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With the growth of mobile users and the ever-increasing amount of data exchange, mobile 

network systems must be able to handle the explosion in application traffic and service 

requirement of users. By utilizing the growth in capabilities of mobile platforms such as 

vehicles, Mobile Cloud brings together Mobile Cloud Computing (MCC) and wireless 

networks to interconnect mobile devices and become a cloud-like service provider. In the first 

part of the thesis, we demonstrate the benefits of the Mobile Cloud by introducing a flexible 

experiment structure that utilizes virtualization and resource sharing to allow different 

protocols to be compared in the same mobility pattern and channel conditions in Vehicular 

Ad-hoc Networks (VANETs). A virtualized environment is setup on each node where the 

combination of Xen and gentoo software is used to create multiple virtual guests. 

However, even with the benefits brought by virtualization and resource sharing, Mobile 

Cloud network architectures still lacks in flexibility, making it difficult to change and re-

configure network behavior, and new services hard or costly to deploy. Also, without 

flexibility to apply network policies, it is difficult to adapt Mobile Clouds to changing 

conditions, resulting in a lack of automation and traffic differentiation hard to enforce. In the 
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second part of the thesis, we introduce Software-Defined Mobile Networks, using software 

defined paths, topologies, virtual networks to improve and complement current Mobile Cloud 

services. Our approach focuses on two concepts: The first is virtualization, where we use the 

benefits of Mobile Cloud to share resources to provide utility and services over a network. The 

second is Software-Defined Networking (SDN), where we apply the emerging SDN 

technology to take the Mobile Cloud one step further by bringing flexibility, programmability, 

and control. We first provide a background on SDN and how SDN is used for wireless and 

mobile, including several prototypes we built to show how such systems can operate in real-

world situations. We then propose designs for Software-Defined Mobile Networks 

architectures, with an emphasis on Software-Defined Vehicle Network (SDVN) architecture 

and its operational mode to adapt SDN to VANET environments. We present the required core 

components to build our SDVN system, including variations that are required to accommodate 

different wireless environments, such as mobility and unreliable wireless link conditions. We 

also present the benefits of a SDVN and the services that it can enable by building and 

evaluating multiple SDVN features, and comparing it with traditional VANETs and Mobile 

Ad-hoc Networks (MANETs).  

Mobile Cloud enables new services with virtualization and resource sharing, and Software-

Defined Mobile Networks takes Mobile Cloud further by adding network programmability, 

flexibility, and control. We show that by combining the two ideas together, we can now form 

the Software-defined Mobile Cloud. 
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Chapter 1. Introduction 

1.1 Towards the Mobile Cloud 

In order to keep up with traffic growth, mobile networks must not only optimize the current 

resources but also add new components/technologies that increase the capacity. Having 

witnessed the phenomenal burst of research in cloud computing, the idea of Mobile Cloud is 

bringing together Mobile Cloud Computing (MCC) and mobile wireless networks to 

interconnect mobile devices and become a cloud-like service provider.  

Cloud computing is about the sharing of resources to provide remote services over a 

network. Today, what we refer as the “cloud” usually means the internet cloud and the edge 

cloud, as shown in Figure 1.1. The internet cloud provides services through infrastructure 

through a data center model, while the edge cloud provides services through access. What 

researchers mean by Mobile Cloud Computing is actually about access to the internet cloud 

through mobiles.  

 

Figure 1.1 Classic Cloud Overview 
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Mobile platforms, such as vehicles and smartphones, have increasingly grown in 

capabilities, including computing, storage, and sensor abilities. These end devices not only are 

the consumers of services from the internet cloud, but are now capable of becoming cloud-

services providers. The edge cloud is starting to leverage this, and by taking one step further, 

the Mobile Cloud is about extending the cloud into mobile wireless and peer-to-peer networks. 

The Mobile Cloud will stimulate research beyond the scopes of traditional Internet Clouds or 

Mobile Computing technologies. 

One example of the Mobile Cloud would be the Mobile Cloud Intelligent Transport 

Services [5]. There has been much work on how Mobile Ad-hoc Networks (MANETS) and 

Vehicular Ad-hoc Networks (VANETs) can be used to provide a wide range of services, 

including both safety and non-safety related applications. Examples include safety services, 

traffic management services, and surveillance services. As vehicles become more and more 

powerful, they can group together to form the mobile vehicular cloud, using Vehicle-to-

vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications [1] and virtualization to 

provide sharing of resources and offer mobile vehicular cloud services. Figure 1.2 shows the 

extended cloud architecture. 

 

Figure 1.2 Extending Cloud into Mobile 
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1.2 Mobile Cloud Case Study: Parallel experiment 

platform for VANET 

In the first part of the thesis, we present a case study on one of the services enabled by the 

Mobile Cloud: Parallel Experiment Platform for VANET. We show how the Mobile Cloud 

can utilize resource sharing and virtualization to provide new services. 

The dynamic nature of VANETs makes it challenging to compare real mobile experiments. 

This is because realistic mobility pattern for mobile nodes is hard to control, performing 

experiments requires lots of resources, and it is almost impossible to reproduce mobility 

pattern in sequential experiments. 

To address these challenges, we introduce a Parallel Experiment Platform for VANET in 

chapter 2, a testbed where multiple experimental configurations can run simultaneously on the 

same node, and thus experience identical network conditions. The testbed exploits Xen and 

Gentoo to provide a virtualized environment at every node. In the virtualized environment, 

multiple virtual machines, each using an independent experiment configuration (ex. Network 

protocol), run in parallel sharing the same physical resources. 

By using our Parallel Experiment Platform, we show multiple benefits. (1) Fewer physical 

resources required by using a virtualized environment. (2) By using virtual machines to run 

different experiments simultaneously, each set of experiments encounters identical network 

conditions and produces comparable results. (3) The virtualized environment is easier to 

control, resulting in more consistent experiments and results that are easier to interpret. We 

compare two well-known Ad-hoc routing protocols, AODV and OLSR, to demonstrate our 

platform. Experiments confirm that our testbed generates consistent and comparable results 

that are consistent with those published in previous studies. 
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1.3 Building a Software-Defined Mobile Cloud 

Have demonstrated the benefits of the Mobile Cloud through our case study, we realize that 

current systems still face many challenges, especially in flexibility. In specific, changing and 

reconfiguring existing network behavior is a very difficult operation, which results in 

difficulty or high cost to deploy new services. Network devices are often complex devices that 

require individual configuration to change network behavior. For example, in our case study, a 

reconfiguration requires recalling all vehicles and nodes. Also, without flexibility to apply 

network policies, it is difficult to adapt mobile networks to changing conditions, resulting in a 

lack of automation and traffic differentiation hard to enforce. This issue creates challenges in 

the deployment of Mobile Cloud applications and services. Therefore, open and flexible 

mobile architectures are key requirements to allow experimenters to test their solutions in 

productive environments, as well as to improve the management of network resources, 

applications, and users. 

In the second part of the thesis, we introduce, Software-Defined Mobile Network, using 

software defined paths, topologies, virtual networks to improve and complement current 

Mobile Cloud services.  Our approach focuses on two concepts: The first is virtualization, 

where we use the benefits of Mobile Cloud to share resources to provide utility and services 

over a network. 

The second is introducing Software-Defined Networking (SDN) [2]. Nowadays, SDN has 

emerged as a flexible way to control the network in a systematic way, with OpenFlow [3][4] 

as the most commonly used SDN protocol. The flexibility of SDN makes it an attractive 

approach that can be used to satisfy the requirements of MANET/VANET scenarios. Applying 

SDN principles to MANET/VANETs will bring the programmability and flexibility that is 
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lacking in today’s distributed wireless substrate, while simplifying network management and 

enabling new V2V and V2I services. 

There are many potential benefits of SDN, many of which are already demonstrated or 

under study in wired-SDN systems, which can also be used in a wireless and mobile SDN 

system. Examples include intelligent routing, where routing is not based on only source and 

destination, and traffic differentiation. Client side techniques such as WAN optimization and 

adaptive streaming can create potential unfairness if all traffic is treated equally. With the 

introduction of SDN, flow-based prioritization allows traffic to be treated differently at the 

forwarding plane to deliver the required QoS while maintaining fairness. Enabling SDN in 

wireless networks can bring the programmability and flexibility that is lacking in today’s 

distributed wireless substrate while simplifying network management and enabling new 

services. 

While wireless and mobile deployment of SDN has recently, begun, its scope has been 

primarily focused on carrier backbones and access networks. OpenRoads [6] envisions that 

users will move between wireless infrastructures. CloudMAC [7] proposes virtualized access 

points. The Wireless & Mobile Working Group (WMWG) [8] in ONF focuses on wireless 

backhaul, cellular Evolved Packet Core (EPC), and unified access and management across 

enterprise wireless and fixed networks (e.g., campus Wi-Fi).  

Other works on wireless SDN include OpenFlow in wireless mesh environments [9], 

OpenFlow in smartphone as an application [10], OpenFlow in wireless sensor networks [11], 

SDN in heterogeneous networked environments [12], and SDN for handover management in 

heterogeneous networks [13]. However, there remain many possibilities and challenges that 

have not yet been fully addressed. We look to explore these potentials by introducing SDN 

into the Mobile Cloud.  
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In chapter 3, we describe background on SDN technology, and the first step to wireless 

and mobile SDN, radio access network SDN. In specific, we describe UCLA’s SDN campus 

deployments, use cases on SDN for the mobile packet core and SDN for WiFi access 

networks, and then present two SDN prototypes that we built to show how such systems can 

operate in real-world situations. We then in chapter 4 propose designs for Software-Defined 

Mobile Networks architectures, with an emphasis on Software-Defined Vehicle Network 

(SDVN) architecture and its operational mode to adapt SDN to VANET environments, as 

SDN in MANETs/VANETs is one of the potential wireless infrastructures that can support 

Software-Defined Mobile Networks. We present the required core components to build our 

SDVN system, including variations that are required to accommodate different wireless 

environments, such as mobility and unreliable wireless link conditions. We also present the 

benefits of a SDVN and the services that it can enable by building and evaluating multiple 

SDVN features, and comparing it with traditional VANETs and Mobile Ad-hoc Networks 

(MANETs). Based on our studies, we show how SDVN can be used to bring network 

programmability, flexibility, and control into the Mobile Cloud. 
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Chapter 2.  Running Consistent, Parallel 

Experiments in Vehicular Environment 

2.1 Introduction 

Technology of MANETs has been studied for years [14]. The main advantages of MANET 

include easy deployment, distributed control, bandwidth efficiency and no need for 

infrastructure. Less than a century after automobiles became affordable for the general public, 

millions of vehicles travel along highways and streets around the world. Inspired by MANET, 

VANET is an emergent technology designed to improve safety, comfort, and convenience for 

vehicle drivers and passengers. 

The use of networking vehicles has attracted considerable attention from both research 

community and automotive industry and has spawned initiatives such as Inter-Vehicle 

Communication Systems (IVC) [15], Intelligent Transportation Systems [16]-[18] etc. 

