
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
A Declarative Framework for Big Graph Analytics and their Provenance

Permalink
https://escholarship.org/uc/item/7b55s62m

Author
Papavasileiou, Vasiliki

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7b55s62m
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

A Declarative Framework for Big Graph Analytics and their Provenance

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Vasiliki Papavasileiou

Committee in charge:

Alin Deutsch, Chair
Ken Yocum, Co-Chair
Tyson Condie
Gert Lanckriet
George Porter

2018

Copyright

Vasiliki Papavasileiou, 2018

All rights reserved.

The Dissertation of Vasiliki Papavasileiou is approved and is acceptable in

quality and form for publication on microfilm and electronically:

Co-Chair

Chair

University of California San Diego

2018

iii

DEDICATION

To my family, Riccardo and Εκτοράκι.

iv

EPIGRAPH

As you set out for Ithaka
hope your road is a long one,
full of adventure, full of discovery.
Laistrygonians, Cyclops,
angry Poseidon—don’t be afraid of them:
you’ll never find things like that on your way
as long as you keep your thoughts raised high,
as long as a rare excitement
stirs your spirit and your body.
Laistrygonians, Cyclops,
wild Poseidon—you won’t encounter them
unless you bring them along inside your soul,
unless your soul sets them up in front of you.

Hope your road is a long one.
May there be many summer mornings when,
with what pleasure, what joy,
you enter harbors you’re seeing for the first time;
may you stop at Phoenician trading stations to buy fine things,
mother of pearl and coral, amber and ebony,
sensual perfume of every kind—
as many sensual perfumes as you can;
and may you visit many Egyptian cities
to learn and go on learning from their scholars.

Keep Ithaka always in your mind.
Arriving there is what you’re destined for.
But don’t hurry the journey at all.
Better if it lasts for years,
so you’re old by the time you reach the island,
wealthy with all you’ve gained on the way,
not expecting Ithaka to make you rich.

Ithaka gave you the marvelous journey.
Without her you wouldn’t have set out.
She has nothing left to give you now.

And if you find her poor, Ithaka won’t have fooled you.
Wise as you will have become, so full of experience,
you’ll have understood by then what these Ithakas mean.

Ithaka by Constantine Peter Cavafy

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . xi

Acknowledgements . xii

Vita . xiv

Abstract of the Dissertation . xv

Chapter 1 Introduction . 1
1.1 Overview . 3

1.1.1 Datalography: Declarative Big Graph Analytics 3
1.1.2 Ariadne: Online Provenance Querying for Big Graph Analytics . . . 4
1.1.3 Contributions . 5

Chapter 2 Datalog . 7
2.1 Introduction . 7
2.2 Program evaluation . 8
2.3 Datalog recursion with aggregates . 10

2.3.1 Stratified semantics . 10
2.3.2 Monotonic aggregation . 14

Chapter 3 Vertex-Centric Graph Processing . 17
3.1 Introduction . 17
3.2 Vertex-Centric . 17
3.3 Think like a graph . 19

Chapter 4 Declarative Graph Analytics on Vertex Centric Engines 21
4.1 Introduction . 21
4.2 Declarative Big Graph analytics . 23
4.3 Efficient recursive aggregation . 24
4.4 VC-Datalog . 26

4.4.1 Vertex-Centric normal form . 26
4.4.2 Vertex-Centric rewriting . 28
4.4.3 Compilation and Planning . 36

vi

4.5 Optimizations . 39
4.5.1 Compilation . 41
4.5.2 Super-vertices . 42
4.5.3 Combiners . 44

4.6 Implementation . 47
4.7 Experimental evaluation . 48

4.7.1 Experimental setup . 48
4.7.2 Runtime analysis . 51
4.7.3 Scaling super-vertices . 55

4.8 Related work . 59
4.9 Chapter summary . 65

Chapter 5 Ariadne: Online Provenance Querying For Big Graph Analytics 69
5.1 Introduction . 69
5.2 Running example and System overview . 71
5.3 Provenance model . 75
5.4 Provenance querying . 78

5.4.1 Provenance Query Language . 78
5.4.2 Layer-at-a-time evaluation . 79

5.5 Experimental evaluation . 85
5.5.1 Capturing overheads . 86
5.5.2 Online provenance querying . 88
5.5.3 Offline provenance querying . 97

5.6 Related work . 100
5.7 Chapter summary . 101

Chapter 6 Conclusion and Future Directions . 103

Bibliography . 105

vii

LIST OF FIGURES

Figure 2.1. The dependency graph of Query 1. 10

Figure 4.1. Running example: Imperative implementation of PageRank on Giraph 24

Figure 4.2. Steps followed to transform a general Datalog query into a Vertex-
Centric query . 31

Figure 4.3. The graph representation of body(R). 31

Figure 4.4. The Routing-Tree of R denoting how vertices will communicate during
query evaluation. 32

Figure 4.5. Edge-Tree annotated with predicates annotating its vertices and edges 34

Figure 4.6. The dependency graph for running example Query 11. 37

Figure 4.7. Desired dependency graph of Query 5 that captures distribution. . . . 38

Figure 4.8. The dependency graph of Query 11. 40

Figure 4.9. The logical plan for Query 11. 40

Figure 4.10. Example: Partitioning of input graph into super-vertices 42

Figure 4.11. Schema of super-vertex SV2 . 43

Figure 4.12. Messages sent with eager-aggregation . 46

Figure 4.13. Datalography architecture . 47

Figure 4.14. SSSP: Performance comparison of Giraph, Giraph-Metis and Datalog-
raphy . 52

Figure 4.15. WCC: Performance comparison of Giraph, Giraph-Metis and Data-
lography . 54

Figure 4.16. PageRank: Performance comparison of Giraph, Giraph-Metis and Dat-
alography . 55

Figure 4.17. SSSP IN-04: Runtime and communication per super-vertex size. 57

Figure 4.18. SSSP UK-02: Runtime and communication per super-vertex size. . . . 58

Figure 4.19. SSSP AR-05: Runtime and communication per super-vertex size. . . . 59

viii

Figure 4.20. SSSP UK-05: Runtime and communication per super-vertex size. . . . 60

Figure 4.21. WCC IN-04: Runtime and communication per super-vertex size. 61

Figure 4.22. WCC UK-02: Runtime and communication per super-vertex size. . . . 62

Figure 4.23. WCC AR-05: Runtime and communication per super-vertex size. . . . 63

Figure 4.24. WCC UK-05: Runtime and communication per super-vertex size. . . . 64

Figure 4.25. PageRank IN-04: scaling super-vertices . 65

Figure 4.26. PageRank UK-02: scaling super-vertices . 66

Figure 4.27. PageRank AR-05: scaling super-vertices . 67

Figure 4.28. PageRank UK-05: scaling super-vertices . 68

Figure 5.1. Running example: Giraph SSSP . 72

Figure 5.2. Architecture of Ariadne that improves traditional offline provenance
usage. 73

Figure 5.3. Online provenance querying using Ariadne. 74

Figure 5.4. Running example: Giraph SSSP with convergence criterion 75

Figure 5.5. Provenance graph for SSSP . 76

Figure 5.6. Compact provenance graph . 77

Figure 5.7. Provenance graph of SSSP divided into three layers. 81

Figure 5.8. Information flow in evaluation of R1 . 81

Figure 5.9. Information flow in directed queries . 82

Figure 5.10. Vertex x at superstep i evaluates vertex program and PQL query. . . 83

Figure 5.11. Runtime overhead of Query 17 and Query 18. 89

Figure 5.12. Running time of PageRank audit queries. 91

Figure 5.13. Running time of SSSP and WCC audit queries. 92

Figure 5.14. Running time for ALS audit queries. 94

ix

Figure 5.15. Runtime improvement between original (Giraph) and optimized (Gi-
raph - opt) analytic . 96

Figure 5.16. Running time of running example Query 16 . 97

Figure 5.17. Runtime overhead for backward lineage query 26 99

x

LIST OF TABLES

Table 4.1. Notations used . 28

Table 4.2. Dataset characteristics . 49

Table 4.3. Number of super-vertices created for every dataset. 56

Table 5.1. Provenance EDB predicates . 79

Table 5.2. Dataset characteristics . 86

Table 5.3. Size comparison of input graph and full provenance graph 87

Table 5.4. Size comparison of input graph and tailored provenance graph 88

Table 5.5. PageRank: Relative error (L2) for ε= 0.01 and median values of original
(A) and optimized (B) analytics. 95

Table 5.6. SSSP: Relative error (L1) for ε= 0.1 and median values of original (A)
and optimized (B) analytics. 96

xi

ACKNOWLEDGEMENTS

I want to thank Alin Deutsch for his guidance and support. He has been an

inspirational example of personal and professional integrity. Always setting the bar high,

he urged me to improve my ideas and demonstrated confidence in my abilities to solve

tough problems. Additionally, I would like to thank Ken Yocum for without him this

dissertation would have taken twice as long. Despite having a full time position in industry,

he kept active involvement in my research and his commitment to this work kept me

motivated through the tough times.

I would also like to thank Walaa Eldin Moustafa, my mentor during my internship

at NEC Laboratories. Our collaboration gave the seeds that grew into this dissertation.

I am grateful to my committee Tyson Condie, Gert Lankriet for their insightful

comments and George Porter who graciously allowed me to use machines from the Sysnet

cluster for my experiments.

I would like to thank the members of the DB lab at UCSD, Mohan Yang for

answering my questions about his work while at UCLA, Cindy Moore for administering

the cluster and accommodating my requests for extensions and Julie Conner for all her

help and support.

This journey would not be nearly as enjoyable without the great people I met in

San Diego and am lucky to call my friends. They made San Diego feel like home and

became my family. I am especially grateful for Nevena, Yiannis, Dimo and Andreja who

supported and stood by me when I was going through really difficult times. You will

forever be part of my life. Also, Vineet (my roommate and initiator in spicy food), Karyn

(her positive attitude and encouragement that I was not alone in my struggles), Akshay

(his intelligence and kindness made us friends since the first day at UCSD), Valentin, John,

Niki, Louis, and the rest of the wonderful grad students that make the CSE community

unforgettable. I am grateful for the small but strong community of Greeks at UCSD (and

outside) and especially Andreas, Kostas, Nikos, Panos, Ioanna, Stamatia, Stavros, Petros,

xii

Andreas that were part of my every-day life. Moreover, I thank Mikael and Jaymee and

the rest of the friends in Awesome San Diego for the awesome parties and Wednesday

dinner gatherings.

I am grateful to my family who endured hardships and sacrifices in their life so

that I could have a better one. Special thanks to my grandparents Athanasios and Vasiliki

who raised me and showered me with love, my mother Sofia for her unconditional love and

my sister Georgia, my best friend in life.

Finally, I owe this dissertation to Riccardo Beltramo. His faith and pride in me

inspire me to be a better person. His love and support has been a driving force behind

this PhD and I could not have done it without him.

Chapter 4, in part, contains material from ”Datalography: Scaling datalog graph

analytics on graph processing systems” by Walaa Eldin Moustafa, Vicky Papavasileiou,

Ken Yocum and Alin Deutsch, which appears in Proceedings of International Conference

on Big Data 2016. The dissertation author was a primary investigator and co-author of

this paper.

Chapter 5, in full, has been submitted for publication of the material. Vicky

Papavasileiou, Ken Yocum, Alin Deutsch. The dissertation author was the primary

investigator and author of this paper.

xiii

VITA

2002-2007 Bachelor of Science, Computer Science Department, University of Crete
Greece

2007–2009 Master of Science, Computer Science, University of Crete Greece

2010–2018 Research Assistant, University of California San Diego

2018 Doctor of Philosophy, University of California San Diego

xiv

ABSTRACT OF THE DISSERTATION

A Declarative Framework for Big Graph Analytics and their Provenance

by

Vasiliki Papavasileiou

Doctor of Philosophy in Computer Science

University of California San Diego, 2018

Alin Deutsch, Chair
Ken Yocum, Co-Chair

Recent years have witnessed an explosion in size of graph data and complexity of

graph analytics in fields such as social and mobile networks, science and advertisement.

Analyzing and extracting knowledge from Big Graphs (in analogy to Big Data) is hard.

The size of Big Graphs necessitates the use of distributed infrastructures and parallel

programming. Moreover, implementing performant and correct analytics requires in

depth knowledge of both algorithm and input data. Developers of graph analytics face

two major challenges: i) There is a myriad of Big Graph processing frameworks, each

uses a different imperative programming language and implements different low-level

xv

optimizations. Developers are burdened with understanding the low-level characteristics of

an execution framework that suits best their algorithms and data. ii) Assessing the quality

of both data and analytics is a tedious and manual task. Devising new graph analytics

is an iterative process, where developers incrementally refine their algorithms and clean

their data by analyzing results, correcting for errors and run again until the end results

are satisfiable.

In this dissertation we offer a declarative framework that addresses the entire

life-cycle, from designing to executing, of Big Graph analytics. Our approach uses a

single language for both authoring graph analytics and fine-tuning them. Specifically, this

dissertation makes the following two main contributions:

We design and demonstrate Datalography, the first approach for declarative

graph analytics on Vertex-Centric graph processing engines. To accommodate different

programming models, we design and implement a compiler that takes general Datalog

queries and rewrites them into distribution-aware queries that can be efficiently evaluated

on any Vertex-Centric framework. Moreover, our compiler implements automatic and

transparent to the user optimizations in the form of logical query rewritings and thus are

portable to any Vertex-Centric system. We demonstrate the effectiveness of our approach

with an experimental evaluation on real-world graphs that indicates Datalography

offers superior performance when compared to native, imperative implementations.

Our second contribution is a novel provenance management approach that enables

developers to customize provenance capturing and analysis with twofold benefits: the

amount of captured provenance is minimized to include only the necessary information and

analysis is extended beyond the traditional tracing queries. We present formal semantics

of our provenance query language, based on Datalog, and identify an important class of

queries that can be evaluated online, simultaneously with the graph analytic. We showcase

our approach with Ariadne, a provenance management system that supports efficient

debugging, auditing and fine-tuning of graph analytics.

xvi

Chapter 1

Introduction

Recent years have seen an explosion in size and variability of graph data in fields

such as social and mobile networks, advertisement and science. Graphs represent succinctly

natural phenomena where vertices denote entities and edges denote relationships between

them. We use graphs in our every day life. For example, when we connect with friends

using social networks, when we shop online and receive targeted recommendations and ads

or when we use mobile GPS devices that suggest the shortest route. In science, graphs are

used for example to uncover gene-drug interactions, in DNA assembly, and in mapping

the human brain connectome. The sizes of these graphs are constantly increasing: The

number of active Facebook users has doubled from 1.3 billion in 2014 to 2.3 billion in 2018.

The web pages in Google’s index are 40 billion in 2018. The human brain connectome

consists of at least 100 billion vertices and 100 trillion edges.

Analyzing and extracting knowledge from Big Graphs (in analogy to Big Data)

involves performing graph queries such as reachability, shortest paths, and measuring

connected components, as well as more sophisticated computations such as training machine

learning models (recommenders, classifiers, etc.).

Big Graphs necessitate the use of distributed infrastructures. The growing interest

of researchers with different backgrounds to analyze Big Graphs has lead to a flurry of Big

Graph processing frameworks([48, 1, 46, 31, 30, 61, 42]) that assist users in developing

1

and executing distributed and parallel analytics at scale. In their majority, they follow the

Vertex-Centric programming model that offers a user-friendly API to shield developers

from synchronization and distribution primitives. In theory, developers need not know the

low-level implementation details of the framework they use. In practice, however this is not

true especially when one is interested in the performance of their graph analytics. This is

suggested by the myriad of VC frameworks in existence that each use a different imperative

programming language and implement different low-level optimizations. Some even propose

different programming APIs beyond the Vertex-Centric model [73, 70, 67, 69]. There is no

one system that incorporates all optimizations and several surveys [80, 39, 72, 24, 34, 36, 47]

aim to categorize the benefits and drawbacks of each framework.

Developers must have broad knowledge of the systems out there and their low-level

engineering quirks, to select the system that is best suited to their algorithms and data.

On top of that, they must manually optimize the execution through coding practices to

improve performance. This results in a lot of duplicate effort as system optimizations

transcend systems and analytic’s optimizations transcend analytics. There is the need for a

high-level abstraction that provides a universal way to reason about analytics and their data

independent of the underlying system and programming language. A declarative language

fills this gap as it provides a common front-end to developers while a declarative compiler

can choose and implement a host of optimizations, automatically and transparently to the

user. Finally, a declarative language that naturally supports graph queries is amenable to

concise specification of graph analytics.

After developing Big Graph analytics, common practice is to analyze their behavior

for fine-tuning. This involves correcting for errors such as fixing bugs and data cleaning,

improving the quality of results with model training and parameter regularizations, im-

proving the performance by skipping execution when convergence is reached and finally,

monitoring execution as new data arrives. Thus, implementing new graph analytics is an

iterative process, where developers incrementally refine their algorithm and clean their

2

data by analyzing results, correcting for errors and run again until the end results are

satisfiable. Assessing the quality of both data and analytics is currently a tedious and

manual task. Much like provenance management in RDBMS and scientific workflows,

there is the need for provenance management on Big Graph processing systems that assist

developers in their debugging, auditing and fine-tuning needs.

1.1 Overview

In this thesis, we provide a single language solution to authoring, optimizing and

analyzing Big Graph analytics. A high-level, declarative language allows to succinctly

express what graph analytics compute and not how to compute it. Much like what

SQL achieved for database systems, a declarative graph language moves the burden of

optimization from the user to the language compiler. Datalog is a natural fit as it supports

recursion, aggregation and there is vast research on optimization techniques for query

evaluation.

1.1.1 Datalography: Declarative Big Graph Analytics

Recent efforts have suggested using Datalog for authoring Big Graph analytics.

