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ABSTRACT

Patterns in the spatial distribution of organisms provide important 
information about mechanisms underlying biodiversity and the complexity of
ecosystems. One of the most well-documented spatial patterns is the 
distance-decay relationship, which is a universal biogeographic pattern 
observed repeatedly for plant and animal communities, particularly for 
microorganisms in natural ecosystems such as soil, ocean, and salt marsh 
sediment. However, it is uncertain whether the microorganisms exhibit a 
distance-decay pattern in engineered ecosystems. Therefore, we measured 
the distance-decay relationship across various microbial functional and 
phylogenetic groups in 26 biological wastewater treatment plants (WWTPs) 
in China using a functional gene array (GeoChip 4.2). We found that 
microbial communities of activated sludge in WWTPs exhibited a significant 
but very weak distance-decay relationship. The taxon-area z values for 
different functional and phylogenetic groups were <0.0065, which is about 1 
to 2 orders of magnitude lower than those observed in microbial 
communities elsewhere. Variation-partitioning analysis (VPA) showed that 
the relationships were driven by both environmental heterogeneity and 
geographic distance. Collectively, these results provided new insights into 
the spatial scaling of microbial communities in engineering ecosystems and 
highlighted the importance of environmental heterogeneity and geographic 
distance in shaping biogeographic patterns.

IMPORTANCE 

Determining the distance-decay relationship of microbial biodiversity is 
important but challenging in microbial ecology. All studies to date are based 
on natural environments; thus, it remains unclear whether there is such a 
relationship in an engineered ecosystem. The present study shows that there
is a very weak distance-decay relationship in an engineered ecosystem 
(WWTPs) at the regional-to-continental scale. This study makes fundamental 



contributions to a mechanistic, predictive understanding of microbial 
biogeography.

INTRODUCTION

A central goal of ecology is to understand how biodiversity is generated and 
maintained (1). Spatial patterns of species diversity offer insights into the 
mechanisms shaping biodiversity and are of practical importance for 
predicting the risk of biodiversity loss by environmental changes and 
consequently for setting up conservation priorities (2). Therefore, the spatial 
distribution patterns of species diversity have solicited substantial attention. 
Traditionally, the field of spatial distribution patterns of biodiversity has 
focused on plants and animals. For example, it has been well documented for
plant and animal communities that community similarity decreased with 
geographic distance, known as the distance-decay relationship (3, 4). In 
recent years, a number of studies have been conducted to investigate 
biogeographic patterns of microorganisms, including bacteria, archaea, 
fungi, and other microbial eukaryotes (3, 5–10). A growing body of research 
has shown that microorganisms, like plants and animals, exhibited distance-
decay patterns in different habitats at various taxonomic resolutions (2, 3, 
11–18).

The shaping mechanisms of distance-decay patterns in microbial 
communities can be explained by contemporary environmental 
heterogeneity and historical events (19). If microbial communities are 
shaped mainly by contemporary environmental conditions, a distance-decay 
relationship could be observed because environmental factors tend to be 
spatially autocorrelated, and microorganisms with different niche 
preferences are selected from the available pool of taxa as the environment 
changes with distance. This is the so-called Baas-Becking hypothesis: 
“everything is everywhere—the environment selects” (20). However, the 
distance-decay relationship can also be influenced by historical 
contingences, which can be represented by geographic distance. For 
example, neutral-niche models, in which the microbial community is not 
influenced by its environmental conditions, can also generate a distance-
decay pattern (3). Although the relative importance of environmental 
conditions and geographic distance is under heated debate, it is generally 
believed that microbial biogeographic distribution reflects the influences of 
both contemporary environmental conditions and geographic distance (1, 5).

To date, all microbial biogeographic studies have been carried out on natural
ecosystems such as soil (2, 11), freshwater (13, 14), salt marsh sediment (3),
and deep-sea surface sediments (18). The spatial distribution of microbially 
diverse populations in engineered ecosystems such as biological wastewater 
treatment plants (WWTPs) remained unknown. Engineered ecosystems are 
very different from natural ecosystems in that they are designed to carry out
a stable function(s). Therefore, we hypothesize that the spatial distribution 



patterns of biodiversity in engineered ecosystems could be different from 
those in natural ecosystems.

