Molecular analysis of chloroquine resistance in Plasmodium falciparum in Yunnan Province, China.

https://escholarship.org/uc/item/7b3743nt

Tropical medicine & international health : TM & IH, 12(9)

1360-2276

Yang, Zhaoqing
Zhang, Zaixin
Sun, Xiaodong
et al.

2007-09-01

10.1111/j.1365-3156.2007.01882.x

https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed
Molecular analysis of chloroquine resistance in *Plasmodium falciparum* in Yunnan Province, China

Zhaoqing Yang¹, ², Zaixin Zhang³, Xiaodong Sun³, Wenlin Wan¹, Long Cui⁴, Xiang Zhang³, Daibin Zhong⁴, Guiyun Yan⁴ and Liwang Cui⁵

¹ Parasitology Department, Kunming Medical College, Kunming, Yunnan, China
² Yunnan Institute of Parasitic Diseases, Simao, Yunnan, China
³ Mengla county hospital, Mengla, Yunnan, China
⁴ Program in Public Health, College of Health Sciences, University of California, Irvine, CA, USA
⁵ Department of Entomology, The Pennsylvania State University, University Park, PA, USA

Summary

Resistance of *Plasmodium falciparum* to chloroquine (CQ) is determined by the mutation at K76T of the *P. falciparum* chloroquine resistance transporter (pfCRT) gene and modified by other mutations in this gene and in the *P. falciparum* multidrug resistance 1 (pfMDR1) gene. To determine the extent of polymorphisms in these genes in field *P. falciparum* isolates from Yunnan province of China, we genotyped the pfCRT codon 76, pfMDR1 codons 86 and 1246. Our results showed that although CQ has been withdrawn from treating falciparum malaria for over two decades, 90.3% of the parasites still carried the pfCRT K76T mutation. In contrast, mutations at pfMDR1 codons 86 and 1246 were rare. Sequencing analysis of the pfCRT gene in 34 parasite field isolates revealed CVIET at positions 72–76 as the major type, consistent with the theory of Southeast Asian origin of CQ resistance in the parasite. In addition, two novel pfCRT haplotypes (75D/144Y/220A and 75E/144Y/220A) were identified. Real-time polymerase chain reaction was used to determine pfMDR1 gene amplification, which is associated with mefloquine resistance. Our result indicated that in agreement with that mefloquine has not been used in this area, most (>90%) of the parasites had one pfMDR1 copy. Genotyping at two hypervariable loci showed relatively low levels of genetic diversity of the parasite population. Meanwhile, 28.4% of cases were found to contain mixed clones, which favour genetic recombination. Furthermore, despite a unique history of antimalarial drugs in Yunnan, its geographical connections with three malarious countries facilitate gene flow among parasite populations and evolution of novel drug-resistant genotypes. Therefore, continuous surveillance of drug resistance in this area is necessary for timely adjustment of local drug policies and more effective malaria control.

Keywords malaria parasite, chloroquine resistance, *Plasmodium falciparum* chloroquine resistance transporter gene, *Plasmodium falciparum* multidrug resistance 1, genetic diversity

Introduction

The emergence and spread of malaria parasites resistant to many antimalarials, particularly chloroquine (CQ) and pyrimethamine (PY)–sulphadoxine (SD), is largely responsible for the recent global resurgence of malaria, which severely hampers our capacity to roll back malaria (Snow et al. 2004; Olliaro 2005). In China, malaria is still a major public health problem with most of the cases concentrated in two subtropical provinces, Yunnan and Hainan. Yunnan is located in Southwest China, bordering three malaria-endemic countries, Myanmar, Laos and Vietnam. Malaria here is perennial with peak transmission occurring from June through October, coincident with the rainy season. Malaria cases in Yunnan are concentrated in several counties near the borders and about one-third are due to *Plasmodium falciparum* infections. Here, CQ resistance in *P. falciparum* appeared in the early 1970s and spread rapidly. By the early 1980s, it was replaced by PY–SD to treat falciparum malaria (Liu et al. 2005).

