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Spectral Galerkin Solver for Intense Beam Vlasov Equilibria in Nonlinear Constant
Focusing Channels

Chad E. Mitchell,∗ Robert D. Ryne, and Kilean Hwang
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

(Dated: October 21, 2019)

A numerical method is described for producing stationary solutions of the Vlasov-Poisson system
describing a relativistic charged-particle beam in a constant focusing accelerator channel, confined
transversely by a general (linear or nonlinear) focusing potential. The method utilizes a variant of
the spectral Galerkin algorithm to solve a nonlinear PDE in two degrees of freedom for the beam
space charge potential in equilibrium. Numerical convergence with increasing number of computed
spectral modes is investigated for several benchmark problems. Preservation of the stationary phase
space density is verified using a strongly nonlinear focusing channel based on the Integrable Optics
Test Accelerator at Fermi National Accelerator Laboratory.

I. INTRODUCTION

In the study of intense charged particle beams in accel-
erator storage rings and circular colliders, a central prob-
lem is the construction of a periodically-varying beam
phase space density with periodicity matched to the un-
derlying accelerator structure. This is a challenging prob-
lem whose solution has implications for the long-term
stability of the stored beam. Constant focusing models,
which approximate the beam as a confined non-neutral
plasma in a set of static focusing fields, remain the stan-
dard tool for studying the structure and stability of in-
tense beam equilibria in such systems [1–5]. In the beam
physics community, studies of such equilibria typically
assume that the beam is confined by linear external fo-
cusing forces. With the exception of singular KV-type
equilibria [6, 7], such studies have also assumed rotational
symmetry about the direction of the beam centroid mo-
tion. A small number of authors have considered the case
of nonlinear focusing forces with this symmetry [8, 9]. In
this paper, we describe a numerical method for producing
families of beam equilibria in a general nonlinear focusing
potential in two degrees of freedom, without symmetry
restrictions. Special attention is given to the Hamilto-
nian structure of the particle equations of motion.

In the case of an unbunched coasting beam, the search
for such equilibria is equivalent to searching for station-
ary solutions of the nonlinear Vlasov-Poisson system.
This system can profitably be reduced to a 2D semilin-
ear elliptic PDE with an integral constraint, to be solved
for the electrostatic potential of the beam self-fields in
equilibrium. Existing algorithms for solving semilin-
ear boundary-value problems may then be applied to
solve this problem, after minor modification. In contrast
to finite-element or finite-difference algorithms, spec-
tral Galerkin algorithms provide a smooth (infinitely-
differentiable) approximation to the solution, given as
a linear combination of analytically-known global basis
functions with good completeness and convergence prop-
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erties. Knowledge of the linear coefficients is useful, for
example, in studying individual charged-particle orbits
in the equilibrium fields.

The layout of this paper is as follows. Section II pro-
vides a theoretical overview of intense beam equilibria in
constant focusing channels, culminating in a PDE (15)
to be solved for the equilibrium space charge potential.
Section III describes a numerical algorithm for solution of
this problem using a spectral Galerkin approach. Section
IV describes details of our numerical implementation,
while Section V describes code benchmarks and stud-
ies of numerical convergence. Section VI describes an
application to a nonlinear focusing channel based on the
Integrable Optics Test Accelerator at Fermi National Ac-
celerator Laboratory. There are three brief appendices.

II. INTENSE BEAM EQUILIBRIA IN A
CONSTANT FOCUSING CHANNEL

A. The Vlasov-Poisson System

Consider an axially uniform beam of identical parti-
cles with charge q and mass m moving with relativistic
momentum p0 = mcβ0γ0 in the direction of coordinate s
in a channel confined by a transverse focusing potential
V0 (generated by applied s-independent magnetostatic or
electrostatic fields). Using s as the independent variable
(time-like parameter), the collection of particles at each
s is described by a probability density f on the 4D phase
space (x, px, y, py), satisfying:∫

f(x, px, y, py, s)dxdpxdydpy = 1, f ≥ 0. (1)

Here, we take the momenta px and py to be normalized by
the design momentum p0, and we assume |px|, |py| <<
1. In the collisionless limit, the phase space density f
evolves according to the Vlasov equation [1, 2]:

∂f

∂s
+ {f,H} = 0, (2)
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where

H =
1

2
(p2

x + p2
y) + V0(x, y) +

qφ(x, y, s)

β2
0γ

3
0mc

2
0

(3)

is the Hamiltonian of the particle motion, {·, ·} is the
Poisson bracket, given explicitly by:

{f,H} =

(
∂f

∂x

∂H

∂px
− ∂f

∂px

∂H

∂x

)
+

(
∂f

∂y

∂H

∂py
− ∂f

∂py

∂H

∂y

)
, (4)

and φ is the space charge potential describing the beam
self-fields, which satisfies the following 2D Poisson equa-
tion on the transverse domain Ω (the interior of the beam
pipe):

∇2φ = − ρ

ε0
in Ω, φ|∂Ω = 0. (5)

Here ∂Ω denotes the boundary of Ω, and the charge den-
sity ρ at s is determined by the phase space density f
through:

ρ(x, y, s) = qλ

∫
f(x, px, y, py, s)dpxdpy (6)

for (x, y) ∈ Ω, where λ denotes the number of particles
per unit length. In the following sections, we search for
equilibrium solutions of the system (2-6) for a specified
confining potential V0.

