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Abstract 
Motivation: Creating knowledge bases and ontologies is a time consuming task that relies on manual curation. AI/NLP approaches can assist 
expert curators in populating these knowledge bases, but current approaches rely on extensive training data, and are not able to populate arbi-
trarily complex nested knowledge schemas.
Results: Here we present Structured Prompt Interrogation and Recursive Extraction of Semantics (SPIRES), a Knowledge Extraction approach that 
relies on the ability of Large Language Models (LLMs) to perform zero-shot learning and general-purpose query answering from flexible prompts and re-
turn information conforming to a specified schema. Given a detailed, user-defined knowledge schema and an input text, SPIRES recursively performs 
prompt interrogation against an LLM to obtain a set of responses matching the provided schema. SPIRES uses existing ontologies and vocabularies to 
provide identifiers for matched elements. We present examples of applying SPIRES in different domains, including extraction of food recipes, multi- 
species cellular signaling pathways, disease treatments, multi-step drug mechanisms, and chemical to disease relationships. Current SPIRES accuracy 
is comparable to the mid-range of existing Relation Extraction methods, but greatly surpasses an LLM’s native capability of grounding entities with 
unique identifiers. SPIRES has the advantage of easy customization, flexibility, and, crucially, the ability to perform new tasks in the absence of any 
new training data. This method supports a general strategy of leveraging the language interpreting capabilities of LLMs to assemble knowledge bases, 
assisting manual knowledge curation and acquisition while supporting validation with publicly-available databases and ontologies external to the LLM.
Availability and implementation: SPIRES is available as part of the open source OntoGPT package: https://github.com/monarch-initia 
tive/ontogpt.

1 Introduction
Knowledge Bases and ontologies (here collectively referred to 
as KBs) encode domain knowledge in a structure that is ame-
nable to precise querying and reasoning. General purpose 
KBs such as Wikidata (Vrande�ci�c 2014) contain broad con-
textual knowledge, and are used for a wide variety of tasks, 
such as integrative analyses of otherwise disconnected data 
and enrichment of web applications (e.g. a recipe website 
may want to dynamically query Wikidata to retrieve informa-
tion about ingredients or country of origin). In the life scien-
ces, KBs such as the Gene Ontology (GO) (The Gene 
Ontology Consortium 2019) and the Reactome biological 
pathway KB (Fabregat et al. 2018) contain extensive curated 
knowledge detailing cellular mechanisms that involve 

interacting gene products and molecules. These domain- 
specific KBs are used for tasks such as interpreting 
high-throughput experimental data. All KBs, whether general 
purpose or domain-specific, owe their existence to curation, 
often a concerted effort by human experts.

However, the vast majority of human knowledge is com-
municated via natural language, with scientific knowledge 
communicated textually in journal abstracts and articles, 
which has historically been largely opaque to machines. The 
latest Natural Language Processing (NLP) techniques making 
use of Large Language Models (LLMs) have shown great 
promise in interpreting highly technical language, as demon-
strated by their performance on question-answering bench-
marks (Ateia and Kruschwitz 2023).
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These techniques have known limitations, such as being 
prone to hallucinations (Ji et al. 2023) (i.e. generating incor-
rect statements) and insensitivity to negations (Ettinger 
2020). Applications such as clinical decision support require 
precision and reliability not yet demonstrated by LMs of any 
size, though recent demonstrations offer promise (Wang et al. 
2020, Khambete et al. 2021, Luo et al. 2022, Wachter and 
Brynjolfsson 2023).

If instead of passing the unfiltered results of LLM queries 
to users, we use LLMs to build KBs using NLP at the time of 
KB construction, then we can assist manual knowledge cura-
tion and acquisition while validating facts prior to insertion 
into the KB. NLP can assist KB construction at multiple 
stages. Literature triage aids selection of relevant texts to cu-
rate; Named Entity Recognition (NER) can identify textual 
spans mentioning relevant things or concepts such as genes or 
ingredients; grounding maps these spans to persistent identi-
fiers in databases or ontologies; Relation Extraction (RE) 
connects named entities via predicates such as ‘causes’ into 
simple triple statements. Deep Learning methods such as 
autoregressive LMs (Vaswani et al. 2017) have made consid-
erable gains in all these areas. The first generation of these 
methods relied heavily on task-specific training data, but the 
latest generation of LLMs such as GPT-3 and GPT-4 are able 
to generalize and perform zero-shot or few-shot learning on 
these tasks by reframing them as prompt-completion tasks 
(Brown et al. 2020).