Since then, longitudinal surveys have been carried out in these two malarious provinces and a general decline of CQ resistance was noticed (Liu et al. 2005). In Hainan, in vitro microtests demonstrated a drop in the rate of CQ-resistant *P. falciparum* from 97.9% in 1981 to 60.9% in 1991 and...
26.7% in 1997 (Liu et al. 1995, 2005). Correspondingly, 4-week in vivo observations detected a decrease of CQ-resistant parasites from 84.2% in 1981 to 40% in 1991 and 18.4% in 1997. Although a similar trend was observed in Yunnan, the decrease of CQ resistance was insignificant and over 90% of *P. falciparum* remained CQ resistant in 1992 (Yang et al. 1994). A more recent survey in 2002 indicated that CQ resistance rate in Yunnan was still above 70% (Liu et al. 2005). While this trend of declining CQ resistance as its cessation in many endemic areas suggests a possible rotation of CQ in the future (Kublin et al. 2003), such a decision requires close regional monitoring because evolution of CQ resistance after the removal of drug pressure seems to differ considerably among parasite populations.

Chloroquine resistance is manifested by impaired CQ uptake by the parasite vacuole, which is correlated with mutations in several genes. A single mutation K76T in the *P. falciparum* chloroquine resistance transporter gene (*pfcr*t) has been demonstrated to be a major determinant of CQ resistance in *P. falciparum* (Fidock et al. 2000; Sidhu et al. 2002; Lakshmanan et al. 2005). All *P. falciparum* clinical samples that are resistant to CQ contain the K76T mutation (Djimde et al. 2001). As at least five founder mutations of K76T have been detected worldwide (Wellem & Plowe 2001; Wootton et al. 2002; Chen et al. 2005), genetic backgrounds of the resistant strains differ greatly. Other epistatic markers such as *P. falciparum* multidrug-resistant 1 (*pfmdr*1) gene also affect the final outcome of CQ resistance (Reed et al. 2000; Babiker et al. 2001). Five single nucleotide polymorphisms (SNPs) of *pfmdr*1 N86Y, Y183F, S1034C, N1042D and D1246Y were identified in field isolates from different regions of the world. Some correlation studies showed that 86Y was associated with CQ resistance in isolates from the Old World, whereas the C-terminal mutations were found in isolates from South America (Hayton & Su 2004). A recent study demonstrated that N1042D of *pfmdr*1, a prevalent mutation in South America, contributes to quinine instead of CQ resistance, suggesting that *pfmdr*1 mutations can affect parasite susceptibility to a wide range of antimalarials depending on the parasite’s genetic background (Sidhu et al. 2005). While the effect of *pfmdr*1 point mutations might affect the parasite’s sensitivity to different drugs, recent correlation studies demonstrated that *pfmdr*1 amplification is responsible for resistance to mefloquine (Wilson et al. 1993; Price et al. 1999, 2004; Nelson et al. 2005).

Currently, the K76T mutation is widely used as a reliable marker for CQ-resistance in epidemiological studies (Wongsrichanalai et al. 2002). In different continents, this marker has been shown to correlate with

Materials and methods

Samples

Plasmodium falciparum field isolates were collected in 2003–2004 in two counties of Yunnan Province. Twenty samples were collected from Gengma county, Lincang district bordering Myanmar and 69 samples were from Mengla county, Xishuangbana district, bordering Laos and Myanmar (Figure 1). Both areas had a similar level of malaria endemicity, within the range of 14–44 malaria incidence per 10 000 people in 2000. The human subject protocol for this study as part of the ongoing malaria epidemiological surveys of the Yunnan Institute of Parasitology was approved by the provincial review board. Parasite samples were collected from patients with uncomplicated *P. falciparum* infections before drug treatment. Initial diagnosis was carried out by microscopic examination of Giemsa-stained thick blood films. For each sample, approximately 200 µl of finger-prick blood were spotted on a piece of Whatman 3M filter paper and air-dried. The dried filters were stored in individual plastic bags at ~20 °C until DNA extraction. Parasite DNA was extracted from the blood filters using either the Chelex boiling method (Plowe et al. 1995) or the QIAamp DNA mini kit (Qiagen, Valencia, CA, USA).
Parasite genotyping at merozoite surface protein 1 (msp1) and glutamate-rich protein (glurp) loci