VANETs enable Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) 

communications. These new communication schemes open a new wide set of possible 

applications together with very challenging novel research topics. 

VANET applications can be divided into three categories: emergency/safety messaging, 

geo-advertising, and data sensing. Different types of applications have very different message 

propagation and delay requirements. Messages from emergency/safety applications are 

typically generated from an accident or collision source, and require delivery with the shortest 

delay. Because message importance decreases as the distance to the accident source increases, 

the hop count requirement for safety applications is generally only 1-hop or 2-hops. Geo-
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advertising targets vehicles within a given zone and direction since the information is only 

relevant to vehicles in that area. Messages are generally initiated from infrastructure and 

routed to the mobile destination through geo-routing protocols. The last type of application is 

to exploit vehicles as sensors. The main advantage of vehicle sensing is the unlimited power 

support and good coverage offered by the vehicles. Therefore, it is considered as a good 

platform to collect quasi real-time data such as traffic status, weather condition, or pollution. 

Besides VANET applications, vehicle users may still require the Internet access for personal 

usage such as email, P2P file transfer, or streaming video. 

Due to various applications in VANET requiring multihop support, researchers have come 

up with several routing protocols for data dissemination. [31]-[34]. These results show the 

importance of routing to VANET. However, individuating the most appropriate protocol 

requires extensive comparison studies. Unfortunately, comparing VANET protocols is 

anything but trivial, as discussed below. 

Before the introduction of testbeds, VANET applications and protocols were evaluated via 

simulation. Through simulation tools such as ns-2, opnet, or qualnet, researchers were able to 

obtain results where the performance of various applications and protocols can be gauged. 

However, even the best of simulation tools cannot simulate the exact physical conditions of 

the real world, and thus results can be unsatisfactory when compared with real world 

experiments. There are three main modeling challenges that VANET researchers face : traffic 

(mobility) pattern; radio propagation models, and environmental network interference. 

As the mobility pattern plays a very important role in VANET, it would be unrealistic to 

assume that mobile nodes are moving according to simple mobility schemes such as random 

walk, or random direction. A common approach is to separate the synthesis of mobility from 

the network simulation: first generate the entire node mobility trace through either road traffic 

simulators, public transportation schedule, or real time logs, and then feed the obtained trace 
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as input to the network simulator. For example, in [19], the traffic log is first generated by a 

scalable traffic simulator (MMTS). However, the problem of this approach is that the radio 

propagation model in VANET cannot be simply extracted from city map and motion trace. 

The general approach to model radio propagation is to use well-established statistic models. 

Since buildings and other vehicles also interfere with the radio signal, real channel conditions 

are much more complicated. In [35], the authors provide a new signal propagation model to 

estimate signal coverage through existing maps. However, attenuation caused by dynamic 

factors such as trucks or obstacles, is still hard to reproduce. Unlike mobility models, it is very 

costly in terms of memory resources to record the channel conditions between every node pair 

and use them in simulation. Vehicular testbeds have been used to measure real channel 

conditions [36]. However, when running vehicular experiments, the mobility pattern changes 

from experiment to experiment, leading to inconsistent results. 

The third challenge is external interference that maybe caused by surrounding wireless 

networks. This varies randomly in an urban environment and it is extremely difficult to 

measure and reproduce in a simulator. 

From the above we conclude that simulation results are unlikely to provide an accurate 

comparison of vehicular protocols because of the difficulty of modeling motion, propagation 

and interference in a realistic manner. The only safe method then, seems to be testbed 

measurements. Unfortunately, here another equally difficult challenge awaits us: experiment 

reproducibility. Suppose we run first routing algorithm A (say, AODV). Then, 10 minutes 

later, we run algorithm B (say OLSR). Can the results be fairly compared? Generally not, 

because in 10 minutes the external interference may have changed, the motion pattern of the 

various vehicles involved in the experiments may have changed (for example, due to 

unpredictable traffic lights), and the radio propagation may have changed (say, due to mobile 

obstacle beyond our control). 
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Thus, realism is definitely the big advantage of testbeds (with respect to simulation 

platforms). But now the problem of inconsistency of environmental conditions emerges. This 

is the challenge we address. Namely, we propose to implement a VANET testbed that is set up 

to compare different protocols in the exact same topology and channel conditions. The testbed 

contains multiple mobile nodes, and each node runs multiple virtual machines in parallel. We 

run a different protocol in each machine. We show that in this way a realistic, fair side-by-side 

comparison of the different protocols can be made. 

The rest of the chapter is organized as follows: In section 2.2, related work is introduced. 

Section 2.3 describes our system platform. The virtualization overhead is evaluated in section 

2.4. Two protocols, AODV and OLSR are used to evaluate our platform, and the results are 

reported in section 2.5. Section 2.6 summarizes this chapter. 

2.2 Related Work 

The Wireless Signal Propagation Emulator developed at CMU [40] accurately emulates 

wireless signal propagation in a physical space. In fact it can be trained to replicate a number 

of different representative environments, including urban vehicular scenarios. The emulator 

takes in the signals generated by wireless network cards through the antenna port, subjects the 

signals to the same effects that occur in a real physical space (e.g. attenuation, multi-path 

fading, etc.), and feeds the combined signals back into the wireless cards. The wireless 

emulator forms the basis for a wireless testbed that supports highly realistic experiments, 

while also being fully repeatable and easy to control. The emulator, however, has some 

limitations in reproducing arbitrary motion patterns. In addition, although the propagation 

scenario is very realistic, it is still artificially created, as opposed to measured in real life. 
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Orbit [20] is a testbed that combines an indoor radio grid emulator and an outdoor field trial 

network. This testbed is available for use either via remote or on site access. The indoor radio 

emulator consists of 400 802.11 radio nodes in a 20x20 grid with a wired control channel to 

each node, and the outdoor field trial network consists of 50 nodes. Each wireless node is 

equipped with two 802.11 wireless interfaces. As to mobility support, the outdoor testbed 

isgrounded, and the indoor emulator only supports virtual grid mobility. For example, in [21] 

the authors present a comparison between AODV and OLSR, performed through the ORBIT 

indoor testbed. We use MAC level filtering to block the connection between two neighbor 

nodes, and create node connectivity that is similar to mobile nodes. The work provides some 

initial observations and indicates that AODV performs better than OLSR in terms of stability. 

The department of computer science at University Uppsala has opened to the community 

the Ad-hoc Protocol Evaluation Testbed (APE Testbed) [22]. APE is an encapsulated 

execution environment with tools for post test-run data analysis. It is like a small linux 

package with Ad-hoc configuration and network traffic analysis tools. The package can be 

installed in either windows or linux environment to perform Ad-hoc experiments and display 

the result with GUI. In [23], Lundgred et al. used APE to evaluate the performance of AODV 

and OLSR with up to 37 nodes along indoor hallways and athletic fields. Their results show 

AODV performs better than OLSR when mobility is high. However, to the best of our 

knowledge, there has not any mobile or VANET experiment using APE testbed. 

Several vehicular experiments and testbeds have been proposed in the past [24]-[29]. 

However, none of them compared the behavior between different protocols. A general 

problem is that controlled mobility in vehicle experiments is almost impossible unless the 

scenario is extremely simple. 

Many academia facilities have mesh network testbeds that use AODV or OLSR to perform 

layer 3 routing. Some of the mesh testbeds are deployed in real environment, such as MIT 
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RoofNet, Berlin Roof Net, and Mesh Networking from Microsoft Research [37]-[39]. These 

systems provide experimental results in real world channel condition, but lack node mobility. 

Various simulation studies compared the difference between AODV and OLSR, before any 

comparison could be performed on real world testbed. Among these researches, [30] is a 

simluation study that based on VANET scenario. We compare AODV with OLSR through the 

Vehicular Mobility Model (VMM) they proposed. VMM considers both road and obstacles 

(macromobility) and the point of view of the driver (micromobility). 

To sum up, Figure 2.1 shows the different approaches to compare different routing 

protocols. Simulation can capture the node mobility well, but fails to provide realistic channel 

conditions (propagation and interference). On the other hand, the testbed approach provides a 

convincing channel condition, but cannot support complicated mobility at the same time. In 

this chapter, a novel approach is used to perform parallel experiments. Thus, the mobility 

pattern does not need to be reproduced in order to compare different routing protocols. 

 

 

Figure 2.1 Tradeoff between mobility and channel realism  
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2.3 Overview of Experiment Platform 

The In this section we describe our experiment platform. The main purpose of this study is 

to provide the community with an experimental platform that allows the evaluation of 

different protocols and applications under the same environmental conditions. We propose to 

run several experiments together in one single run. Even if mobility pattern and channel 

conditions cannot be reproduced, experiments running at the same time still experience the 

same environment condition. The idea is to have multiple virtual machines running on the 

same mobile node, and each of them runs its own protocol and application, while sharing the 

same wireless card to communicate with the rest of the network. In the following we first 

describe the hardware platform and subsequently the software setup. 

2.3.1 Hardware Platform 

 

Figure 2.2 Node setup on a vehicle 

Our network nodes are common commercial laptops with an Intel Core 2 Duo CPU, 2GB 

of RAM and 120GB hard drive. Each laptop is instrumented with a Ubiquiti SRC wireless 

card with Atheros 802.11 wifi chipsets (AR5004). The Atheros 802.11 wifi chipset is 

supported by the open source linux madwifi driver [45], that allows many customized settings 
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including fixed channel selection, transmission power, and monitor mode. For our experiments 

all the wireless cards are in Ad-hoc mode, using channel 1 only. The transmission power is set 

to the hardware supported maximum (19dbm).The wireless card is connected to a magnetic 

mount antenna with 8dB nominal gain. Each laptop is also equipped with a GPS receiver to be 

able to track the position of the nodes during the experiments. Figure 2.2 shows an example of 

a node setup on a vehicle. 

2.3.2 Software Platform 

 

Figure 2.3 Software Platform 

Each node is installed with the linux Gentoo distribution (kernel version 2.6.21) patched 

with Xen. Xen is an open source industry standard virtualization environment that allows 

several virtual machines (Xen guests) to share the same hardware (see Figure 2.3). Each 

virtual machine can run a different operating system with different protocols and applications. 

In addition, the Xen platform provides the ability to connect the guest operating system to the 

host operating system (Xen host) through a virtual Ethernet bridge. This bridge internally 

connects to one virtual network card for each Xen guest. Therefore, every Xen guest shares 
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the same outgoing link to the physical wireless card. The Xen guests use this bridge to 

communicate with the outside world. 

In addition to the first bridge, we setup a second bridge that allows communication between 

host and guest without introducing additional overhead that might affect performance. In order 

to perform better time synchronization, we use the second bridge to run network time protocol 

(NTP) and correct the time drift between Xen host and guests clocks. We also use of the 

second bridge to obtain geo information. The Xen host is connected to the GPS device by gpsd 

[49]. Gpsd is an open source daemon that interfaces with the GPS device and provides a 

socket interface for retrieval of the location information. Through the Ethernet bridge, Xen 

guests can access GPS information through the gpsd daemon. This allows the use of 

application and protocols that require GPS information to be used in our experiment system. 