B. Constructing Stationary Distributions

We obtain a stationary solution of (2) satisfying
∂f/∂s = 0 if and only if:

{f,H} = 0. (7)

Such a solution can be constructed by taking feq = G◦H
for some specified differentiable function G : R → R,
provided G is chosen so that (1) is satisfied. This follows
from (7) since:

{feq, H} = {G ◦H,H} = G′ ◦H{H,H} = 0. (8)

For convenience, define the dimensionless quantities:

Φ(x, y) =
qφ(x, y)

β2
0γ

3
0mc

2
0

, V (x, y) = V0(x, y) + Φ(x, y). (9)

Then the spatial projection Pxy of the phase space den-
sity feq takes the form:

Pxy(x, y) =

∫ ∞
−∞

∫ ∞
−∞

feq(x, px, y, py)dpxdpy

=

∫ ∞
−∞

∫ ∞
−∞

G

(
1

2
(p2

x + p2
y) + V (x, y)

)
dpxdpy

= 2π

∫ ∞
0

G

(
p2

2
+ V (x, y)

)
pdp

= 2π

∫ ∞
V (x,y)

G(h)dh. (10)

Using (6) and (9) in the Poisson equation (5) gives that:

∇2Φ = −
(

λq2

β2
0γ

3
0mc

2
0ε0

)
Pxy = −2πKPxy, (11)

where

K =
λq2

2πβ2
0γ

3
0mc

2
0ε0

=
2I

β3
0γ

3
0IA

(12)

is the generalized beam perveance, expressed in terms
of the beam current I. Define a space charge intensity
parameter Λ = (2π)2K. It follows by using (10) in (11)
that the self-consistent space charge potential Φ of the
stationary beam density feq must satisfy:

∇2Φ(x, y) = −Λ

∫ ∞
V (x,y)

G(h)dh, (x, y) ∈ Ω (13)

subject to the condition that Φ = 0 on the boundary ∂Ω.
Note that the lower limit of the integral in (13) depends
on Φ through (9).

To enforce the two conditions in (1), choose the func-

tion G to be nonnegative and put G = f0G̃ for some
constant f0 > 0, to be determined. Define the indefinite
integral:

Gint(h) =

∫ ∞
h

G̃(h′)dh′, h ∈ R. (14)

Using (14) in (13) then gives the nonlinear PDE:

∇2Φ = −Λf0Gint(V0 + Φ) in Ω, Φ|∂Ω = 0. (15a)

Likewise, using (14) in (10), the normalization condition
(1) gives the integral constraint:

f0 =

(
2π

∫
Ω

Gint(V0(x, y) + Φ(x, y))dxdy

)−1

. (15b)

If a pair (Φ, f0) satisfying (15) can be obtained, a sta-

tionary phase space density feq = f0G̃ ◦ H is obtained
by using the fact that H = ||p||2/2 + V0 + Φ, where
||p||2 = p2

x + p2
y. In the following section, we describe

a method for solving (15).

III. SOLVING THE PDE FOR THE
EQUILIBRIUM POTENTIAL

Consider a nonlinear PDE of the form:

∇2U = F (·, U) on Ω, U |∂Ω = 0, (16)

for a specified function F and an unknown function U ,
to be determined. For example, equation (15a) takes the
form (16) when the function F is given by:

F (x, y, U) = −Λf0Gint(V0(x, y) + U) (17)
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for (x, y) ∈ Ω and U ∈ R. Given a reliable algorithm
for solving the linear Poisson equation, one may attempt
to solve (16) as follows. Set U (0) = 0 and solve, for
r = 0, 1, 2, . . .:

∇2U (r+1) = F (·, U (r)) on Ω, U (r+1)
∣∣∣
∂Ω

= 0. (18)

For each r, compute the difference ∆(r) = ||U (r+1)−U (r)||
in a convenient norm, and halt when ∆(r) < ε, where ε
denotes the desired tolerance, indicating numerical con-
vergence. In the special case that F is given by (17) for
well-behaved Gint, this procedure can be shown to con-
verge when the intensity Λ is sufficiently small. At high
intensity, a different procedure is required.