Centralized WWTPs are ideal model systems to test the distance-decay 
relationship since there are now more than 400,000 of them around the 
world, which together are estimated to process more than 730 million m3 of 
wastewater daily (more than double the average flow of the Nile) (21). The 
WWTP bioreactor is a typical engineered system in which the functional 
groups of microorganisms in activated sludge are enriched to enable the 
efficient degradation of oxygen-depleting organics and nutrients (22). 
Biological WWTPs are typically similar habitats, as they often receive similar 
domestic wastewater and are operated under relatively similar conditions. 
However, microbial communities within these reactors are diverse, dynamic, 
and complex (23) and play a vital role in determining process efficiency and 
stability. Therefore, we used WWTP bioreactors to test whether and how the 
spatial distribution pattern of microbial communities in engineered 
ecosystems differs from that in natural ecosystems. We collected 78 
activated sludge samples from 26 full-scale WWTP bioreactors distributed 
across China. We used GeoChip 4.2, a microarray containing 120,054 distinct
probes to target 200,393 coding sequences related to various microbial 
functional processes, to determine the spatial scaling of microbial functional 
gene diversity in these WWTPs. Our results indicated that the distance-decay
relationship existed in WWTPs, but the turnover rate was much lower than 
that of microorganisms in natural settings. Further analyses showed that the 
distance-decay relationship is shaped mainly by environmental 
heterogeneity, along with geographic distance.

MATERIALS AND METHODS

Wastewater treatment plants and sampling.Activated sludge samples were 
collected from the aeration tanks of 26 full-scale wastewater treatment 
systems located in 10 different cities across long transects of China. The 26 
systems used different treatment processes, including 
anaerobic/anoxic/aerobic (A2O), oxidation ditch, and membrane bioreactor 
(MBR) processes, etc. Details of the locations, treatment processes, influent 
characteristics, and operational parameters for all the systems studied are 
listed in Table S1 in the supplemental material.

In the summer of 2011, we collected activated sludge samples from the end 
part of the aeration tank of each WWTP once a day for three consecutive 
days to generate triplicates. The samples were briefly settled on-site to be 
concentrated and then fixed in a 50% (vol/vol) aqueous ethanol solution. The
fixed samples were immediately transported to the laboratory on ice, where 
50 ml of each sample was dispensed into a sterile Eppendorf tube and 
centrifuged at 14,000 × g for 10 min. The supernatant was decanted, and 
the pellet was stored at −80°C prior to analysis.

DNA extraction and microarray hybridization.Microbial genomic DNA was 
extracted from the activated sludge samples by combining freeze-thawing 



and sodium dodecyl sulfate (SDS) treatment for cell lysis as previously 
described (24). Crude DNA was purified by using the Wizard SV Genomic 
DNA purification kit (Promega, Madison, WI, USA) and then assessed by the 
ratios of the absorption at 260/280 nm and 260/230 nm measured by an ND-
1000 spectrophotometer (NanoDrop Inc., Wilmington, DE, USA), agarose gel 
electrophoresis, and a Quant-It PicoGreen kit (Invitrogen, Carlsbad, CA, USA).

All purified DNA was labeled, concentrated, and resuspended in 10 μl of 
hybridization solution as described previously (25). The fluorescently labeled 
DNA was hybridized with a GeoChip 4.2 array on a Maui hybridization station 
(BioMicro, Salt Lake City, UT, USA) at 42°C with 40% formamide for 16 h. 
After unbound labeled DNA was washed away, microarrays were scanned 
(MS200; NimbleGen, Madison, WI, USA) at a laser power of 100%.

Data analysis.Low-quality spots were removed prior to statistical analysis, as 
described previously (26, 27). Spots with a signal-to-noise ratio of <2 and 
outliers of replicates were removed. The signal intensities were normalized 
within and across samples based on the mean signal intensity, as described 
previously (28). We then averaged the normalized signal intensities for the 
three replicates for each WWTP to conduct downstream analyses. The 
normalized hybridization data for individual functional gene sequences were 
grouped based on gene families (e.g., nifH and nirS) or functional groups 
(e.g., nitrification and denitrification) to calculate the z values of the 
distance-decay relationship (2).

The Sorensen index was used to construct community similarity matrices for 
microorganisms, whereas Euclidean distances were used to construct 
similarity matrices for geographic distance and environmental parameters. 
The z values of the distance-decay relationships of the bacterial communities
were calculated as the slope of a linear least-squares regression on the 
relationship between geographic distances (log transformed) and bacterial 
similarity (log transformed). Because the data points (pairwise comparisons) 
are not independent, the significance of the distance-decay slope was tested 
by using bootstrapping with replacement; that is, geographic distance and 
microbial community similarity were randomly paired from the original data 
set, and the distance-decay slopes were calculated 10,000 times. A one-
sample t test was then used to determine whether the observed slope was 
significantly different from the mean of the randomly generated slopes, as 
described previously (2). The exponent z values of the power law taxon-area 
relationship were calculated from the slope of the power law distance-decay 
relationship by using the equation log(Ss) = constant-2zlog(D), where Ss is 
the pairwise similarity in community composition and D is the distance 
between two samples (12).