[62, 71] built bespoke distributed datalog evaluation engines that however, do not fit

in Big Data workflows. Graph analytics, more often than not, are part of a workflow

that integrates different systems and varying data sources. Another approach, followed

by [65] is to extend existing dataflow systems. They involve significant code changes to

the underlying system to support efficient recursion and hence their solutions are not

applicable to other systems. None of the aforementioned approaches addresses declarative

graph analytics on graph processing systems that naturally support recursion.

Datalography supports the evaluation of general Datalog queries on Vertex-

Centric engines. Developers need not worry about the programming model of underlying

engines when expressing their graph analytics. In fact, all queries expressed by prior work

3

are supported in Datalography without modifications. We provide a compiler that,

behind the scenes, rewrites general Datalog queries to vertex-centric ones so that they

can be efficiently evaluated on Vertex-Centric engines. Moreover, we provide novel logical

optimizations, namely super-vertices and source-side combiners, that reduce the amount

of computation and communication. We conduct an experimental evaluation that shows

the benefit of our approach over imperative code and quantifies the gains achieved by each

optimization.

1.1.2 Ariadne: Online Provenance Querying for Big Graph
Analytics

Traditionally, provenance has been stored in databases (whether relational, XML

or RDF) and queried offline using the query language provided by the respective data

model of the database. Provenance capturing overheads were not the focus of research as

provenance sizes were in tandem to input sizes and provenance was queried in an offline

manner. Provenance, thus, was long-lived and the capturing overhead was amortized

by the duration the stored provenance remained relevant. The advent of Big Data and

large-scale data processing changes these assumptions as both input data and processing

are transient, analytics execute multiple times with different parameters and on different

data sets. Moreover, processing is distributed making provenance capturing a distributed

problem. Finally, provenance sizes are multiple times larger than the input data and

choosing database for storing provenance is not the defacto solution.

These challenges fueled new research for provenance management on Big Data

analytics ([44, 55, 38, 7]), however all of them focus on batch-processing dataflow engines

and provide limited querying capabilities in the form of offline, imperative traversal of the

provenance graph.

Ariadne is a system to capture, store, and analyze provenance for Vertex-Centric

graph processing engines. Ariadne defines a provenance querying language (PQL) that

4

developers use to declaratively customize provenance capturing and analysis. Ariadne

enables an important class of queries that allow online provenance analysis that executes

simultaneously with an analytic. At the end of the computation, the results of the analytic

and the provenance queries (capturing and analysis) exist. Moreover, because Ariadne

represents the captured provenance as a graph, it is immediately available for further,

repeat analysis on the same engine.

A high-level provenance query language along with online evaluation enables novel

uses of provenance beyond the traditional debugging. We experiment with audit queries

that monitor the computation and tuning queries that explore patterns in the computation

to optimize the runtime of an analytic. We evaluate Ariadne on four graph analytics on

real world graphs. When Ariadne evaluates the analytic simultaneously with multiple

provenance queries (capturing and analysis) the overhead is 2x over the baseline Giraph

analytic. When Ariadne evaluates only analysis queries without capturing additional

provenance, the overhead is 1.3x.

1.1.3 Contributions

In this dissertation we offer a declarative framework that addresses the entire

life-cycle, from designing to executing, of Big Graph analytics. Our approach uses a single

language, Datalog, for both authoring graph analytics and fine-tuning their behavior. In

the first part of the dissertation we make the following contributions:

• We implement a declarative compiler and execution engine that follows the Vertex-

Centric paradigm. Our solution does not require changes to the Vertex-Centric

system and is portable to other systems following the same paradigm.

• We design a compiler that takes general Datalog queries and rewrites them into

VC-Datalog queries that conform to the Vertex-Centric paradigm.

• We propose the logical abstraction of super-vertices that enable set-at-a-time evalua-

5

tion, without changing the user API.

• We implement optimizations, applied automatically and transparently to the user,

that reduce the amount of communication overhead.

• Our experiments show that Datalog graph analytics outperform imperative ones by

a factor of 1.4x-7.8x.

In the second part of the dissertation, we use our declarative framework to address

provenance capturing and querying of Big Graph analytics for scenarios extending the

traditional crash-culprit determination. We make the following contributions:

• We provide a formal provenance model, the Provenance Graph, that enables querying

provenance using the same Vertex-Centric system the analytic ran.

• We define a Provenance Query Language, based on VC-Datalog, for querying the

provenance graph.

• We propose the novel layer-at-a-time evaluation method that is scalable as it does

not require materializing of the entire provenance graph.

• We propose the novel online evaluation mode that obviates the need for capturing

provenance.

• Our experiments show that online provenance querying incurs 1.3x overhead.

6

Chapter 2

Datalog

2.1 Introduction

A Datalog program or query consists of a set of rules and a set of facts. Facts

represent statements that are true, whereas rules allow us to deduce new facts from other

known or previously deduced facts. A Datalog rule has the following syntax:

L0← L1, ...,Ln

where each Li is a literal of the form Pi(x1, . . . ,xn), where Pi is a predicate, and

x1, . . . ,xn are terms. Terms can be variables, constants or functions. Informally, rules are

read as “If L1, . . . ,Ln are true, then L0 is true.” L0 is the head of the rule, and L1 . . . ,Ln

is the rule’s body. Datalog rules can be recursive, i.e., a rule can recursively depend on

itself or another rule that depends on it.

A fact is a rule with an empty body and is always true. A fact that has all its terms

constant is called a ground fact. A Datalog program begins with an extensional database

(EDB) containing ground facts. In database terminology, EDB is the input database, each

predicate corresponds to a relation (table) and facts correspond to tuples. For example, a

program can have an EDB that models a graph consisting of two relations, namely the

vertices and edges. Evaluation of a Datalog program populates the input database with

7

new relations and tuples, called the intentional database (IDB).

We illustrate Datalog with a simple program that finds all vertices reached, tran-

sitively, from a source vertex. Program 1 has three rules: Rule start uses the vertex

predicate that denotes the vertices in a graph and identifies the vertex from which to

start the reachability query. Rule reach has two bodies: the first uses the vertex in

relation start and produces new trace facts for every outgoing neighbor of it, identified

by predicate edges. The second body is recursive as predicate trace appears both in the

head and in the body and produces new trace facts from previously computed ones and

their outgoing neighbors.

start(x)← vertex(x),x== 0.
reach(x)← start(x).
reach(x)← edges(y,x),trace(y).

Query 1. Reachability

2.2 Program evaluation

Under the least fixpoint semantics of Datalog, a recursive program is evaluated

using the bottom-up evaluation strategy. Intuitively, the rules in a program are repeatedly

invoked on existing tuples until no more new tuples can be derived. A simple algorithm

for this, coined naive evaluation proceeds in iterations: In the beginning, the program

is invoked on the EDB, in our case the vertices and edges of the graph and the IDB is

initialized to ∅. In our reachability example, the only new facts that can be derived in

one iteration are start(0) and reach(0) which are added to the IDB. In every subsequent

iteration, the rules are invoked on the EDB as well as the previous IDB. When there are

no more changes to the IDB, i.e., no more new tuples added, evaluation stops.

Naive evaluation is inefficient as it may produce the same facts multiple times.

For example, a vertex may be reachable from the source using multiple paths, and naive

evaluation will deduce the same, previously discovered fact multiple times, once for each

8

such path. However, only one of the tuples is part of the result as Datalog assumes

set-semantics.

The semi-naive [10] evaluation improves upon this by exploiting the fact that

during naive evaluation the EDB relations remain unchanged and new facts are deduced

only from the new facts in the IDB of the previous iteration. Thus, instead of repeatedly

evaluating the program using the entire set of tuples found so far in the IDB, evaluation

proceeds by using only newly discovered facts, referred to as the delta. This process is

shown in Algorithm 1. I is the input EDB database, S contains all the deduced facts in

IDB and ∆Si contains all the newly deduced facts at every iteration i. In the beginning,

only the rules that have exclusively EDB predicates in their body (P0) are evaluated on

the input database and their facts are added to ∆S0 (line 3). Then, at every subsequent

iteration, the program is evaluated on the delta of the previous iteration and the new delta

is obtained by subtracting from the new facts all the previously known facts (line 6). This

new delta is added to the IDB database S (line 7). Evaluation proceeds until the delta at

an iteration is empty.

Algorithm 1. Recursive Semi-naive Datalog Evaluation
1: S = ∅
2: P0 rules in P without IDB predicates in their body
3: ∆0

S = P0(I)
4: i= 1
5: do
6: ∆i

S = P (∆i−1
S)−S

7: S = S∪∆i
S

8: i= i+ 1
9: while ∆i

S = ∅

Notice, how there has been no mention on how the rules of the program are

evaluated. Datalog does not impose an ordering on the rules of a program and assumes

they are evaluate in parallel. In practice, however, an order is chosen such that when

a rule evaluates, all the predicates in its body have already evaluated. The dependence

9

reachstart

Figure 2.1. The dependency graph of Query 1.

graph is helpful to order rules in recursive programs: it contains vertices for every IDB

predicate in the program and edges denote dependencies between these predicates. An

edge is added between v2 and v1 if the predicate of v2 appears in the body of a rule with

head v1. If the program is recursive, the dependency graph will contain cycles. Evaluation

proceeds following a topological sorting of the graph, recursing on every strongly connected

component. The dependency graph for our reachability query 1 is shown in Figure 2.1

where recursion is denoted with a self loop on predicate reach.

2.3 Datalog recursion with aggregates

The above simple semantics hold for monotone, positive Datalog programs. Prob-

lems arise when negation and aggregation are introduced as monotonicity with respect to

set containment, and hence a minimal least fixpoint, is not anymore ensured. However,

negation and aggregation are fundamental in expressing real-world applications and espe-

cially graph analytics – many compute until an aggregate value, such as a min, max, sum,

or count, reaches a certain threshold.

2.3.1 Stratified semantics

Stratification allows negation in a Datalog program, as long as there is no recursion

through it. The idea is to divide the rules of a program into strata, groups of rules, and

for evaluation to proceed following an ordering on the strata whereby the IDB predicates

of a previous stratum are considered as EDB and therefore unchanged. There is an easy

syntactic check to verify if a program is stratifiable based on the dependency graph not

10

having negative cycles. For this, the edges of the graph carry negative labels, whenever a

negated IDB appears in the body of a rule. Moreover, to ensure termination, rules must

be safe having every variable in the body appear in at least one positive predicate.

The same idea can be applied to programs with aggregation. [53] defines the

”aggregate stratified” class of programs that, similar to the stratified negation class,

disallows recursion through aggregation. Additionally, rules must be range restricted

having every variable in the head appear in the body as well. Aggregation follows similar

syntactic semantics as with SQL: the head has one or more grouping variables and a list

of aggregate variables that appear in the aggregation function. The aggregate variables

may not appear else in the head.

Stratified Datalog queries with aggregates, although correct, are inefficient. Consider

for example Query 2 computing the shortest paths from a given source (vertex with id 0)

without the use of aggregation in recursion. Besides this program not terminating in the

presence of cycles in the input graph, it is also extremely inefficient as it first computes

the length of all paths from the source and only then is the minimum for every vertex

selected via the min aggregate outside the recursion (rule sssp).

path(x,0)← vertex(x),x== 0.
path(x,d)← edges(y,x,w),path(y,d1),d= d1 +w.
sssp(x,MIN(d))← path(x,d).

Query 2. SSSP: Recursion without aggregation

Several works suggested extensions to stratified semantics such as locally stratified

programs [56], well-founded models [26] and stable models [28]. Here, we focus on one

such approach, the modularly stratified [57] class that allows negation in recursion under

constraints while still preserving two-valued semantics. The idea is to divide a program

into strongly connected components and recursion is allowed only within a component.

Evaluation proceeds component-at-a-time and only when the current component has

converged, will the next one start executing. The problem is that checking whether a

11

program is modularly stratified (and hence has a perfect model) is not anymore a syntactic

check but depends on how rules get instantiated at runtime for a given input database.

Although this class is the most expressive while still providing perfect model semantics, it

requires sophisticated compilers and there are no efficient evaluation techniques.

This gives rise to two desiderata when choosing semantics to support negation and

aggregation in recursion:

• There must exist simple syntactic checks to decide whether a program is allowed or

not.

• Evaluation must be efficient and not compute unnecessary facts that will later be

discarded.

These problems are addressed by [41] and [77] that each define a subclass of

modularly stratified programs that allow negation and aggregation in recursion and whose

stratifiability is verified by an easy syntactic check. Programs in this class are explicitly

stratified with the use of a temporal variable in the IDBs: Non-recursive predicates are

annotated with the constant 0 whereas all other predicates are annotated with i or s(i),

the succinct of i. The temporal variable essentially assigns strata level to IDB predicates.

Following [77], the recursive rules in a program are categorized into two groups:

the X-rules where the temporal variable in their head is the same as of all predicates in

their body and the Y-rules whose head has the temporal variable s(i) and at least one

positive predicate in the body has the temporal variable i. There is a simple syntactic

to verify whether a program is xy-stratified and involves relabeling all head predicates

by prepending them with the label “new” and labeling all predicates in the body with

“new” as well if they have the same temporal variable else with “old”. The initial program

is xy-stratified if the re-labeled program is stratified, i.e. the dependency graph has no

negative or aggregated cycles. The fixpoint evaluation of xy-stratified programs proceeds

12

in iterations and involves replacing the tuples of the “old” relation with the “new” ones at

every iteration.

Although XY-stratifiable semantics support negation and aggregation and allow for

an easy-syntactic check, they can lead to cumbersome programs to write and inefficient

execution. Consider again SSSP, this time expressed as an XY-program in Query 3. The

query simulates semi-naive evaluation in a quite procedural way as the user has to specify

how the delta is computed at every iteration (in multiple steps) and how to update the

total set of facts using the delta (again multiple steps).

r1 : cand-sp(x,MIN(D), i+ 1)← delta-sp(y,d1, i),edges(y,x,d2),d= d1 +d2.
r2 : delta-sp(x,0,0)← vertex(x),x== 0.
r3 : delta-sp(x,d, i+ 1)← cand-sp(x,d, i),all-sp(x,d2, i),d2 > d
r4 : delta-sp(x,d, i+ 1)← cand-sp(x,d, i),¬all-sp(x,, i)
r5 : all-sp(x,d, i+ 1)← all-sp(x,d, i),¬delta-sp(x,, i+ 1)
r6 : all-sp(x,d, i)← delta-sp(x,d, i)
r7 : last-sp(x,i)←¬delta-sp(x,, i)
r8 : sssp(x,d)← all-sp(x,d, i).

Query 3. SSSP: XY-stratified recursion with aggregation

Predicate delta-sp contains the shortest paths of vertices visited at the current

iteration whereas predicate all-sp contains the shortest paths of all the vertices visited

in the iterations up to the current one. The shortest path of a vertex at an iteration is

computed in two steps: first, rule cand-sp computes a candidate shortest path based

on the minimum distance of its incoming neighbors , then a candidate path becomes the

shortest distance if there is no other path for that vertex (rule r4) or if there is, it is longer

(rule r3). Finally, the shortest paths of all visited vertices (all-sp) are updated at every

iteration to contain the distance for all vertices not visited in the current iteration (rule

r5) and the new distances for all vertices visited at the current iteration (rule r6). Rule r7

ensures that evaluation stops for a vertex when the delta is empty and rule r8 chooses the

shortest distance as the lastly computed one.

13

2.3.2 Monotonic aggregation

The previous approaches based on stratification provide uniform semantics for

negation and aggregates, as well as other constructs such as arithmetic functions. They

extend Datalog semantics to allow for the non-monotonicity of aggregates and negation

but introduce complexities and prevent using optimizations such as semi-naive evaluation

and magic sets.

Aggregation in recursion is unavoidable when one is interested in succinct for-

mulation and performant evaluation. Monotonic aggregation achieves this for aggregate

functions that are monotonic: If we look at the values produced by an aggregate, they are

monotonically decreasing/increasing. This is true for instance for the min aggregate in

SSSP which allows to express it as Query 13. The desire for monotonic aggregates inspired

a flurry of research [25, 68, 19, 26] however, the correctness of semantics and evaluation

are still an open debate [78, 79] and research has not yet converged to a widely accepted

solution. Below we provide an overview of the two main lines of work for incorporating

aggregation in recursion: lattices based on partial orders and continuous aggregates.

sssp(x,0)← vertex(x),x== 0.
sssp(x,MIN(d))← edges(y,x,w),sssp(y,d1, i),d= d1 +w.

Query 4. SSSP: Monotonic aggregation in recursion

First [58] suggested defining a partial order over the domain of an aggregate function

that together with a meet and join operation, form a complete lattice. Monotonicity is

then ensured when the ordering on the domain of the aggregate function transfers to

its range. However, [27] showed that it is very difficult to identify automatically which

lattices make a program monotonic and it is not trivial to formally define bottom-up

evaluation. Recently [20], the extension of Bloom [6] language for declarative distributed

programing, brought monotonicity based on partial orders to the foreground again. It

improves upon prior work by providing a framework for developers to safely define lattices

14

and proved that optimizations such as semi-naive evaluation and magic sets are applicable.

However, the burden to prove the correctness of the chosen lattice falls again on the user.

The idea of lattices is desirable due to its simple idea and generality, users can

define their own lattices and aggregate functions, as well as due to its efficiency, [62] showed

Datalog programs outperform imperative hand-written code. However, the difficulty of

providing formal proofs and guarantees has not let to a wide adoption of this approach.

Yet a different idea to handle aggregation are continuous aggregates [51, 50, 66] that

avoid the above shortcomings by defining monotonicity with respect to set-containment.