Nested polymerase chain reaction (PCR) was performed to differentiate the three molecular types of msp1 in the polymorphic block 2 as described (Kaneko et al. 1997). First PCR was performed with conserved outer primers followed by three individual nested PCR using primer pairs specific for allelic variant families of the msp1 block 2. The central repeat fragment of glurp was amplified similarly by nested PCR using primers described earlier (Roper et al. 1998). Sizes of the PCR products were estimated following electrophoresis on agarose gels. Alleles with similar sizes (e.g. 350 and 375 bp) were binned around an average size. The multiplicity of infection (MOI), or number of genotypes per infection, was calculated as the highest number of genotypes at any of the two genes.

Determination of prevalence of Plasmodium falciparum chloroquine resistance transporter K76T, Plasmodium falciparum multidrug-resistant 1 N86Y and D1246Y mutations

Determination of polymorphisms at these codons was performed by using a similar PCR-restriction fragment length polymorphism (PCR–RFLP) method. Primers and conditions for pfcr1 codon 76, pfmdr1 codons 86 and 1246 were previously described (Djimde et al. 2001). Apo I, which cuts the K76 codon, was used to distinguish wild-type from the mutant. To determine the polymorphisms at the pfmdr1 codons 86 and 1246, Afl III and Eco RV were used, which cut the 86Y and 1246Y mutants, respectively (Duraisingh et al. 1997; Syafruddin et al. 2005).

Determination of other mutations in the Plasmodium falciparum chloroquine resistance transporter genes

To identify other pfcr1 mutations in the Yunnan isolates, we selected 34 samples of the 76T genotype for sequencing of the pfcr1 fragments. These samples were pre-determined by genotyping msp1 and glurp to be of single-clone infections in order to avoid complications during direct sequencing of the PCR products. In brief, three fragments of the pfcr1 gene were amplified from each sample using primers described by Chen et al. (2003). PCR products were purified by filtration columns (Qiagen) and sequenced directly using the BigDye terminator chemistry on an automated ABI sequencer. The accuracy of sequences was confirmed by sequencing from both ends of the PCR products.

Determination of Plasmodium falciparum multidrug-resistant 1 copy number by real-time polymerase chain reaction analysis

An increased pfmdr1 copy number has been associated with in vitro and in vivo mefloquine resistance (Wilson et al. 1993; Price et al. 1999, 2004; Nelson et al. 2005). To assess the pfmdr1 copy number in the Yunnan P. falciparum isolates, we performed real-time PCR analysis for 60 single-clone infections on the basis of the genotyping results. Real-time PCR was performed as described (Ferreira et al. 2006) using FastStart SYBR Green mix (Roche) with primers for pfmdr1 and a reference gene on chromosome 14 encoding fructose-bisphosphate aldolase (fba) (fba-F: GGGAATATTCTCGAAGTAA and fba-R: CGGTGATGGTGTTTTTAG). Data were analysed using the OpticonMonitor Analysis Software and the threshold cycle, C0, was defined as the cycle number at which the change of fluorescence in the reaction exceeds 10 SDs above the background. Background fluorescence was calculated as the mean fluorescence between cycle 3 and 7 (Miao et al. 2006). For each sample, the C0 value was determined for both pfmdr1 and fba genes. All reactions were performed in triplicate and the result was rejected if the SD value was above 0.5. Reactions performed with serial dilutions of DNA from the 3D7 clone, known to harbour a single copy of pfmdr1 and fba, were used to
calibrate the \(C_t \) values from the field samples. Copy number of \(pfdmrd1 \) gene was calculated using the \(2^{-\Delta C_t} \) method: \[\Delta C_t = \langle C_t - \text{mad20} \rangle_X - \langle C_t - \text{mad20} \rangle_{3D7} \], where \(X \) is the test sample (Ferreira et al. 2006) (Table 3).