To separate the effects of environmental heterogeneity and geographic 
distance, a canonical correspondence analysis (CCA)-based variation-
partitioning analysis (VPA) was performed based on the presence or absence
of each gene sequence of all individual functional gene sequences (FGSs) 



(29). Spatial variables measured as latitude-longitude coordinates were 
converted into projected coordinates and represented by a cubic trend 
surface polynomial to capture broad-scale spatial trends (29). A multivariate 
regression tree (MRT) analysis was carried out to identify important factors in
shaping microbial community compositions. A 1,000-cross-validation process
was used to decrease the structure complexity of the MRT. Predictive 
accuracy was estimated from the cross-validated relative error, which varies 
from 0 for a perfect tree to close to 1 for a poor tree (8). MRT analysis was 
carried out with the package mvpart in the R statistical programming 
environment.

RESULTS

Distance-decay relationship.To determine the distance-decay relationship in 
WWTPs, a total of 78 activated sludge samples were collected from 26 
WWTPs located in 10 cities in China. A total of 55,724 functional genes were 
detected by GeoChip 4.2 analysis. For individual samples, the numbers of 
detected genes ranged from 19,922 to 47,153 (Table 1). Pairwise community
similarity between samples was calculated based on the presence or 
absence of each functional gene by using Sorensen's index (3). The whole 
microbial community displayed a significant, negative distance-decay 
relationship (P < 0.01) (Fig. 1), meaning that WWTPs located in proximity to 
each other were more similar in composition than WWTPs located farther 
apart.



Spatial scaling of microbial communities.

The slope of the distance-decay relationship reflects the rate at which OTU 
richness increases with distance. Therefore, the slope of the power law 
distance-decay relationship can be used to calculate the exponent z value of 
the power law taxon-area relationships (11). As shown in Table 1, the z value
for the whole functional gene sequence was 0.0038. The mean z value was 
0.0043 ± 0.0009 for different functional gene groups, which was similar to z 
values for phylogenetic groups (0.0043 ± 0.0011). In addition, it was found 
that the z values varied by taxonomic resolution. For example, the z value 
was 0.0038 based on all individual functional gene sequences but was 
approximately four times lower based on functional genes (z = 0.0011) 
(Table 1).

To determine whether the z values were significantly different among 
various functional or phylogenetic groups, bootstrapping was performed to 
estimate the variances of z values, followed by a pairwise t test with 
Bonferroni correction. The results showed that the estimated z values were 
significantly different among various functional or phylogenetic groups (P < 
0.005), except for the z values between the sulfur group and the metal 
resistance group and between Chloroflexi and Epsilonproteobacteria. For 



instance, the z value for nitrification genes was 0.0062, a value much higher 
than that for denitrification genes (0.0035) (Table 1). Also, the z value for 
bacteria was 0.0037, which was lower than those for archaea (0.0050) and 
fungi (0.0051), suggesting that bacteria had a lower turnover rate in space 
than archaea and fungi in WWTPs. In addition, among the Proteobacteria, the
z value for the Gammaproteobacteria (0.0049) was higher than those for the 
Alphaproteobacteria (0.0030), Betaproteobacteria (0.0030), and 
Epsilonproteobacteria (0.0033).

z values for individual genes varied considerably. For C-cycling genes, the z 
value of amyX was 0.0084, which was approximately four times higher than 
that of the cadherin (CDH) gene (0.0021) (see Table S2 in the supplemental 
material). Considerable variations were also observed for N cycling, S 
cycling, and organic remediation genes (see Tables S3, S4, and S5 in the 
supplemental material).

In order to obtain general insights into spatial scaling across different 
organisms, we compared the z values obtained in this study and all available
previously reported data (715 data sets) (Fig. 2). The average z value was 
0.27 for mammals, whereas it was 0.32 for plants. The average z value (data
from this study were not included) was 0.09 for microbes, which was 2 to 4 
times lower than those observed for plants and animals, but it was 20 times 
higher than that observed in this study.



Effects of environmental heterogeneity and geographic distance.