When using lattices, the number of tuples associated with a grouping key is at most one

and when a new tuple is computed it replaces the previous one according to the definition

of the merge operation of the aggregation function. On the contrary, with continuous

aggregates, a growing set of tuples is associated with a grouping key. For query SSSP for

example, assume vertex a with distances 5 at iteration 1, distance 3 at iteration 2 and

distance 2 at iteration 3. Then relation sssp for grouping key a will have the following

tuples after 3 iterations: (a,5),(a,3),(a,2). We see that when a new tuple is computed

for a grouping key, it is appended to its set of tuples and this is how set-containment is

maintained. Monotonicity is defined then on the values an aggregate function produces for

a specific grouping key: if the values when viewed as a sequence across all iterations are

monotonically increasing/decreasing, then the aggregate function is monotonic. Obviously,

the end result of aggregation must be a single tuple per grouping key and this approach

requires that, at the end of evaluation, a stratified aggregation is applied to select the

actual final value.

At first hand, this evaluation strategy is inefficient and doesn’t differ from stratified

evaluation in the amount of intermediate tuples produced. Luckily, the monotonicity

of aggregate functions allows for optimizations. For min/max aggregates, we know

their values are monotonically decreasing/increasing. Moreover, at every iteration during

evaluation, the intermediate tuples other than the minimum/maximum can be safely

15

ignored as they won’t influence the final result. This gives rise to an evaluation strategy

that does not need to maintain a set of intermediate tuples but only the latest one.

Essentially, the optimized evaluation simulates the evaluation with lattices where also

only one intermediate tuple is maintained. The count/sum aggregates are handled

similarly: At every intermediate iteration only the maximum count/sum for a grouping

key is maintained and the current aggregate value is updated using the difference between

the previous and current maximum values.

Based on the above analysis, in this dissertation we follow the semantics of [77] for

non-monotonic programs whereas for programs with monotonic aggregates we follow the

semantics of [66].

16

Chapter 3

Vertex-Centric Graph Processing

3.1 Introduction

Recently, we have witnessed an explosion in size and variability of graph data. Big

Graphs represent among others social, mobile, telecommunication and other networks as

well as personalized health and biological data. Modern applications that manage and

analyze Big Graphs pose challenges to scalability and parallelism as their computations

are iterative in nature and graph data are highly interconnected. Batch-processing systems

using the MapReduce programming model, although ubiquitous in applications on Big

Data, suffer from performance drawbacks when used with Big Graphs.

This led to the development of large scale graph processing frameworks that

specifically cater to the needs of Big Graph applications. They provide user-friendly

abstractions that shield users from synchronization and communication primitives while

taking care of parallelization of computation and distribution of graphs.

3.2 Vertex-Centric

Big Graph frameworks, in their majority follow the Vertex-Centric programming

model pioneered by Pregel [48] that applied the Bulk Synchronous Parallel (BSP) model

to the context of graphs. According to BSP, a graph is partitioned across nodes in a

cluster and computation proceeds in a series of supersteps, each followed by a global

17

synchronization barrier. Vertices communicate using messages, but messages sent during

one superstep are visible at the destination vertex only in the next superstep.

In the Vertex-Centric model, a user writes a graph application from the context of

a vertex by implementing a function (vertex program) that specifies what computation a

single vertex will perform and what communication. A vertex program performs three

steps: i) receive messages from neighbor vertices, ii) compute and possibly produce new

values for the current vertex , and iii) send messages to neighbor vertices.

The architecture of the frameworks consists of a master node responsible for

coordination, and workers that perform the actual computation. The input graph is

partitioned across workers usually using a hash-partitioning scheme. A worker node may

host multiple partitions that compute in parallel. The master terminates computation

when there are no more messages in the system.

Pregel inspired the development of several other systems. Apache Giraph [1] is the

open-source alternative to Pregel built on top of Hadoop. Giraph runs graph processing

jobs as map-only jobs on Hadoop and uses HDFS for data input and output. In this

thesis, we based our implementation and experiments on Giraph due to its maturity

and wide-spread use in academia [35] and industry [17]. GPS [61] addresses large-degree

vertices in powerlaw graphs by partitioning their edges and creating mirrors of the vertices

in those partitions. Communication overhead is reduced as high-degree vertices first send

messages to their mirrors, sending one message per partition. Mizan [42] suggests the

usage of dynamic repartition to address the problem of load imbalance and stragglers.

Practice has showed however, that the benefits gained do not justify the overhead of

dynamic repartitioning.

GraphLab [46], supports both synchronous and asynchronous computation via a

shared memory interface where vertices can directly read data of their neighboring vertices

without the use of messages. PowerGraph [30] addresses powerlaw graphs by following a

vertex-cut graph partitioning mechanism whereby edges are not allowed to cross partitions.

18

This is fundamentally different from the approaches based on Pregel that may suffer from

load imbalances and stragglers that slow down the entire computation.

Besides the above dedicated Big Graph frameworks, there have been approaches

to extend general batch-processing systems with graph computation capabilities. In the

beginning, Twister [23], HaLoop [15], PrIter [81] focused on Hadoop extensions with

loop-aware scheduling, in-memory caching and prioritized execution. Later, Spark [76],

Naiad [52] and Hyracks [11] extend MapReduce with general purpose data operators and

iterative computation as well specialized libraries for graphs. For example, GraphX [31]

is a library built on top of Spark that represents graphs as collections and expresses

graph computation using general data parallel primitives. They implement a host of

optimizations to achieve performance comparable to bespoke graph processing engines. Of

notable mention is Pregelix [14] that maps graph analytics to logical plans evaluated using

database query evaluation techniques. The front-end is Vertex-Centric but the evaluation

differs greatly from all aforementioned systems as graphs are modeled relationally and

computation is achieved via physical relational operators such as outerjoins, groupby, etc,.

3.3 Think like a graph

The Vertex-Centric paradigm, although more user-friendly, incurs large synchro-

nization and communication overheads. A different approach is followed by [70, 67] that

suggest a subgraph-centric programming model where users express their algorithms

with sub-graphs as first class citizens. The Subgraph-Centric model offers users greater

flexibility as it allows low-level access to a partition of vertices as a whole as well as their

messages. This way, they can exploit characteristics of their algorithms and use enhanced

data structures or local asynchrony to offer greater performance. In fact, experiments

reveal orders of magnitude better performance than the Vertex-Centric model, especially

when combined with a smart partitioning algorithm. The downside of Subgraph-Centric

19

model is the increased complexity of the programs. We will see in Chapter 4 how we take

advantage of these findings without changing the Vertex-Centric API users express their

graph analytics.

20

Chapter 4

Declarative Graph Analytics on Ver-
tex Centric Engines

4.1 Introduction

Datalog has seen a recent resurgence in a wide area of applications including

declarative networking [45], network provenance [82], distributed programming [6] and

program analysis [12]. The desirable declarative and concise specification of graph queries

and recursive evaluation semantics of Datalog make it a perfect candidate for Big Graph

analytics.

[62, 71] built bespoke distributed datalog evaluation engines that however, do not

fit in Big Data workflows. Graph analytics, more often than not, are part of a workflow

that integrates different systems and varying data sources. Another approach, followed

by [65] is to extend existing dataflow systems. They involve significant code changes to

the underlying system to support efficient recursion and hence their solutions are not

applicable to other systems. None of the aforementioned approaches addresses declarative

graph analytics on graph processing systems that naturally support recursion.

In this chapter, we utilize Datalog to author graph analytics for execution on

Vertex-Centric systems. We align Datalog’s fixpoint evaluation semantics where rules

evaluate until they generate no new facts, with the Vertex-Centric computation paradigm,

where vertices execute until they receive no more messages.

21

Our approach does not require any modifications to the underlying engine to support

efficient iterative evaluation. Moreover, it does not require changes to the Datalog syntax

to conform to the Vertex-Centric paradigm. Indeed, queries in our work are expressed in

the same manner as with prior work.

To this end, we employ novel query rewriting techniques to transform general

Datalog queries to equivalent ones that are aware of distribution and conform to the

Vertex-Centric model. Moreover, we employ logical optimizations that reduce computation

and communication overheads. The benefit of our approach is that the optimizations are

implemented as query rewriting rules making Datalog compilation and evaluation portable

to other Vertex-Centric systems.

In this chapter we present Datalography, a declarative framework for Vertex-

Centric systems and make the following contributions:

• We define VC-Datalog, an extension of Datalog that incorporates distribution and

conforms to the Vertex-Centric paradigm.

• We design and implement a compiler that rewrites general Datalog queries to efficient

VC-Datalog queries.

• We present a logical abstraction, namely super-vertices, that enables set-at-a-time

evaluation without changing the user API or the underlying system.

• Super-vertices are the foundation for incorporating optimizations used in database

and batch-processing research. Here, we show how we can marry eager-aggregation

with map-side combiners to reduce communication overheads.

• We present experiments for three graph queries on three real-world graphs and find

that Datalography offers a speedup of 2.3x-7.8x over imperative graph analytic

on Giraph whereas it achieves a speed-up of 1.4x-2.5x when compared to a custom

partition-aware implementation of Giraph.

22

Outline: The rest of the Chapter is organized as follows. In Section 4.2 we compare the

imperative implementation of a graph analytic versus its declarative one. Section 4.3 reviews

support for aggregates in recursive Datalog queries. Section 4.4 presents the compiler and

the query rewriting algorithms. Section 4.5 describes the logical optimizations. Section 4.7

presents experimental results including the effect our optimizations have on runtime and

communication. Section 4.8 reviews related work and Section 4.9 concludes this chapter.

4.2 Declarative Big Graph analytics

We begin this section by comparing the imperative implementation of a graph

analytic in Giraph versus its declarative counterpart. We see that Datalography,

besides offering a concise language, enables developers to express their graph analytics

without worrying about distribution or the underlying computation model. Indeed, queries

in Datalography are expressed in the same manner as prior work where evaluation

happens on bespoke or batch-processing engines.

Developers evaluate graph analytics on Vertex-Centric engines by implementing a

vertex program, a function specifying the computation and communication every vertex

performs. As an example, the Giraph program in Figure 4.16 computes PageRank. In

superstep 0 every vertex initializes its value (rank) to 1. Every subsequent superstep

involves the following steps: Line 7 sums all the messages received from neighbors. Line 9

computed the new rank using this sum and updates the vertex value. Line 11 checks if the

current superstep is smaller than the max allowed superstep (specified by the user). If so,

Lines 12-13 send a message to all outgoing neighbors with the quotient of the new rank

and the out-degree of a vertex. If the maximum number of supersteps has been reached,

Line 15 halts the computation and no messages are sent.

On the other hand, in Datalography, a developer uses Query 5, with no special

consideration of the Vertex-Centric model. Reading the query, the first rule computes

23

Figure 4.1. Running example: Imperative implementation of PageRank on Giraph

the out-degree of a vertex by counting its outgoing edges. The second rule, out-rank

represents the portion of its rank a vertex sends to its outgoing neighbors. The third rule

initializes the rank of every vertex at superstep 0 to 1. The last rule, computes the rank

of a vertex by summing the contributions from incoming links. Note how the aggregate

does not depend on the previous rank of a vertex.

out-degree(x,COUNT (y))← edges(x,y).
out-rank(x,r/d)← pagerank(x,r),out-degree(x,d).
pagerank(x,1)← superstep(x,i), i== 0.
pagerank(x,SUM(r))← edges(y,x),out-rank(y,r),superstep(x,i), i < σ.

Query 5. Running example: Declarative specification of PageRank using Datalog

4.3 Efficient recursive aggregation

Aggregation is fundamental to many graph algorithms – many compute until an

aggregate value, such as min, max, sum, or count reaches a certain threshold. We

discussed in Chapter 2 how the research community has yet to reach a consensus on how

to support aggregation in recursion in an efficient manner. In fact, each of the prior work

on Datalog evaluation on large-scale engines supports aggregates differently. Although

24

they agree on the monotonicity of min and max aggregates, the story changes for sum

and count that in general are not monotonic.

[62] supports monotonic min/max through the use of partial orders and lattices

whereas sum/count that are considered non-monotonic are supported through imperative

stratification. [71] also defines monotonicity using partial orders on the domain of

aggregate functions but consider sum/count to be bag monotonic. We discussed in

Chapter 2 how approaches on partial orders suffer from difficulties in proving correctness of

semantics. [66], on the other hand, supports monotonicity through continuous aggregates

where min,max,sum,count are monotonic as long as their values when viewed as a

sequence are monotonic.

In this work, we follow the semantics of [66] for monotonic aggregates. However,

many important algorithms require non-monotonic aggregates, such as PageRank whose

summation is not monotonic: when the rank of a vertex is viewed as a sequence across all

iterations, it is not monotonically increasing or decreasing. We support such queries using

XY-stratification [77] but with a twist.

Explicit stratification, in general, results in awkward query formulations and slow

evaluation when compared to queries whose aggregate is pushed into recursion (see

Chapter 2). But we identify a subclass of queries for which explicit stratification gives

both concise queries and no performance penalties. The key idea is whether aggregation

depends on its previous values or not. For example in PageRank, the rank of a vertex

does not depend on its own previous rank. Compare this to SSSP, where for a path to be

considered the shortest, it must be compared against all previous paths of that vertex.

Using explicit stratification, PageRank is expressed like:

25

out-degree(x,COUNT (y),0)← edges(x,y).
out-rank(x,r/d, i)← pagerank(x,r, i),out-degree(x,d,0).
pagerank(x,1,0).
pagerank(x,SUM(r), i+ 1)← edges(y,x),out-rank(y,r, i), i < σ.

Query 6. PageRank: Explicit stratification for non-monotonic aggregation

4.4 VC-Datalog

Although developers need not know, their queries are evaluated on a distributed

Vertex-Centric engine meaning the EDB, IDB relations of their queries are distributed.

We define VC-Datalog that extends Datalog with distribution primitives and whose rules

conform to the Vertex-Centric paradigm.

4.4.1 Vertex-Centric normal form

We introduce the notion of locality for tables, specified by the first term in a

predicate (variable x) called the location specifier. If the predicate is the head of a rule,

variable x denotes the vertex evaluating the rule and the location where the resulting table

is stored. If the predicate is in the body of a rule, it denotes the location of the input

table. Therefore, predicates in the body of a rule that have a different first variable than

that of the head are remote tables that neighboring vertices must sent to the currently

executing vertex as messages. Note, Datalog queries must be guarded with respect to the

location specifiers, i.e., the first variable of a predicate cannot be free but must be guarded

by edges predicates if it differs from the location specifier of the head.

Using the location specifiers, we define a normal form for VC-Datalog rules where

a rule evaluated at a vertex x refers to remote predicates that are incoming/outgoing

neighbors of it.

26

Definition 1 (Vertex-Centric).

r(x, v̄) `Px(x, χ̄), (4.1)

edges(ȳ,x), (4.2)

Py(ȳ, ψ̄), (4.3)

edges(x, z̄), (4.4)

Pz(z̄, ζ̄), (4.5)

(4.6)

such that v̄ ∈ ȳ∪ z̄∪ χ̄∪ ψ̄∪ ζ̄.

according to which a rule evaluated at a vertex x has access to its local predicates

Px (line 1), its incoming neighbors (line 2) and their predicates Py (line 3), its outgoing

neighbors (line 4) and their predicates Pz (line 5).

Besides ensuring that a query can be evaluated on a Vertex-Centric engine, the

normal form also guarantees efficient evaluation of it. As an example, consider Query 7

that finds all the paths of length 3. Rule 3-hop has two remote predicates, the edges

predicate of a vertex y that is an outgoing neighbor of x and the edges predicate of z

that is an outgoing neighbor of y. Vertex x cannot evaluate this query in one superstep

as remote predicate edges(z,w) requires two supersteps to reach it. Hence, x is not

evaluating anything on the first superstep but rather needs to wait until it receives all

remote relations. In general, a rule containing a path of edges predicates of length n > 1

from the location specifier requires n−1 supersteps for its evaluation.

3-hop(x,y,z,w)← edges(x,y),edges(y,z),edges(z,w)
Query 7. Paths of length 3

Datalog queries that don’t conform with the normal form are rewritten using

the normalization algorithm described below. Then Query 7 is rewritten into Query 8.

27

Table 4.1. Notations used

Notation Meaning
R Rule R(x, v̄)→ P1, . . .Pn

loc(R) Variable x that is the location specifier of R
head(R) Head of rule: R(x, v̄). Defines schema of rule output.
body(R) Body of rule: P1, . . .Pn. Conjunction of predicates in rule definition
pred(Pi) Predicate Pi ∈ body(R) .
vars(A) Set of variables appearing in A
V(T) Set of vertices in T
T↓x Subtree rooted at vertex x
A;x Add element x to set A
Pxi Predicate list of vertex xi

P(xi,xj) Predicate list of edge (xi,xj)

Evaluation now requires one superstep, all neighbors of x send their 1-hop relation to it,

and then x can evaluate rule 3-hop.

1-hop(x,y)← edges(x,y)
3-hop(x,y,x)← 1-hop(y,z),edges(x,y)
Query 8. Normalized Paths of length 3

4.4.2 Vertex-Centric rewriting

The normal form ensures that every rule in a Datalog query uses edges predicates

whose one variable is x, the location specifier of the head. As we saw though, in general

this is not the case. Here, we define a rewriting algorithm that rewrites a non-normal rule

into multiple rules, each of which is normal.

For reference, the notations used through the remainder of this chapter are listed

in Table 4.1.

The main idea of the rewriting is that the body of a rule can be viewed as a

distributed join, where IDB predicates are the distributed tables, their site denoted by

their location specifiers, and the EDB predicates edges are the communication links

connecting the remote sites. The site holding the result of the distributed join is the

28

location specifier of the head of the rule.

As an example, consider Query 9 comprised of one rule R, that does not follow

our normal form as it refers in its body to neighbors that are more than one hop away.

body(R) contains the local IDB predicate P and the remote IDB predicates P2 residing

at vertex x2 and P6 residing at vertex x6. Moreover, it contains local and remote EDB

edges predicates residing at their location specifiers.