The most important components on Xen guests are the routing module, the synchronization 

tool, and the network traffic generator application. Since each Xen guest is anindependent 

system, it can run its own operating system and routing module. 

2.4 Xen Overhead Evaluation 

Our virtualized approach requires the sharing of resources and introduces additional 

overhead over a regular linux system. The overhead introduced by the system can be 

categorized into two ways: 

• Virtualization Overhead: the virtualization platform adds an extra software 

processing layer between applications and hardware. In addition, hardware 

resources are used to run the virtual machines. Therefore, the delay between the 

generation of a packet at application layer and the time it is sent out of the hardware 

interface is longer than for a regular linux system with no virtualization. 
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• Sharing Overhead: When multiple virtual machines transmit at the same time, 

they contend for the same physical medium. This contention causes lowers the 

maximum throughput the hardware can achieve and introduces extra delay due to 

the enqueueing of packets.  

In this section we investigate on the impact of such overhead factors and find the limitation 

introduced by our virtualization system. 

2.4.1 Virtualization Overhead 

In order to evaluate the overhead introduced by the virtualization platform we performed a 

set of experiments to compare the performance of a native linux system and our virtualized 

environment. For the virtualized environment, we setup two Xen guests on the same machine. 

We then activate a constant UDP data flow that generates packets every 150ms destined to 

another wireless receiver, only from one of the Xen guests, while the other Xen guest remains 

idle. Figure 2.4 shows the end-to-end delay for both the native linux system and the 

virtualized platform for an increasing packet size. A first observation is that the data transfer 

on the virtual environment suffers from higher latency. Moreover, an increase of the packets 

size causes an increase of the delay for both systems. However, the virtualized environment 

suffers a higher increase. This can be explained by the fact that every packet generated by 

Xen guest needs to be moved in memory more times than in the native system before it 

reaches the outgoing interface. Nevertheless, the delay increase for the virtual environment is 

in the range of tens of milliseconds. Compared to the delay introduced by external factors 

such as multi-hop paths and channel contention, the overhead is negligible. In our field tests, 

our UDP traffic generator sends out 50 bytes per 150 ms. With this network load the 

overhead of the two systems is comparable. 
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Figure 2.4 Overhead introduced by the Xen virtualization: packet transmission delay as a 

function of the packet size for the native system and for the virtualized environment 

2.4.2 Sharing Overhead 

On our virtualized platform, the Xen guests share the same physical resources. It is then 

important to understand what is the maximum network load at which the sharing of the same 

resource causes losses or excessive delays. The Xen host connects the Xen guests to the 

physical network interface through a linux network bridge. The operative system provides a 

fair share of CPU time to the virtual machines, and thus to the read and write locks on the 

network bridge. The bridge queue policy is First In First Out (FIFO) that coupled with the fair 

share of the locks avoids starvation and provides fair sharing of the resources. In this section 

we plan to assess what is the ”safe zone” to run our experiments so that the sharing overhead 

does not affect the validity of our results. We setup one UDP traffic generator on two Xen 

guests destined to another wireless node. One Xen guest is running AODV and the other is 

running OLSR as routing. In order to force the maximum sharing overhead, both Xen guests 

generate data traffic at the same time. This is possible as the guests are synchronized through 

NTP. We compare the packet loss and the end-to-end delay experienced by our system to the 

one of a similar setup on a native linux system. Figure 2.5 shows the average end-to-end delay 
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for increasing packet sizes. We can observe that the delay remains negligible up to packet 

sizes of 400 bytes for the virtualized environment, for larger packet sizes the delay increases 

considerably. 

We can conclude that for the data load used in our experiments (50 bytes every 150 ms) the 

overhead introduced by the virtualization system is negligible. 

 

Figure 2.5 Overhead introduced by the Xen virtualization: packet transmission delay as a 

function of packet size for two UDP flows generated on two virtual machines and on a native 

linux system 

2.5 Field Experiments 

We performed a set of eight rounds of experiments. In these eight rounds we varied the use 

of AODV and OLSR (singularly or in parallel), the use of the interference nodes and the 

number of mobile nodes. Table 2.3 reports the setup we used in each experiment. In this 

session we initially present the details of the setup for each experiment round. We then show 

that running subsequent experiments leads to different environmental conditions and therefore 

to incomparable performance results. Finally, we show that, using our platform, the two 

routing protocols experience the same environmental conditions over time and therefore their 

performance can be compared without any ambiguity. 
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2.5.1 Experimental Setup 

Several software components were run on the Xen host and guest machines throughout all 

of our experiments. 

1) Host Setup: 

Mactrace: Each Xen host runs a mactrace tool that periodically (every 200 ms) broadcasts 

hello messages, which contain position and timestamp information. These hello messages are 

generated directly at layer 2 using linux raw sockets. This solution avoids the intrinsic delays 

introduce by higher network layers (e.g. IP and UDP). Each node keeps a neighbor table 

storing its current neighbors together with the time the last packet was received from each 

particular neighbor. Upon receiving a mactrace hello message, each node will update its 

neighbor table (i.e. add the message sender to the table if it was not present before or update 

the time this neighbor was last seen). The neighbor table is refreshed every second, deleting 

the neighbors from which no packet was received since the last refresh. Gathering the 

mactrace logs from all the nodes, we are able to construct the network connectivity matrix 

over time for further investigations. 

Positiontrack: Each Xen host queries the gpsd daemon every second to obtain the GPS 

position. The GPS position is then stored together with the GPS timestamp and the system 

clock timestamp. 

Tshark: Each Xen host runs tshark. Tshark is an open source packet analyzer that allows 

us to save information relative to each single packet sent or received through the network 

interface relative to wireless card. In particular we can record the exact time each packet was 

either sent or received.  

Synchronization: Before performing our experiments, all the hosts are synchronized to the 

same time using NTP. This allows temporal correlation among the trace logs. 
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2) Guest Setup: 

Routing Protocols: On each node, we run two Xen guests in addition to the Xen host. 

Each guest runs Gentoo linux distribution (kernel version 2.6.18 with Xen support). One Xen 

guest runs AODV-UU [46], an implementation of the Ad-hoc on demand distance vector 

routing (AODV) [41] from Uppsala University, and the other Xen guest uses the Optimized 

Link State Routing (OLSR) [42] implementation from olsr.org [47]. AODV is a reactive Ad-

hoc routing protocol that uses route requests and route replies to build a multi-hop route on 

demand. OLSR is a proactive link-state routing protocol, which periodically sends Hello and 

Topology Control (TC) messages to obtain link state information throughout the whole 

network. These protocols are the most commonly used reactive and proactive routing 

protocols in research testbeds, and are often compared as earlier shown in related work. In 

addition, reliable linux implementations exist for both protocols. In contrast, the geo-routing 

scheme, Greedy Perimeter Stateless Routing (GPSR), often discussed in urban VANET 

studies, still lacks reliable implementations. Thus, we select AODV and OSLR to be the 

benchmarks for comparison. Table 2.1 and Table 2.2 show the routing parameter settings for 

AODV and OLSR. These variables are based on previous work [21] and account for the 

vehicular scenario used in our experiments. Each Xen guest also runs the tshark tool to capture 

all traffic through its network interface. In addition, the kernel routing table is logged to record 

route changes at any given time. 

Network Traffic: We developed a simple application to generate a constant UDP stream 

of 50 bytes data segments. Each packet will store in its data segment its packet sequence 

number and the timestamp when the packet was created. Each traffic flow transmits 800 

packets at 150 millisecond intervals. 
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Table 2.1 AODV PARAMETERS 

Hello message interval 500ms 

Allow hello loss 2 

Delete period 1s 

Active route timeout 2s 

Table 2.2 OLSR PARAMETERS 

Hello message interval 500ms 

Hello message validity time 1s 

Topology Control (TC) message interval 1s 

Topology Control (TC) message validity 2s 

3) Physical Setup:  

Figure 2.6 displays a top view of the physical topology setup. All the experiments were 

performed around the Engineering IV building at UCLA. We split our nodes into two types: 

Fixed nodes and mobile nodes. Fixed nodes do not move and their antenna is placed on top of 

a 1.5 meter stand to ensure good signal propagation. Mobile nodes are placed on vehicles and 

their antenna is placed on the top of the car to avoid interference due to the car body shell. 

Four fixed nodes, represented by the pin icon in Figure 2.6, were placed at the four corners of 

the building. The resulting rectangle is approximately 60 meters wide (East-West) and 

approximately 50 high (North-South). Each fixed node is in line of sight with the nodes 

placed at neighboring corners. Therefore, neighbor nodes are within the transmission range of 

each other. The building blocks diagonal connections, and thus nodes placed at opposite 

corners cannot directly communicate with each other. In addition to the four nodes in the 

corners, we placed two interference nodes indicated by the wave icon on Figure 2.6. These 

interference nodes generate layer 2 broadcast packet bursts of random length uniformly 

distributed between 0 and 100 packets of random size uniformly distributed between 50 and 

1000 bytes. After each burst they idle for a random period of time uniformly distributed in 

the interval [0,30] seconds. 
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Figure 2.6 Top view of topology setting for all experiment rounds 

In each experiment round we change the routing protocols that are running: AODV alone 

in rounds 1 and 2; OLSR alone in rounds 3 and 4; both AODV and OLSR in parallel in 

rounds 5 through 8. In order to emulate a change in the environmental condition we run each 

single experiment first with the interference nodes shut down (rounds 1, 3, 5 and 7) and then 

with the interference nodes transmitting (rounds 2, 4, 6, 8). We also explore different 

mobility patterns: one set of experiments involves one single mobile node placed on a car 

revolving clockwise around the building. With this setup each Xen guest on the mobile node 

sends the UDP stream to one of the 4 peer Xen guests on the fixed nodes at a time, in a 

roundrobin manner. Another set of experiments involves two mobile nodes placed on two 

cars both revolving clockwise around the building. A summary of the 8 rounds of 

experiments is reported in Table 2.3. 

Table 2.3 EXPERIMENT ROUNDS SUMMARY 

Experiment Name AODV OLSR Interface Mobile Number 

Round 1 X   1 
Round 2  X  1 
Round 3 X  X 1 
Round 4  X X 1 
Round 5 X X  1 
Round 6 X X X 1 
Round 7 X X  2 
Round 8 X X X 2 
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2.5.2 Repeatability of Experiments 

Using the logs from our mactrace tool, we constructed the network connectivity matrix. 

With this matrix, we can know, at any given time, if any two nodes are connected. By running 

the Dijkstra shortest path algorithm, we can obtain the optimal hop count which is defined as 

the shortest hop count from the UDP sender to the receiver. Figure 2.7 displays the optimal 

hop count as a function of time in experiment rounds 1 through 4. Hop counts equal to zero 

represent idling periods of the sender. In the considered four rounds we are using a very 

simple mobility pattern, a single car revolving around the building. With such mobility pattern, 

we expect to observe periods of time when the sender is 1 hop away from the receiver 

alternated to periods of time when the sender is 2 hops away from the receiver. In fact, it is 

what we can observe in Figure 2.7, exception made for few points in which the sender is 

reported 3 hops away, due to loss of some mactrace hello packets. However, each experiment 

peculiarity is represented by the relationship between 1-hop and 2 hops periods. In fact, we 

can observe in each round different period durations and also different patterns of alternation. 