Most KBs are built upon detailed knowledge schemas 
which prove challenging to populate. Schemas describe the 
forms in which data should be structured within a domain. 
For example, a food recipe KB may break a recipe down into 
a sequence of dependent steps, where each step is a complex 
knowledge structure involving an action, utensils, and quan-
tified inputs and outputs. Inputs and outputs might be a tuple 
of a food type plus a state (e.g. cooked) (Fig. 1). Ontologies 
such as FOODON (Wang et al. 2020) may be used to provide 
identifiers for any named entities. Similarly, a biological path-
way database might break down a cellular program into sub-
processes and further into individual steps, each step 
involving actions, subcellular locations, and inputs and out-
puts with activation states and stoichiometry. Adapting exist-
ing pipelines to custom KB schemas requires considerable 
engineering.

A schema provides a structure for data. For example, the 
recipe schema in Fig. 1 could be used in a recipe database, 
with each record instantiating the recipe class, with addi-
tional linked records instantiating contained classes, e.g. indi-
vidual ingredients or steps. Figure 2 shows an example of an 
instantiated schema class, rendered using YAML (https:// 
yaml.org/spec/1.2.2/) syntax.

Here we present Structured Prompt Interrogation and 
Recursive Extraction of Semantics (SPIRES), an automated 
approach for population of custom schemas and ontology 
models. The objective of SPIRES is to generate an instance (i. 
e. an object) from a text, where that instance has a collection 
of attribute-value associations. Each value is either a primi-
tive (e.g. string, number, or identifier) or another inlined in-
stance (Fig. 2). SPIRES integrates the flexibility of LLMs with 
the reliability of publicly-available databases and ontologies 
(Fig. 3). This strategy allows SPIRES to fill out schemas with 
linked data while bypassing a need for training examples. A 
major advantage of SPIRES over more traditional RE is its 
ability to populate schemas that exhibit nesting, in which 

complex classes may have attributes whose ranges are them-
selves complex classes. SPIRES also makes use of a flexible 
grounding approach that can leverage over a thousand ontol-
ogies in the OntoPortal Alliance (Graybeal et al. 2019), as 
well as biomedical lexical grounders such as Gilda (Gyori 
et al. 2022) and OGER (Furrer et al. 2019). This grounding 
method offers far more consistent mapping to unique identi-
fiers than hallucination-prone LLM querying alone.

2 System and methods
In SPIRES, A knowledge schema is a structure for constrain-
ing the shape of instances for a given domain. A schema is a 
collection of classes or templates, each of which can be in-
stantiated by instances. Each class has a collection of attrib-
ute constraints, which control the attribute-value pairs that 
can be associated with each instance. The range of an attrib-
ute specifies the allowed value or values. A range can be ei-
ther (i) a primitive type such as a string or number; (ii) a 
class; or (iii) an enumeration of permissible value tokens (e.g. 
an enumeration of days of the week may include ‘Monday’, 
‘Tuesday’, and so on). Attributes also have cardinality, speci-
fying the minimum and maximum number of values each in-
stance can take. In addition, each schema element can have 
arbitrary metadata associated with it.

Formally, a schema S consists of n classes: 

ClassesðSÞ ¼ fc1; . . . ; cng (1) 

Classes correspond to the kinds of entities present in a 
database (e.g. in a recipe database, this would include recipes, 
as well as ingredients and steps; see example in Fig. 1).

Each class ci has an ordered list of attributes: 

AttributesðciÞ ¼ fcia1; . . . ; ciamg (2) 

Instances of ci may have values specified for each of these 
attributes. An attribute a can have associated properties:

� NameðaÞ: the name of the attribute; e.g. ‘summary’ 
or ‘steps’. 

� MultivaluedðaÞ ¼ fTrue; Falseg, indicating whether the 
value of a is a list, or single-valued. A recipe might have a 
single-valued attribute for the name of the recipe, and a 
multivalued attribute for the steps. 

� IdentifierðaÞ ¼ fTrue;Falseg, indicating whether a is a 
persistent identifier for instances, such as the FOODON 
identifiers in Fig. 2. 

� PromptðaÞ ¼ string, which is a user-specified custom 
prompt for that attribute. 

� RangeðaÞ: the allowable values for this attribute; this can 
be a class c in S, or a primitive type such as string or num-
ber, or a value set (see below). In Fig. 1, the range of the 
ingredients attribute is Ingredient, and the range of the id 
attribute is a string. 