R(x, . . .)← edges(x,x1),edges(x1,x3),edges(x3,x4),edges(x4,x1),edges(x1,x2),
edges(x,x5),edges(x5,x6),P(x,x1,x2),P2(x2,x3,x4),P6(x6,x2)

Query 9. Normalization example

Evaluating R involves joining the local and remote relations to find an assignment

for the variables that will make its body true. One way to achieve this is for every

vertex to send its relations to x, the vertex evaluating R. This means, vertices x1 – x6

send their relations to x. One can easily see that this evaluation strategy is not optimal:

1) Communication requires multiple supersteps as in the Vertex-Centric paradigm, a

vertex can send messages only to its direct neighbors. For example, relation edges(x3,x4)

requires 2 supersteps to reach x, one where x3 sends the relation to x1 and then x1 sends

it to x. 2) Moreover, there are multiple paths along which relations can be transmitted.

Instead of following the previous path, x3 can send its relation to to x4, x4 to x1 and then

x1 sends it to x which requires 3 supersteps. 3) Finally, remote relations are transmitted in

their entirety over a series of vertices when few tuples are actually relevant. For instance,

relation P2(x2,x3,x4) is sent from x2 to x1 and then to x.

However, every vertex appearing in the body of a rule is an evaluation site. Hence,

we can distribute computation among these vertices where each evaluates parts of the rule

that are local to it. The added benefit is that only relevant information is transmitted

further along the route to x since vertices behave as filters.

The problem of optimizing distributed queries has been studied extensively in the

29

context of distributed databases [43]. The most expensive operations are joins and much

works focused on optimizing them by reducing transfer costs between sites (semi-join,

join reductions) and increasing parallelism of query evaluation (query and data shipping).

In this work, in the absence of statistics, we propose a greedy solution that minimizes

the total number of supersteps and the size of relations transmitted while following the

constraints imposed by the Vertex-Centric paradigm.

Our rewriting transforms an initial Datalog rule to a collection of VC-Datalog

rules by assigning location to distributed joins and deciding along which links to send

messages. The rewriting guarantees that in the new rules: i) Communication occurs only

between vertices xi,xj that are direct neighbors, i.e, edge(xi,xj) ∈ input graph. ii) A

vertex evaluates a join within one superstep, having received all remote predicates in the

preceding superstep. ii) The site where the result of the join will reside is the location

specifier of the rule of the initial rule.

The rewriting consists of the three steps shown in Figure 4.2. First, we create

a Routing-Tree, that depicts how vertices will transmit remote predicates so that the

final results of query evaluation reside at the location specifier of the initial rule. Next,

we annotate the nodes and edges of the Routing-Tree with IDB predicates, essentially

assigning the evaluation site to distributed joins. Finally, we create a new rule for every

node in the Routing-Tree that is annotated with predicates. The result of the rewriting is

a set of rules that follow the Vertex-Centric normal form.

Create Routing-Tree

The edges predicates in the body of a rule specify a graph where for every predicate

edges(xi,xj) we create two nodes xi, xj and connect them via an edge. We refer to this

graph as the Body-Graph and Figure 4.3 shows the Body-Graph for rule R.

The Body-Graph represents the allowed channels of communication: which vertex

can send messages to what other vertex, since in Vertex-Centric they must be connected

30

1.#Create#Rou,ng/Tree#

2.#Annotate#Rou,ng/Tree#

3.#Create#Vertex/Centric#rules#

Figure 4.2. Steps followed to transform a general Datalog query into a Vertex-Centric
query

x

x1 x5

x6x2 x3 x4

Figure 4.3. The graph representation of body(R).

through a direct edge. There are multiple ways for two vertices to communicate between

each other: For example, vertices x3 and x4 share the edge (x3,x4) but they are also

connected through the path (x4→ x1→ x3).

Our minimization objective is R′s evaluation to require the least number of super-

steps satisfying the constraints imposed by Vertex-Centric and the site holding the result

(vertex x). Thus, we create the Routing-Tree for R (Troute(R)) in Figure 4.4 through a

BFS traversal of the Body-Graph with edge directions such that all paths lead to x (x is

the root of the tree). The Routing-Tree is guaranteed to have the smallest height.

Annotate Routing-Tree

The next step in the rewriting is to decide the evaluation site for every predicate.

We identify two classes of predicates: the neighbor-join have arguments that are all from a

single vertex or vertices that are neighbors in Troute(R). On the other hand, the path-join

31

x

x1 x5

x6x2 x3 x4

Figure 4.4. The Routing-Tree of R denoting how vertices will communicate during query
evaluation.

predicates have arguments that are connected through a path of length > 1. For example,

a predicate P3(x3,x4) would be a neighbor-join as x3 and x4 are neighbors. On the other

hand, P2 is a path-join predicate as its arguments x2,x3 and x4 are not connected through

a direct edge. The same holds for predicates P and P6.

Neighbor-join predicates are assigned to their location specifier vertex. For example,

edges(x3,x4) is assigned to vertex x3 and requires no communication for its evaluation. In

general, neighbor-joins are evaluated in one superstep, requiring either no communication

or messages from their neighbors. Path-join predicates are placed on the vertex that is

the least common ancestor (lca) of their arguments. For example, P2 is assigned to vertex

x1 that is the lowest common ancestor of its arguments. Although P2 can be evaluated in

one superstep, with vertices x2,x3 and x4 sending their relations to x1, this is generally

not true for path-join predicates. Consider predicate P6 whose arguments are x6 and x2.

Their lca is vertex x to which P6 is assigned to.

Choosing the least common ancestor as the evaluation site satisfies our minimization

objective as the lca is the meeting point for remote vertices on their shortest paths to the

root. Choosing either x2 or x6 as the evaluation site for P6, would require 4 supersteps

whereas choosing x requires 2 supersteps. Moreover, choosing the lca satisfies the constraint

of the final result of evaluation being on x, the location specifier of the initial rule.

32

The algorithm for annotating the Routing-Tree is in Algorithm 2. It traverses the

Routing-Tree bottom-up and left-to-right and adds annotations to its nodes and edges that

are a list of predicates P. For the nodes of tree the predicate list denotes the predicates

that can be evaluated at that vertex. The predicates on the edges denote the messages

that must be sent between vertices and what those messages should contain.

For every vertex xi, add predicate Pi to its list of predicates Pi if: i) All variables

in Pi are xi or appear in an edge predicate with xi its first variable (lines 5,6). ii) All

variables in Pi appear in the subtree rooted at xi (T↓xi
) (lines 11,12). Else, add Pi to the

predicates list of edge (xi,xj) ∈ Troute where xj is parent of xi (lines 14,15).

Algorithm 2. Edge-Tree annotation algorithm
1: function Annotate(R(x, . . .))
2: Troute(R)←Routing-Tree of R rooted at x
3: for xi ∈ bottom-up, left-to-right traversal of Troute(R) do
4: for pred(Pj) ∈ body(R) do
5: if Pj is edges(xi,xk) then
6: Pxi ;Pj

7: end if
8: if loc(Pj) = xi then
9: Let T↓xi

subtree of Troute(R) rooted at xi

10: Let V(T↓xi
) set of vertices in T↓xi

11: if vars(IDB(Pj ,R))⊆ V(T↓xi
) then

12: Pxi ;Pj

13: else
14: Let xa parent of xi and edge (xi,xa) ∈ Troute(R)
15: P(xi,xa);Pj

16: end if
17: end if
18: end for
19: end for
20: end function

The result of Algorithm 2 is shown in Figure 4.5. We see that every predicate in

the body of R is assigned to a vertex, once. Moreover, the invariant at every step of the

algorithm is that whenever a predicate Pi is assigned to a vertex xi all variables in Pi

appear in the subtree rooted at xi and are available in its children or itself.

33

x

Px = {P (x,x1,x2)
P6(x6,x2)
edge(x,x1)}

x1

Px1 = {P2(x2,x3,x4)
edge(x1,x2)
edge(x1,x3)}

x5 Px5 = {edge(x5,x6)
edge(x,x5)}

x6x2x3

Px3 =
{edge(x3,x4)}

x4

Px4 =
{edge(x4,x1)}

P(x5,x) = {P6(x6,x2)}

P(x6,x5) = {P6(x6,x2)}

Figure 4.5. Edge-Tree annotated with predicates annotating its vertices and edges

Create Vertex-Centric rules

The final step in the rewriting is to create the collection of rules that will replace

the initial rule and that abide to the normal form.

Algorithm 3 visits the Routing-Tree bottom-up and left-to-right and creates a new

rule for every vertex whose predicate list P is not empty. Function Create-Rule (line 17)

takes as argument the predicate list of a vertex xi and creates rule Ri as follows: The

head of Ri has the location specifier xi, and the rest of the arguments are all the variables

appearing in the predicates of Pi. The body of Ri is the conjunction of these predicates.

Then, for every child of xi ∈ Troute, if there is a rule Rj , the algorithm adds the rule to

the body of Ri (line 6). The same happens for every edge (xj ,xi) ∈ Troute if it carries

annotations (line 10).

The algorithm rewrites rule R of Query 9 into the rules of Query 10.

Note, Algorithm 3 includes in the head of a newly created rule Ri all variables

appearing in its body irrespective of whether they are needed. We employ the Database

34

Algorithm 3. Rule rewriting algorithm
Input R(x, . . .)
Output R1 . . .Rn

1: function Normalize(R)
2: Annotate(Troute(R))
3: for xi ∈ bottom-up, left-to-right traversal of Troute(R) do
4: Ri(xi, v̄) = Create-Rule(Pi)
5: for edge (xj ,xi) ∈ Troute(R) do
6: if ∃Rj then
7: body(Ri);head(Rj)
8: v̄;{∀vj ∈ vars(head(Rj))}
9: end if

10: if P(xj ,xi) 6= ∅ then
11: body(Ri);{∀Pj ∈ P(xj ,xi)}
12: v̄;{∀vj ∈ vars(Pj)}
13: end if
14: end for
15: end for
16: end function
17: function Create-Rule(Pxi)
18: Create rule Ri

19: v̄ = {vars(Pi)|∀Pi ∈ Pxi}
20: head(Ri) =Ri(xi, v̄)
21: body(Ri) = Conjunction of ∀Pi ∈ Pxi

22: return Ri

23: end function

R3(x3,x4)← edge(x3,x4).
R4(x4,x1)← edge(x4,x1).
R1(x1,x2,x3,x4)← P2(x2,x3,x4),R3(x3,x4),R4(x4,x1),edge(x1,x2),edge(x1,x3).
R5(x5,x6,x2)← P6(x6,x2),edge(x5,x),edge(x5,x6).
R’(x)← edge(x,x1),P6(x6,x2),R1(x1,x2,x3,x4),R5(x5,x6,x2).
Query 10. Result of applying Algorithm 3 to Query 9

35

textbook optimization of pushing projection down to truncate the heads of these rules.

This results in smaller message exchange between vertices.

Theorem 1. Let Q = Normalize(R) the query created by applying Algorithm 3 on R.

Then, ∀Ri ∈Q follows the Vertex-Centric normal form.

Proof. Let xi be the location specifier of Ri. From the algorithm we have that Ri has in

its body predicates with location specifier xi or xj where edge (xj ,xi) in Troute(R).

Definition 2. Let R be a rule and P1, i . . . ,Pn IDB predicates in its body. We define as

φ(R,P1, . . .Pn) the function that recursively replaces each IDB Pi in body(R) with its body

body(Pi).

Theorem 2. Let P =Normalize(R) the program created by applying Algorithm 3 on R.

Let R′ the goal of P and R1, . . . ,Rn the rest of the rules in P/R′.Then, R≡φ(R′,R1, . . . ,Rn).

Proof. Rules R1, . . .Rn,R
′ were created by a bottom-up traversal of Troute(R) whose

vertices and edges are annotated with all predicates of R. Since the recursive application

of φ traverses Troute(R) top-down, it is easy to see that the equivalence holds.

4.4.3 Compilation and Planning

A VC-Datalog query is compiled into logical plans with the help of the dependency

graph (see Chapter 2) that gives an ordering of the rules. The dependency graph (Gdep)

for PageRank (Query 5) can be seen in Figure 4.6 along with annotations of the strata

for each predicate as this query must be explicitly stratified due to its non-monotonicity.

We see that stratum 0 contains the initialization rules with the explicit temporal variable

of 0. The next stratum has out-ranki and pageranki whereas the final stratum has

pageranki+1. Recursion involves replacing the contents of pageranki with the contents

of pageranki+1.

36

out$degree0* pagerank0*
stratum*0*

stratum*i*

stratum*i+1*
pageranki+1*

out$ranki* pageranki*

Figure 4.6. The dependency graph for running example Query 11.

Although this dependency graph is correct for a centralized setting, it does not

represent how evaluation should proceed in a Vertex-Centric setting where relations are

distributed. What we want to be represented in Gdep is:

• A vertex evaluates the same query at every superstep

• If there are remote predicates, they are initialized with received messages at the

beginning of query evaluation in a superstep

• If there are new tuples computed for a remote predicate, they are sent to neighbors

at the end of query evaluation in a superstep

Our desired query evaluation is better represented with the dependency graph

of Figure 4.7 comprised of two parts: The first part, 4.7a, represents the evaluation of

superstep 0 where the initialization rules get invoked to compute relation out-rank. Every

vertex should send this relation to its neighbors. In every subsequent superstep, the second

part of the dependency graph in 4.7b should be used that represents the recursive part of

the query. For simplicity, we have removed the strata information from the predicates.

Here, a vertex should initialize the remote predicate out-rank with the received messages,

compute the new pagerank and then compute new tuples for its own predicate out-rank.

If there are new tuples, it sends them to its neighbors.

37

out$degree0* pagerank0*

out$rank*

Send*to*
neighbors*

(a) Initialization rules at superstep 0

pagerank(

out,rank(

out,rank(

Ini/alize(with(received(
messages(

Send(to(
neighbors(

out,degree0(

(b) Recursive rules at superstep i

Figure 4.7. Desired dependency graph of Query 5 that captures distribution.

Our query in 5 does not convey any information on how to create the above

dependency graph. That’s why Datalography rewrites this query using the information

of location specifiers to make it explicit which relations are initialized with received

messages and which relations are sent to neighbors.

Algorithm 4 rewrites a vertex-centric query into an equivalent query that for

every remote relation contains two special instructions: A send-message rule that tells

Datalography what messages to sent to neighbors at the end of a superstep and

a predicate receive-message that replaces the initial remote predicate and instructs

Datalography to initialize this relation with the received message at the beginning of a

superstep. Obviously, the head of rule send-msg must match predicate receive-msg as

the relation that is sent as a message must be the same as the relation received.

The algorithm rewrites Query 5 into Query 11. Since there is only one remote

predicate (out-rank), one set of messaging instructions is added. This query-level rewriting

facilitates further optimizations as we will see in Section 4.5.

38

Algorithm 4. Message rules rewriting
1: R(x, v̄)→ P1 . . .Pn

2: for IDB(Pi) ∈ body(R) do
3: if loc(R) 6= loc(Pi) then
4: Create rule send-msgPi

(y,vars(Pi))← edges(x,y),Pi

5: Replace Pi with receive-msgPi
(vars(Pi))

6: Remove from vars(head(send-msg)) the variables not in vars(Pi)
7: end if
8: end for

out-degree(x,COUNT (y),0)← edges(x,y).
out-rank(x,r/d, i)← pagerank(x,r, i),out-degree(x,d)
pagerank(x,1,0).
pagerank(x,SUM(r), i+ 1)← edges(y,x),receive-msg(y,r, i)
send-msg(y,r, i)← edges(x,y),out-rank(x,r, i)
Query 11. PageRank

The dependency graph for Query 11 is in Figure 4.8. Datalography splits Gdep

at the first receive-message predicate it encounters in a traversal on the topologically

sorted graph.

Datalography uses the dependency graph to order the logical plans of each

rule. First, the logical plan in Figure 4.9a evaluates to compute the new pagerank of a

vertex using the ranks it received from its incoming neighbors. Then, the logical plan in

Figure 4.9b evaluates to compute the new out-rank, the portions of its rank, a vertex

sends to its outgoing neighbors.

4.5 Optimizations

This section discusses optimizations developed for scalable processing of distributed

graph queries. While some optimizations have been explored in the context of prior parallel

data processing systems, here we investigate their novel application in a super-vertex aware

Datalog evaluation engine.

39

out$degree0* pagerank0*

out$rank*

send$msg*

edges*

(a) Initialization rules

pagerank(

receive,msg(

out,rank(

send,msg(

edges(

out,degree0(

(b) Recursive rules

Figure 4.8. The dependency graph of Query 11.