All this reflects on the performance of the routing algorithms. In Figure 2.8 we show the 

packet hop count distribution for experiment rounds 1 through 4. Packet hop count is the 

number of hops a successfully received packet took to reach the destination. Comparing the 

results from AODV round 1 and AODV round 2, we note that the hop count distributions are 

not the same in different runs. Same thing happens for OLSR round 3 and OLSR round 4. 

Even with such a controlled mobility, the environmental changes between experiments cause 

even the same protocol to perform differently. Therefore, no meaningful conclusions can be 

drawn from the comparison of two different protocols running at different times. 



- 24 - 

 

 

Figure 2.7 Network connectivity: optimal hop count between sender and receiver over 

time for rounds 1 through 4 

 

(a) Round 1 

 

(b) Round 2 

 

(c) Round 3 

 

(d) Round 4 
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Figure 2.8 The packet hop count distribution for experiment rounds 1 through 4 

2.5.3 Parallel Evaluation 

Thus far, we have shown the drawbacks of running experiments at different times. In this 

section we present the advantages of running experiments in parallel. Figure 2.9 presents the 

instantaneous optimal hop count together with the actual packet hop count of AODV and 

OLSR obtained in experiment round 8 from one mobile node to the other. Optimal hop counts 

equal to zero represent periods of inactivity of the sender, and packet hop counts of zero 

represent situations in which no packet was delivered to the destination. We can observe that 

both routing protocols consistently react to changes in the underlying connectivity. This 

consistency in the reaction to changes in the physical network topology is only achievable if 

the two protocols are experiencing the same environmental conditions. 
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Figure 2.9 Parallel evaluation: optimal hop count and packet hop count for AODV and 

OLSR over time in round 8 

In the following paragraph, we discuss the results obtained during the parallel experiments, 

namely rounds 5 through 8. Figure 2.10 present the packet hop count distribution for both 

AODV and OLSR in experiments rounds 5 and 6. If we were to compare the packet hop count 

distribution of OLSR in round 5 and the one of AODV in round 6, we would observe that 

OLSR provides a lower hop count than AODV. Vice versa, if we were to compare the packet 

hop count distribution of AODV in round 5 and the one of OLSR in round 6, we would 

observe that AODV provides a lower hop count than OLSR. In this case different experiments 

provide opposite results. Instead, if we consider the parallel case, we can observe that the 

relationship between the performance of AODV and the performance of OLSR is invariant 

throughout the two rounds. In fact, AODV has generally a lower hop count that OLSR. The 

same conclusions can be drawn for the packet deliver ratio reported in Figure 2.11: AODV 

consistently outperforms OLSR in both rounds. 
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Figure 2.10 Parallel evaluation: packet hop count distribution for AODV and OLSR in 

rounds 5 and 6 

 

(a) Round 5 

 

(b) Round 6 
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Figure 2.11 Parallel evaluation: packet delivery ratio for AODV and OLSR in rounds 5 

and 6 

In the following we prove that even increasing the complexity of the mobility our proposed 

platform can still provide meaningful results. Indeed, in rounds 7 and 8 we send our UDP 

stream from one mobile node to another. In this case the network connectivity is too 

complicated to be consistently reproduced in two subsequent experiments. Figure 2.12 shows 

the packet hop count distribution for AODV and OLSR in rounds 7 and 8. The same 

conclusions drawn for rounds 5 and 6 are valid in this case. Indeed AODV consistently 

outperforms OLSR both in terms of hop count and delivery ratio, shown in Figure 2.13. 

 

(a) Round 5                                        (b) Round 6    
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Figure 2.12 Parallel evaluation: packet hop count distribution for AODV and OLSR in 

rounds 7 and 8 

 

(a) Round 7 

 

(b) Round 8 
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Figure 2.13 Parallel evaluation: packet delivery ratio for AODV and OLSR in rounds 7 

and 8 

2.6 Summary 

Running experiments in a testbed is the most reliable way to compare the performance of 

different protocols in realistic scenarios. However, each scenario in a VANET is characterized 

by its own mobility, propagation obstructions and environmental interference. These 

environmental variations make it difficult to faithfully replicate experiments. The virtual 

machine, parallelized testbed we proposed can perform parallel runs under the same 

environment conditions. Therefore it provides more consistent and reliable results. In addition, 

the vehicle positions and network connectivity can also be logged for future use as traces in 

simulation studies.  Though our experiments, we learned that if the environment has 

uncontrolled interference (like the two sideline bursty interference generators), it is not 

possible to compare different protocols at different times, even if the mobility pattern is simple. 

 

(a) Round 7                                        (b) Round 8    
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Also, we observed through our MAC-layer traces that simple repeatable mobility patterns do 

not imply repeatable network connectivity.  

In this Mobile Cloud case study, we have shown that by introducing software virtualization 

into mobile nodes, new services can be support, such as our parallel experiment platform. 

However, issues still remain where the system is not flexible enough. In specific, once the 

system is deployed, dynamic reconfiguration is still difficult.   

To address these issues, we look at the programmability and control introduced by 

Software-Defined Networking. In the next chapter, we provide background on SDN and the 

first step in wireless and mobile SDN: Radio Access Network SDN.  
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Chapter 3. Wireless and Mobile Software-Defined 

Networking 

3.1 Introduction 

The growth in mobile data, the inherent need to simultaneously operate over multiple 

wireless technologies, and the rapidly evolving mobile services market impose significant 

challenges for wireless and mobile networks. SDN, with its separation of the control and data 

planes, can be used to bring benefits into wireless and mobile networks space.  In this chapter, 

we first provide background on the SDN technology. Then, we describe UCLA’s SDN 

campus deployments. Followed by proposed solutions for Radio Access Network (RAN) 

SDN, including SDN for the mobile packet core and SDN for WiFi access networks. We then 

present two prototype SDN testbeds that we built to show how a wireless and mobile SDN 

can perform in real world situations.   

3.2 Background on SDN and OpenFlow 

The core concept of SDN [2] is the separation between the control plane and the data 

plane. The latter is used for the data forwarding while the other is exploited for the network 

traffic control. This separation enables faster configuration and provisioning of network 

connections.  Instead of individually accessing and configuring each network devices, a 

network administrator can program the behavior of the network in a centralized way. In 

addition to simplifying the deployment of new protocols and applications, SDN brings 

programmability that can enable a more efficient and efficient network. 
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Figure 3.1 shows a high level concept of SDN. Network intelligence is centralized in 

software-based SDN controllers, which has global view of the network and are capable of 

controlling, through standard protocols, the underlying network devices. In SDN, network 

devices are no longer required to be fully distributed systems that implement and understand 

all the different network protocol standards. Instead, network devices can accept input from 

SDN controllers in making network decisions. This can save a lot of resources, as network 

devices can be less sophisticated architectures, and not requiring custom configurations. In 

addition, SDN controllers, with a better view of the overall network, can program network 

behavior that was difficult in a distributed matter. 

 

Figure 3.1 Software Defined Networking Concept 

OpenFlow (OF) [3][4] is the most commonly used standard protocol for communication 

between the SDN control plane and data plane. Figure 3.2 shows an OpenFlow network 

comprising the two main components in SDN architecture: the OpenFlow controller and 

several OpenFlow-enabled switches that communicate using a secure channel. 
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Figure 3.2 OpenFlow components 

The controller is a software program element that is used to modify the content of flow 

tables, which are located in each OpenFlow-enabled switch. Each flow table contains a list of 

flow entries, which consist of Match Fields, Priority, Counters, Instructions, Timeouts, 

Cookie, and actions associated. When a packet comes to the switch there is a lookup into the 

matching field of each entry. If there is a match, the packet will be processed according to the 

actions of the matching flow entry. On the other hand, if a packet does not match, a table-

miss occurs. In this case, different actions can be taken as specified in the table-miss flow 

entry, for instance, the OpenFlow-enabled switch can encapsulate the packet and send it to 

the controller through the secure channel or directly drop the packet. 

OpenFlow controller controls the behavior of the network by sending flowmods packets to 

modify the content of flow tables. The controller has two ways to add rules in the switch: (I) 

proactively, where the controller takes the initiative and adds rules before packet arrival into 

the network; or (II) reactively, where the controller reacts because of an event in the network, 

such as a previously unrecognized packet. An example of such an operation would be an 

Access Point (AP)/switch that sends a data packet to the controller (by encapsulating the 
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packet in an OpenFlow control packet called  packet-in ) because it does not know how to 

deal with it. Then, the controller sends the flowmods packet to the APs/switches with 

instructions. 

One notable feature in an OpenFlow network is that once a specific traffic flow matches 

the flow table, the OpenFlow-enabled switch “knows” how to treat this flow and does not 

need further interactions with the OpenFlow controller. While this allows switches to forward 

traffic efficiently, issues arise when the flow table rules are no longer consistent with the 

network condition. In other words, if network conditions such as topology have changed, 

until the controller inserts/updates the flow table entry, an OpenFlow-enabled switch will use 

the old (and potentially incorrect) rule. We show how this is an issue later in chapter 4 where 

node mobility is common in mobile networks. 

3.3 UCLA SDN Campus Deployment  

ULCA, under the NSF EAGER Project, is establishing a live OpenFlow test bed on the 

UCLA campus, with the goal of allowing researchers in different disciplines to run 

experiments requiring high volume data exchange, intense processing, and/or seamless 

mobility as a production level service on the campus network. UCLA links the campus OF 

network to national OF fabrics via the regional CENIC OF network. This deployment looks 

to support four key applications from the domains of eScience, GENI and smart 

transportation, health care, and manufacturing. The campus implementation support the 

above applications consists of a 10Gbps OF-enabled hub switch connected to CENIC and 

multiple second-tier OF switches associated with the four projects.  

Although SDN technologies are currently being widely discussed and are key elements in 

the GENI architecture, there is little operational or campus-level architectural experience with 
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using them. The project explores the issues associated with deploying SDNs and connecting 

them to real-time information sources. One primary objective of the project is to rework 

current UCLA network engineering practice where extensive hardware reconfiguration is 

required to support the sophisticated processing and efficient storage of data by several of the 

research centers. Flexible reconfiguration is a new paradigm for campus networks.  

In addition to the UCLA campus deployment, the Network Research Lab (NRL) in the 

Computer Science Department also has several SDN deployments. Figure 3.3 shows our 

SDN/OpenFlow testbed that consist of an OpenFlow controller; two OpenFlow enabled WiFi 

routers, and several client devices and switches.  We use the Floodlight controller as the 

OpenFlow controller. 