Results

Parasite population diversity

Parasites were genotyped at the msp1 and glurp loci to evaluate the population diversity at the two study sites in Yunnan. Both genes were successfully amplified from 88/89 samples (Table 1). While the result showed the presence of all three msp1 variant types (K1, MAD20 and RO33), the predominant allele family was MAD20, which was originally defined in an isolate from Papua New Guinea (PNG) (Tanabe et al. 1987). This suggests that MAD20 may be the prevalent type circulating in certain malarial regions of Asia. While only one size of approximately 150 bp was detected for the MAD20 type, the K1 type was more variable with four sizes (200, 300, 350 and 375 bp) being detected. The RO33 type was the least abundant at both sites. Genotyping msp1 also detected samples containing different allele families indicative of mixed-strain infections, which accounted for 21.1% and 30.4% of the samples from Gengma and Mengla, respectively. Comparing with a total of six alleles found for msp1, parasites at the glurp locus were less diverse with only four alleles observed and their distributions were also biased. The frequencies for the 375, 475, 550 and 800 bp alleles were 18.3%, 52.1%, 21.1% and 8.55%, respectively. The MOI of Mengla samples (1.3) was slightly higher than that of Gengma samples (1.21) (Table 1).

Plasmodium falciparum chloroquine resistance transporter allele types and their prevalence in Yunnan province

In vitro microtests indicated that although CQ was abandoned for one and two decades, the prevalence of CQ resistance in P. falciparum-endemic regions of Yunnan province remained high (Yang et al. 1994; Liu et al. 2005). Consistent with this notion, the prevalence of \(pfcr \) K76T mutation was 78.3% and 93.3% in \(P. falciparum \) samples from Gengma and Mengla counties, respectively. Overall, the K76T mutation had a 90.3% prevalence in the Yunnan samples.

In addition to the major CQ-resistance determinant K76T, there are at least 10 other \(pfcr \) mutations associated with CQ-resistant isolates from various geographical regions. To assess the levels of polymorphisms in 10 of these codons, we employed a strategy used by Chen et al. (2003) to amplify short fragments of \(pfcr \) from 34 single clones for sequencing. Consistent with the result from PCR–RFLP analysis, sequencing confirmed the presence of K76T mutation in all 34 samples. A total of five haplotypes were observed with the haplotype a as the most prevalent, accounting for 70.6% of the sequenced samples (Table 2). This haplotype was also the major one observed in CQ-resistant parasites from Asia and Africa (Wootton et al. 2002). Compared with the wild-type CQ-sensitive sequence of the 3D7 clone, all the \(pfcr \) sequences from Yunnan had 5–6 mutant codons.

Sequences at positions 72–76 were either CVIET or CVIDT. None of the predominant sequences found in the Philippines (CVMHT) or Papua New Guinea (SVMNT) was observed in Yunnan. Whereas the A220S mutation is associated with the K76T mutation in most CQ-resistant parasites, 9/34 sequenced Yunnan samples with K76T mutation had the wild-type 220A (Table 2). A similar observation was made in a subset of samples from the Philippines (Chen et al. 2003). Furthermore, two abundant mutations A144T and L160Y identified in samples from the Philippines (Chen et al. 2003) and the A144F mutation observed in other Southeast Asian samples (Durrand et al. 2004) were not found in the Yunnan samples. Instead, a novel A144Y mutation was found in 9/34 sequences. Interestingly, all the A144Y mutants were linked with the wild-type A220. Collectively, this study identified two novel \(pfcr \) haplotypes 75D/144Y/220A and 75E/144Y/220A.