�
<latexit sha1_base64="lHqedpYv0hy3JWsfM1dvsoZb86Y=">AAACc3icbVE9b9swEKXVtEndjyTtmIWIUqBLDckIkIxB0qFDhxSI7QCWYFDUyWbDD4Gk4hgE/0PX9p/1h3QvJXuokx5A3uO9O/DuXVFzZmyS/O5Fz3aev9jde9l/9frN2/2Dw3djoxpNYUQVV/q2IAY4kzCyzHK4rTUQUXCYFHdXLT+5B22Ykjd2VUMuyFyyilFiQ2iczYkQZHYQJ4OkM/wUpBsQo41dzw57k6xUtBEgLeXEmGma1DZ3RFtGOfh+1hioCb0jc5gGKIkAk7uuXY8/hEiJK6XDkRZ30X8rHBHGrEQRMgWxC/OYa4P/46aNrc5zx2TdWJB0/VHVcGwVbmfHJdNALV8FQKhmoVdMF0QTaoNC/UzC0i5AaRCu9d7drF9+i+IQFPPua+e2mBIq5t3ncEvWquv7HU1VyJSly5gs59pPh7mL05kLAi4l0VotcTz02YMJU4APq0gfC/8UjIeDNBmk307ji8vNUvbQETpGH1GKztAF+oKu0QhR9B39QD/Rr96f6Cg6jk7WqVFvU/MebVn06S9aP8Iv</latexit><latexit sha1_base64="lHqedpYv0hy3JWsfM1dvsoZb86Y=">AAACc3icbVE9b9swEKXVtEndjyTtmIWIUqBLDckIkIxB0qFDhxSI7QCWYFDUyWbDD4Gk4hgE/0PX9p/1h3QvJXuokx5A3uO9O/DuXVFzZmyS/O5Fz3aev9jde9l/9frN2/2Dw3djoxpNYUQVV/q2IAY4kzCyzHK4rTUQUXCYFHdXLT+5B22Ykjd2VUMuyFyyilFiQ2iczYkQZHYQJ4OkM/wUpBsQo41dzw57k6xUtBEgLeXEmGma1DZ3RFtGOfh+1hioCb0jc5gGKIkAk7uuXY8/hEiJK6XDkRZ30X8rHBHGrEQRMgWxC/OYa4P/46aNrc5zx2TdWJB0/VHVcGwVbmfHJdNALV8FQKhmoVdMF0QTaoNC/UzC0i5AaRCu9d7drF9+i+IQFPPua+e2mBIq5t3ncEvWquv7HU1VyJSly5gs59pPh7mL05kLAi4l0VotcTz02YMJU4APq0gfC/8UjIeDNBmk307ji8vNUvbQETpGH1GKztAF+oKu0QhR9B39QD/Rr96f6Cg6jk7WqVFvU/MebVn06S9aP8Iv</latexit><latexit sha1_base64="lHqedpYv0hy3JWsfM1dvsoZb86Y=">AAACc3icbVE9b9swEKXVtEndjyTtmIWIUqBLDckIkIxB0qFDhxSI7QCWYFDUyWbDD4Gk4hgE/0PX9p/1h3QvJXuokx5A3uO9O/DuXVFzZmyS/O5Fz3aev9jde9l/9frN2/2Dw3djoxpNYUQVV/q2IAY4kzCyzHK4rTUQUXCYFHdXLT+5B22Ykjd2VUMuyFyyilFiQ2iczYkQZHYQJ4OkM/wUpBsQo41dzw57k6xUtBEgLeXEmGma1DZ3RFtGOfh+1hioCb0jc5gGKIkAk7uuXY8/hEiJK6XDkRZ30X8rHBHGrEQRMgWxC/OYa4P/46aNrc5zx2TdWJB0/VHVcGwVbmfHJdNALV8FQKhmoVdMF0QTaoNC/UzC0i5AaRCu9d7drF9+i+IQFPPua+e2mBIq5t3ncEvWquv7HU1VyJSly5gs59pPh7mL05kLAi4l0VotcTz02YMJU4APq0gfC/8UjIeDNBmk307ji8vNUvbQETpGH1GKztAF+oKu0QhR9B39QD/Rr96f6Cg6jk7WqVFvU/MebVn06S9aP8Iv</latexit><latexit sha1_base64="lHqedpYv0hy3JWsfM1dvsoZb86Y=">AAACc3icbVE9b9swEKXVtEndjyTtmIWIUqBLDckIkIxB0qFDhxSI7QCWYFDUyWbDD4Gk4hgE/0PX9p/1h3QvJXuokx5A3uO9O/DuXVFzZmyS/O5Fz3aev9jde9l/9frN2/2Dw3djoxpNYUQVV/q2IAY4kzCyzHK4rTUQUXCYFHdXLT+5B22Ykjd2VUMuyFyyilFiQ2iczYkQZHYQJ4OkM/wUpBsQo41dzw57k6xUtBEgLeXEmGma1DZ3RFtGOfh+1hioCb0jc5gGKIkAk7uuXY8/hEiJK6XDkRZ30X8rHBHGrEQRMgWxC/OYa4P/46aNrc5zx2TdWJB0/VHVcGwVbmfHJdNALV8FQKhmoVdMF0QTaoNC/UzC0i5AaRCu9d7drF9+i+IQFPPua+e2mBIq5t3ncEvWquv7HU1VyJSly5gs59pPh7mL05kLAi4l0VotcTz02YMJU4APq0gfC/8UjIeDNBmk307ji8vNUvbQETpGH1GKztAF+oKu0QhR9B39QD/Rr96f6Cg6jk7WqVFvU/MebVn06S9aP8Iv</latexit>

receive&msg*

SUM*

pagerank*⇡
<latexit sha1_base64="Co2/ATWHbfsXrDt20Vev67P/OjM=">AAACcHicbVHNThsxEHa2P9D0ByiXSj3UdFWp6iHajZDaI2o5cOiBCkKQsqvI651NLPyzsr1NI8uP0Gt5Nl6DJ6h3kwMBRrLn83wz8sw3Rc2ZsUly04uePH32fGv7Rf/lq9dvdnb33l4Y1WgKI6q40pcFMcCZhJFllsNlrYGIgsO4uPrR8uPfoA1T8twua8gFmUlWMUpsCJ1lNZvuxskg6Qw/BOkaxGhtp9O93jgrFW0ESEs5MWaSJrXNHdGWUQ6+nzUGakKvyAwmAUoiwOSu69XjTyFS4krpcKTFXfRuhSPCmKUoQqYgdm7uc23wMW7S2Opb7pisGwuSrj6qGo6twu3guGQaqOXLAAjVLPSK6ZxoQm2Qp59JWNg5KA3Ctd6789XLb1AchCDe/ezcBlNCxbw7DrdkrbS+39FUhUxZuozJcqb9ZJi7OJ26IOBCEq3VAsdDn/0xYQrwYRXpfeEfgovhIE0G6a/D+Oj7einb6D36iD6jFH1FR+gEnaIRomiG/qJ/6Lp3G72LPkQHq9Sot67ZRxsWffkPhXTA5w==</latexit><latexit sha1_base64="Co2/ATWHbfsXrDt20Vev67P/OjM=">AAACcHicbVHNThsxEHa2P9D0ByiXSj3UdFWp6iHajZDaI2o5cOiBCkKQsqvI651NLPyzsr1NI8uP0Gt5Nl6DJ6h3kwMBRrLn83wz8sw3Rc2ZsUly04uePH32fGv7Rf/lq9dvdnb33l4Y1WgKI6q40pcFMcCZhJFllsNlrYGIgsO4uPrR8uPfoA1T8twua8gFmUlWMUpsCJ1lNZvuxskg6Qw/BOkaxGhtp9O93jgrFW0ESEs5MWaSJrXNHdGWUQ6+nzUGakKvyAwmAUoiwOSu69XjTyFS4krpcKTFXfRuhSPCmKUoQqYgdm7uc23wMW7S2Opb7pisGwuSrj6qGo6twu3guGQaqOXLAAjVLPSK6ZxoQm2Qp59JWNg5KA3Ctd6789XLb1AchCDe/ezcBlNCxbw7DrdkrbS+39FUhUxZuozJcqb9ZJi7OJ26IOBCEq3VAsdDn/0xYQrwYRXpfeEfgovhIE0G6a/D+Oj7einb6D36iD6jFH1FR+gEnaIRomiG/qJ/6Lp3G72LPkQHq9Sot67ZRxsWffkPhXTA5w==</latexit><latexit sha1_base64="Co2/ATWHbfsXrDt20Vev67P/OjM=">AAACcHicbVHNThsxEHa2P9D0ByiXSj3UdFWp6iHajZDaI2o5cOiBCkKQsqvI651NLPyzsr1NI8uP0Gt5Nl6DJ6h3kwMBRrLn83wz8sw3Rc2ZsUly04uePH32fGv7Rf/lq9dvdnb33l4Y1WgKI6q40pcFMcCZhJFllsNlrYGIgsO4uPrR8uPfoA1T8twua8gFmUlWMUpsCJ1lNZvuxskg6Qw/BOkaxGhtp9O93jgrFW0ESEs5MWaSJrXNHdGWUQ6+nzUGakKvyAwmAUoiwOSu69XjTyFS4krpcKTFXfRuhSPCmKUoQqYgdm7uc23wMW7S2Opb7pisGwuSrj6qGo6twu3guGQaqOXLAAjVLPSK6ZxoQm2Qp59JWNg5KA3Ctd6789XLb1AchCDe/ezcBlNCxbw7DrdkrbS+39FUhUxZuozJcqb9ZJi7OJ26IOBCEq3VAsdDn/0xYQrwYRXpfeEfgovhIE0G6a/D+Oj7einb6D36iD6jFH1FR+gEnaIRomiG/qJ/6Lp3G72LPkQHq9Sot67ZRxsWffkPhXTA5w==</latexit><latexit sha1_base64="Co2/ATWHbfsXrDt20Vev67P/OjM=">AAACcHicbVHNThsxEHa2P9D0ByiXSj3UdFWp6iHajZDaI2o5cOiBCkKQsqvI651NLPyzsr1NI8uP0Gt5Nl6DJ6h3kwMBRrLn83wz8sw3Rc2ZsUly04uePH32fGv7Rf/lq9dvdnb33l4Y1WgKI6q40pcFMcCZhJFllsNlrYGIgsO4uPrR8uPfoA1T8twua8gFmUlWMUpsCJ1lNZvuxskg6Qw/BOkaxGhtp9O93jgrFW0ESEs5MWaSJrXNHdGWUQ6+nzUGakKvyAwmAUoiwOSu69XjTyFS4krpcKTFXfRuhSPCmKUoQqYgdm7uc23wMW7S2Opb7pisGwuSrj6qGo6twu3guGQaqOXLAAjVLPSK6ZxoQm2Qp59JWNg5KA3Ctd6789XLb1AchCDe/ezcBlNCxbw7DrdkrbS+39FUhUxZuozJcqb9ZJi7OJ26IOBCEq3VAsdDn/0xYQrwYRXpfeEfgovhIE0G6a/D+Oj7einb6D36iD6jFH1FR+gEnaIRomiG/qJ/6Lp3G72LPkQHq9Sot67ZRxsWffkPhXTA5w==</latexit>

(a) Compute new pagerank

pagerank(out,degree0(

out,rank(

./
<latexit sha1_base64="fmhx+I7dY6O/Ul5VWtYwzgz9xAU=">AAACdHicbVE9b9swEKWVpk3dpvno2AxEhQCdDMko0IxBm6FDhhSI4wCWYFDUySbMD4Gk6hoEf0TX9Jflj2QOJXuIkx5A3uO9O/DuXVFzZmyS3PeinVe7r9/sve2/e7//4eDw6PjGqEZTGFHFlb4tiAHOJIwssxxuaw1EFBzGxeJHy49/gzZMyWu7qiEXZCZZxSixITTOCrW0DKaHcTJIOsMvQboBMdrY1fSoN85KRRsB0lJOjJmkSW1zR7RllIPvZ42BmtAFmcEkQEkEmNx1/Xp8GiIlrpQOR1rcRZ9WOCKMWYkiZApi5+Y51wb/x00aW53ljsm6sSDp+qOq4dgq3A6PS6aBWr4KgFDNQq+Yzokm1AaJ+pmEpZ2D0iBc6727Xr/8FsVBCOLdZee2mBIq5t1FuCVr5fX9jqYqZMrSZUyWM+0nw9zF6dQFAZeSaK2WOB767I8JU4APq0ifC/8S3AwHaTJIf32Nz79vlrKHPqHP6AtK0Td0jn6iKzRCFC3QX3SH/vUeopMojk7XqVFvU/MRbVk0eASVusLA</latexit><latexit sha1_base64="fmhx+I7dY6O/Ul5VWtYwzgz9xAU=">AAACdHicbVE9b9swEKWVpk3dpvno2AxEhQCdDMko0IxBm6FDhhSI4wCWYFDUySbMD4Gk6hoEf0TX9Jflj2QOJXuIkx5A3uO9O/DuXVFzZmyS3PeinVe7r9/sve2/e7//4eDw6PjGqEZTGFHFlb4tiAHOJIwssxxuaw1EFBzGxeJHy49/gzZMyWu7qiEXZCZZxSixITTOCrW0DKaHcTJIOsMvQboBMdrY1fSoN85KRRsB0lJOjJmkSW1zR7RllIPvZ42BmtAFmcEkQEkEmNx1/Xp8GiIlrpQOR1rcRZ9WOCKMWYkiZApi5+Y51wb/x00aW53ljsm6sSDp+qOq4dgq3A6PS6aBWr4KgFDNQq+Yzokm1AaJ+pmEpZ2D0iBc6727Xr/8FsVBCOLdZee2mBIq5t1FuCVr5fX9jqYqZMrSZUyWM+0nw9zF6dQFAZeSaK2WOB767I8JU4APq0ifC/8S3AwHaTJIf32Nz79vlrKHPqHP6AtK0Td0jn6iKzRCFC3QX3SH/vUeopMojk7XqVFvU/MRbVk0eASVusLA</latexit><latexit sha1_base64="fmhx+I7dY6O/Ul5VWtYwzgz9xAU=">AAACdHicbVE9b9swEKWVpk3dpvno2AxEhQCdDMko0IxBm6FDhhSI4wCWYFDUySbMD4Gk6hoEf0TX9Jflj2QOJXuIkx5A3uO9O/DuXVFzZmyS3PeinVe7r9/sve2/e7//4eDw6PjGqEZTGFHFlb4tiAHOJIwssxxuaw1EFBzGxeJHy49/gzZMyWu7qiEXZCZZxSixITTOCrW0DKaHcTJIOsMvQboBMdrY1fSoN85KRRsB0lJOjJmkSW1zR7RllIPvZ42BmtAFmcEkQEkEmNx1/Xp8GiIlrpQOR1rcRZ9WOCKMWYkiZApi5+Y51wb/x00aW53ljsm6sSDp+qOq4dgq3A6PS6aBWr4KgFDNQq+Yzokm1AaJ+pmEpZ2D0iBc6727Xr/8FsVBCOLdZee2mBIq5t1FuCVr5fX9jqYqZMrSZUyWM+0nw9zF6dQFAZeSaK2WOB767I8JU4APq0ifC/8S3AwHaTJIf32Nz79vlrKHPqHP6AtK0Td0jn6iKzRCFC3QX3SH/vUeopMojk7XqVFvU/MRbVk0eASVusLA</latexit><latexit sha1_base64="fmhx+I7dY6O/Ul5VWtYwzgz9xAU=">AAACdHicbVE9b9swEKWVpk3dpvno2AxEhQCdDMko0IxBm6FDhhSI4wCWYFDUySbMD4Gk6hoEf0TX9Jflj2QOJXuIkx5A3uO9O/DuXVFzZmyS3PeinVe7r9/sve2/e7//4eDw6PjGqEZTGFHFlb4tiAHOJIwssxxuaw1EFBzGxeJHy49/gzZMyWu7qiEXZCZZxSixITTOCrW0DKaHcTJIOsMvQboBMdrY1fSoN85KRRsB0lJOjJmkSW1zR7RllIPvZ42BmtAFmcEkQEkEmNx1/Xp8GiIlrpQOR1rcRZ9WOCKMWYkiZApi5+Y51wb/x00aW53ljsm6sSDp+qOq4dgq3A6PS6aBWr4KgFDNQq+Yzokm1AaJ+pmEpZ2D0iBc6727Xr/8FsVBCOLdZee2mBIq5t1FuCVr5fX9jqYqZMrSZUyWM+0nw9zF6dQFAZeSaK2WOB767I8JU4APq0ifC/8S3AwHaTJIf32Nz79vlrKHPqHP6AtK0Td0jn6iKzRCFC3QX3SH/vUeopMojk7XqVFvU/MRbVk0eASVusLA</latexit>