 

Figure 3.3 NRL Wireless Access Testbed 

In addition to the physical testbed setup, we also have a hybrid physical/emulated 

environment that utilizes Mininet [54]. This is shown in Figure 3.4. Mininet is a network 

emulator that is able to emulate complete networks in a single system. The OpenFlow 

controller that controls this architecture is also the Floodlight controller. One of the 

deployments built upon this emulated testbed is an QoS SDN solution using Mininet/WiFi 

access [55]. 
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Figure 3.4 NRL OpenFlow deployment using Mininet 

Also, another deployment on NRL is architecture for dynamic adjustment of virtual 

network (VN) resources under SDN environments (edge networks) [56]. The key idea is to 

identify the available resources, and to increase or decrease the resources allocated in the VN 

based on the client’s usage and current network resources, aiming to maintain the quality 

required by the client. 

3.4 Proposed Radio Access Network SDN Solutions 

SDN architectures are believed to be able to bring flexibility, scalability and distribution 

into mobile networks, especially for the packet core. Efforts, primarily led by the Open 

Networking Foundation’s Wireless and Mobile Discussion Group [8], has been made to 

define and prioritize use cases of 3GPP Evolved Packet Core (EPC) based networks that 

could benefit from the use of SDN/OpenFlow protocols. This involves using SDN/OpenFlow 
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protocols in the core network to compliment the EPC connected by wired physical links but 

supporting wireless users.  

In addition to the mobile packet core, SDN also bring benefits for WiFi access. Examples 

include using SDN to provide more personalized and reliable services in dense WiFi access 

network. Also, SDN can be used for Unified Access Network for Enterprise and Large 

Campus, where a unified access network uses the same controller to manage both wired 

switches and wireless access points with users in standardized way.  

In this section we describes how SDN can be applied to enhance the mobile packet core, in 

specific, how SDN/OpenFlow can be used for a flexible and scalable packet core, and SDN 

and SDN/OpenFlow for Service Chaining. We also describe efforts incorporating SDN to 

enhance WiFi access. 

3.4.1 Flexible and Scalable Packet Core 

The need for service providers to support video streaming and other data intensive 

applications has greatly increased traffic in mobile networks. Current deployments of LTE 

and 3G networks rely on centralized Evolved Packet Core (EPC) to handle end user sessions 

before the traffic is routed to their specific destinations, such as the Internet and corporate 

networks. The EPC provides for Quality-of-service (QoS) levels, per flow monitoring, taffic 

steering/engineering, and controls how traffic reaches networks. As more and more mobile 

users create more and more traffic, scalability is now becoming a concern for EPC network. 

Introducing SDN, and separating traffic switching from control, can be used to help solve 

the scalability issues. For example, if there is an increase in demand or threshold congestion, 

additional switches may be provisioned to handle the load. Also, if the operator wants to take 

down switches for maintenance or upgrade, other switches can be configured easily through 
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SDN to handle the load level. Another advantage of the separation of control and data is that 

they have different approaches to prevent failures, so the separation makes failure recovery 

easier to accomplish with less effort. For the data plane, redundant switches and paths are 

configured in case of switch failure. While for the control plane, redundant servers or virtual 

machine instances are provide as backups to the primary servers/VMs. This provides 

flexibility as the control and data plane elements are independently scaled to meet demand. 

Figure 3.5 shows an EPC network that is realized using SDN/OpenFlow and control/data 

plane separation and can scale control and data paths independently. 

 

Figure 3.5 Mobile Packet Core with SDN/OF 

The OF controller and OF enabled switches switch architecture is in the EPC network and 

is transparent to the connecting networks. 

As stated earlier, separating control and data would allow each of the entities to be scaled 

independently. If there is an increase in demand or threshold congestion, additional switches 

may be provisioned or configured to handle the extra load. Similarly, control plane functions 

can be independently scaled. The separation can also be expected to provide more flexibility 

for fault tolerance, by providing better redundancy and resilience for the system. 



- 40 - 

 

3.4.2 Service Chaining with SDN 

As traffic from users pass into the access network, it usually passes runs through multiple 

services deployed by mobile operators to provide enhancement of user experience. These 

service act on the user traffic to provide different functions, examples include caching, traffic 

optimization, Firewall, access control, traffic analytic, etc. 

Services are organized into multiple service chains for different set of requirements, based 

on requirements from either the user or mobile operator. As shown in Figure 3.6, user’s flows 

may go through different service chains based on user identity, flows’ characteristics, or 

policy preconfigured.  

 

Figure 3.6 Current Service Chaining in Mobile Service Domain 

We can see that typical service chains are simply serial chains, preconfigured as shown in 

Figure 3.6. The serial nature of the chains results in several challenges. (I) It is difficult and 

requires considerable effort to insert new service or to upgrade existing ones. (II) Modifying, 

such as adding, removing, or changing, a single service might lead to a reconfiguration of all 

services within the same chain. (III) A failure of a single service might disable service of the 

entire chain. (IV) Each service has to process and forward all the traffic flows, which 

increases the overall processing, the traffic delay and also service costs. 

SDN/OpenFlow address these challenges by adding programmability and flexibility to 

chaining services. Using SDN/OpenFlow, mobile operators can selectively steers traffic to 
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the desired service in any order to provide flexibility and agility. Figure 3.7 shows how 

service chaining operates with the introduction of SDN/OpenFlow. 

 

Figure 3.7 Service chaining with SDN/OF 

As user traffic enters from the access, the SDN agent classifies user traffic based on user 

profile, radio access and application type. This traffic is then mapped to associated service 

chains for processing according to the policy from the Policy and charging rules function 

(PCRF). The SDN agent coordinates with the SDN/OF controller to translate policy and 

service requirements into rules for the underlying SDN-enabled devices. The rules build the 

path to specific services as required. Using SDN provides the agility to direct traffic flows to 

any services in a flexible and programmatic way. 

3.4.3 SDN for Dense WiFi Access 

In the world today, large part of the population lives in high-density areas. Many people 

live in multi-resident building that share networking resources. This results in high density 

and can have impact to network performance. High interference and congested channels is 

commonplace, while misconfiguration often leads to poor channel and power allocation. 

Even though multiple access points are available, users can access only theirs, occasionally 

leading to poor coverage which in turn degrades the channel for everyone. A number of 
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factors contribute to this: lack of coordination between individual homes, no expertise from 

users, and poor manageability of WiFi itself. 

One of the efforts of SDN is to enhance performance for dense WiFi access [52]. An SDN 

framework is presented for designing a dense WiFi network which aims to provide users with 

a personalized, fast and reliable network service. Figure 3.8 shows a virtualized WiFi 

architecture. Each user configures and accesses their own personal network. The network 

controller configures the APs, and based on its strategy maps personal APs to the physical 

infrastructure to optimize performance. 

 

Figure 3.8 Virtualized WiFi architecture 

In this architecture, the personal AP will follow the users everywhere. As users move 

around, they feel like they are always connected to their personal AP, which are in fact 

multiple physical APs that are mapped by the SDN/OF controller. By providing the mapping 

between personal APs and physical APs, the SDN/OF controller can also turn off APs that 

are not needed, which can save power and create less interference environment. 
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3.4.4 SDN for Unified Access in Enterprise and Large Campus 

In the previous scenario, the user moves around with their device and stays connected to 

the same personal AP. In this section we describe another case where the user moves around 

and accesses different devices. In the modern enterprise and large campus, users want to 

access the network resource from anywhere (Wi-Fi, remote or wired ports), using any device 

including BYOD (Bring Your Own Device). SDN can be used allow and control user access 

to network resources based on user identity, the device in use, the location of access and 

which applications are desired, no matter which medium the user connected to. Figure 3.9 

shows the architecture overview. 

 

Figure 3.9 Unified Access in Enterprise and Large Campus 

User access, regardless of the medium used to connect, is controlled by the SDN controller 

as traffic enters the network. The SDN controller works with the authentication, authorization, 

and accounting server to authenticate users to identify them. The SDN controller then 

evaluates the user’s access policy to make decisions whether to add/delete network pathways, 

which controls the user’s access to the network resources. 
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3.5 Prototype SDN Testbeds 

In this section, we describe two SDN prototypes that we built to show how such systems 

can operate in real-world situations. The first is SmartFlow, a prototype that shows how SDN 

can be used for mobile traffic offloading in a programmatic way. The second is Remote 

Control Virtualcast, where we show how SDN can be used to share resources on virtual 

networks and manage and control network flows. 

3.5.1 SmartFlow-Intelligent mobile offloading 

The “SmartFlow” demo is about the ability to not only engineer but also move traffic, if 

and as needed, in a network is critical to cope with unexpected situations such as sudden 

traffic peaks, network disruptions and ensure business continuity. OpenFlow and SDN-based 

approaches can be instrumental in making the network and its functions programmatic. 

Traffic and data offloading is one example of immense importance and applicability in 

mobile and wireless networks. Figure 3.10 shows our demo setup. Mobile user is connected 

to two access networks, and the choice of which access network to use to provide traffic to 

the mobile user is done by a SDN controller. 
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Figure 3.10 SmartFlow-Intelligent mobile offloading 

In our demo, we program the SDN controller to monitor traffic flow on the network, and 

move traffic from one access network to another based on aggregated traffic flow. We use 

this to showcase the ability of SDN to deal with unexpected conditions (e.g. traffic on one 

network exceeding capacity). Being able to react to urgent situations or prevent network 

anomalies is of paramount significance for a service provider. A better groomed network (e.g., 

load-balanced, QoS- observant) means SLA (Service Level Agreement) compliance, OpEx 

savings, less outages and dropped calls, and eventually better quality of experience for the 

users or customers whatever the application is. 

We show in this demo how SDN presents a great innovation allowing for dynamic, on-

demand provisioning, controlling and management of networks in a programmatic fashion. 

This comprises functions such as bandwidth management (link capacity, radio frequency or 

wavelength programmable assignment.  

 



- 46 - 

 

3.5.2 Remote Control Virtualcast 

The “Remote Control Virtualcast” demo is about sharing resources on virtual networks 

and managing, controlling network flows, in particular video flows (although the concept 

applies to any type of flows), through WiFi access points. We chose video traffic flows for 

visibility and demonstrability purposes but also because video traffic, from the server all the 

way to the client, is one of the most common traffic types in mobile networks today. 

In this demo, we program our SDN testbed and its OpenFlow-enabled devices so that 

several video servers can play their content (different video streams) to a number of mobile 

clients, all servers using the same multicast address. Without using SDN and being able to 

program the devices, in this case our NEC switches and Wireless access points, clients would 

concurrently receive all video streams thus a mixed signal that would not be viewable, as 

shown in Figure 3.11. 

 

Figure 3.11 Servers using same Multicast Address Resulting in Mixed Signal 
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By introducing SDN, including a specialized controller called the Flowvisor [53] that 

creates network slices and allows multiple tenants to share the same network infrastructure. 

Our prototype can program the devices so that the different streams play on different clients 

without mixing up the content, as shown in Figure 3.12.  