Table 1 Parasite diversity at the msp1 site

<table>
<thead>
<tr>
<th>Sites</th>
<th>K1 (%)</th>
<th>MAD20 (%)</th>
<th>RO33 (%)</th>
<th>Number of samples†</th>
<th>Number of isolates</th>
<th>MOI</th>
<th>Number of mixed infections (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gengma</td>
<td>21.7</td>
<td>69.6</td>
<td>8.7</td>
<td>19/20</td>
<td>23</td>
<td>1.21</td>
<td>4 (21.1)</td>
</tr>
<tr>
<td>Mengla</td>
<td>31.1</td>
<td>67.8</td>
<td>1.1</td>
<td>69/69</td>
<td>90</td>
<td>1.30</td>
<td>21 (30.4)</td>
</tr>
<tr>
<td>Total</td>
<td>29.2</td>
<td>68.1</td>
<td>2.7</td>
<td>88/89</td>
<td>113</td>
<td>1.28</td>
<td>25 (28.4)</td>
</tr>
</tbody>
</table>

MOI, multiplicity of infection.
†Number of samples successfully tested/total number of samples.
Table 2 Sequence polymorphisms in *pfcrt*

<table>
<thead>
<tr>
<th>Origin</th>
<th>Isolate</th>
<th>Amino acid in pfcrt at position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>Yunnan, China</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a (24)</td>
<td>C</td>
<td>M</td>
</tr>
<tr>
<td>b (7)</td>
<td>C</td>
<td>I</td>
</tr>
<tr>
<td>c (1)</td>
<td>C</td>
<td>I</td>
</tr>
<tr>
<td>d (1)</td>
<td>C</td>
<td>I</td>
</tr>
<tr>
<td>e (1)</td>
<td>C</td>
<td>I</td>
</tr>
<tr>
<td>Thailand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>C</td>
<td>I</td>
</tr>
<tr>
<td>b</td>
<td>C</td>
<td>I</td>
</tr>
<tr>
<td>Cambodia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>C</td>
<td>I</td>
</tr>
<tr>
<td>b</td>
<td>C</td>
<td>I</td>
</tr>
<tr>
<td>c</td>
<td>C</td>
<td>M</td>
</tr>
<tr>
<td>d</td>
<td>C</td>
<td>T</td>
</tr>
<tr>
<td>PNG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>S</td>
<td>M</td>
</tr>
<tr>
<td>b</td>
<td>S</td>
<td>M</td>
</tr>
<tr>
<td>Solomon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>C</td>
<td>M</td>
</tr>
<tr>
<td>b</td>
<td>C</td>
<td>M</td>
</tr>
<tr>
<td>c</td>
<td>C</td>
<td>I</td>
</tr>
<tr>
<td>Philippines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>C</td>
<td>M</td>
</tr>
<tr>
<td>b</td>
<td>S</td>
<td>M</td>
</tr>
<tr>
<td>c</td>
<td>C</td>
<td>I</td>
</tr>
<tr>
<td>Brazil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>C</td>
<td>M</td>
</tr>
<tr>
<td>b</td>
<td>C</td>
<td>M</td>
</tr>
</tbody>
</table>

Number in parenthesis indicates the number of isolates with that respective haplotype.

Plasmodium falciparum multidrug-resistant 1 single nucleotide polymorphisms and copy number

In sharp contrast to the prevalence of K76T mutation in the Yunnan *P. falciparum* samples, only one isolate (<1%) had the *pfmdr1* N86Y mutation, while none was mutated at codon 1246 (Table 3). To rule out that the result obtained by PCR–RFLP analysis was due to incomplete enzyme digestion, we randomly selected 10 PCR products from each *pfmdr1* fragment for sequencing, which further confirmed the presence of wild-type sequences at the two codons (data not shown).

From 60 single-clone infections, the *pfmdr1* copy number was successfully determined in 53 samples, 44 of which were from Mengla county. When rounded to the closest integer, 90.6% isolates had a single copy *pfmdr1*, 7.5% had two copies, and only one sample (1.9%) had three copies (Table 3). Interestingly, all these five isolates with amplified *pfmdr1* were from Mengla.