⇡
<latexit sha1_base64="Co2/ATWHbfsXrDt20Vev67P/OjM=">AAACcHicbVHNThsxEHa2P9D0ByiXSj3UdFWp6iHajZDaI2o5cOiBCkKQsqvI651NLPyzsr1NI8uP0Gt5Nl6DJ6h3kwMBRrLn83wz8sw3Rc2ZsUly04uePH32fGv7Rf/lq9dvdnb33l4Y1WgKI6q40pcFMcCZhJFllsNlrYGIgsO4uPrR8uPfoA1T8twua8gFmUlWMUpsCJ1lNZvuxskg6Qw/BOkaxGhtp9O93jgrFW0ESEs5MWaSJrXNHdGWUQ6+nzUGakKvyAwmAUoiwOSu69XjTyFS4krpcKTFXfRuhSPCmKUoQqYgdm7uc23wMW7S2Opb7pisGwuSrj6qGo6twu3guGQaqOXLAAjVLPSK6ZxoQm2Qp59JWNg5KA3Ctd6789XLb1AchCDe/ezcBlNCxbw7DrdkrbS+39FUhUxZuozJcqb9ZJi7OJ26IOBCEq3VAsdDn/0xYQrwYRXpfeEfgovhIE0G6a/D+Oj7einb6D36iD6jFH1FR+gEnaIRomiG/qJ/6Lp3G72LPkQHq9Sot67ZRxsWffkPhXTA5w==</latexit><latexit sha1_base64="Co2/ATWHbfsXrDt20Vev67P/OjM=">AAACcHicbVHNThsxEHa2P9D0ByiXSj3UdFWp6iHajZDaI2o5cOiBCkKQsqvI651NLPyzsr1NI8uP0Gt5Nl6DJ6h3kwMBRrLn83wz8sw3Rc2ZsUly04uePH32fGv7Rf/lq9dvdnb33l4Y1WgKI6q40pcFMcCZhJFllsNlrYGIgsO4uPrR8uPfoA1T8twua8gFmUlWMUpsCJ1lNZvuxskg6Qw/BOkaxGhtp9O93jgrFW0ESEs5MWaSJrXNHdGWUQ6+nzUGakKvyAwmAUoiwOSu69XjTyFS4krpcKTFXfRuhSPCmKUoQqYgdm7uc23wMW7S2Opb7pisGwuSrj6qGo6twu3guGQaqOXLAAjVLPSK6ZxoQm2Qp59JWNg5KA3Ctd6789XLb1AchCDe/ezcBlNCxbw7DrdkrbS+39FUhUxZuozJcqb9ZJi7OJ26IOBCEq3VAsdDn/0xYQrwYRXpfeEfgovhIE0G6a/D+Oj7einb6D36iD6jFH1FR+gEnaIRomiG/qJ/6Lp3G72LPkQHq9Sot67ZRxsWffkPhXTA5w==</latexit><latexit sha1_base64="Co2/ATWHbfsXrDt20Vev67P/OjM=">AAACcHicbVHNThsxEHa2P9D0ByiXSj3UdFWp6iHajZDaI2o5cOiBCkKQsqvI651NLPyzsr1NI8uP0Gt5Nl6DJ6h3kwMBRrLn83wz8sw3Rc2ZsUly04uePH32fGv7Rf/lq9dvdnb33l4Y1WgKI6q40pcFMcCZhJFllsNlrYGIgsO4uPrR8uPfoA1T8twua8gFmUlWMUpsCJ1lNZvuxskg6Qw/BOkaxGhtp9O93jgrFW0ESEs5MWaSJrXNHdGWUQ6+nzUGakKvyAwmAUoiwOSu69XjTyFS4krpcKTFXfRuhSPCmKUoQqYgdm7uc23wMW7S2Opb7pisGwuSrj6qGo6twu3guGQaqOXLAAjVLPSK6ZxoQm2Qp59JWNg5KA3Ctd6789XLb1AchCDe/ezcBlNCxbw7DrdkrbS+39FUhUxZuozJcqb9ZJi7OJ26IOBCEq3VAsdDn/0xYQrwYRXpfeEfgovhIE0G6a/D+Oj7einb6D36iD6jFH1FR+gEnaIRomiG/qJ/6Lp3G72LPkQHq9Sot67ZRxsWffkPhXTA5w==</latexit><latexit sha1_base64="Co2/ATWHbfsXrDt20Vev67P/OjM=">AAACcHicbVHNThsxEHa2P9D0ByiXSj3UdFWp6iHajZDaI2o5cOiBCkKQsqvI651NLPyzsr1NI8uP0Gt5Nl6DJ6h3kwMBRrLn83wz8sw3Rc2ZsUly04uePH32fGv7Rf/lq9dvdnb33l4Y1WgKI6q40pcFMcCZhJFllsNlrYGIgsO4uPrR8uPfoA1T8twua8gFmUlWMUpsCJ1lNZvuxskg6Qw/BOkaxGhtp9O93jgrFW0ESEs5MWaSJrXNHdGWUQ6+nzUGakKvyAwmAUoiwOSu69XjTyFS4krpcKTFXfRuhSPCmKUoQqYgdm7uc23wMW7S2Opb7pisGwuSrj6qGo6twu3guGQaqOXLAAjVLPSK6ZxoQm2Qp59JWNg5KA3Ctd6789XLb1AchCDe/ezcBlNCxbw7DrdkrbS+39FUhUxZuozJcqb9ZJi7OJ26IOBCEq3VAsdDn/0xYQrwYRXpfeEfgovhIE0G6a/D+Oj7einb6D36iD6jFH1FR+gEnaIRomiG/qJ/6Lp3G72LPkQHq9Sot67ZRxsWffkPhXTA5w==</latexit>

edges(

send,msg(

./
<latexit sha1_base64="fmhx+I7dY6O/Ul5VWtYwzgz9xAU=">AAACdHicbVE9b9swEKWVpk3dpvno2AxEhQCdDMko0IxBm6FDhhSI4wCWYFDUySbMD4Gk6hoEf0TX9Jflj2QOJXuIkx5A3uO9O/DuXVFzZmyS3PeinVe7r9/sve2/e7//4eDw6PjGqEZTGFHFlb4tiAHOJIwssxxuaw1EFBzGxeJHy49/gzZMyWu7qiEXZCZZxSixITTOCrW0DKaHcTJIOsMvQboBMdrY1fSoN85KRRsB0lJOjJmkSW1zR7RllIPvZ42BmtAFmcEkQEkEmNx1/Xp8GiIlrpQOR1rcRZ9WOCKMWYkiZApi5+Y51wb/x00aW53ljsm6sSDp+qOq4dgq3A6PS6aBWr4KgFDNQq+Yzokm1AaJ+pmEpZ2D0iBc6727Xr/8FsVBCOLdZee2mBIq5t1FuCVr5fX9jqYqZMrSZUyWM+0nw9zF6dQFAZeSaK2WOB767I8JU4APq0ifC/8S3AwHaTJIf32Nz79vlrKHPqHP6AtK0Td0jn6iKzRCFC3QX3SH/vUeopMojk7XqVFvU/MRbVk0eASVusLA</latexit><latexit sha1_base64="fmhx+I7dY6O/Ul5VWtYwzgz9xAU=">AAACdHicbVE9b9swEKWVpk3dpvno2AxEhQCdDMko0IxBm6FDhhSI4wCWYFDUySbMD4Gk6hoEf0TX9Jflj2QOJXuIkx5A3uO9O/DuXVFzZmyS3PeinVe7r9/sve2/e7//4eDw6PjGqEZTGFHFlb4tiAHOJIwssxxuaw1EFBzGxeJHy49/gzZMyWu7qiEXZCZZxSixITTOCrW0DKaHcTJIOsMvQboBMdrY1fSoN85KRRsB0lJOjJmkSW1zR7RllIPvZ42BmtAFmcEkQEkEmNx1/Xp8GiIlrpQOR1rcRZ9WOCKMWYkiZApi5+Y51wb/x00aW53ljsm6sSDp+qOq4dgq3A6PS6aBWr4KgFDNQq+Yzokm1AaJ+pmEpZ2D0iBc6727Xr/8FsVBCOLdZee2mBIq5t1FuCVr5fX9jqYqZMrSZUyWM+0nw9zF6dQFAZeSaK2WOB767I8JU4APq0ifC/8S3AwHaTJIf32Nz79vlrKHPqHP6AtK0Td0jn6iKzRCFC3QX3SH/vUeopMojk7XqVFvU/MRbVk0eASVusLA</latexit><latexit sha1_base64="fmhx+I7dY6O/Ul5VWtYwzgz9xAU=">AAACdHicbVE9b9swEKWVpk3dpvno2AxEhQCdDMko0IxBm6FDhhSI4wCWYFDUySbMD4Gk6hoEf0TX9Jflj2QOJXuIkx5A3uO9O/DuXVFzZmyS3PeinVe7r9/sve2/e7//4eDw6PjGqEZTGFHFlb4tiAHOJIwssxxuaw1EFBzGxeJHy49/gzZMyWu7qiEXZCZZxSixITTOCrW0DKaHcTJIOsMvQboBMdrY1fSoN85KRRsB0lJOjJmkSW1zR7RllIPvZ42BmtAFmcEkQEkEmNx1/Xp8GiIlrpQOR1rcRZ9WOCKMWYkiZApi5+Y51wb/x00aW53ljsm6sSDp+qOq4dgq3A6PS6aBWr4KgFDNQq+Yzokm1AaJ+pmEpZ2D0iBc6727Xr/8FsVBCOLdZee2mBIq5t1FuCVr5fX9jqYqZMrSZUyWM+0nw9zF6dQFAZeSaK2WOB767I8JU4APq0ifC/8S3AwHaTJIf32Nz79vlrKHPqHP6AtK0Td0jn6iKzRCFC3QX3SH/vUeopMojk7XqVFvU/MRbVk0eASVusLA</latexit><latexit sha1_base64="fmhx+I7dY6O/Ul5VWtYwzgz9xAU=">AAACdHicbVE9b9swEKWVpk3dpvno2AxEhQCdDMko0IxBm6FDhhSI4wCWYFDUySbMD4Gk6hoEf0TX9Jflj2QOJXuIkx5A3uO9O/DuXVFzZmyS3PeinVe7r9/sve2/e7//4eDw6PjGqEZTGFHFlb4tiAHOJIwssxxuaw1EFBzGxeJHy49/gzZMyWu7qiEXZCZZxSixITTOCrW0DKaHcTJIOsMvQboBMdrY1fSoN85KRRsB0lJOjJmkSW1zR7RllIPvZ42BmtAFmcEkQEkEmNx1/Xp8GiIlrpQOR1rcRZ9WOCKMWYkiZApi5+Y51wb/x00aW53ljsm6sSDp+qOq4dgq3A6PS6aBWr4KgFDNQq+Yzokm1AaJ+pmEpZ2D0iBc6727Xr/8FsVBCOLdZee2mBIq5t1FuCVr5fX9jqYqZMrSZUyWM+0nw9zF6dQFAZeSaK2WOB767I8JU4APq0ifC/8S3AwHaTJIf32Nz79vlrKHPqHP6AtK0Td0jn6iKzRCFC3QX3SH/vUeopMojk7XqVFvU/MRbVk0eASVusLA</latexit>

⇡
<latexit sha1_base64="Co2/ATWHbfsXrDt20Vev67P/OjM=">AAACcHicbVHNThsxEHa2P9D0ByiXSj3UdFWp6iHajZDaI2o5cOiBCkKQsqvI651NLPyzsr1NI8uP0Gt5Nl6DJ6h3kwMBRrLn83wz8sw3Rc2ZsUly04uePH32fGv7Rf/lq9dvdnb33l4Y1WgKI6q40pcFMcCZhJFllsNlrYGIgsO4uPrR8uPfoA1T8twua8gFmUlWMUpsCJ1lNZvuxskg6Qw/BOkaxGhtp9O93jgrFW0ESEs5MWaSJrXNHdGWUQ6+nzUGakKvyAwmAUoiwOSu69XjTyFS4krpcKTFXfRuhSPCmKUoQqYgdm7uc23wMW7S2Opb7pisGwuSrj6qGo6twu3guGQaqOXLAAjVLPSK6ZxoQm2Qp59JWNg5KA3Ctd6789XLb1AchCDe/ezcBlNCxbw7DrdkrbS+39FUhUxZuozJcqb9ZJi7OJ26IOBCEq3VAsdDn/0xYQrwYRXpfeEfgovhIE0G6a/D+Oj7einb6D36iD6jFH1FR+gEnaIRomiG/qJ/6Lp3G72LPkQHq9Sot67ZRxsWffkPhXTA5w==</latexit><latexit sha1_base64="Co2/ATWHbfsXrDt20Vev67P/OjM=">AAACcHicbVHNThsxEHa2P9D0ByiXSj3UdFWp6iHajZDaI2o5cOiBCkKQsqvI651NLPyzsr1NI8uP0Gt5Nl6DJ6h3kwMBRrLn83wz8sw3Rc2ZsUly04uePH32fGv7Rf/lq9dvdnb33l4Y1WgKI6q40pcFMcCZhJFllsNlrYGIgsO4uPrR8uPfoA1T8twua8gFmUlWMUpsCJ1lNZvuxskg6Qw/BOkaxGhtp9O93jgrFW0ESEs5MWaSJrXNHdGWUQ6+nzUGakKvyAwmAUoiwOSu69XjTyFS4krpcKTFXfRuhSPCmKUoQqYgdm7uc23wMW7S2Opb7pisGwuSrj6qGo6twu3guGQaqOXLAAjVLPSK6ZxoQm2Qp59JWNg5KA3Ctd6789XLb1AchCDe/ezcBlNCxbw7DrdkrbS+39FUhUxZuozJcqb9ZJi7OJ26IOBCEq3VAsdDn/0xYQrwYRXpfeEfgovhIE0G6a/D+Oj7einb6D36iD6jFH1FR+gEnaIRomiG/qJ/6Lp3G72LPkQHq9Sot67ZRxsWffkPhXTA5w==</latexit><latexit sha1_base64="Co2/ATWHbfsXrDt20Vev67P/OjM=">AAACcHicbVHNThsxEHa2P9D0ByiXSj3UdFWp6iHajZDaI2o5cOiBCkKQsqvI651NLPyzsr1NI8uP0Gt5Nl6DJ6h3kwMBRrLn83wz8sw3Rc2ZsUly04uePH32fGv7Rf/lq9dvdnb33l4Y1WgKI6q40pcFMcCZhJFllsNlrYGIgsO4uPrR8uPfoA1T8twua8gFmUlWMUpsCJ1lNZvuxskg6Qw/BOkaxGhtp9O93jgrFW0ESEs5MWaSJrXNHdGWUQ6+nzUGakKvyAwmAUoiwOSu69XjTyFS4krpcKTFXfRuhSPCmKUoQqYgdm7uc23wMW7S2Opb7pisGwuSrj6qGo6twu3guGQaqOXLAAjVLPSK6ZxoQm2Qp59JWNg5KA3Ctd6789XLb1AchCDe/ezcBlNCxbw7DrdkrbS+39FUhUxZuozJcqb9ZJi7OJ26IOBCEq3VAsdDn/0xYQrwYRXpfeEfgovhIE0G6a/D+Oj7einb6D36iD6jFH1FR+gEnaIRomiG/qJ/6Lp3G72LPkQHq9Sot67ZRxsWffkPhXTA5w==</latexit><latexit sha1_base64="Co2/ATWHbfsXrDt20Vev67P/OjM=">AAACcHicbVHNThsxEHa2P9D0ByiXSj3UdFWp6iHajZDaI2o5cOiBCkKQsqvI651NLPyzsr1NI8uP0Gt5Nl6DJ6h3kwMBRrLn83wz8sw3Rc2ZsUly04uePH32fGv7Rf/lq9dvdnb33l4Y1WgKI6q40pcFMcCZhJFllsNlrYGIgsO4uPrR8uPfoA1T8twua8gFmUlWMUpsCJ1lNZvuxskg6Qw/BOkaxGhtp9O93jgrFW0ESEs5MWaSJrXNHdGWUQ6+nzUGakKvyAwmAUoiwOSu69XjTyFS4krpcKTFXfRuhSPCmKUoQqYgdm7uc23wMW7S2Opb7pisGwuSrj6qGo6twu3guGQaqOXLAAjVLPSK6ZxoQm2Qp59JWNg5KA3Ctd6789XLb1AchCDe/ezcBlNCxbw7DrdkrbS+39FUhUxZuozJcqb9ZJi7OJ26IOBCEq3VAsdDn/0xYQrwYRXpfeEfgovhIE0G6a/D+Oj7einb6D36iD6jFH1FR+gEnaIRomiG/qJ/6Lp3G72LPkQHq9Sot67ZRxsWffkPhXTA5w==</latexit>

(b) Compute new out-rank and messages to send

Figure 4.9. The logical plan for Query 11.

40

4.5.1 Compilation

Every rule is translated to a logical plan. After performing standard texbook

optimizations such as pushing selection and projection down, the optimizer performs a

heuristic based ordering of the joins in the plan. As such, tables received as messages are

scanned first as we expect them to be small and have high selectivity whereas joins with

the EDB relation edges are performed last.

Schema of rules: In the general case, a table resulting from the evaluation of a rule has

multiple rows and multiple columns but looking at the cardinality and data type of the

output tables, more efficient data structure can be used. For instance, if a rule has only

one variable in its head, such as R(x), it is represented as a boolean table of one row as

such rules simply express the existence of a tuple satisfying them. If a rule has aggregation

and there is only one grouping variable such as sssp(x,MIN(d+ 1) or wcc(x,MIN(l))

the cardinality of the table is again one row.

Identifying the right structure, does not only conserve memory but also reduces

computation. In semi-naive evaluation, a rule is evaluated until no more new tuples can

be inferred. At every step of the evaluation, the delta of the old and new tuples is added

to the current rule result. Computing the delta is expensive but can be avoided for rules

whose subsequent evaluation do not compute any new tuples. For instance, if the rule

result is a boolean table, there is no need in computing the delta if the table already

contains one tuple, as no new facts can be added to it.

Static rules: The optimizer identifies static rules that don’t produce new tuples after

their first evaluation and hence don’t need to get evaluated in subsequent supersteps.

For example, ruleout-degree in Query 5 that counts the out-degree of a vertex is static.

Boolean rules described above are considered static as well after after the first evaluation

that populates their table.

41

y1# z#

y2# x

(a) Input graph

y1# z#

x

SV1# SV2#

y2#

(b) Super-vertices

Figure 4.10. Example: Partitioning of input graph into super-vertices

4.5.2 Super-vertices

Previous work [70] extended the Vertex-Centric model to a Graph-Centric, where

computation happens on sub-graphs instead of vertices. Their work showed that it offers

greater flexibility with respect to the algorithms and computation paradigms but also

better performance. However, their approach requires changes both to the user API and

the underlying engine. Here, we capitalize on this idea to improve both runtime and

communication overheads, in an agnostic to the developer and engine manner. As will see,

no changes to the Datalog query or the underlying Vertex-Centric engine are required.

Datalography uses an abstraction that groups vertices into super-vertices. Con-

sider the example input graph of Figure 4.10a and its partitioning into two super-vertices,

SV1 and SV2 in Figure 4.10b. A super-vertex contains a collection of vertices and their

edges, but edges are allowed to cross super-vertex boundaries as with the edges (y1,x) and

(y2,x) for example. Choosing a good partitioning strategy is important as it balances the

workload of partitions and reduces the number of messages transmitted over the network.

Our approach however, does not depend on a particular partitioning method.