� ValueSetsðcÞ: a list of atomic values from which values of 
a can be drawn, where a value set is either an extensional 
list (fixed/static) or intensional (specified by ontology 
query). For example, a value set for a food element in an 
ingredient may be drawn from the food branch of the 
Food Ontology. 

2                                                                                                                                                                                                                                 Caufield et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/3/btae104/7612230 by guest on 06 August 2024

https://yaml.org/spec/1.2.2/
https://yaml.org/spec/1.2.2/


� InlinedðaÞ ¼ fTrue; Falseg, indicating, when the range is a 
class, if the object should be nested/embedded, or passed 
by reference. 

In addition, a class c can include a set of identifier constraints: 

IDSpacesðciÞ ¼ fprefixi; . . . ;prefixg (3) 

The constraint set is a list of strings that are the allowable 
prefixes that the identifier can take, e.g. ‘WIKIDATA’, 
‘MESH’, ‘GO’, or ‘FOODON’. The prefixes should come 
from a standard prefix registry such as BioRegistry (Hoyt 
et al. 2022) to ensure consistency across schemas and proj-
ects; SPIRES expects upper-case prefixes.

2.1 Evaluation of entity grounding
To determine the extent to which SPIRES improves entity 
grounding relative to prompting alone, we queried two GPT 
models with sets of ontology term labels with and without our 
grounding. We selected 100 terms at random from each of three 
ontologies: the Gene Ontology (GO), the Mouse 
Developmental Anatomy Ontology (EMAPA), and the 
MONDO Disease Ontology. The 16k GPT-3.5-turbo (gpt-3.5- 
turbo-16k) and the newly available GPT-4-turbo (gpt-4-1106- 
preview) models were each queried with the full term list in a 
single prompt each along with text requesting corresponding 
identifiers from the specified ontology (or, for SPIRES, a struc-
tured query based on a minimal schema). A match was consid-
ered successful for each pair of identifier and label in which the 

label text was parsed as a single entity, remained unchanged in 
the output, and matched to the correct identifier. The full evalu-
ation and results are available in a code notebook online 
(https://github.com/monarch-initiative/ontogpt-experi 
ments/blob/main/experiments/ground_compare/Comp 
aring_Grounding.ipynb).

2.2 Evaluation against chemical disease 
relation task
We evaluated SPIRES on the Biocreative Chemical-Disease- 
Relation task (Li et al. 2016). We used all 500 abstracts of the 
BC5CDR test set and evaluated against the set of 1066 
chemical-induces-disease (CID) triples. For each triple, the pred-
icate is fixed, and the subject and object are always identifiers 
drawn from the Medical Subject Headings (MeSH) vocabulary 
(Lipscomb 2000). Grounding was performed using multiple 
ontologies beyond MeSH, including three resources for chemi-
cal and drug information: Chemical Entities of Biological 
Interest (ChEBI) (Hastings et al. 2016), DrugBank (Wishart 
et al. 2018), and MedDRA (Brown et al. 1999) (see 
Supplementary Table S1 for a full list of external resources used 
for grounding). We used the Translator NodeNormalizer 
(Fecho et al. 2022) to normalize these to MeSH IDs to permit 
comparison with the test set. No fine tuning was performed. 
The training set was used to enhance our mappings of named 
entity spans to MeSH identifiers; after building this lexicon, the 
training set was discarded.

We provided SPIRES with a model of chemical to dis-
ease (CTD) associations based on the Biolink Model (Unni 

Figure 1. Example schema. Boxes denote classes and arrows denote attributes whose range are classes (compound attributes). Crows feet above 
boxes denote multivalued attributes. Attributes whose ranges are primitives or value sets are shown within each box. Here, the top level container class 
‘Recipe’ is composed of a label, description, categories, steps, and ingredients. Steps and ingredients are further decomposed into food items, 
quantities, etc.
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et al. 2022). Biolink extends the simple triple model of 
associations to include qualifiers on the predicate, subject, 
and object. Subject and object qualifier information was 
discarded in this evaluation as extracting these details was 
not tested for in the original CDR benchmark. Statements 
with predicate qualifiers of ‘NOT’ were discarded. We 
configured value sets for MeSH Disease and Chemical 
entries manually (see the full list of identifiers used to de-
fine these sets in Supplementary Table S2). NER of chemi-
cal and disease entities was also evaluated based on ability 
to identify a corresponding MeSH. We compared two pre- 
processing approaches: a ‘chunking’ approach in which in-
put documents were processed as separate subsegments 

(essentially a sliding window approach) and a ‘no chunking’ 
approach in which the entirety of the test corpus document ti-
tle and abstract was passed in a prompt. Two OpenAI mod-
els were used in these comparisons: gpt-3.5-turbo and gpt-4.