Discussion

The widespread resistance to CQ and other antimalarials occurring in Southeast Asia has fostered the deployment of artemisinin-based combination therapy for falciparum malaria. Beginning in 2005, artemisinin-based combination therapy (dihydroartemisinin–piperaquine, Artekin) began to be the choice of *P. falciparum* therapy in Yunnan. Since widespread resistance to piperaquine has been observed (Yang et al. 1995), suitability of this partner drug for artesunate in this area is questioned. Meanwhile, declining resistance to CQ observed in *P. falciparum* in many malarious regions after its withdrawal suggests a possibility of future reintroduction of the drug. This consideration requires better understanding of the evolution of resistance in the absence of the drug pressure.

While drug resistance is expected to drop after the removal of selective pressure, this process can vary greatly between locations. More surprisingly, the two closely located provinces in China also experienced quite different paces in the evolution of CQ resistance although CQ was withdrawn almost concomitantly from the two provinces.
two decades ago. Whereas a significant decline of CQ resistance was observed in Hainan following the cessation of CQ use (Liu et al. 1995; Wang et al. 2005), CQ resistance in Yunnan province remained high (Yang et al. 1997). Our molecular analysis of the major genetic determinant of CQ, the K76T mutation in pfcrt, also supports the results from the in vitro microtests. Although the exact mechanism remains to be elucidated, we speculate that several factors may have contributed to the persistence of the K76T mutation in the Yunnan P. falciparum populations.

First, vivax malaria accounts for approximately 2/3 of all malaria cases in Yunnan and CQ is still the recommended drug for treating vivax malaria. In such P. vivax–P. falciparum sympatric areas, mixed-species infections are common and can reach as high as 20% (Snounou et al. 1993). Moreover, some of these co-infections are often diagnosed as vivax malaria by conventional microscopic examination and treated with CQ, when cryptic CQ-resistant P. falciparum infections emerge after treatment (Mayxay et al. 2001). Undoubtedly, CQ selective pressure on P. falciparum is retained in areas of falciparum–vivax co-existence. This factor may be responsible for the slow decline of P. falciparum CQ resistance in countries and regions of the Mekong Delta (Berens et al. 2003; Lim et al. 2003; Durrand et al. 2004; Congpuong et al. 2005).

Second, unlike Hainan Island that is isolated from other malarious regions, Yunnan borders three Southeast Asian countries, where malaria is highly endemic and CQ resistance levels are high (Labbe et al. 2001; Ngo et al. 2003; Dittrich et al. 2005; Hatabu et al. 2005). Genetic exchange and spread of resistant genotypes likely play an important role in maintaining CQ resistance in this area.

Third, deployment of structurally similar drugs with cross-resistance will slow down the decline of resistance. A prominent example is cross-resistance between CQ and amodiaquine (Holmgren et al. 2006). Although amodiaquine has never been used for malaria control in Yunnan, P. falciparum is highly resistant to this drug (Yang et al. 1997). In malaria-endemic areas of China, another quinoline drug, piperaquine has been used extensively in the light of CQ resistance, and widespread resistance to this drug has been observed (Yang et al. 1995). While cross-resistance between the two drugs has not been clearly established (Basco & Ringwald 2003), the fact that they both contain similar structural components suggests that extensive deployment of piperaquine may have imposed a positive selection pressure on pfcrt mutations. Last, while development of drug resistance generally has fitness cost (Walliker et al. 2005), the evidence for reduced fitness in CQR parasites is circumstantial, which may vary from population to population. It is possible that the acquisition of CQR alleles in the studied parasite populations in Yunnan might not result in reduced fitness as observed elsewhere (Kublin et al. 2003; Wang et al. 2005); thus the mutations would persist even in the absence of drug pressure. Future detailed studies of the genetic backgrounds of parasites in this area are needed for the elucidation of resistance to quinoline drugs.