Information in super-vertices is represented in a relational format and the schema

consists of the EDB relations describing the vertices and edges contained as well as the

IDB relations created during query evaluation. When a vertex evaluates a query, it creates

local relations. Super-vertices combine these local tables of all the vertices they contain

into one large table. The same schema is the same but the multiplicity of the tables is

42

Ver$ces' Edges'

x z'

z y1'

x'
z'

IDB'rela$ons'

pagerank'

x 1

z 1

out:degree'

z' SV2'

y1' Sv1'

Rou$ng'table'

x 1' 0

1.85' 1

z 1' 0

1.72' 1

out:rank'

x 1' 0

1.85' 1

z 1' 0

1.72' 1

x' y1' 1' 1'

y2' 0.5' 1'

z' x' 1' 1'

receive:msg'

z' x' 1.42' 1'

y1' z' 1' 1'

send:msg'

EDB'rela$ons'

Figure 4.11. Schema of super-vertex SV2

increased. For instance, super-vertex SV2 in Figure 4.11 contains vertices x and z and its

EDB relations are Vertices, Edges and Routing table whose role we will discuss below.

The IDB relations created during evaluation of Query 5 contain the results for both x and

z.

Super-vertices are an internal abstraction employed by Datalography and a

developer is agnostic of them when authoring queries. For instance, no modification is

needed for query 5 whether super-vertices are used or not. On the other hand, at the engine

layer, Giraph is agnostic of the internal vertices and only considers super-vertices which are

handled like any other regular vertex: at every superstep, a super-vertex evaluates its vertex

program and sends messages to its neighboring super-vertices. Since the communication

and computation layer is unaware of the internal vertices, it is the job of Datalography

to evaluate a query for every internal vertex and handle the messages produced during

query evaluation.

A super-vertex must gather all the messages of its internal vertices and route them

to the correct neighbor super-vertex that houses the destination vertex. To do so every

super-vertex maintains a routing table which maps every neighbor of an internal vertex

43

to the super-vertex it belongs. Table Routing table in Figure 4.11) specifies that z, a

neighbor of x is in SV2 whereas y1, a neighbor of z, is in SV1. A super-vertex uses the

routing table at runtime and joins it with relation send-msg to determine which partition

of it to send to which neighbor.

4.5.3 Combiners

The abstraction of super-vertices enables set-at-a-time evaluation and allows Dat-

alography to apply optimizations from database and batch-processing research to the

context of graph processing.

Eager aggregation was first addressed by [74] in the context of optimization of

sequential relational queries. The idea was to perform aggregations early, before joins, to

minimize the input to the join operators (prior practice had been performing aggregation

as the last step). We adapt eager aggregation to our context, by applying aggregation

before a super-vertex sends messages and then another aggregation at the destination

super-vertex effectively providing source and destination side combiners.

It is well-known that for eager aggregation to preserve the semantics of the program,

an aggregation function F needs to be decomposable. F is decomposable if there exist

aggregation functions F1 and F2 such that F (Sa]Sb) = F2(F1(Sa)]F1(Sb)), where Sa

and Sb are two bags (multi-sets) and] denotes bag union. It can be seen that common

aggregate functions such as sum, count, min, and max are all decomposable.

When the variables of a receive-msg predicate are used in aggregation, Datalog-

raphy pushes the aggregation to its corresponding send-msg rule when the following

conditions hold:

1. Only variables of the receive-msg predicate are part of the aggregate variables.

2. Any variables of the receive-msg predicate that join with other predicates must be

part of the grouping keys.

44

3. Predicate receive-msg does not appear in the body of another rule.

When the above hold, it is correct to apply source-side combiners. Query 11 is

rewritten into Query 12 where the aggregate SUM is applied to send-msg rule. Without

the abstraction of super-vertices, however, the rewriting will offer performance benefits

only if a vertex sends multiple messages to the same neighbor and those messages can

be aggregated together. We have not seen this scenario occur in the graph analytics we

experimented with.

out-degree(x,COUNT (y))← edges(x,y).
out-rank(y,r/d)← pagerank(x,i,r),out-degree(x,d)
pagerank(x,0,1).
pagerank(x,i+ 1,SUM(r))← receive-msg(y,r, i)
send-msg(y,SUM(r), i)← edges(x,y),out-rank(x,r, i)
Query 12. PageRank with source-side combiners

On the other hand, with super-vertices, the rewriting offers performance benefits if

multiple internal vertices in a super-vertex send messages to the same destination vertex.

Super-vertices gather the messages their internal vertices send in relation send-message.

For example, we see that in Figure 4.12a super-vertex SV1 has three tuples in relation

send-msg, two of which are tuples destined to vertex x in SV2. Mirroring this, relation

receive-msg of super-vertex SV2 has three tuples, two received by vertex x. When we

apply the optimization of eager-aggregation, the number of tuples in these relations is

reduced by aggregating the tuples destined to x. We see that in Figure 4.12b relation

send-msg has now two tuples, and the tuple destined to x has the sum of the out-rank

of y1 and y2. In our experiments (Section 4.7), we see that this optimization offers a

3x−6x speedup.

45

x" y1" 1" 1"

x" y2" 0.5" 1"

z" x" 1" 1"

SV2:"receive2msg"

x" y1" 1" 1"

x" y2" 0.5" 1"

y1" y2" 0.5" 1"

SV1:"send2msg"

y1" z"

x

SV1" SV2"

y2"

(a) Send messages without source-side combiners

x" 1.5" 1"

y1" 0.5" 1"

SV1:"send/msg"

x" 0.5" 1"

z" 1" 1"

SV2:"receive/msg"

y1" z"

x

SV1" SV2"

y2"

(b) Send messages with source-side combiners

Figure 4.12. Messages sent with eager-aggregation

46

Giraph'

Super+vertex'

Compiler'

Normalization

Optimization

Logical Plan

Physical Plan

Distribution

Query'
evalua5on'

Communication

Datalography'

Synchronization

Figure 4.13. Datalography architecture

4.6 Implementation

Datalography is built on the analytic layer of Giraph as seen in Figure 4.13,

the same way a graph analytic like PageRank would be implemented. As such, the query

engine is a vertex program that implements the abstraction of super-vertices, compiles a

general Datalog query into an optimized Vertex-Centric physical plan and evaluates the

query for all internal vertices. Messages created during query evaluation are forwarded to

Giraph that takes care of communication and synchronization between super-vertices.

Besides an API for the vertex program, Giraph provides an API for extending the

worker and master compute programs. Datalography implements the worker compute

program to create the dependence graph at the beginning of computation and the logical

plans for every rule. Then, at the beginning of every superstep, the workers select the next

plans to evaluate in a coordinated manner: every worker and every super-vertex evaluate

the same rules in a superstep. At the end of a superstep, super-vertices notify the master

whether new tuples were created during query evaluation indicating that computation

47

should continue. By default, the master only checks for the existence of new messages in

determining termination so Datalography needs to refine this condition to take into

account tuple creation. When convergence is achieved and no more new tuples are created

(and hence, no new messages) by any super-vertex, the master halts the computation.

4.7 Experimental evaluation

We compare the performance of implementing graph algorithms in Datalog and

executing them in Datalography, versus implementing them in customized Java code

executed directly in Giraph. We choose algorithm implementations shipped with the Giraph

example package. The comparison shows that running Datalog implementations of graph

algorithms on Datalography offers a speedup of 2.3x-7.8x (depending on the dataset

and algorithm) over Giraph whereas it achieves a speed-up of 1.4x-2.5x when compared to a

custom partition-aware implementation of Giraph (Giraph-Metis). Moreover, we investigate

how super-vertices and eager-aggregation optimizations employed by Datalography

affect runtime.

4.7.1 Experimental setup

All experiments were run on a cluster of 8 nodes, each with 32GB of RAM, 4

vCPUs and 1Gb/s NICs. The nodes are running Ubuntu 14.04, with jdk-1.0.7. One of the

nodes was designated as the Hadoop master and did not participate in computations. We

installed Hadoop 2.5 and Giraph 1.2

We used real-world datasets1, namely indochina-2004 (IN-04), uk-2002 (UK-02),

arabic (AR-05) and uk-2005 (UK-05). Their characteristics can be seen in Table 4.2.

For the assignment of vertices to super vertices we used the ParMetis [3] graph

partitioning library. Section 4.5 made the case for super-vertices as they enable a more

sophisticated partitioning of the vertices: every super vertex contains vertices of the initial
1http://www.dis.uniroma1.it/challenge9/download.shtml

48

Table 4.2. Dataset characteristics

Dataset V E Avg Degree Avg Diameter
IN-04 7.4M 194M 26.17 28.12
UK-02 18.5M 298M 16.01 21.59
AR-05 22.7M 640M 28.14 22.39
UK-05 39.5M 936M 23.73 23.19

input graph that are “close” to each other to minimize communication between different

super-vertices.

Graph analytics

We consider three different algorithms, SSSP, WCC and PageRank. In the ex-

periments below we compare the running time when executing their customized Java

implementation on Giraph and Giraph-Metis versus executing the Datalog implementation

on Datalography.

Single Source Shortest Paths computes the distance between a single source

and all other vertices in its connected component. The Datalog query that evaluates the

same algorithm is shown in Query 13.

We compare against the implementation provided by Giraph in its examples package.

The source from which the algorithm starts initializes its distance with 0. A vertex receives

the distance from all its neighbors and picks the minimum. If the minimum is smaller

than the current distance, it propagates it to its outgoing neighbors. Note that we assume

all edges have unit weights. In SSSP, in the first superstep all vertices are inactive except

the source. A vertex gets woken up when it receives a message. The compute invocations

and hence network usage starts out small, peaks and then reduces again. The algorithm

runs for a maximum number of supersteps equal to the diameter of the graph.

In our experiments the source for IN-04 and AR-05 is the vertex with ID=10000

whereas for UK-02 and UK-05 it is the vertex with ID=0. SSSP requires 43 supersteps for

49

IN-04, 47 supersteps for UK-02, 57 supersteps for AR-05 and 201 supersteps for UK-05.

sssp(x,0)← vertices(x),x== α.
sssp(x,MIN(d+ 1))← edges(y,x),sssp(y,d).

Query 13. SSSP

Weakly Connected Components finds components in a graph, that is sub-

graphs in which there is a path from every vertex to every other one, ignoring edge

direction. We used the implementation of HCC algorithm provided by Giraph’s example

package in which the component for all vertices is initialized to the vertex ID. At every

superstep, a vertex sends it’s component ID to its outgoing neighbors. The receiving vertex

compares the component ID’s it has received to it’s current one and keeps the smallest. If

the component ID of a vertex changed due it receiving a smaller one, the vertex forwards

the new one to its neighbors.

Unlike SSSP, in WCC all vertices are active initially. The compute invocations

drop as the computation proceeds and the supersteps are bounded by the diameter of the

graph. WCC requires 39 supersteps for IN-04, 116 supersteps for UK-02, 51 supersteps for

AR-05 and 201 supersteps for UK-05.

The Datalog query that evaluates the WCC algorithm is:

wcc(x)← vertices(x).
wcc(x,MIN(l))← edges(y,x),wcc(y, l).

Query 14. WCC

The first rule initializes the component of a vertex to its id. The second rule is

recursive and assigns to a vertex the component that is the minimum of its incoming

neighbors. The evaluation stops when the component of all vertices don’t change anymore.

PageRank is described in Section 4.2, and we copy the query here for ease of

readability. We compare it against the customized implementation provided in the Giraph

50

example package.

out-degree(x,COUNT (y))← edges(x,y).
out-rank(x,r/d)← pagerank(x,r),out-degree(x,d).
pagerank(x,1)← superstep(x,i), i== 0.
pagerank(x,SUM(r))← out-rank(y,r),superstep(x,i), i < σ.

Query 15. PageRank

4.7.2 Runtime analysis

For all datasets and algorithms, we chose the number of super-vertices that offers

the best performance for Datalography and Giraph-Metis. This decision does not affect

the performance of Giraph as it is agnostic to the number of super-vertices. Giraph-Metis

performs better than Giraph as less messages cross partition boundaries and are sent over

the network. However, the number of messages and message bytes is exactly the same

between them. Datalography achieves greater performance due to using super-vertices

that reduce the number of messages sent and eager-aggregation that reduces the bytes

of messages sent. In all experiments, we see larger gains for the largest dataset which is

encouraging.

SSSP: Figure 4.14a shows the runtime performance of the three systems. We can

see that Datalography outperforms Giraph for all datasets. Datalography offers

greater speedup when compared to Giraph ranging from 2.4x to 3.6x, with the largest

gains observed with AR-05 that has the smallest degree. When compared to Giraph-Metis

the speedup is less and ranges from 1.4x to 1.9x with the greatest gains again for AR-05.

Figures 4.14b, 4.14c show how communication overheads affect runtime. Both

Giraph and Giraph-Metis send the same number of messages and message bytes showing that

employing smart partitioning of the input graph is beneficial for runtime. Datalography

on the other hand, sends two orders of magnitude less messages highlighting the fact that

combining partitioning with eager-aggregation can lead to greater benefits. The total size

in bytes of sent messages does not observe such a steep difference compared to Giraph and

51

IN-04 UK-02 AR-05 UK-05
0

20

40

60

80

100

R
un

tim
e

in
 s

ec

Giraph Giraph-Metis Datalography

(a) Running time
IN-04 UK-02 AR-05 UK-05

105

106

107

108

109

S
en

t m
es

sa
ge

s

Giraph Giraph-Metis Datalography

(b) Aggregate number of messages

IN-04 UK-02 AR-05 UK-05

109

1010

S
en

t m
es

sa
ge

 b
yt

es

Giraph Giraph-Metis Datalography

(c) Aggregate message bytes

Figure 4.14. SSSP: Performance comparison of Giraph, Giraph-Metis and Datalography

52

Giraph-Metis, 2.4x-4.2x, as Datalography actually sends more information per message.

Every message in Datalography contains the relation sssp, which has one tuple with 2

variables, compared two one double in Giraph and Giraph-Metis. Moreover, each message

must include also the destination vertex inside the super-vertex the message is sent to

since Giraph is agnostic of the internal vertices.

WCC: Again, Datalography outperforms Giraph and Giraph-Metis on all datasets

(Figure 4.15a). The speedup observed is larger than with SSSP and ranges from 3.6x to

6.8x for AR-05 when compared to Giraph whereas when compared to Giraph-Metis the

gains range from 1.4x to 2.5x. The climb in the plot observed at UK-02 is due to the

large number of supersteps WCC required. Figures 4.15b, 4.15c show that Giraph and

Giraph-Metis send 2-3 orders of magnitude more messages than Datalography and

7.5−13.6 times more message bytes. The messages are again larger than the ones sent

with the Giraph implementations and consist of a tuple of the wcc with 2 variables and

the information of the internal vertex.

PageRank: PageRank is different from the other algorithms in that the amount

of data being processed during every iteration does not shrink as the algorithm nears

termination or converges, as every vertex at every superstep computes a new rank and

sends messages to its outgoing neighbors. We see in Figure 4.16a that Datalography

outperforms Giraph by a factor of 2.3−3.3 times whereas it outperforms Giraph-Metis by

a factor of 1.1−2.3 times. Figures 4.16b and 4.16c show the communication overhead

comparison. If we focus on UK-02, the maximum expected number of messages is

edges×supersteps which is 5×109. Both Giraph and Giraph-Metis send as many messages

as seen in Figure 4.16b. Datalography on the other hand, sends 6× 106 messages.

The maximum expected number of bytes is edges× iterations×16bytes which is 95×109.

Again, both Giraph and Giraph-Metis send this many bytes whereas Datalography sends

13×109 bytes. The size of the messages is larger for Datalography as a message consists

of the relation msg that has two variables. Moreover, each message must include the

53

IN-04 UK-02 AR-05 UK-05
0

100

200

300

400

R
un

tim
e

in
 s

ec

Giraph Giraph-Metis Datalography

(a) Running time
IN-04 UK-02 AR-05 UK-05

105

106

107

108

109

1010

S
en

t m
es

sa
ge

s

Giraph Giraph-Metis Datalography

(b) Aggregate number of messages

IN-04 UK-02 AR-05 UK-05

1010

1011

S
en

t m
es

sa
ge

 b
yt

es

Giraph Giraph-Metis Datalography

(c) Aggregate message bytes

Figure 4.15. WCC: Performance comparison of Giraph, Giraph-Metis and Datalography

54

IN-04 UK-02 AR-05 UK-05
0

100

200

300

400

500

R
un

tim
e

in
 s

ec
Giraph Giraph-Metis Datalography

(a) Running time
IN-04 UK-02 AR-05 UK-05

105

106

107

108

109

1010

S
en

t m
es

sa
ge

s

Giraph Giraph-Metis Datalography

(b) Aggregate number of messages

IN-04 UK-02 AR-05 UK-05

1010

1011

S
en

t m
es

sa
ge

 b
yt

es

Giraph Giraph-Metis Datalography

(c) Aggregate message bytes

Figure 4.16. PageRank: Performance comparison of Giraph, Giraph-Metis and Datalog-
raphy

information of the destination vertex in the super-vertex.

4.7.3 Scaling super-vertices

In these experiments we scale the number of super-vertices to show the effect they

have on runtime and communication. We observe a tradeoff between parallelism and

communication overheads as too few super-vertices do not take advantage of parallelism

whereas too many super-vertices hinder the computation and communication optimizations

otherwise offered. For each dataset, we chose the number of super-vertices such that it

would be a multiple of 27 which is the maximum number of Giraph workers our hardware

specifications can support. The lower limit is imposed by Hadoop’s file loader limit on

55

Table 4.3. Number of super-vertices created for every dataset.

Dataset 1500 15000 150000
IN-04 54 486 4941
UK-02 135 1215 12339
AR-05 216 1620 13608
UK-05 324 2916 23328

the size of a line: Datalography input format has a super-vertex per line with all its

information such as internal vertices and edges. The upper limit is imposed by ParMetis

and the number of partitions it can create. Given these restrictions, the number of vertices

included in each super-vertex ranges roughly 1500 - 15000. Table 4.3 shows the number of

super-vertices created for each dataset.

