training images. We then map each
caption of the retrieved images onto ImageNet classes by selecting the closest
class text embedding as measured by the publicly released CLIP ViT-L/16 text
encoder trained on 400M image-text pairs. We take the modal class as the clas-
sification prediction. Thus, each validation image can only be correctly classified
if there exists similar training images in YFCC15M which are captioned in a
way that describes the correct ImageNet category. This baseline achieves sur-
prisingly high 74.4% top-1 accuracy, indicating a substantial amount of accurate,
category-specific information in the captions.
What does SLIP gain from self-supervision? We evaluate the image re-
trieval baseline from above using the image encoders from our SLIP and CLIP
models, shown in Table 7. We also measure the average cosine similarity be-
tween ImageNet image embeddings (averaged across 50 validation images per
class) and the corresponding class embedding (averaged across 7 prompts) for
these two models, and find much higher similarity between image and text for
SLIP than CLIP. We interpret these two results to support the conclusion that
the self-supervision objective pushes SLIP to learn better visual features, which
are then more easily indexed by the text encoder.

Method CLIP SLIP

image retrieval acc. 26.3% 29.1%

cosine similarity 0.343 0.412

Table 7: Comparison of SLIP vs. CLIP feature quality with a image retrieval
baseline and average cosine similarity between images and categories on Ima-
geNet. Both methods use a ViT-B/16 model trained on YFCC15M.

Why not pre-train with SSL and finetune with CLIP? An alternative
to SLIP would be to simply initialize the image encoder of CLIP with SSL-
trained weights. We try training CLIP ViT-B/16 under this setting but find
worse performance than training jointly with CLIP and SSL. In 8, we see this
approach underperforms SLIP in all three ImageNet evaluation settings.

4 This model achieves 88.4% top-1 accuracy on ImageNet.
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Method 0-shot Linear Finetuned

SimCLR → CLIP 41.1 68.2 82.3

SLIP-SimCLR 42.8 72.1 82.6

Table 8: Finetuning vs. multi-task training. One alternative to SLIP consists
of initializing the image encoder of CLIP with weights trained through self-
supervised learning. With ViT-B/16 trained for 25 epochs, finetuning with CLIP
performs noticeably worse across all three ImageNet evaluating settings.

Is SLIP just CLIP with data augmentation? We also examine the effects
of adding further data augmentation to CLIP and whether this explains the
performance improvements seen in SLIP. The SimCLR augmentation can be
separated into two components: color (jitter or grayscale) + blur, and resize
crop + flip. We train CLIP with these two components individually and also
with the full SimCLR augmentation. When training with color + blur, we use
the original CLIP cropping strategy from [28] in which we resize the shorter side
to 224px then perform a random square crop. Our results are shown in Table
9. While augmentation and resize crop + flip hurt performance, color + blur do
improve zero-shot transfer performance by +0.8% which is still far below the
gain by SLIP.

Augmentation 0-shot Linear Finetuned

global crop (CLIP) 37.6 66.5 80.5

color + blur 38.4 68.5 81.5

resize crop + flip 36.0 66.1 80.5

color + blur + resize crop + flip 36.3 65.2 80.6

SLIP 42.8 72.1 82.6

Table 9: We train CLIP with different data augmentations and compare Ima-
geNet performance to SLIP. Color + blur slightly improve performance over our
improved training recipe using global image crops, but by a much smaller margin
than SLIP does.

Can we fully decouple self-supervision from language supervision? We
experiment with a version of SLIP we call SLIP-decoupled in which the self-
supervised objective is computed on a disjoint set of 15M images from the
YFCC15M images used in the text supervision object. During training, the
images are sampled independently from both sets, effectively decoupling the
language-image supervision and self-supervision signals. In Table 10, we find
that SLIP-decoupled does just as well as SLIP.
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Method 0-shot Linear Finetuned

SLIP 42.8 72.1 82.6

Decoupled SLIP 42.7 72.0 82.8

Table 10: Decoupling self-supervision and text-supervision has no effect on per-
formance. We sampled an additional 15M images disjoint from the YFCC15M
images to use only in the self-supervised objective and observe that this performs
nearly identically.

7 Discussion

Our results on ImageNet and other classification benchmarks show that language
supervision and self-supervision are indeed highly synergistic. As shown in Table
2, SLIP improves zero-shot performance across model sizes by large margins of
+4.8% to +5.6%. Similar gains can be seen in the linear classification setting,
with consistent but marginal improvements in the end-to-end finetuning setting.

These trends remain consistent on longer training schedules with the excep-
tion of linear probe performance on SLIP ViT-L which actually decreases with
more training. With SLIP ViT-L pre-trained on YFCC15M for 100 epochs, we
achieve our strongest result of 47.9% zero-shot accuracy on ImageNet. SLIP also
shows significant improvements on CC3M and CC12M. Finally, we also confirm
our findings with zero-shot and linear evaluations on additional benchmarks.
Evaluating representation quality. Prior work on representation learning
has argued against end-to-end finetuning for its sensitivity to optimization hy-
perparameters [15], and against linear classification for being too contrived [39].
We instead view zero-shot transfer, along with linear classification and end-to-
end finetuning, as one cohesive paradigm for evaluating representation quality.
Zero-shot transfer represents the strictest setting, where the exemplar vector for
each class must be specified through natural language. Linear classification is
a relaxation of zero-shot transfer, in which the class exemplars are optimized
on training data. Finally, end-to-end finetuning represents a further relaxation
where all model parameters are allowed to adapt to. Performance should be
assessed across multiple settings, rather than a single setting.
Zero-shot ImageNet monitor. SLIP may also serve as a useful framework
within which to evaluate new methods for self-supervised learning. Training loss
on the pre-text task is a poor predictor of downstream performance, so a simple
external metric like kNN accuracy is important for quickly estimating perfor-
mance and diagnosing training issues such as overfitting or instability. However,
kNN classification requires encoding and storing every single training image and
naive inference requires very expensive matrix multiplications. The memory bank
kNN monitor [7] alleviates this cost but is not feasible when pre-training on unla-
beled datasets such as YFCC100M. Instead, zero-shot evaluations on ImageNet
are virtually as fast as evaluating validation accuracy in the supervised setting.
Acknowledgements. This work was supported by BAIR, the Berkeley Deep
Drive (BDD) project, and gifts from Meta and Open Philanthropy.
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