3 Algorithm
The SPIRES extraction procedure takes as input (i) a schema 
S, (ii) an entry point class C, and (iii) a text T (Fig. 4, top). It 
returns a structured instance i conforming to S, making use of 
a large language model (LLM) that allows prompt comple-
tion, such as GPT-3 and its more recent versions. The proce-
dure is detailed below:

Figure 2. Example of a portion of text to parse and a corresponding instantiation of the recipe schema from Fig. 1, using YAML syntax. Input text is 
truncated for brevity; the full input is available at https://github.com/monarch-initiative/ontogpt/blob/main/tests/input/cases/recipe-spaghetti.txt. In each 
attribute-value pair, the attribute is shown in bold, followed by a colon and then the value or values. For multivalued attributes, each list element value is 
indicated with a hyphen at the beginning of the line. Terminal elements that are value sets from ontologies and standards such as FOODON (Dooley et al. 
2018), UCUM (Schadow et al. 1999), and DBPedia (Bizer et al. 2009) are shown here with their human-readable labels after the double-hash comment 
symbol. Dynamic elements are indicated via RDF blank node syntax (e.g. _:ChoppedOnion does not correspond to a named entity and serves as a 
placeholder).
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SPIRESðS;C;TÞ :

1) Generate the prompt: p ¼ GeneratePromptðS;C;TÞ
2) Perform prompt completion: r ¼ CompletePromptðpÞ
3) Parse results and recurse over nested structures: 

iu ¼ ParseCompletionðr; S;CÞ

4) Ground results using ontologies: i ¼ Groundðiu; S;CÞ

5) (optional) translation to OWL: ont ¼ TranslateToOWLðiÞ

3.1 Step 1: Generate prompt
SPIRES first generates text for a prompt (Fig. 4, Generate 
Prompt) to be provided to the LLM: 

GeneratePromptðS;C;TÞ ¼ InstructionsðÞ
þAttributeTemplateðS;C;TÞ þ TextIntroðÞ

þT þ BreakðÞ
(4) 

Here, the Instructions function returns a piece of text such 
as ‘From the text below, extract the following entities in the 
following format’.

The AttributeTemplate function generates a pseudo- 
YAML structure that is a template for results. For each a in 
AttributesðCÞ, we write: 

NameðaÞ þ ” : ”þ PromptðaÞ þ ” n” (5) 

If Prompt is undefined for attribute a, then it is automatically 
generated from the name. If MultivaluedðaÞ is True, then the 
text is preceded with ‘A semicolon-separated list’.

The TextIntro function introduces a break between the tem-
plate and the input text and is a fixed string ‘Text:’. The Break 
function is also a fixed string that serves to demarcate the end 
of the text and is a sequence of three break characters, e.g. 
‘==¼’. As an example, when calling this function when 
S¼RecipeSchema, C¼Ingredient, and T¼‘garlic powder (2 
tablespoons)’, the following prompt would be generated: 

Split the following piece of text into fields 
in the following format:

food_item: <the food item>

amount: <the quantity of the ingredient>
Text:

garlic powder (2 tablespoons)

==¼
Note that typical input texts will be larger, except when 

the function is called recursively.

3.2 Step 2: Complete the prompt
The generated prompt is provided to the LLM using a com-
pletion API (Fig. 4, Complete Prompt). The nature of the 
prompt can be adapted for different language models; the 
OntoGPT implementation defaults to the GPT-3.5-turbo 
model but is compatible with any model capable of delivering 
a payload that conforms to a prompt-specified structure. The 
intended completion results are a pseudo-YAML structure 
conforming to the specified template. For example, when 
passing the example prompt in Step 1, the return payload 
may be the following text: 

food_item: garlic powder
amount: 2 tablespoons

3.3 Step 3: Completion result parsing and 
recursive extraction
The ParseCompletionðr; S;CÞ function returns a pre- 
grounded instance object i partially conforming to C. This 
step consists of two sub-steps: (i) parsing the pseudo-YAML; 

Figure 3. Overview of the SPIRES approach. A knowledge schema and 
text containing instances defined in the schema are processed by 
OntoGPT, yielding a query for GPT-3 or newer, accessed through the 
OpenAI API. OntoGPT parses the result, grounding extracted instances 
with specific entries and terms retrieved from queries of databases and 
ontologies where possible. The final product is a set of structured data 
(instances and relationship) in the shapes defined by the schema. Icons 
by user Khoirin from the Noun Project (https://thenounproject.com/ 
besticon/).