Environmental heterogeneity and demographic processes (e.g., dispersal, 
colonization, speciation, and extinction) are important for determining the 
biogeographic distribution of microbes (30).

To determine whether environmental variables affected microbial community
composition, partial Mantel tests were performed. When the effects of 
geographic distance were removed, partial Mantel tests indicated a 
significant correlation between the measured environmental variables and 
microbial functional composition (P < 0.05). Similarly, partial Mantel tests 
revealed a significant correlation between geographic distance and microbial
functional composition (P < 0.05) (Table 2). The results of the Mantel test 
also showed that there was no significant correlation between treatment 
process and most of the functional and phylogenetic groups except for the 
functional groups involved in C cycling (correlation coefficient in Mantel's test
[rM = 0.166;] P < 0.05), N cycling (rM = 0.164; P < 0.05), and organic 
remediation (rM = 0.161; P < 0.05), which exhibited a significant correlation 
with treatment process (Table 2).



Because partial CCA has been shown to be more appropriate to correctly 
partition the beta diversity values among sites than the partial Mantel test 
(31), a CCA-based VPA was further performed to separate the effects of 
environmental heterogeneity and geographic distance. Environmental 
heterogeneity was further split into wastewater characteristics (chemical 
oxygen demand [COD], total nitrogen [TN] level, ammonia level, total 
phosphorus [TP] level, pH, and conductivity) and operational parameters 
(dissolved oxygen [DO], temperature, hydraulic retention time [HRT], and 
mixed-liquor suspended solids [MLSS]). As shown in Table 3, 41.5% of the 
variance could be explained by these three components. Wastewater 
characteristics, operational parameters, and geographic distance could 
independently explain 10.7, 9.2, and 16.3% of variations, respectively. 
Therefore, both environmental heterogeneity (including wastewater 
characteristics and operational parameters) and geographic distance played 
important roles in shaping microbial biogeographic patterns in biological 
WWTPs.



MRT analysis was further used to determine which environmental factors 
were important in shaping microbial community compositions. We showed 
that the most important factor in explaining the variances of microbial 
community components in the 26 samples was pH (Fig. 3). The coefficient of 
variation (CV) error and standard error (SE) for the MRT analysis were 0.506 
and 0.007, respectively, indicating greater reliability of the model. The 
samples were divided into two main groups: group A, with a pH lower than 
7.22, and group B, with a pH higher than 7.22. Group A was further split by 
conductivity into samples with high conductivity levels (≥1,235 μS/cm) and 
those with low conductivity values (<1,235 μS/cm). Group B was then split 
into two groups by TN. Finally, all the samples were further split into six 
subgroups by temperature and latitude.

DISCUSSION

A central goal in community ecology is to determine the distribution patterns
of microorganisms and the relative influence of contemporary environmental



factors versus the legacies of historical events on distribution patterns (8). 
Today, several studies have demonstrated that there are biogeographic 
patterns for microbes in natural habitats such as soil, freshwater, and the 
ocean. However, no previous studies have focused on the microbial 
distribution patterns in engineered ecosystems.

In this study, we showed that the microbially diverse populations in activated
sludge in WWTPs exhibited a significant but very weak distance-decay 
relationship. The z value for different functional and phylogenetic groups was
<0.0066, which is 1 to 2 orders of magnitude lower than those reported in 
previous studies (3, 11–18). For example, Martiny et al. (3) demonstrated 
that z values for Nitrosomonadales in salt marsh sediments varied 
significantly among spatial scales, with z values of 0.02 within marshes, z 
values of 0.14 within regions (across marshes), and no significant z value at 
the continental scale (across regions), using 16S rRNA gene-based PCR 
cloning and sequencing approaches. Zhou et al. (2) suggested that, based on
data from GeoChip analysis, the z value for microbial communities in forest 
soil was 0.0624, and the z values varied considerably across different 
functional and phylogenetic groups (z = 0.0475 to 0.0959). Other studies 
also showed that the z values are typically between 0.01 and 0.1 for 
microorganisms in various habitats (2, 3, 11–17). Activated sludge is a 
unique microbial ecosystem, and it has high diversity, with over 700 genera 
and thousands of OTUs (32, 33). Given the high diversity of bacterial 
communities in activated sludge systems, the turnover rate (z value) in this 
study is so low that it could be negligible. Actually, WWTPs are always 
designed to be predictable and reproducible independent of geographical 
distance.