We use the spectral Galerkin procedure described in
[10, 11]. Let {ej : j = 1, 2, . . .} denote an orthonormal
basis of L2(Ω) consisting of smooth real-valued eigenfunc-
tions of the Laplacian on the domain Ω with eigenvalues
λj , so that for j = 1, 2, 3, . . .:

∇2ej = λjej , ej |∂Ω = 0, λj+1 ≤ λj < 0. (19)

This set of eigenfunctions is guaranteed to exist for any
bounded, open subset Ω ⊂ Rd (d = 1, 2, . . .) [12]. We
search for Un ∈ Span{e1, e2, . . . , en} such that Un is an
approximate solution of (16), in the following sense. Let
the residual Rn = ∇2Un −F (·, Un) denote the difference
between the left and right-hand sides of (16), and let 〈·, ·〉
denote the inner product on L2(Ω). It is required that:

〈Rn, ei〉 = 0, 1 ≤ i ≤ n, (20)

so that Rn is orthogonal to the subspace
Span{e1, e2, . . . , en}. Informally, Un must satisfy
(16) accurately for all modes through those of index n.

Define a map T : Rn → Rn given by T (α) = αf , where
for 1 ≤ i ≤ n

αf
i =

∫
Ω

ei(x, y)F

x, y, n∑
j=1

αj

λj
ej(x, y)

 dxdy. (21)

Given a point α ∈ Rn with T (α) = α (a fixed point of
T ), an approximate solution Un of (16) is given by:

Un =

n∑
j=1

αj

λj
ej . (22)

To see this, note that it follows by using (19) in (22) that:

∇2Un =

n∑
j=1

αjej , Un|∂Ω = 0. (23)

In particular, Un satisfies the desired boundary condition.
Using the fact that the ej are orthonormal gives:

〈∇2Un, ei〉 = αi, 1 ≤ i ≤ n. (24)

Likewise, using (22) and the definition of the inner prod-
uct gives:

〈F (·, Un), ei〉 =

∫
Ω

ei(x, y)F (x, y, Un(x, y))dxdy (25)

=

∫
Ω

ei(x, y)F

x, y, n∑
j=1

αj

λj
ej(x, y)

 dxdy

= αi, 1 ≤ i ≤ n,

where in the last equality we used the fact that α is a
fixed point of (21). Thus, letting Rn = ∇2Un − F (·, Un)
we have for each 1 ≤ i ≤ n that:

〈Rn, ei〉 = 〈∇2Un, ei〉 − 〈F (·, Un), ei〉 = 0, (26)

as desired.
An analysis of the numerical error of this procedure

and the convergence of Un with increasing n is provided
in [10, 11]. The existence and uniqueness of solutions
to (16) both depend strongly on the properties of the
function F , and a general discussion is beyond the scope
of this paper. See, for example, the discussions in [10,
13, 14].

A. Application to Vlasov Equilibria

To apply this procedure to solve (15), let G̃ denote

a (unitless) desired functional form of G, with G̃ ≥ 0,
and choose a convenient scale length L > 0. An ap-
proximate solution of (15) is obtained by searching for
a zero α ∈ Rn+1 of the map M : Rn+1 → Rn+1, where
α = (α0, α1, . . . , αn) and M(α) has the (unitless) com-
ponents:

[M(α)]i = −αiL (27a)

− Λα0

∫
Ω

ei(x, y)Gint

V0(x, y) +

n∑
j=1

αj

λj
ej(x, y)

 dxdy,

[M(α)]0 = −1 (27b)

+
2πα0

L

∫
Ω

Gint

V0(x, y) +

n∑
j=1

αj

λj
ej(x, y)

 dxdy,

where 1 ≤ i ≤ n. Given a point α ∈ Rn+1 with
M(α) = 0, we obtain an approximate solution Φn of
(15), together with an equilibrium phase space density
feq and its associated spatial projection Pxy by:

Φn =

n∑
j=1

αj

λj
ej , f0 =

α0

L
, (28a)

feq = f0(G̃ ◦Hn), Pxy = 2πf0(Gint ◦ Vn), (28b)

Hn =
||p||2

2
+ Vn, Vn = V0 + Φn. (28c)
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To verify that the solution (28) has the desired prop-
erties, note that putting f0 = α0/L in (17) gives:

F (x, y,Φn(x, y)) = −Λα0

L
Gint(V0(x, y) + Φn(x, y)).