Figure 4. Flowchart depicting the SPIRES algorithm.
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(ii) recursively calling SPIRES on any inlined attributes. For 
the parsing step (Fig. 4, Parse Completion), the completion 
provided by the LLM is not guaranteed to be strict YAML or 
even conform directly to the specified template, so a heuristic 
approach is used. The response is separated by newlines into 
a list. Each line is split on the first instance of a ‘:’; the part 
before is matched against the attribute name, and the part af-
ter is the value, which is parsed as detailed below. Attribute 
matching is case-insensitive. All whitespace is normalized to 
underscores.

Each value v is parsed according to the range and cardinal-
ity of the matched attribute a, populating each attribute a 
of i: 

i½a� ¼ ParseValueðvÞ (6) 

If a is multivalued, then v is first split according to a delimiter 
(default ‘;’), and the rules below are applied on each token; 
otherwise the rules below are applied directly.

Rule 1: If the range is a primitive data type (i.e. string, 
number, or boolean) then the value is returned as-is.

Rule 2: If the range of the attribute is a class, and the attrib-
ute is noninlined (i.e. a reference) or an enumeration, then the 
value will be grounded, as specified in Step 4 below.

Rule 3: if the range of the attribute is an inlined class, then 
SPIRES is called recursively: 

SPIRESðS;RangeðaÞ; vÞ (7) 

This proceeds until a noninlined class is reached. For example, 
given the example payload from the previous step, the attribute 
food item is a reference to an ontology class, so the value ‘garlic 
powder’ is grounded using the grounding procedure (Step 4). The 
attribute amount is a reference to an inlined class 
Quantity, so this will be recursively parsed by calling Generate 
PromptðRecipeSchema;Quantity;“2tablespoons”).

3.4 Step 4: Grounding and normalization
All leaf nodes of the instance tree that correspond to named 
entities are grounded, i.e. mapped to an identifier in an exist-
ing vocabulary, ontology, or database (Fig. 4, Ground). 
Classes representing named entities can each be annotated 
with one or more vocabularies. Each vocabulary is identified 
by a unique prefix. For example, in Fig. 1, the FoodItem class 
could be annotated with both FOODON and Wikidata, indi-
cating that grounding on labels can be performed using these 
vocabularies. Grounding on the string ‘garlic powder’ may 
then yield FOODON:03301844 when the BioPortal (Whetzel 
et al. 2011) or AgroPortal annotator (Jonquet et al. 2018) is 
used, and WIKIDATA: Q10716334 when a Wikidata nor-
malizer is used. The final results are normalized via validation 
against identifier constraints for the class. If IDSpacesðcÞ is 
set, then the prefix of the identifier is checked against the list 
of valid prefixes. If ValueSetsðcÞ is set, then the value returned 
must be present in the value set.

3.5 Step 5: Translation to OWL and reasoning
Step 4 produces an instance tree that can be directly repre-
sented in JSON or YAML syntax (both of which allow for ar-
bitrary nesting of objects). For some KBs, this is sufficient. 
Further conversion to an ontological representation in OWL 
(Fig. 4, Translate to OWL), and additional reasoning steps, 
then support checking for consistency and population of 

missing axioms. There are multiple methods for translating 
to OWL, including ROBOT templates (Jackson et al. 2019), 
DOSDPs (Osumi-Sutherland et al. 2017), and OTTR 
(Kindermann et al. 2018).

4 Implementation
We provide an implementation of SPIRES in Python as part 
of the OntoGPT Python package (https://github.com/mon 
arch-initiative/ontogpt), which provides both a command line 
interface (CLI) and a simple web application (Supplementary 
Fig. S1). SPIRES uses LinkML (Moxon et al. 2021) as its 
Knowledge Schema language. This allows for a full represen-
tation of the necessary schema elements while incorporating 
LinkML’s powerful mechanism for specifying static and dy-
namic value sets. For example, a value set can be constructed 
as a declarative query of the form ‘include branches A, B, and 
C from ontology O1, excluding sub-branch D, and include 
all of ontology O2’. The LinkML framework also supports 
converting schemas to LinkML from forms such as SHACL 
(Pareti and Konstantinidis 2022), JSON-Schema (http://json- 
schema.org/), or SQL Data Definition Language, allowing 
their use with SPIRES.