 

Figure 3.12 Remote Control Virtualcast 

As an additional feature we programmed the devices so that the video streams would 

rotate amongst the clients on preset time intervals, hence the name “Remote Control” for our 

demo. For example given three servers S1,S2 and S3 and two clients C1 and C2, S1 is 

streaming to C1, S2 to C2, while S3 stream plays nowhere (i.e., it is blocked) then after 30 

secs, S3 is streaming to C1, S1 to C2 while S2 is on mute. For simplicity, if we assume m 

video servers and n video clients we considered, without loss to generality, m>=n. The 

“Remote Control” app is completely transparent to both the servers and the clients, i.e., they 

are totally unaware of what is transpiring. This in a way promotes and exhibits the 

independence and the isolation of the video streams and the server-client relationship.  
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3.6 Summary 

In this chapter, we provided background on SDN, UCLA SDN deployments, and how 

RAN SDN can be used to provide benefits in mobile access networks, including the mobile 

packet core and WiFi access. We also shown, through our prototype SDN testbed 

deployments, on services provided though SDN on those area.  

However, while RAN SDN provides benefits to mobile networks, it mainly addresses the 

wired side of the cloud. In specific, it deals with traffic that has passed the access radio, and 

does not provide capabilities within mobile node and networks.  

In the next chapter, we introduce Software-Defined Vehicle Networks, which we use SDN 

to enhance the Mobile Cloud in peer-to-peer space. Using SDN in MANETs/VANETs is one 

of the potential wireless infrastructures for Software-Defined Mobile Networks, and we show 

how it can be used toward a Software-Defined Mobile Cloud. 
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Chapter 4. Software-Defined Vehicle Network 

4.1 Introduction 

We have shown how VANETs can be used as one of the potential underlying network 

architectures to provide services in the Mobile Cloud. However, there are still challenges in 

the deployment of VANETs’ applications, such as changing and reconfiguring existing 

network behavior, lack of flexibility to apply network policies, and applying automation and 

traffic differentiation. Therefore, open and flexible vehicular architectures are key 

requirements to allow experimenters to test their solutions in productive environments, as 

well as to improve the management of network resources, applications, and users. 

To address these challenges, we look at SDN [2]. SDN brings a flexible way to control the 

network in a systematic way, with OpenFlow [3][4] as the most commonly used SDN 

protocol. The flexibility of SDN makes it an attractive approach that can be used to satisfy 

the requirements of VANET scenarios. Applying SDN principles to VANETs will bring the 

programmability and flexibility that is lacking in today’s distributed wireless substrate, while 

simplifying network management and enabling new V2V and V2I services. 

In this chapter, we focus on applying SDN into VANETs. In specific, we look at the 

architecture, operations, and benefits of Software-Defined Vehicle Network (SDVN) services 

and new functionalities to support them. By decoupling the control and data planes in 

VANETs, network intelligence and state can be logically centralized and the underlying 

network infrastructure is abstracted from the applications. Thus, it will be possible to have 

highly adaptive, flexible, programmable, and scalable VANETs environments. A use-case on 
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routing is presented to demonstrate the benefits of integrated SDN VANETs architectures in 

forwarding data in multipath scenarios. 

The reminder of the chapter is structured as follows. Section 4.2 provides background 

information on VANET in relation with SDN/OpenFlow. Section 4.3 describes the 

architecture and operations of SDVN. Benefits and services for SDVNs are presented in 

Section 4.4. Section 4.5 presents simulation evaluation and Section 4.6 presents the 

conclusion and future work. 

4.2 Background  

In this section we describe some background information on VANET and its relationship 

with SDN/OpenFlow used through the chapter. In our SDVN architecture, OpenFlow is used 

as base and is integrated to VANET wireless environments. 

In a typical VANET, Vehicles communicate with each other through V2V communication 

in Ad-hoc fashion, and V2I communication through road-side-units (RSU) and mobile 

broadband (e.g. 4G/LTE). Figure 4.1 shows the components and communications with a 

typical VANET. 
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Figure 4.1 VANET Component and Communications 

Traditional VANET services include vehicle and road safety services, traffic efficiency 

and management services, and infotainment services. Vehicle and road safety services are 

those that target the decrease of traffic accidents and loss of life to vehicle occupants. Traffic 

efficiency and management services aim to improve traffic flow, traffic coordination, and to 

provide local and map information. Infotainment services aims to provide information and 

entertainment such as multimedia data transfer and global Internet access. 

In mobile networks, the introduction of SDN and OpenFlow will enable the programing of 

base stations' wireless data plane and enhance the functionalities of the core networks. Thus, 

it will improve the management of resources and mobile devices and create a great 

opportunity for new services and control functions. In dynamic wireless mobile environments, 

such as VANETs, the use of SDN can reduce interference; improve the usage of channels and 

wireless resources, as well as the routing of data in multi-hop and multi-path scenarios. We 

describe the benefits of SDVN s later in this chapter. 
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4.3 SDVN Architecture 

In this section, we describe the architecture of SDVN and its operations. The goal is to 

describe how VANETs take advantage of SDN concepts and functionalities to improve 

resource utilization, select best routes, and facilitate network programmability. 

4.3.1 Architecture Overview 

To enable SDVN, our architecture incorporates the following SDN components: 

• SDVN controller: The logical central intelligence of the SDVN system. The SDVN 

controller controls the network behavior of the entire system.  

• SDVN wireless node: The data plane elements that are controllable by the SDVN 

controller. They are the vehicles that receive control message from the SDVN controller to 

perform actions. 

• SDVN RSU: Stationary data plane elements that are controllable by the SDVN 

controller. They are the infrastructure RSUs that are deployed along road segments. 

Our proposed architecture extends SDN to operate in mobile wireless VANET scenarios. 

In our architecture, we choose to use different wireless technologies for controlling and 

forwarding planes as expected in future VANET systems: Long range wireless connection 

(i.e., LTE/Wimax) for control plane, and high bandwidth wireless connection i.e., Wi-Fi for 

data plane. The practical reason is that in VANETs not all nodes are easily reachable from the 

Infrastructure via RSUs. Figure 4.2 shows the communication between components in our 

SDVN. 
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Figure 4.2 Software-Defined Vehicle Network Communications 

4.3.2 SDVN Wireless Node 

Figure 4.3 shows the internal components of a SDVN wireless node. It contains all the 

functionality of an OpenFlow-enabled switch in traditional OpenFlow networks, plus 

additional intelligence to enable different modes of operation in VANET environments. The 

number of WiFi and LTE interfaces used is based on configuration and the service that the 

SDVN wireless node is required to support. The SDVN module is the combination of packet 

processing and the interface that accepts input from a separated control plane. 
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Figure 4.3 SDVN Wireless Node Internals 

One distinct characteristic of Ad-hoc networks is that the nodes act both as Hosts 

(sending/receiving traffic) and Routers (forwarding traffic on behalf of other nodes). An 

SDVN wireless node is therefore both an SDN data plane forwarding element and an end-

point for data.  Traffic from any wireless node (e.g. application traffic) will run through its 

own SDVN module before being sent, which allows the SDVN controller to determine the 

access of user traffic into the network. 

4.3.3 SDVN Controller 

Different from the device SDVN agent, which is used more as a backup in case of loss of 

communication, the SDVN controller is the primary intelligence in SDVN. The SDVN 

controller is responsible for populating the flow tables of the SDVN wireless nodes with flow 

rules to control how traffic is moving in the network. There are two instances of the 

architecture depending on the connection conditions between this SDVN controller and 

SDVN wireless nodes: 

• Constantly Connected SDVN Controller: a stable connection is maintained between 

SDVN controller and the SDVN wireless node. An example would be the LTE control 

channel in an urban environment. This controller-node communication is similar to that of a 

wired SDN system, where flow rules are inserted reactively or proactively based on policy.  
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• Intermittently Connected SDVN Controller: the connection between the SDVN 

controller and SDVN wireless nodes is intermittent.  It is assumed that a SDVN wireless node 

will not always be able to establish a connection to the global controller. Flow rules are 

pushed by the SDVN controller during periods where connectivity is established; they are 

enforced by the local SDVN agent on the wireless node with knowledge on how to treat 

traffic based on policy, or; they are created by a combination of the two above methods. 

4.3.4 Operations Overview 

Figure 4.4 shows the System operations overview on how an SDVN operates. 

 

 

Figure 4.4 System Operations Overview 

We use a modified OpenFlow protocol with some additional components added to make 

the design viable under Ad-hoc network environments. However, The basic operation is the 

same, each SDVN wireless node, when deciding how to handle traffic, will base the decision 

on flow rules inserted by the SDVN controller. If a packet arrives that is not matched in the 

flow table, an OpenFlow-like behavior is invoked, and the SDVN controller can insert new 
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flow rules in corresponding flow table. The SDVN controller maintains a path database to 

record path and flow information. 

4.3.5 Control Modes 

While the concept of SDN is the separation of control and data plane, there are differences 

in how SDVN can operate based on the degree of control of the SDVN controller. We 

classify our architecture into three operational modes: 

• Central Control Mode: This is the mode where the SDVN controller controls all 

the actions of underlying SDVN wireless nodes and RSUs. In specific, all the 

actions that the SDVN data element performs are explicitly defined by the SDVN 

controller. As shown in Figure 4.5, the SDVN controller will push down all the 

flow rules on how to treat traffic. 

 

Figure 4.5 Central Control Mode 

• Distributed Control Mode: This is a mode where underlying SDVN wireless 

nodes and RSUs do not operate under any guidance from the SDVN controller 

during data packet delivery. This control mode in essence is very similar to the 

original self-organizing distributed network without any SDVN features, except 

that the local agent on each SDVN wireless node controls the behavior of each 
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individual node (e.g., run GPSR routing), as shown in Figure 4.6. 

 

 

Figure 4.6 Distributed Control Mode 

• Hybrid Control Mode: This mode includes all the operational modes of a system 

where the SDVN controller exerts control anywhere between full and zero. Figure 

4.7 shows an example, where the SDVN controller does not hold complete control, 

but instead can delegate control of packet processing details to local agents. 

Therefore control traffic is exchanged between all SDVN elements. One example 

would be that instead of sending complete flow rules, the SDVN controller instead 

sends out policy rules which define general behavior, while the SDVN wireless 

nodes and SDN RSUs use local intelligence for packet forwarding and flow level 

processing. In specific, the SDVN controller instructs SDVN wireless nodes and 

RSUs to run a specific routing protocol with certain parameters. 
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Figure 4.7 Hybrid Control Mode 

The central control mode behaves similar to that of wired SDN architectures, where the 

SDN controller will insert all the rules. However, since the inherent problem of wireless 

channel is its reliability/availability, there are always potential communication losses between 

mobile nodes with the controller. This is the reason why SDVN must have failure recovery 

mechanisms that guarantee that the system can still function, even if at a reduced level, when 

SDVN controller communication is lost or disrupted. The local agent located on each SDVN 

wireless node has the intelligence to deal with such disruptions. For example, when 

communication to the SDVN controller is lost, the system can revert back to running a 

traditional routing protocol, such as GPSR. Later in the chapter, we demonstrate in simulation 

how this fallback mechanism can maintain good packet delivery even during SDVN 

controller disruption. 