(29)
Integrating (29) against the n basis functions {ei : i =
1, . . . , n} and using the first n equations in (27) demon-
strates that (α1, . . . , αn) ∈ Rn is a fixed point of the
map (21), so that Φn is an approximate solution of (15a).
More precisely, the residual Rn = ∇2Φn − F (·,Φn) sat-
isfies the condition (20). Likewise, the final equation in
(27) yields:

f0 =
α0

L
=

(
2π

∫
Ω

Gint(V0(x, y) + Φn(x, y))dxdy

)−1

,

(30)
so the normalization condition (15b) is also satisfied.

Note that the parameter L is introduced to provide
consistency of units among the components of α. By
varying L one may adjust the relative weight, within the
search for zeros of M, of the fixed point condition (21)
required for solving (15a) and enforcement of the normal-
ization condition (15b).

IV. NUMERICAL IMPLEMENTATION

The procedure described in the previous section has
been implemented as a parallel Fortran 90+MPI code
for computing stationary solutions of the Vlasov-Poisson
system (2-6). For a given focusing potential V0 and a
given function G, the code returns the solution of (15) for
the equilibrium space charge potential Φ, the coefficients
of Φ in the basis (19), and a set of Np particles sampled
from the 4D phase space density feq = G ◦ H. Table I
lists the numerical input and output.

For this implementation, we assume a rectangular con-
ducting beam pipe, so the domain is given by Ω =
(−a, a) × (−b, b). The basis functions in (19) and their
corresponding eigenvalues are then given explicitly by:

el,m(x, y) =
1√
ab

sin

(
lπ

2a
(x+ a)

)
sin
(mπ

2b
(y + b)

)
,

(31a)

λl,m = −
(
lπ

2a

)2

−
(mπ

2b

)2

, l,m = 1, 2, . . .

(31b)

For bookkeeping purposes, the coefficients of the modes
(l,m) are stored and manipulated in a 1D array, with or-
dering given by the single index j(l,m) = (l− 1)mmax +
m. Consistent with the notation of the previous sec-
tion, the 1D mode index j satisfies 1 ≤ j ≤ n with
n = lmaxmmax. The code could easily be modified to
treat the case of a round beam pipe by replacing the
functions (31) by the eigenfunctions of the Laplacian in
a circular disk.

The primary components of the algorithm are as fol-
lows. To search for zeros of the map M : Rn+1 → Rn+1

given by (27), Broyden’s method [15, 16] for nonlinear
root finding is applied. At each iteration of Broyden’s
method, numerical integration of the 2D integrals ap-
pearing in (27) is achieved by partitioning Ω into square
cells, and using a 7-point cubature formula on each
cell that is exact for polynomials through degree 5 [17].
Within the integrand, the basis functions and eigenvalues
are given by (31). Once a zero α ∈ Rn+1 is obtained, a
solution for the potential Φn is given by (28). Particles
are sampled from the equilibrium phase space density feq
using a rejection method in 5D. A point (x, px, y, py, u)
is sampled from a uniform probability density within a
5D box. If u > feq(x, px, y, py), then the point is re-
jected. Otherwise, the point is retained. This procedure
is repeated until Np points have been retained.

The code produces several diagnostic quantities to
check the quality of the numerical solution. These include
the norm ||M(α)||, to check the quality of the nonlin-
ear root-finding, the residual Rn, given by the difference
between the left-hand and right-hand sides of the PDE
(15a), and its norm ||Rn|| in L2(Ω). The latter quantity
is used to characterize the global numerical error. Note
that Rn must satisfy (20) by construction, provided that
the root-finding is successful.

TABLE I. Numerical input and output for the spectral
Galerkin code described in Section IV.

Code Input

a, b - half-aperture of the rectangular domain

lmax, mmax - number of horizontal and vertical modes

nx, ny - number of points used in the 2D integrals (27)

ε - tolerance threshold for numerical root-finding

Λ - space charge intensity parameter

Np - number of sampled particles desired

parameters specifying the external potential V0

parameters specifying the function G

initial guess for the coefficients (α0, . . . , αn) in (27)

Code Ouput

final value of ||M(α)|| (should be < ε)

integral of the spatial density Pxy (should be 1)

final values of the coefficients (α0, . . . , αn) in (27)

solution on a 2D grid (x, y,Φ(x, y), Pxy(x, y), Rn(x, y))

norm of the residual error ||Rn|| in L2(Ω)

quadratic part of V = V0 + Φ at the origin

file of Np particles (x, px, y, py) sampled from feq

A. Parallelization

When high numerical resolution is required, both the
number of desired modes n and the number of desired
particles Np may be large. In order to treat this situation
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the code is parallelized with MPI. Since the coefficients
of the spectral modes can be calculated independently,
we have each MPI process evaluate a fraction of those
coefficients. Then the coefficients are broadcast to all
processes with an MPI ALLREDUCE operation. In or-
der to generate a numerical distribution we use a particle
decompostion in which each MPI process contains a frac-
tion of the particles. The previously mentioned rejection
method (with a unique random number seed) is then used
by each process to generate its particles.