SPIRES performs grounding and normalization with the 
Ontology Access Kit library (OAKlib) (https://github.com/ 
INCATools/ontology-access-kit), which provides interfaces 
for multiple annotation tools (i.e. those providing links to ex-
ternal vocabularies and ontologies), including the Gilda en-
tity normalization tool (Gyori et al. 2022), the BioPortal 
annotator (Jonquet et al. 2009), and the Ontology Lookup 
Service (Jupp et al. 2015). For identifier normalization a 
number of services can be used, including OntoPortal map-
pings, with the default being the NCATS Biomedical 
Translator Node Normalizer (Fecho et al. 2022).

The results of extraction can optionally be further processed 
using LinkML-OWL (https://zenodo.org/record/7384531), 
which generates an OWL representation of instance data using 
mappings specified in a LinkML schema. This OWL file can be 
used as an input to ROBOT (Jackson et al. 2019) to run OWL 
reasoning to check for logical inconsistencies and perform auto-
mated classification.

4.1 Standard templates for multiple applications
The SPIRES implementation comes with a growing collection 
of ready-made schemas for multiple applications. These are 
primarily life-science focused, e.g. deriving a pathway from a 
Mechanism of Action description in a database such as 
DrugBank. We also include a schema for food recipes to 
demonstrate general applicability in domains beyond the 
environmental and life sciences. Table 1 lists a selection of 
the pre-made schemas.

4.2 Extraction of recipe ontologies from websites
To demonstrate the full functionality of OntoGPT we created 
a pipeline for extracting recipes from websites and generating 
an OWL ontology from the combined outputs. Recipes are 
extracted using the recipe-scrapers Python module (https:// 
github.com/hhursev/recipe-scrapers). The pipeline takes the 
output of scraping, concatenates the results into a text, then 
feeds this to OntoGPT using the recipe template. We use 
LinkML-OWL to map the recipe template to OWL axioms, 
such that each recipe is represented as a class defined by its 
ingredients and its steps. We use ROBOT to extract the 
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relevant parts of the FOODON ontology, and merge this 
with the extraction results, combined with a manually coded 
simple recipe classification with defined classes for groupings 
such as ‘Meat Recipe’ and ‘Wheat Based Recipe’. We use the 
Elk reasoner (Kazakov and Klinov 2015) to classify the 
results. The results of this process are highlighted in 
Supplementary Fig. S3.

4.3 Entity grounding
Grounding entities with ontology terms is part of the core func-
tionality of SPIRES and its value is well demonstrated in a direct 
comparison with the straightforward approach of directly que-
rying an LLM with term descriptions. If we request the GO 
term for ‘integrase activity’ we expect the response to include 
GO:0008907, e.g. Of 100 GO terms chosen at random, SPIRES 
returned the correct identifiers for 98 when using GPT-3.5- 
turbo and 97 with GPT-4-turbo. Without SPIRES, GPT-3.5- 
turbo returned just 3 correct identifiers. Though it yielded 100 
putative matches, few included correct GO identifiers. This 
‘mass hallucination’ may be an artifact of prompting with terms 
lacking surrounding context. Even so, it may be challenging to 
determine how much context is sufficient to improve grounding. 
GPT-4-turbo demonstrated a different challenge by consistently 
refusing to retrieve identifiers, returning responses such as ‘As 
an AI developed before 2023, I do not have real-time access to 
databases … ’. For the EMAPA mouse anatomy ontology, 
SPIRES returned correct identifiers for all 100 term descriptions, 
while GPT-3.5-turbo repeatedly provided identifiers from the 
EHDAA2 human anatomy ontology instead. GPT-4-turbo re-
fused to ground EMAPA terms as it had with GO. MONDO 
terms posed some surprising difficulty: SPIRES with GPT-3.5- 
turbo correctly returned 97 of 100 identifiers but SPIRES with 
GPT-4-turbo returned just 18 correct matches. In some cases, 
this may have been due to incorrectly parsing entities (e.g. pars-
ing ‘UV-induced skin damage, susceptibility to’ as ‘skin dam-
age’). As with GO, prompting without SPIRES only returned 
one correct identifier at most from both GPT-3.5-turbo and 
GPT-4-turbo.