Molecular and population studies suggest that CQ resistance in P. falciparum has evolved independently in at least four regions: Southeast Asia, PNG, and two in South America (Wellems & Plowe 2001; Wootton et al. 2002). The recent detection of other novel pfcrt alleles in the Philippines suggests the possibility of additional founder events (Chen et al. 2003). A cluster of mutations in pfcrt amino acids 72–76 distinguishes three major haplotypes in the global P. falciparum populations: the wild-type CVMK, CVIET found in Asia/Africa, SVMNT associated with PNG and South America (Wootton et al. 2002). Besides these major haplotypes, others have been associated with different geographical populations of the parasite. For example, SVIET, CVIKT, CVIDT and CVNTT have been found in Southeast Asia (Nagesha et al. 2003; Lim et al. 2003). It is interesting that the SVMNT type, originally considered to be associated only with the PNG/South America populations (Mehlotra et al. 2001), was recently found to be the predominant haplotype in the Philippines (Chen et al. 2003), India (Vathsala et al. 2004) and Iran (Ursing et al. 2006). Our analysis of 34 samples from Yunnan identified two haplotypes CVIET (76%) and CVIDT (24%). That the former is the major haplotype present in Asia is consistent with the theory of Southeast Asian origin of the CQ-resistant parasites. The observation of the east-to-west increase of CQ resistance in Cambodia provides stronger support of this theory (Lim et al. 2003). As acquisition of CQ resistance is likely a stepwise process, the N75D and N75E mutations observed in the present and earlier studies might be different steps [AAT(N) → GAT(D) → GAA(E)] in the evolution of pfcrt (Lim et al. 2003; Mittra et al. 2006). It is noteworthy that the N75E mutants also exhibit much higher IC50 values to CQ than the N75D mutants (Durrand et al. 2004). While the significance of other pfcrt mutations is less well understood, the A220S mutation has been tightly linked with the K76T mutation in most of the global CQ-resistant lines. Our analysis of the Yunnan P. falciparum isolates revealed that 25/34 of the isolates sequenced had such an association, whereas approximately 25% of the K76T isolates were wild-type at A220. The 76T/220A combination was also found as the main type in a subset of samples from the Philippines (Chen et al. 2003). The simultaneous finding of A144T and L160Y mutations in these samples led the authors to hypothesize that these might be compensatory...
mutations that confer CQ resistance in the absence of the A220S mutation. Interestingly, we did not observe the A144T and L160Y mutations in the Yunnan samples. Instead, our analysis of limited samples found that the 76T/220A haplotype was always associated with the A144Y mutation. The role of these new pfcr1 haplotypes in CQ resistance awaits further investigations.

The history of antimalarial drug usage in Yunnan is distinctive from those of neighbouring countries and other parts of the world. As a result of extensive CQ resistance in P. falciparum in late 1970s, this drug was withdrawn from treating falciparum malaria in 1983 in Yunnan. After replacement with PY -SP for a short while, artemisinin treating falciparum malaria in 1983 in Yunnan. After P. falciparum distinctive from those of neighbouring countries and other resistance awaits further investigations.

Of particular interest is the pfmdr1 gene encoding an ABC transporter, which is a possible modulator of drug resistance in P. falciparum. Its effect in modulating resistance to CQ and other antimalaria probably depend on the genetic background of the parasite (Reed et al. 2000; Sidhu et al. 2005). Many field studies aiming to establish a statistical association of the widespread N86Y mutation in Asia and Africa with CQ resistance have yielded conflicting results (Wellems & Plowe 2001). Recent studies with Southeast Asian strains of P. falciparum also failed to demonstrate the N86Y mutation in CQ resistance, but established the role of pfmdr1 amplification in mefloquine resistance (Price et al. 1999,2004; Pickard et al. 2003; Nelson et al. 2005). In contrast to the high prevalence of 86Y mutation in some parts of Southeast Asia such as Indonesia (Syafruddin et al. 2005), we found that mutations at codons 86 and 1246 were very rare in the Yunnan P. falciparum population. This result is congruent with similar findings of other P. falciparum populations from the Mekong Delta (Congpuong et al. 2005; Khim et al. 2005; Wang et al. 2005). It is likely that pfmdr1 mutations may not play an important role in CQ resistance in this large region. Furthermore, real-time PCR analysis showed that less than 10% of the parasites from Yunnan had the pfmdr1 gene amplification, which contrasted with 54% of isolates at the Thai–Myanmar border (Price et al. 2004). Again, this difference can be explained by the distinct mefloquine use histories in the two countries.