V. NUMERICAL BENCHMARKS

Suppose we desire a problem of the form (15) with
an exactly-known solution. Let Pd be an exactly-known
probability density on the domain Ω, and let Φd be an
exactly-known solution of the linear Poisson equation:

∇2Φd = − Λ

2π
Pd on Ω, Φd|∂Ω = 0. (32)

Let R ⊆ R denote the range of the function Gint. If
the function Gint is injective, with inverse G−1

int : R → R
defined on its range, one may define an applied potential
V0 of the form:

V0(x, y) = G−1
int

[
Pd(x, y)

2πf0

]
− Φd(x, y), (33)

where (x, y) ∈ Ω and f0 > 0, provided the term in brack-
ets [·] takes values in R, so that (33) is defined. It follows
by direct substitution that Φ = Φd is an exact solution
of the nonlinear PDE (15a) with V0 given by (33), which
correctly satisfies the integral constraint (15b). Further-
more, the spatial projection of the stationary phase space
density feq is given explicitly by Pxy = Pd.

Appendix B describes two such exactly soluble prob-
lems, which were studied for several values of the prob-
lem parameters Λ, H0, a, and b. As measures of global
relative numerical error, we use the two quantities:

E(1)
n =

||Φn − Φd||
||Φd||

, E(2)
n =

||Rn||
||∇2Φd||

. (34)

Here Φn is the approximate solution (28) obtained us-
ing n modes, and Φd is the exactly-known solution. The

quantity E
(2)
n measures the size of Rn = ∇2Φn−F (·,Φn)

with F given by (29), which is the residual characteriz-
ing the difference between the left-hand and right-hand
sides of the PDE. For simplicity, we take a = b and
lmax = mmax, so that the total number of computed

modes is n = l2max. Figure 1 shows the decay of E
(1)
n and

E
(2)
n with increasing lmax for both problems, illustrating

convergence to the exact solution in each case.

For large n, the rates of decay of E
(1)
n and E

(2)
n are

well-described by the rates of convergence of the Fourier
series for Φd and ∇2Φd, respectively. More precisely, if

we define:

Φtrunc
n =

n∑
j=1

〈Φd, ej〉ej , n = 1, 2, 3, . . . (35)

then for large n we observe that E
(1)
n and E

(2)
n satisfy to

high precision:

E(1)
n ≈ ||Φ

trunc
n − Φd||
||Φd||

, E(2)
n ≈ ||∇

2Φtrunc
n −∇2Φd||
||∇2Φd||

.

(36)

For the problems described by potentials V
(I)
0 and V

(II)
0

of Appendix B, the asymptotic behavior of the quantities
in (36) can be evaluated exactly in the limit lmax →∞,
to give the following error estimates when a = b:

E(1,I)
n ∼ 8

√
3

π3
l−5/2
max , E(2,I)

n ∼ 2

π

√
6

11
l−1/2
max (37a)

E(1,II)
n ∼ π3

24
√

15d
l−9/2
max , E(2,II)

n ∼ 8
√

3

π3
l−5/2
max (37b)

which appear as the solid lines in Fig. 1. (The exact value
of the coefficient d ≈ 1/4 appearing in (37b) is given in

Appendix B.) From (37) we see that E
(1)
n ∼ O(l−2

max)E
(2)
n

for both problems. Numerical convergence occurs most
slowly near the computational boundary due to Gibbs
effects.

The rate of numerical convergence is improved when
Pxy is smooth and localized away from the boundary,
due to rapid convergence of the spectral series. As an
example, consider the potential

V
(III)
0 (x, y) =

1

2
k2(x2 + y2) +

t

3
(x3 − 3xy2). (38)

The contour curves of (38) are closed for all values
less than Hesc = k6/(6t2). We compute a stationary
smooth-edged waterbag distribution (Appendix A) with
H0 = Hesc/2 and λ = 0.1. The exact solution of (15) for
this potential is unknown when Λ 6= 0. Figure 2 illus-
trates the computed spatial density Pxy and the residual

E
(2)
n , together with the remaining problem parameters.

In computing E
(2)
n , we use Φd ≈ Φn for n = 35×35. Note

that E
(2)
n exhibits exponential decay with increasing lmax

for the range of numerical parameters considered here.

VI. APPLICATION TO A NONLINEAR
FOCUSING CHANNEL

As a challenging and physically relevant example, we
consider an intense beam confined by a strongly nonlinear
focusing potential similar to that used in the Integrable
Optics Test Accelerator at Fermi National Accelerator
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n
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n
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FIG. 1. Two measures of global relative numerical error (34)
are shown for computed solutions of the exactly-soluble test

problems associated with potentials V
(I)
0 (upper, panel a) and

V
(II)
0 (lower, panel b) of Appendix B. Solid lines denote the

corresponding error estimates given in (37), which are valid
for large lmax.