4.4 Evaluation on BioCreative chemical disease 
relation task
We evaluated SPIRES on the BioCreative Chemical-Disease- 
Relation (BC5CDR) task corpus. To demonstrate the zero- 
shot learning (ZSL) approach, we did not perform any fine 
tuning using the training set. The training set was used to en-
hance our mappings of named entity spans to MeSH identi-
fiers and was then discarded. For our CTD schema (see 
Supplementary Fig. S2), we follow the Biolink Model (Unni 

et al. 2022) which extends the simple triple model of associa-
tions to include qualifiers on the predicate, subject, and ob-
ject. This yields finer-grained predictions; e.g. SPIRES 
correctly parses the statements in Table 2. In these cases, 
SPIRES grounds the drug entity Cromakalim to its corre-
sponding MeSH identifier and extracts its relationship with 
vasodilation along with a qualifier noting the observation is 
specific to ‘large and small coronary vessels’, an anatomical 
entity worthy of further grounding (though this was not ex-
plored within the original BC5CDR task). Similarly, the cor-
rectly extracted relationship between lithium and 
hypercalcemia includes the qualifier that the observation per-
tains to chronic lithium exposure.

When evaluating, we discard subject and object qualifier 
information, as this is not tested for in the original CDR 
benchmark. If the predicate qualifier is ‘NOT’ then we dis-
card the whole statement. Note that in the examples in  
Table 2, even though we evaluated the first two statements to 
be a correct interpretation of the abstract, they were counted 
as false negatives; the corresponding triple was not in the test 
set, presumably an error of omission.

For SPIRES, we saw initially encouraging results on the 
BC5CDR task with chunking and GPT-3.5-turbo: we observed 
an F-score of 41.16, precision of 0.43, and recall of 0.39. Using 
the ‘no chunking’ approach (i.e. no preprocessing of the test 
document) yielded an F-score of 36.64 (precision 0.63, recall 
0.26) with GPT-3.5-turbo and an F-score of 43.80 (precision 
0.69, recall 0.32). For NER results alone (i.e. correct grounding 
against MeSH for chemical and disease entities), see 
Supplementary Table S3.

These results place SPIRES just below the average of all 18 
teams that participated in the original CDR challenge. We as-
sume all 18 teams used the full training set, whereas with 
SPIRES there was no task-specific training or fine tuning. For 
comparison, Luo et al. report an F-score of 44.98 on 
BC5CDR with their biomedical domain-specific, trained- 
from-scratch BioGPT model (Luo et al. 2022). We note that 
the best-scoring RE results from the CDR task achieved an 
impressive score of 0.57, though with a model trained on a 
large and carefully engineered set of training examples (Xu 
et al. 2015). SPIRES bypasses this step but may see further 
improvement with fine-tuned and/or domain-specific LLMs.

5 Discussion
5.1 Comparable methods
SPIRES is a well-developed and generally model-agnostic ap-
proach for information extraction designed with structured 

Table 1. Pre-made schemas.a

Schema Use Case(s) Identifiers Text inputs

Food Recipes Enforcing consistent structure on 
stepwise processes

FOODON, UO Unstructured and semi-struc-
tured recipes

Drug mechanisms Integrating drug descriptions MONDO, CHEBI, MESH Mechanism of Action (MOA) 
descriptions

Chemical-disease interactions Assembling knowledge graphs of 
chemical-impacted phenotypes

MESH Abstracts describing effects of 
chemicals on conditions

Metagenomic Samples Standardizing metadata for 
metagenomics

ENVO Descriptions of environmen-
tal samples

Mendelian Diseases Extracting disease relationships 
from literature

MONDO, HPO Case studies or descriptions of 
Mendelian diseases

a Example use cases are included but are not comprehensive. Note the CTD schema is deliberately restricted to only use the MESH vocabulary for 
purposes of evaluation. Identifiers refers to all ontologies, value sets, and other unique term sets incorporated in a given schema.
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schemas and standardized ontologies in mind. Some recent 
efforts have made great strides in leveraging the first type 
of resource, i.e. they address the task of aligning extracted 
information with pre-defined data models. The approach 
described by Dagdelen and Dunn et al. (2024) employs 
engineered schemas to extract structured relationships from 
unstructured text in materials chemistry (Dunn et al. 2022). 
The authors of the LLMs4OL approach also explored 
application of LLMs to information extraction, but 
concluded that the models are not yet sufficiently flexible for 
ontology-driven needs (Babaei Giglou et al. 2023). We also 
consider the task of ontology alignment to be related to our 
efforts; we have found that LLMs can noticeably improve ac-
curacy in ontology alignment (Matentzoglu et al. 2023) and 
the development of general frameworks such as Agent-OM 
(Qiang et al. 2023) may further improve the grounding inher-
ent to information extraction.