Why are the z values in this study much lower than those reported in 
previous studies? One explanation is that our samples were from WWTPs 
with similar functions, resulting in lower spatial turnover rates for taxa. All 
the WWTPs in this study treated domestic wastewater, and they had similar 
influent characteristics. The operational conditions among the WWTPs were 
also relatively similar. For example, the concentration of dissolved oxygen in 
all bioreactors was kept above 2 mg/liter. This relatively low environmental 
heterogeneity may explain the low z values. Another explanation is that 
biological WWTPs are nutrient rich because the influent COD levels of most 
of the plants were >300 mg/liter. This environment may cause high 
functional redundancy that reduced the z values.

A theme of biogeography is the relative influence of contemporary 
environmental factors versus the legacies of historical events on distribution 
patterns. In this study, the biogeography of microorganisms reflects the 
influence of both contemporary environmental variation and geographic 
distance. Our results appear to be consistent with data from previous studies
on natural ecosystems (5). Hanson et al. (5) conducted a review of 56 
studies that attempted to disentangle the relative effects of contemporary 
environmental factors versus historical processes on the distance-decay 



relationship, and they found that most studies reported that both 
contemporary environmental factors and geographic distance shaped 
microbial biogeographic patterns. However, some researchers thought that 
the distance effect was probably almost overestimated if any spatially 
autocorrelated environmental factors were not accounted for by the 
measured environmental variables (5, 34). In fact, a complete quantification 
of all environmental variables is practically impossible to achieve.

In our study, about 58.5% of the functional gene variance could not be 
explained by environmental heterogeneity and geographic distance. It is 
possible that some unmeasured biotic or abiotic environmental variable 
plays an influential role in affecting the microbial community in WWTPs. 
Previous studies showed that protozoan grazing (20) and phage predation (8)
played vital roles in shaping microbial communities. Alternatively, stochastic 
processes (35, 36) might play a major role in shaping microbial communities.

The treatment process could be one of the factors influencing the microbial 
community structures in WWTPs. In our study, the 26 wastewater treatment 
systems used different treatment processes, including A2O, oxidation ditch, 
and MBR processes, etc. Different treatment processes are usually operated 
with different operational parameters. For example, compared to 
conventional activated sludge, an MBR is typically operated at high MLSS 
concentrations, long sludge retention time, and high DO concentrations to 
control membrane fouling. Previous studies showed that different treatment 
processes could harbor distinct microbial community structures (37–40). 
However, our study revealed that treatment process was not significantly 
correlated with most of the functional and phylogenetic groups except for 
the functional groups involved in C and N cycling and organic remediation. 
One of the main reasons for this could be that in the partial Mantel test, the 
effects of some operational parameters (such as DO, temperature, HRT, and 
MLSS) underlying treatment processes were removed. We think that 
operational conditions underlying the treatment process, rather than the 
treatment process itself, affect the bacterial community structures in 
wastewater treatment systems.

In this study, a microarray hybridization-based approach (GeoChip) was used
to determine the spatial scaling of microbial functional gene diversity in 
WWTPs. The GeoChip array has several advantages for examining microbial 
biogeographic patterns by minimizing sampling artifacts such as 
undersampling, unequal sampling, random sampling, and taxonomic lumping
(2, 41). Specifically, the GeoChip array contains 84,000 probes targeting 
152,000 genes involved in major microbial biogeochemical processes so that
many microbial populations and functional groups can be simultaneously 
detected at the whole-community-wide scale, which could ameliorate the 
undersampling problem. Another main advantage of the GeoChip approach 
is that it can generally provide high resolution in differentiating various 
microorganisms (42), and hence, the lumping problem can be ameliorated. 
However, as with other microarray hybridization-based approaches, the 



GeoChip approach has disadvantages. It is a closed-format detection 
approach and provides information only for the genes included on the 
microarrays (41). Also, most functional genes could provide less robust 
information on phylogenetic relationships among various organisms if they 
are distantly related, especially because many functional genes are 
susceptible to horizontal gene transfer.

In conclusion, understanding the spatial scaling of organisms and the 
underlying mechanisms shaping communities is a central goal in community 
ecology. Our results illustrate that microbial communities of activated sludge
in WWTPs exhibit a significant but very weak distance-decay relationship. 
The negligible z values across different functional and phylogenetic groups in
activated sludge were <0.0065, which is 1 to 2 orders of magnitude lower 
than those observed in natural environments such as soil, freshwater, and 
salt marsh sediment. It appears that the spatial scaling of activated sludge 
microbial communities was driven by both environmental heterogeneity and 
geographic distance.
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