Laboratory [18, 19]. Consider a constant focusing chan-
nel (3) in which motion is described by the Hamiltonian:

H(x, px, y, py, s) =
1

2
(p2

x + p2
y) + V0(x, y) + Φ(x, y, s),

(39a)
where the applied potential V0 takes the form:

V0(x, y) =
1

2
k2(x2 + y2)− τc2

β
U
(

x

c
√
β
,
y

c
√
β

)
. (39b)

Here k = 1/β, β [m], c [m1/2], and τ [unitless] are con-
stants, and U is the function:

U(ζ, η) = Re
(

z√
1− z2

arcsin(z)

)
, z = ζ + iη. (39c)

It is convenient to define the dimensionless quantities:

VN =
β

c2
V0, xN =

x

c
√
β
, yN =

y

c
√
β
, (40)

in terms of which (39b) takes the simpler form:

VN (xN , yN ) =
1

2
(x2

N + y2
N )− τU(xN , yN ). (41)

We compute thermal stationary solutions of the Vlasov-
Poisson system (2-6) associated with (39) by solving the

8"#8" #4" 4"0"

8"

#8"

#4"

4"

0"

x (mm)

y
(m

m
)

(a)"

0.0001$

0.001$

0.01$

0.1$

1$

0$ 10$ 20$ 30$ 40$

lmax

100$

10(1$

10(2$

10(3$

10(4$

E(2,III)
n

(b)

FIG. 2. (Upper, panel a) Contours of the spatial projection
Pxy of a stationary waterbag phase space density feq obtained
for a 2.5 MeV proton beam with current I = 60.7 mA in a
constant focusing channel described by (38) with k = 0.785
m−1 and t = 32.8 m−3. The domain boundary is located at
a = b = 1.69 cm. (Lower, panel b) Decay of global relative
numerical error for the problem (38). The solid line is a fit
showing exponential decay with increasing lmax.

PDE (15) with Gint(h) = H0 exp(−h/H0) in the domain
(xN , yN ) ∈ (−1.5, 1.5)× (−1.5, 1.5).

Consider a proton beam with a kinetic energy of
(γ0 − 1)mc2 = 2.5 MeV and beam current of I = 60.7
mA. The beam is assumed to propagate in a focusing
channel described by (39) with τ = −0.4, c = 0.01 m1/2,
and β = 1.27 m. The transverse half-aperture of the
beam pipe is given by a = b = 1.69 cm. The parameter
H0 is chosen to produce a distribution with normalized
rms emittances εx,n = 0.4 µm and εy,n = 0.8 µm, where

εx,n = β0γ0

√
〈x2〉〈p2

x〉 − 〈xpx〉2, with a similar expres-

sion for εy,n [1].

Figure 3 shows the applied potential (41) together
with contours of the spatial density Pxy of an equi-
librium beam computed using 15 × 15 modes (lmax =
mmax = 15). Note the presence of singular points at
(xN , yN ) = (±1, 0), which provide strong horizontal con-
finement. Figure 4 shows the relative size of the residual
Rn of the computed solution Φn for the equilibrium po-
tential. This quantity is largest near the singular points,
but remains of order 10−3 elsewhere in the domain, in-
cluding the subdomain containing the beam.
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!1#
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0.5$

0$y N
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FIG. 3. (Upper, panel a) The potential (41), shown for τ =
−0.4. (Lower, panel b) Contours of the spatial projection Pxy

of the thermal equilibrium phase space density feq obtained
for a 2.5 MeV proton beam with current I = 60.7 mA in a
constant focusing channel described by (39b).

To verify that the phase space density feq is a sta-
tionary solution of the Vlasov-Poisson system (2-6), a
beam consisting of 1 M particles was sampled from feq
and tracked self-consistently according to the Hamilto-
nian (39) using the code IMPACT-Z [20]. A second-order
symplectic integrator [21] was used for numerical integra-
tion in s, with stepsize ∆s = 0.0014/k. At each step in
s, the solution of the Poisson equation (11) for the space
charge potential Φ is obtained from the particle data at
s using the gridless spectral algorithm described in [22].
In particular, Φ is computed at each step on the rectan-
gular domain (−a, a)× (−b, b) as a linear combination of
the basis functions (31), where a and b take the values
provided above.