5.2 Choosing a model
OntoGPT currently supports both select open LLMs and the 
OpenAI API. Running OntoGPT across a large corpus with 
OpenAI models may be prohibitively expensive for some 
users. In addition, the use of this API involves closed models 
with inscrutable training data, which may be plagued by 
biases (Bender et al. 2021). Though our experiments here 
generally concern GPT-3 and 4, the rapid pace of model de-
velopment will ensure access to progressively more capable 
(and ideally, more transparent) language models. Smaller 
LMs such as LLaMA have been shown to outperform models 
ten times their size (Touvron et al. 2023), and it is possible to 
fine-tune these into instruction following models (Zhang 
et al. 2023). LLMs based on LLaMA2 and adapted for bio-
medical language, including BioMedGPT-LM (Luo et al. 
2023) and Radiology-Llama2 (Liu et al. 2023), may comple-
ment the grounding provided through SPIRES.

5.3 Reliability and hallucinations
A common problem with LLMs is hallucination of results 
(producing factually invalid statements that are not consis-
tent with the input text) (Ji et al. 2023, Bender et al. 2021). 
We crafted prompts to limit hallucination, asking only for 
the LM to extract what was found in the text, and keeping 
default low-creativity settings. On examination we found 
that hallucinations were generally infrequent, with most false 
positives and negatives attributable to incorrect RE. It is 
worth noting that LLM interfaces designed for direct func-
tion calling may duplicate some of the data structure enforce-
ment afforded by SPIRES but do not alleviate the issue of 
hallucination: a model may still improperly associate real or 
fictional ontology identifiers with extracted entities when 
queried without aid of our approach.

Some text generation may yield technically correct results. 
For example, one result extracted from the title ‘Increased 
frequency and severity of angio-oedema related to long-term 
therapy with angiotensin-converting enzyme inhibitor in two 
patients’, yielded ‘Lisinopril INDUCES angio-oedema’. 
Lisinopril is in fact a subtype of ACE inhibitor, and the 
extracted association is supported by other literature. 
However, this more precise statement is not the one that is in 
the original text. Presumably the LM is substituting the class 
of drug with a specific member here, but it is unclear why it 
does it on this occasion. Until there are better methods to 
control this hallucination and explain justifications for state-
ments in terms of the text and prior knowledge, results from 
LMs should be carefully validated before being entered 
into KBs.

SPIRES is a new approach to information extraction that 
leverages recent advances in large language models to popu-
late complex knowledge schemas from unstructured text. It 
uses ZSL to identify and extract relevant information from 
query text, which is then normalized and grounded using 
existing ontologies and vocabularies. SPIRES requires no 
model tuning or training data. The approach is customizable, 
flexible, and can be used to populate knowledge schemas 
across varied domains. We envision SPIRES being used not in 
isolation, but rather in synergistic strategies combining hu-
man expertise, linguistic pattern recognition, deep learning 
and classical deductive reasoning approaches. SPIRES is one 
component of a growing toolkit of methods for transforming 
noisy, heterogeneous information into actionable knowledge.

Supplementary data
Supplementary data are available at Bioinformatics online.
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Table 2. Extracted relation examples.a

Source Subject Subject qualifier Object Object qualifier

2160002 MESH: D019806 Cromakalim MESH: D014664 Vasodilation Large and small coronary vessels
2160002 MESH: D020110 Pinacidil MESH: D014664 Vasodilation Large and small coronary vessels
19154241 MESH: D008094 Lithium Chronic MESH: D006934 Hypercalcemia
10327032 MESH: D005472 Fluorouracil MESH: D001927 Brain Diseases Transient

a All predicates are ’INDUCES’. Sources are PubMed identifiers (PMIDs). PMID 2160002 is ‘Vasodilation of large and small coronary vessels and 
hypotension induced by cromakalim and pinacidil’ (Giudicelli et al. 1990). PMID 19154241 is a case report on lithium therapy (Rizwan and Perrier 2009). 
PMID 10327032 is a study of hyperammonemic encephalopathy risks in cancer patients (Liaw et al. 1999).
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