4.4 Multi-Frequency SDVN Architecture 

In this section we describe an instance of the SDVN architecture where the SDVN 

controller selects frequencies for wireless node transmissions. In wired SDN/OpenFlow, the 

action field of a flow table rule is usually the output port. When moving SDN to MANET, the 
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output port becomes the specific wireless interface and the specific frequency within that 

interface. A wireless node typically has multiple wireless interfaces; moreover the channel 

frequency of each interface (say, WiFi or LTE) is software reconfigurable.  

We propose two alternative architectures using SDVN-based frequency selection, based 

on the number of wireless interfaces for each wireless node, and on their capability. 

4.4.1 Multiple Wireless Interface Wireless Nodes 

Figure 4.8(a) shows the operation on a wireless node that has multiple wireless interfaces 

that can be used for data plane. 

In this setup, wireless interface on nodes are preconfigured to specific frequencies. The 

SDVN controller does not directly control frequency, but instead chooses appropriate 

interface for data to transmit. The SDVN controller knows which radio is using which 

frequency, and chooses the appropriate one for each flow according to its policy. 

4.4.2 Configurable Wireless Interface Wireless Node 

Figure 4.8(b) shows the operation on a wireless node where wireless interfaces can be 

configured to transmit on a different frequency. 

In this setup, the SDVN controller can directly control the transmission frequency of a 

wireless interface. This flexibility is provided by a more advanced architecture which 

requires radio frequency to be part of the SDVN control message component, as shown in 

Figure 4.8(b). The radios themselves must also be able to accept external commands to 

change the frequency, such as cognitive radios [57][58]. 
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If advanced cognitive radios are used as the wireless interface to transmit data, the SDVN 

controller then must gather information from the radios to coordinate spectrum management 

in order to make decisions. 

 

Figure 4.8 Frequency Selection-based Architectures 

4.5 SDVN Benefits and Services 

As a separated control plane, SDN brings flexibility and programmability into the network. 

This brings awareness into the system so that it can adapt to changing conditions and 

requirements. In specific, this awareness allows SDVN to make better decisions based on the 

combined information from multiple sources, not just individual perception from each node. 

Also, dynamic and flexibility can react to sudden events, suitable for reacting to emergencies 

 

(a) Multi-Interface Wireless Node 

 

(b) Configurable Wireless Interface Wireless Node 
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and changing requirements. In this section, we describe the benefits of SDVNs, and describe 

several services that can be enhanced by utilizing these benefits.  

4.5.1 SDVN Benefits 

We classify benefits of a SDVN into three individual areas: 

• Path Selection: The awareness of SDN allows the system to make more informed 

routing decisions. For example, in a VANET scenario, data traffic can become 

unbalanced, either because the shortest path routing results in traffic focusing on 

some selected nodes, or because the application is video dominant which occupy 

big bandwidth on the path. When this situation is discovered by the SDVN 

controller, it can start a reroute traffic process to improve network utility and 

reduce congestion.   

• Frequency/Channel selection: When a SDVN wireless node has multiple 

available wireless interfaces or configurable radios such as cognitive radios [58], 

SDVN can allow better coordination of channel/frequency used. For example, the 

SDVN controller can dynamically decide at which time what type of traffic will 

use which radio interface/frequency. This can be used to reserve channels for 

emergency traffic for VANET emergency services. 

• Power selection: Because of the awareness, SDVN will have the information to 

decide whether changing the power of wireless interfaces, and therefore its 

transmission range, is a logical choice. For example, the SDVN controller gathers 

neighbor information from SDVN wireless nodes and determines that node density 

is too sparse and commands all nodes to increase power to achieve more 

reasonable packet delivery and reduce interference. 
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4.5.2 SDVN Services 

Based on the benefits that we described earlier, we present services that can be enhanced 

using SDVN. 

• SDVN Assisted VANET Safety Service: Improving road safety through the use of 

V2V communications is one of the primary use cases of VANETs. We show how a 

Software-Defined VANET can improve the services when compared to traditional 

methods.  SDVN can be used to reserve or limit specific frequencies so that 

emergency traffic (or otherwise privileged traffic, such as security) uses this 

reserved path. The difference between this and traditional emergency channels is 

that reservation in our architecture is configurable dynamically.  The SDVN 

controller can assign flows to these channels or remove them based on current 

traffic conditions and application requirements. This can also be used to offer 

different level of services based on policies. The way this can be done is by 

changing rules during an emergency period. Emergency traffic gets priority over 

the remaining traffic.  

• SDVN On Demand VANET Surveillance Service: Surveillance service for 

emergency/authority vehicles is another area in which SDVN can be deployed. In 

traditional architectures, a requester (e.g. police car) must send out a request for the 

surveillance data (or even a broadcast for the data if the holder of the data is 

unknown to the requester). In a SDN-based system, this request is done by the 

SDVN controller. The SDVN controller simply inserts flow rules for the 

surveillance data to reach the requesting nodes. Also, when there are several 

requests for the same surveillance data, such as when multiple police request for 

video surveillance feed, the SDVN controller inserts rules so that the same copy is 

sent to multiple destinations.  
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• Wireless Network Virtualization Service: Network virtualization services aims 

to provide abstract logical networks over shared physical network resources. SDN 

has already been used in data centers to provide network virtualization services, 

and we can apply the same idea for SDVNs. The idea is to let different flows 

choose different radios/interfaces using different frequencies. If the radio 

frequencies used by each individual network is different, individual network’s 

traffic are isolated from each other and we have thus effectively sliced the 

networks and created virtual wireless networks. One method would be the 

grouping of wireless nodes and RSUs, so each RSU only forwards traffic from a 

selected group of wireless nodes. Another more advance method would be to 

incorporate time slicing. The control of which network uses which radio 

interface/frequency for which time period is done by the SDVN controller, which 

makes the allocation of network traffic a programmable fashion. Time slicing for 

efficient OFDM spectrum allocation used for LTE networks can be applied in the 

SDVN to support one virtual wireless network per time slot. If multiple radio 

interfaces are available, multiple virtual networks can be supported in the same 

time slot. For example, ITS traffic is exchanged on frequency channel f1; MPEG 

DASH video is transmitted on frequency channel f2.  Note that while the video 

packet broadcast on channel f2 is picked up by all neighbors tuned on f2, the nodes 

that will receive and forward the video packet is determined by SDVN controller 

intelligence. Additionally, the SDVN controller can set filters on node inputs so 

that some nodes, say, may reject certain traffic classes. This could be used, for 

example, to restrict the propagation of video surveillance traffic to law 

enforcement vehicles. This input filtering is an SDVN feature unique of wireless 

networks where broadcast is used, and can be used in combination with VANET 

surveillance services. 
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4.6 SDVN Service and Features 

In this section we describe multiple SDVN services and features. We describe the 

scenarios, configuration, and evaluation, including simulation setups and results. All 

evaluations are modeled using the NS-3 simulator [59]. The goal of the evaluations is to 

demonstrate the services enabled by using SDVN. 

4.6.1 SDVN Routing vs Traditional Ad-hoc Routing 

In this evaluation we compare SDVN routing with traditional Ad-hoc routing. Figure 4.9 

shows the overview for SDVN routing operation. 

 

Figure 4.9 SDVN Routing Operation Overview 

SDVN controller needs to learn the network topology to make intelligent decisions. For 

our SDVN routing we utilize beacon messages, a common feature in VANET systems.  

SDVN wireless nodes exchange beacon messages to learn information about immediate 

neighbors. This neighbor information is periodically updated to the SDVN controller, which 

uses this information to build a node connectivity graph. Exploiting this feature can provide a 
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lot of advantages for the management of mobility in a VANET scenario. We choose to use 

this beacon method over the Link Layer Discovery Protocol (LLDP) actually used in wired 

SDN systems. Using the information in the connectivity table, the SDVN controller will 

construct the path from sender to receiver, insert flow rules into the SDVN wireless nodes’ 

flow tables, and keep established paths in a local path database for future references. 

We simulate SDVN routing over a SUMO [60] generated road network shown in Figure 

4.10, the road network is a grid type network that spans an area of 1000 x 1000 m, with each 

road segment = 200m. Node density varies is 50 nodes in the simulation. The SDVN 

controller LTE access is placed in the center of the simulation area where it is in wireless 

range of all SDN wireless nodes. Each SDVN wireless node has multiple wireless interfaces; 

short range using 802.11 with the propagation loss model to limit the transmission range to 

250m, and long range using LTE. Each simulation run features a pair of random nodes in the 

topology running a NS3 echo client-server  streaming session, with a packet generation rate 

of 4 packets/s and packet size of 1024 byte. Beacon message interval is 500ms. SDN wireless 

nodes will update neighbor information to the SDVN controller at intervals of 1s Simulation 

parameters were chosen based on MANET comparison studies [61]. Each set of simulations 

is averaged over 10 runs each running for 5 minutes. Table 4.1 lists all the parameters 
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Figure 4.10 Grid Road Network 

Table 4.1 SIMULATION PARAMETERS 

Parameter Value 

Simulated Area 1000 m × 1000 m 

Layout Grid layout 

Road Segment Length 200 meters 

Road Structure Two way two lanes 

Speed Limit 5~20 m/sec 

Node count 30~50 vehicles 

Transmission Range 250m 

Simulation Time 200 seconds 

SDVN Beacon Transmission Interval 500 msec 

SDVN Neighbor Update Transmission Interval 1 seconds 

App traffic data rate 4 packets/sec 

App traffic packet size 1024 Bytes 

We first evaluate our system under different node density and mobility scenarios. Figure 

4.11 shows the packet delivery ratio under different node speeds. 



- 67 - 

 

 

Figure 4.11 PDR under Different Node Speeds 

We can see that packet delivery ratio drops from both the increase in node mobility and 

decrease in total node count. This is expected as routing will fail when there is no path 

between sender and receiver, and both of the factors will increase the chance of not finding a 

valid path. 

Figure 4.12 shows the comparison of SDVN routing to other traditional MANET/VANET 

routing protocols, including   GPSR, OLSR, AODV, and DSDV. We use this evaluation to 

demonstrate the feasibility of SDVN. 

 

Figure 4.12 PDR comparison: SDVN vs Traditional Ad-hoc Routing 
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We can see that our SDVN routing outperforms the other traditional Ad-hoc routing 

protocols. The aggregated knowledge that the SDVN controller has is the major reason. As 

SDVN wireless nodes update the SDVN controller about neighbor information, the SDVN 

controller immediately detects that there is topology change and sends out control messages 

as needed. Therefore our SDVN system responds much faster to topology change. 

The fast response to topology change requires control messages between SDVN controller 

and SDVN wireless nodes. We evaluated the amount of overhead caused by this exchange. 