Whereas mefloquine has never been used in Yunnan and parasites here are generally susceptible to this drug, it has been widely deployed in Thailand since 1985 (Yang et al. 1997; Sattabongkot et al. 2004). The lack of large geographical barriers between the two sites may facilitate the spread of resistant parasites, which may account for the low-level pfmdr1 amplification observed in the Yunnan parasite population.

Genetic diversity of the malaria parasite at a given region is correlated with the local transmission intensity. Drug selection, however, tends to diminish genetic diversity, especially near the resistance-determinant locus (Wootton et al. 2002). In agreement with Yunnan as a malaria hypoendemic region, genetic diversity at the hypervariable sites msp1 (six alleles) and glurp (four alleles) was lower than what was observed previously in a similarly hypoendemic region in western Thailand (nine msp1 and seven glurp alleles) (Paul et al. 1998) and in hyperendemic regions such as Tanzania (17 msp1 alleles) (Babiker et al. 1994). The low number of msp1 and glurp alleles and the predominance of a CQ haplotype may indicate that parasite population in this region is genetically homogenous, which could be the result of the CQ-selective sweep. Nevertheless, despite low transmission intensity, the observed near 30% mixed-strain infections in Yunnan favour genetic recombination. In addition, its geographical connections with several malarious countries and the resultant frequent population migration across borders ensure large regional gene flows. Therefore, continuous surveillance of drug resistance is needed to extend the life span of individual antimalarial drugs and help local authorities develop more appropriate malaria control policies.

Acknowledgements

We thank the patients at the two malaria clinics for participation in this study. We also gratefully acknowledge Drs Hongsen Yang and Jianhua Hao of the Yunnan Provincial Bureau of Public Health for their enthusiastic support of this project.

References

Nagesha HS, Casey GJ, Rieckmann KH et al. (2003) New haplotypes of the Plasmodium falciparum chloroquine resistance

La resistencia de Plasmodium falciparum a la cloroquina (QC) está determinada por la mutación K76T del gen del transportador de resistencia a cloroquina (pfcr), y modificada por otras mutaciones de este gen, así como en el gen de multiresistencia 1 de P. falciparum (pfmdr1).

Con el fin de determinar la extensión del polymorfismo de estos genes en aislados silvestres de P. falciparum de la Provincia de Yunnan en China, hemos genotipado el codón 76 de pfcr, los codones 86 y el 1246 de pfmdr1. Nuestros resultados muestran que, aunque hace más de dos décadas que se retiró la QC como tratamiento para la malaria por falciparum, un 90.3% de los parásitos aún tiene la mutación K76T del pfcr. En cambio, las mutaciones en los codones 86 y 1246 del gen pfmdr1 son raras. La secuenciación del gen pfcr en 34 parásitos de campo, reveló que el CVIET en las posiciones 72–76 es el tipo predominante, de forma consistente con la teoría del origen sureste-asia' tico de la resistencia a la QC. Adicionalmente, se identificaron dos nuevos haplotipos de pfcr (75D/144Y/220A y 75E/144Y/220A) que favorecieron la recombinaición genética. En este sector es necesario implementar políticas locales en materia de medicamentos y ejercer un control más eficaz de la malaria.

palabras clave parásito de malaria, resistencia a cloroquina, pfcr, pfmdr1, diversidad genética

© 2007 Blackwell Publishing Ltd