Figure 5 shows projections (profiles) of the particle
density along each of the four phase space coordinates
(x, px, y, py). The initial profiles coincide with the pro-
files obtained after tracking for distance L = 2000/k (2.6
km) at the target current (I = 60.7 mA), demonstrat-
ing that the 4D phase space density is well-preserved.
Note the depression appearing in the vertical beam pro-
file near y = 0, which in this system is characteristic of
Vlasov equilibria at high space charge intensity.

For comparison, Fig. 6 shows the result of tracking
the same initial particle distribution over the same dis-

!"1.5!!!"1.0!!!"0.5!!!!0!!!!!0.5!!!!1.0!!!1.5!
xN

y N

1.5!

1.0!

0.5!

0!

"0.5!

"1.0!

"1.5!

4.0!
3.0!
2.0!
1.0!
0.0!
"1.0!
"2.0!
"3.0!
"4.0!
"5.0!

⇥10�3

R
n
/|r

2�
n
(0,0)|

FIG. 4. Residual in the transverse plane for the numerical
solution of (15) with the applied potential (39b) obtained us-
ing 15 × 15 modes. The result is given relative to the local
maximum of ∇2Φn located at the origin (x, y) = (0, 0).

tance using the mismatched current value I = 0. After
tracking, both the horizontal and vertical beam size are
reduced, and the depression in the vertical beam profile
has disappeared. These figures indicate clearly the im-
portance of collective effects in determining a true Vlasov
equilibrium at these beam and lattice parameters. More
detailed studies of the dynamics of this system will be
described in a future publication.

VII. CONCLUSIONS

A computational tool was developed for producing sta-
tionary solutions of the Vlasov-Poisson system describ-
ing a relativistic charged-particle beam in self-consistent
equilibrium in a constant focusing channel, confined
transversely by a general (linear or nonlinear) confining
potential. The tool allows one to study the structure of
beam equilibria in high-intensity accelerator systems at
a specified value of beam current. Distinct families of
beam equilibria can be studied by varying the function
G̃, which describes the shape of the equilibrium density
in the 4D phase space. The method utilizes a variation
of the spectral Galerkin algorithm for solving a nonlinear
PDE for the electrostatic potential describing the beam
self-fields. A procedure for constructing exactly-soluble
test problems was described, and applied to study numer-
ical convergence. The code generates a particle distribu-
tion sampled from the 4D Vlasov equilibrium phase space
density, and preservation of the density was confirmed for
a challenging application using numerical tracking stud-
ies.

A large literature exists regarding the numerical so-
lution of nonlinear PDEs of the form (16). The use of
a spectral method involving Laplacian eigenfunctions is
conceptually simple and robust, and it connects natu-
rally with the Poisson solver described in [22]. However,
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FIG. 5. Projected density profiles of a stationary 2.5 MeV
proton beam with current I = 60.7 mA in a constant focusing
channel described by (39b), shown before and after tracking
a distance L = 2000/k. The curves obtained before and after
tracking coincide. In (b), the two curves corresponding to px,
initial and py, initial also coincide.

we remark that alternative numerical methods exist that
may yield improved numerical convergence [23], and the
possibility of constructing Vlasov equilibria using these
methods is also under consideration.

APPENDIX A: BEAM DISTRIBUTION TYPES

The purpose of this Appendix is to relate the no-
tation of this paper to the existing literature on self-
consistent beam equilibria, by describing four beam dis-
tribution types of special interest. In each example, the
phase space density and spatial density are given by
feq = f0G̃ ◦H and Pxy = f0Gint ◦ V , respectively, where
f0 is a normalization constant chosen such that (1) is sat-
isfied. Here, H and V are the self-consistent Hamiltonian
and potential, given by (3) and (9), respectively.

Type 1: To obtain a Kapchinskij-Vladimirskij (KV)
distribution, one considers the limiting case when:

G̃(h) = δ(H0 − h), Gint(h) = Θ(H0 − h), (42)

where H0 is a constant, δ is a Dirac-delta distribution,
and Θ is a unit step function.

Type 2: To obtain a hard-edged waterbag distribution,
one considers the limiting case when:

G̃(h) = Θ(H0 − h), Gint(h) = (H0 − h)Θ(H0 − h),
(43)
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FIG. 6. Projected density profiles of a 2.5 MeV proton beam
with the same initial phase space density as in Fig. 5, given
before and after tracking a distance L = 2000/k in the con-
stant focusing channel (39b) at the unmatched current I = 0.
Evolution of the density is evident. In (b), the two curves
corresponding to px, initial and py, initial coincide.

where H0 characterizes the location of the outer beam
edge in the 4D phase space.
Type 3: For numerical purposes, is useful to consider

a soft-edged waterbag distribution, given by:

G̃(h) =
1

2
(1+tanh(s)), Gint =

λ

2
H0(s+ln(2 cosh s)),

(44)
where λ > 0 is a parameter characterizing the width of
the transition at the beam edge, and

s =
H0 − h
λH0

. (45)

Note that (44) converges to (43) as λ→ 0.
Type 4: To obtain a thermal (Boltzmann) distribution

one takes:

G̃(h) = exp(−h/H0), Gint = H0 exp(−h/H0), (46)

where H0 characterizes the beam temperature:

H0 =
1

2

∫
(p2

x + p2
y)feq(x, px, y, py)dxdpxdydpy. (47)

For the special case (46), equation (15) appears in the
literature under the name of the Poisson-Boltzmann-
Emden equation [24–26].