More precisely, we account for the SDVN wireless nodes sending neighbor information to 

the SDVN controller, and SDVN controller sending rules to SDVN wireless nodes. We 

measure the amount of control traffic from both and compare in Figure 4.13. 
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Figure 4.13 Control traffic breakdown  

   

(a) 30 Nodes 

  

(b) 40 Nodes 

  

(c) 50 Nodes 
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Figure 4.14 shows the control traffic rate generated by the SDVN controller to modify 

flow rules. First, we can see that as node density increases, the SDVN controller needs to 

handle more SDVN wireless nodes and must send out more control messages. Also, we see 

that the control rate increases with speed because the SDVN controller must keep up with 

topology change. The exception is in the 30 node and 20 m/s case where the number of 

control sent by the SDVN controller decreases. This is happening because with only 30 nodes 

it is more likely that the path does not exist. No rules can be inserted, and the total control 

traffic actually decreases. Overall, since control traffic does not carry large payloads, at 30 

packets/s the overhead traffic is manageable. Nevertheless, as with all centralized control 

systems, scalability is a concern that should be addressed, the amount of control message will 

only increase as more SDVN wireless nodes are under the SDVN controller’s control. Also, 

topology change, which is common in VANETs, will also increase control messages. 

Methods to reduce these messages for scalability and freshness should therefore be 

investigated, such as delegated some functionality to local SDVN controllers on each 

individual node. 

 

Figure 4.14 SDVN Controller Control Traffic 
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4.6.2 SDVN Failure Recovery  

In this evaluation we demonstrate how fallback mechanisms utilized by SDVN wireless 

nodes can still provide good packet delivery even when communication to SDVN controller 

is lost. 

To enable this feature, each SDVN wireless node now has a local SDVN agent, as shown 

in Figure 4.15. Traditional Ad-hoc routing protocols (e.g., GPSR, AODV, DSDV, and OLSR) 

are supported in agents as fallback mechanisms, to allow the SDVN network to revert back to 

Ad-hoc network operation even in the case where SDVN controller communication is 

unavailable. 

 

Figure 4.15 SDVN Wireless Node with Local Agent 

One thing to note that the functionality of the agent depends on what features are enabled 

on the SDVN wireless node. The local SDVN agent can either be the backup controller when 

connection to the SDVN controller is lost or the primary SDVN intelligence while receiving 

input from the SDVN controller. In scenarios where the connection to a SDVN controller is 

stable and has full control, this SDVN agent has minimal intelligence. 

Once again, the simulation is performed over the SUMO generated grid road network 

using the same experiment parameters. To demonstrate the need for fallback mechanisms, we 

first show a scenario where no fallback mechanism is used. Figure 4.16 shows this scenario 

where there is a controller failure for 100 seconds, as shown by the dash lines. 
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Figure 4.16 SDVN Controller Failure without Fallback Mechanism 

We can see that Packet delivery ratio immediately starts to drop as SDVN controller no 

longer insert fresh rules for SDVN wireless nodes. This demonstrates that operating SDVN in 

central control mode is dangerous if SDVN controller communication is not reliable enough. 

The nature of a VANET is that nodes will move around quickly, and stale rules will become 

obsolete much more quickly compared to a scenario where node mobility is low. 

We then show the same scenario, except that this time the fallback mechanism, running 

GPSR routing, is triggered when SDVN controller communication is lost. Figure 4.17 shows 

the packet delivery ratio of this scenario. 
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Figure 4.17 SDVN Controller Failure with GPSR as Fallback Mechanism 

We can see that after an initial drop (after the loss of communication with SDVN 

controller and before GPSR is activated), good packet delivery ratio is restored. Once 

communication with SDVN controller is restored, the system once again reverts back to 

SDVN routing.  

4.6.3 SDVN Transmission Power and Range 

In this evaluation, we demonstrate how allowing the SDVN controller to dynamically 

control the transmission power of SDVN wireless nodes can improve packet delivery. The 

simulation again is performed over the SUMO generated grid road network; however the 

node density is 30 nodes. Figure 4.18 shows the result, with the dash line marking the time 

when the SDVN controller raises the transmission power so that transmission range is now 

approximately 400 meters (up from the previous 250 meters). 
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Figure 4.18 SDVN controlling Transmission Power and Range 

We can see how immediately how packet delivery ratio becomes higher, as the new 

transmission range provides much better connectivity between nodes. The SDVN controller 

can make the judgment to adjust transmission power because it has global information on the 

entire VANET scenario. In specific, in our evaluation the SDVN controller increases 

transmission power because based on the information gathered from the SDVN wireless 

nodes, it determines that the connectivity between SDVN wireless nodes is too low. 

4.6.4 SDVN Alternate Path Selection 

In this evaluation, we demonstrate how using shortest path for transmission is not always 

the best option, and how our architecture can overcome this by allowing the SDVN controller 

to force traffic to use alternate paths. Figure 4.19 shows the scenario, there are multiple paths 

from source to destination, various levels of interference is on the shortest path, and SDVN 

can choose the alternate longer path with less interference.  
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Figure 4.19 SDVN Alternate Path Selection Scenario  

The SDVN can make the decision of using alternate paths based on information provided 

from underlying SDVN wireless nodes. In our specific example we estimate path quality by 

calculating neighbor beacon packet losses. Based on node position and past history, the 

SDVN controller can make an intelligent decision on whether a path should be considered to 

route traffic. Figure 4.20 shows the results where SDVN controller makes the decision of 

switching paths when there is 10% and 20% beacon losses.  

 

Figure 4.20 SDVN Alternate Path Selection Results 
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We can see that shortest path approaches performs poorly when interference causes packet 

drop. One thing to note that shortest path approaches has a lower bound threshold for packet 

drop, since interference not only affects application traffic, but also control traffic. When 

enough control packets are lost, the path is not considered to be valid anymore and the 

alternate path is naturally chosen. 

Using beacon packet loss to estimate channel quality does not require any additional 

messaging from SDVN wireless node to SDVN controller, since all information can be 

calculated from periodic neighbor update. However, if SDVN wireless nodes are equipped 

with equipment that can measure channel quality (e.g. spectrum analyzer), this information 

can be easily incorporated into the SDVN wireless node-controller message exchange and be 

used to improve overall performance.  

4.6.5 Multi-channel SDVN   

We then demonstrate how allowing SDVN architectures perform in multi-interface multi-

channel scenarios. The SDVN controller, based on measured channel conditions, is used to 

choose the better channel. For this evaluation, all traffic passes through the interference zone, 

as shown in Figure 4.21. 

 

Figure 4.21 Multi-channel SDVN Scenario 
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SDVN wireless nodes have two channels to transmit traffic, however not all channels 

experience interference for all time. We introduced three interference windows on the two 

channels. The first window is between 20~50 seconds and affects only channel1; The second 

windows is between 80~110 seconds and affects only channel2; The third window is between 

140~170 seconds and affects both channels. The interference on channel1 is stronger. Error! 

Reference source not found. shows the results.  

 

Figure 4.22 Multi-channel SDVN Results 

  

   

(a) Always transmit on channel 1 

  

(b) Always transmit on channel 2 

  

(c) Dynamic channel hop between channel 1 and 2 



- 78 - 

 

We can see that packet delivery rate suffers if the system always chooses the same channel 

for data transmission. In our approach, the SDVN controller will instruct SDVN wireless 

nodes to use the channel that it calculates to be better. Once packet loss is recorded by the 

SDVN controller, it will hop the application traffic to use the better channel, resulting to only 

initial loss of packets. In the case where all channels are affected by interference, the SDVN 

controller chooses the channel witch it perceived to have less interference. 

4.7 Summary 

In this chapter, we introduced Software-Defined Networking into the Mobile Cloud, and 

proposed the architecture and services toward a Software-Defined Vehicle Network (SDVN). 

The architecture captures the components and requirements needed to deploy SDN in 

VANET, and we described several different operational modes and the services that can be 

provided. We demonstrate and evaluated several services: (I) SDVN routing and compared it 

with traditional MANET/VANET routing protocols, (II) how SDVN fallback mechanism is a 

key feature that must be provided to apply the SDN concept into mobile wireless scenarios, 

(III) transmission power adjustment as one of the possible services that can be provided by 

SDVN. (IV) Using SDVN to choose alternate paths when shortest path is not necessary the 

best option, and (V) Utilizing multi-channel in SDVN. 

For future work, there are several potential directions. First, although we demonstrated 

how a fallback mechanism can maintain good packet delivery in the case of SDVN controller 

failure, there are more advanced scenarios that should be considered. For example, there are 

cases of partial SDVN controller connectivity loss, where only a subset of mobile nodes loses 

communication to the controller. In this case, the isolated nodes might need to form their own 

SDVN cluster, or nodes with connectivity to the SDVN controller can act as relay nodes to 
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relay rules. The best action to take will depend on several factors such as node density, 

mobility pattern, or others. 

Second, although we demonstrated the feasibility of SDVN, our current architecture still 

requires infrastructure support (e.g. LTE). Therefore, there are possibilities of alternate 

SDVN architectures such as where SDVN controller transmits control traffic in P2P mode 

using WiFi channels. While this allows to build a wireless SDVN system that is completely 

distributed and thus does not need infrastructure support, the communication with the SDVN 

controller can be delayed and even interrupted  causing new complications. 
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Chapter 5. Conclusion 

Virtualization technologies are becoming mainstream and the importance of software 

agility is increasing. Programmable and flexible architectures will bring about changes in 

network architecture that will support the flexible use of network resources. It is a critical 

technical element of fully realizing the benefits of cloud computing. 

In this thesis, we showed how the use of flexible network platforms can be used to bring 

new services and applications into the Mobile Cloud. First, we demonstrate that the Mobile 

Cloud can enable new services with virtualization and resource sharing. We show this by our 

case study, where we used software virtualization to build a parallel experiment platform that 

made protocol performance evaluation easier based on side by side comparison. 

We then took the Mobile Cloud one step further with Software-Defined networking by 

adding network programmability, flexibility, control, and introduced Software-Defined 

Mobile Networks. We begin by showing how SDN can be used in mobile access, and then 

proposed Software-Defined Vehicle Network (SDVN) architectures. The architectures 

capture the components and strategies needed to complement the Mobile Cloud with SDN. 

We evaluated several services built upon our SDVN including (I) SDVN routing, where we 

showed that SDVN routing having good performance comparing with traditional 

MANET/VANET routing protocols, (II) Failure recovery, where we showed how SDVN 

fallback mechanism can be used to compliment SDN based wireless systems to address 

concerns on the centralized nature of SDN. (III) Transmission power adjustment as one of the 

possible services that can be provided by SDVN. (IV) Using SDVN to choose alternate paths 

when shortest path is not necessary the best option, and (V) Utilizing multi-channel in SDVN. 
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Software-Defined systems are providing us with new ways of controlling our networks. 

The programmability and flexibility provide by these systems allow the deployment of 

services and applications that was difficult or cumbersome to accomplish before. By 

combining the capabilities of the Mobile Cloud and Software-Defined Mobile Networks, we 

created the Software-Defined Mobile Cloud, which provide us with the tools to adapt to the 

ever-evolving world of data.  
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