Numerical benchmarks of the code described in Sec-
tions 3-4 were performed using Types 3 and 4 above, for
which the functions G̃ and Gint are smooth.
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APPENDIX B: EXACTLY-SOLUBLE TEST
PROBLEMS

Using the procedure described in Section V, we may
construct an applied focusing potential V0 such that the
nonlinear PDE (15) possesses an exactly-known solution.
In the following examples, we take Gint(h) = H0e

−h/H0

(H0 > 0), and let the problem domain be Ω = (−a, a)×
(−b, b).

Problem I: Consider an applied potential of the form:

V
(I)
0 (x, y) =−H0 log

(
1− x2 + y2

a2 + b2

)
+ C

[
1−

(
1− x2

a2

)(
1− y2

b2

)]
, (48)

where the constant C is given by

C =
3Λ

32π

(
ab

a2 + b2

)
. (49)

Then the exact solution of the nonlinear PDE (15) using
the applied potential (48) is given by the simple function:

Φ
(I)
d (x, y) = C

(
1− x2

a2

)(
1− y2

b2

)
, (50)

with normalization constant

f
(I)
0 =

3eC/H0

16πabH0
, (51)

and the equilibrium beam density is given by:

f (I)
eq =

P
(I)
xy

2πH0
exp

(
−||p||

2

2H0

)
, (52)

with corresponding spatial density:

P (I)
xy (x, y) =

3

8ab

(
1− x2 + y2

a2 + b2

)
. (53)

The potential V
(I)
0 is minimum and vanishing at the ori-

gin. Note that P
(I)
xy vanishes at the four corners of the

domain boundary, and is strictly positive in Ω.
Problem II: As a second example, choose:

V
(II)
0 (x, y) =−H0 log

[(
1− x2

a2

)(
1− y2

b2

)]
+ Φ

(II)
d (0, 0)− Φ

(II)
d (x, y) (54)

where Φ
(II)
d is given by the convergent series:

Φ
(II)
d = − Λ

2π

∞∑
l,m=1
l,m odd

1

λlm

(
576

l3m3π6
√
ab

)
el,m, (55)

where the functions el,m are given in (31a). Then the
exact solution of (15) is given by (55), with normalization
constant

f
(II)
0 =

9

32πabH0
exp

(
Φd(0, 0)

H0

)
, (56)

and the equilibrium beam density is given by:

f (II)
eq =

P
(II)
xy

2πH0
exp

(
−||p||

2

2H0

)
,

with corresponding spatial density

P (II)
xy (x, y) =

9

16ab

(
1− x2

a2

)(
1− y2

b2

)
. (57)

The potential V
(II)
0 is minimum and vanishing at the ori-

gin. Note that P
(II)
xy vanishes everywhere on the domain

boundary.
The exact value of the coefficient d appearing in the

error estimate for this problem, which appears in (37b),
is given by the sum:

d =

∞∑
l,m=1
l,m odd

1

(l2 +m2)2l6m6
(58)

which is well-approximated by its first term, giving d ≈
1/4.

APPENDIX C: SUMMARY OF NOTATION

All functions are assumed to be real-valued unless oth-
erwise specified. If an integral sign appears without lim-
its, the integral is to be taken over the entire domain.
The following notation is standard. If u, v ∈ Rd, then we
denote

〈u, v〉 =

d∑
j=1

ujvj , ||u|| = 〈u, u〉1/2
. (59)

If g, h are real-valued functions on the domain Ω ⊆ R2,
then we denote

〈g, h〉 =

∫
Ω

g(x, y)h(x, y)dxdy, ||g|| = 〈g, g〉1/2
,

(60)
and L2(Ω) denotes the set of (measurable) functions
g : Ω → R with ||g|| < ∞. If u1, u2, . . . , un ∈ L2(Ω),
then Span{u1, . . . , un} denotes the set of all linear com-
binations of u1, . . . , un with real coefficients. Finally, the
notation F (·, U) is used to denote the function that maps

(x, y) 7→ F (x, y, U(x, y)), (x, y) ∈ Ω. (61)
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