For every algorithm and dataset, we compare the running time and communication

overhead of Giraph-Metis, Datalography and Datalography-NO-EA that is not using

the optimization of eager-aggregation. We expect the latter to have similar or worse per-

formance than Giraph-Metis as eager-aggregation offsets the overhead of Datalography

sending larger messages in bytes when compared to Giraph. Eager-aggregation or no should

not affect the number of messages but reduce the size of them as its effect is that multiple

neighbors sending messages to the same vertex, aggregate their messages and instead send

only one. In both cases, since Giraph is agnostic of the internal vertices, it sees the same

number of vertices.

When memory is an issue, such as with UK-05 that is our largest dataset, a smaller

number of super-vertices offers better performance.

Figures 4.17, 4.18, 4.19, 4.20 show the effect of super-vertices and eager-aggregation

on SSSP for every dataset. With the exception of IN-04, Datalography-No-Ea performs

similar or better than Giraph-Metis. All three systems observe the same trend with the

best running time being at 15000 vertices per super-vertex. Only for UK-05 the running

time is better for the smallest number of super-vertices. The number of messages sent

is the same between Datalography and Datalography-No-Ea as expected, since

56

eager-aggregation affects only the size of messages and they are both less than Giraph-Metis.

Moreover, the number increases as the number of super-vertices increases. The message

bytes sent however are more for Datalography-No-Ea than both Datalography and

Giraph-Metis and also increase with the number of super-vertices.

150000 15000 1500

8

10

12

14

16

18
Giraph+Metis
Datalography

Datalography-NO-EA

(a) Runtime in sec

150000 15000 1500

105

106

107

108

Giraph+Metis
Datalography

Datalography-NO-EA

(b) Total messages sent log scale

150000 15000 1500

109

6 × 108

2 × 109

3 × 109

Giraph+Metis
Datalography

Datalography-NO-EA

(c) Total message bytes log scale

Figure 4.17. SSSP IN-04: Runtime and communication per super-vertex size.

Figures 4.21, 4.22, 4.23, 4.24 show the effect of super-vertices and eager-aggregation

on WCC for every dataset. Datalography-No-Ea performs worse than both Giraph-

Metis and Datalography for all super-vertex sizes. This highlights the necessity of

eager-aggregation and that using smart partitioning by itself is not enough. All three

systems observe the same trend with respect to the scaling of super-vertices with the best

57

150000 15000 1500
10.0
12.5
15.0
17.5
20.0
22.5
25.0
27.5

Giraph+Metis
Datalography

Datalography-NO-EA

(a) Runtime in sec

150000 15000 1500

106

107

108

Giraph+Metis
Datalography

Datalography-NO-EA

(b) Total messages sent in log scale

150000 15000 1500

2 × 109

3 × 109

4 × 109

Giraph+Metis
Datalography

Datalography-NO-EA

(c) Total message bytes in log scale

Figure 4.18. SSSP UK-02: Runtime and communication per super-vertex size.

running time being at 15000 vertices per super-vertex. Like with SSSP, the number of

messages sent is the same between Datalography and Datalography-No-Ea and they

are both less than Giraph-Metis whereas the message bytes are far less for Datalography

than both Datalography-No-Ea and Giraph-Metis.

With PageRank, both runtime and communication follow the same trend as before.

In Figures 4.25, 4.26, 4.27, 4.28 we see that the best time is observed at 15000 vertices

per super-vertex and Datalography-No-Ea performs worse than Datalography

and Giraph-Metis. Communication overheads increase with the size of super-vertices and

Datalography sends the smallest number and bytes of messages.

58

150000 15000 1500
10
15
20
25
30
35
40

Giraph+Metis
Datalography

Datalography-NO-EA

(a) Runtime in sec

150000 15000 1500

106

107

108

Giraph+Metis
Datalography

Datalography-NO-EA

(b) Total messages sent

150000 15000 1500

1010

2 × 109

3 × 109

4 × 109

6 × 109

Giraph+Metis
Datalography

Datalography-NO-EA

(c) Total message bytes

Figure 4.19. SSSP AR-05: Runtime and communication per super-vertex size.

4.8 Related work

Datalog has recently witnessed a resurgence [37] appearing as the language of choice

in commercial databases (LogicBlox [9]) as well as research projects choosing declarative

semantics in areas such as program analysis [12] and security [49] to name a few. Below,

we focus on related works that use Datalog in the context of distributed and parallel

computation.

Distributed Datalog languages. Bloom [6] and BloomL [20] suggest the use of Dat-

alog as a distributed programming language whose monotonicity semantics allow for

59

150000 15000 1500
20

40

60

80

100

Giraph+Metis
Datalography

Datalography-NO-EA

(a) Runtime in sec

150000 15000 1500
106

107

108

109

Giraph+Metis
Datalography

Datalography-NO-EA

(b) Total messages sent in log scale

150000 15000 1500

1010

4 × 109

6 × 109

Giraph+Metis
Datalography

Datalography-NO-EA

(c) Total message bytes in log scale

Figure 4.20. SSSP UK-05: Runtime and communication per super-vertex size.

coordination-free evaluation. NDlog [45] for declarative networking shares similarities with

our use of location specifiers in rules. In their context, location specifiers represent network

addresses. They define locality of rules in a similar manner to ours to allow evaluation

on networks that are not a full mesh. They support monotonic aggregates defined on

partial ordered domains and stratified aggregation for sum as in Query 2. Negation is

not supported. BOOM analytics [5] implemented the Hadoop MapReduce framework and

HDFS storage system using Overlog. Dyna [22] is a language extension of Datalog to

support modern AI analytics. Yedalog [16], based on Dyna, suggests Datalog as a signle

language of choice for expressing both computation on semi-structured data and dataflow

60

150000 15000 1500

20

30

40

50

60
Giraph+Metis
Datalography

Datalography-NO-EA

(a) Runtime

150000 15000 1500

105

106

107

108

109

Giraph+Metis
Datalography

Datalography-NO-EA

(b) Total messages sent in log scale

150000 15000 1500

1010

Giraph+Metis
Datalography

Datalography-NO-EA

(c) Total message bytes in log scale

Figure 4.21. WCC IN-04: Runtime and communication per super-vertex size.

on batch-processing frameworks. [75, 4] looked into reducing the iterations of recursion

in distributed transitive closure through non-linear recursion by effectively reducing the

data volume exchanged between workers. It is not clear how to apply this idea to general

Datalog programs.

Declarative large-scale graph analytics

Large-scale Datalog frameworks tend to use bespoke engines or modify existing

system to add support for iterative graph computation. Interestingly, other work [13]

explored the opposite direction, transforming existing imperative programs expressed with

the Vertex-Centric paradigm into Datalog analytics that then execute an a relational

61

150000 15000 1500
40
60
80

100
120
140
160
180

Giraph+Metis
Datalography

Datalography-NO-EA

(a) Runtime

150000 15000 1500

106

107

108

109

Giraph+Metis
Datalography

Datalography-NO-EA

(b) Total messages sent in log scale

150000 15000 1500

1010

Giraph+Metis
Datalography

Datalography-NO-EA

(c) Total message bytes in log scale

Figure 4.22. WCC UK-02: Runtime and communication per super-vertex size.

dataflow system [11].

Socialite [62] and Myria [71] are specialized engines catered to the distributed

evaluation of Datalog queries. In Socialite, the input graph is sharded among workers

based on a partition key provided by the user. The workers evaluate rules asynchronously

and communicate via messages until no new facts can be deduced. Myria utilizes a

distributed relational database engine that consists of one master and multiple workers,

and hence, query plans comprise relational algebra operators that are partitioned across

workers. It supports both synchronous and asynchronous execution. Both approaches

support in a clean way a subset of recursive aggregates that are associative, commutative

62

150000 15000 1500

40
60
80

100
120
140

Giraph+Metis
Datalography

Datalography-NO-EA

(a) Runtime

150000 15000 1500

106

107

108

109

1010
Giraph+Metis
Datalography

Datalography-NO-EA

(b) Total messages sent in log scale

150000 15000 1500

1010

1011

Giraph+Metis
Datalography

Datalography-NO-EA

(c) Total message bytes in log scale

Figure 4.23. WCC AR-05: Runtime and communication per super-vertex size.

and idempotent (e.g., min,max). Socialite supports non-meet aggregate operations such

as sum by embedding a Datalog query inside an imperative loop, effectively running n

Datalog programs. Myria supports monotonic sum,count aggregates defined using partial

orders and bag-semantics. In contrast, Datalography supports both monotonic and

non-monotonic aggregates under set-containment, with formal semantics, without the use

of imperative code.

BigDatalog [65] is built on top of Spark [76], a general platform for large-scale

analytics. Spark cannot support recursion out of the box and BigDatalog had to implement

optimizations on the Spark runtime such as a specialized RDD implementation and a

63

150000 15000 1500
100

200

300

400

500

600
Giraph+Metis
Datalography

Datalography-NO-EA

(a) Runtime

150000 15000 1500

107

108

109

1010

Giraph+Metis
Datalography

Datalography-NO-EA

(b) Total messages sent in log scale

150000 15000 1500

1011

Giraph+Metis
Datalography

Datalography-NO-EA

(c) Total message bytes in log scale

Figure 4.24. WCC UK-05: Runtime and communication per super-vertex size.

scheduler aware of iterations. Datalography in contrast, is built on top of Giraph, a

large-scale graph processing system where iterative computation is inherently supported.

BigDatalog implements the approach of DeALS [66] for recursive aggregates by combining

monotonic recursive versions, i.e., mmin, mmax , mcount, msum, with a final non-recursive

aggregate. We follow their semantics for monotonic aggregates, but additionally support

non-monotonic aggregates such as the one used in PageRank.

64

150000 15000 1500
of vertices per super-vertex

20

40

60

80

100

120

R
un

ni
ng

 ti
m

e
in

 s
ec

Metis Datalography Datalography-NO-EA

(a) Runtime

150000 15000 1500

of vertices per super-vertex

105

106

107

108

109

N
um

be
r o

f s
en

t m
es

sa
ge

s Metis Datalography Datalography-NO-EA

(b) Total messages sent in log scale

150000 15000 1500

of vertices per super-vertex

1010

To
ta

l m
es

sa
ge

 b
yt

es

Metis Datalography Datalography-NO-EA

(c) Total message bytes in log scale

Figure 4.25. PageRank IN-04: scaling super-vertices

4.9 Chapter summary

In this chapter, we presented Datalography, the first Datalog compiler and

evaluation engine on Vertex-Centric frameworks. Developers can take advantage of the

concise,declarative nature of Datalog and automatically optimized recursive evaluation.

Moreover, our approach does not require Datalog queries to be expressed according to

the Vertex-Centric paradigm, any general Datalog query is supported. To this extend, we

designed a compiler that, through logical query rewritings, transforms an initial query

65

150000 15000 1500
of vertices per super-vertex

40
60
80

100
120
140
160
180

R
un

ni
ng

 ti
m

e
in

 s
ec

Metis Datalography Datalography-NO-EA

(a) UK-02

150000 15000 1500

of vertices per super-vertex

106

107

108

109

N
um

be
r o

f s
en

t m
es

sa
ge

s Metis Datalography Datalography-NO-EA

(b) Total messages sent in log scale

150000 15000 1500

of vertices per super-vertex

1010

1011

To
ta

l m
es

sa
ge

 b
yt

es

Metis Datalography Datalography-NO-EA

(c) Total message bytes in log scale

Figure 4.26. PageRank UK-02: scaling super-vertices

into an equivalent one, amenable to distributed evaluation on Vertex-Centric engines. We

propose the abstraction of super-vertices, that open the way to novel optimizations such

as source-side combiners. We implemented Datalography on Apache Giraph and our

experimental results confirm that Datalography outperform imperative Giraph graph

analytics.

This chapter contains material from ”Datalography: Scaling datalog graph analytics

on graph processing systems” by Walaa Eldin Moustafa, Vicky Papavasileiou, Ken Yocum,

Alin Deutsch which appears in Proceedings of International Conference on Big Data, pages

66

150000 15000 1500
of vertices per super-vertex

50

100

150

200

250

300

R
un

ni
ng

 ti
m

e
in

 s
ec

Metis Datalography Datalography-NO-EA

(a) Runtime

150000 15000 1500

of vertices per super-vertex

106

107

108

109

1010

N
um

be
r o

f s
en

t m
es

sa
ge

s Metis Datalography Datalography-NO-EA

(b) Total messages sent in log scale

150000 15000 1500

of vertices per super-vertex
1010

1011

To
ta

l m
es

sa
ge

 b
yt

es

Metis Datalography Datalography-NO-EA

(c) Total message bytes in log scale

Figure 4.27. PageRank AR-05: scaling super-vertices

56 –65, 2016. The dissertation author was a primary investigator and co-author of this

paper.

67

150000 15000 1500
of vertices per super-vertex

100

200

300

400

500

R
un

ni
ng

 ti
m

e
in

 s
ec

Metis Datalography Datalography-NO-EA

(a) UK-05

150000 15000 1500

of vertices per super-vertex

107

108

109

1010

N
um

be
r o

f s
en

t m
es

sa
ge

s Metis Datalography Datalography-NO-EA

(b) Total messages sent in log scale

150000 15000 1500

of vertices per super-vertex

1011

To
ta

l m
es

sa
ge

 b
yt

es

Metis Datalography Datalography-NO-EA

(c) Total message bytes in log scale

Figure 4.28. PageRank UK-05: scaling super-vertices

68

Chapter 5

Ariadne: Online Provenance Query-
ing For Big Graph Analytics

5.1 Introduction

Large-scale graph processing engines like Giraph [1], GraphX [31], GraphLab [46]

and Pregel [48] are popular for analyzing data generated from systems in biology, finance,

and social networks. They offer high-level programming abstractions that make it easy

to author scalable graph analytics. The analytics evaluate on an input graph for a given

number of iterations or until a fixed point. Graph analytics range from well-known

graph computations like shortest paths and connected components to ML algorithms like

clustering and recommenders. These engines are Vertex-Centric (VC) as they follow the

“Think-like-a-vertex” programming model where a single program repeatedly runs on each

vertex.

Developers spend much of their time cleaning and exploring data. These activities

often involve the interplay between analytics and the large-scale data on which they

run. For instance, a data worker may look for aberrant algorithm behavior during code

development as new data sets arrive. This can involve “crash culprit determination” –

finding input data elements that caused code to fail. However, there are other equally

important non-crash related activities. These include asserting invariants in the behavior

of the analytic and checking for data formats / ranges. In addition, the emergence of

69

approximate versions of graph analytics [54, 63] allows scientists to trade accuracy for

runtime. However it remains difficult to reason about how improvements in runtime affect

losses in accuracy [63].

Provenance can enable such exploration through tools that allow developers to

easily search and query the way data changes during an analytic. Indeed, prior work

illustrates the power of pinpointing data inputs responsible for a system crash or exception

in data-intensive processing. While some of these facilities are available today for systems

that run data-parallel workflows (Hadoop, Spark, etc.) – “guard predicates” [33] and

provenance tracing[38, 44, 55] – none address them for graph processing systems.

Though vertex-centric graph programs are relatively simple, they present chal-

lenges to effectively capturing and querying provenance. Vertex-centric graph processing

systems [48, 1, 46] repeatedly execute the same code on each graph vertex for tens to

hundreds of iterations. Our experiments show that the provenance of graph analytics

can be 10x larger than the input graph whereas the provenance of Spark [76] analytics

amounts to 30%−50% of the input [38]. Moreover, a tracing query can yield results that

include a majority of the input graph. Many graph analytics diffuse information as they

run, sending and receiving messages from nearby vertices, e.g., PageRank sends weight to

neighbors, shortest path tracks path length. Thus provenance traces grow quickly; the

answer to a backwards trace could be the entire input graph.

This paper presents Ariadne, a system to capture, store, and analyze provenance

for vertex-centric graph processing engines. Ariadne defines a provenance querying

language (PQL) that developers use to declaratively customize provenance capturing and

analysis. Ariadne enables an important class of queries that allow online provenance

analysis that executes simultaneously with an analytic. At the end of the computation, the

results of the analytic and the provenance queries (capturing and analysis) exist. Moreover,

because Ariadne represents the captured provenance as a graph, it is immediately

available for further, repeat analysis on the same engine.

70

This work provides the following contributions:

• A formal provenance model for vertex-centric graph computations and a simple,

efficient physical representation of the resulting provenance graph.

• A declarative, concise datalog-based language, Provenance Query Language (PQL).

Additionally, this work presents the theoretical underpinnings of PQL, describing a

PQL query taxonomy that includes query subclasses that admit efficient querying

strategies that operate on small subsets of provenance.

• A provenance query taxonomy that identifies a query subclass (’forward direct’,

Section 5.4.2) that allows novel online querying and tailored capture. We illustrate

the generality of this subclass with a suite of queries to analyze algorithm behavior

and perform invariant/audit checking.

• A system architecture that allows queries of this class to execute as ordinary vertex

programs without modification to the graph processing engine itself.

• A Giraph-based prototype with which we measure query performance across a range

of analytics and real-world graphs. Online query and capture (running multiple PQL

datalog queries during an analytic) incurs a 2x over the baseline graph analytic.

When Ariadne evaluates only queries (no capture), the average overhead is 1.3x

across our analytics and datasets.

5.2 Running example and System overview

This section overviews Ariadne’s functionality using a motivating example. As-

sume Single-Source Shortest Paths (SSSP) is a common computation for a developer that

she would like to tune for performance. Let’s assume our developer (Alice) doesn’t care

about the exact distance of vertices from a source, an approximation with a small error is

71

Figure 5.1. Running example: Giraph SSSP

fine. One way to create an approximate version of a graph analytic is to only message

neighbors on large updates. This increases the likelihood that some vertices receive no

messages and stop computing earlier. How could she use Ariadne to analyze the behavior

of an analytic to determine the applicability of such an optimization?

Figure 5.1 shows the SSSP program in Giraph’s example library. In superstep 0

every vertex initializes its value (distance to source) with MAX.DOUBLE. Every subsequent

superstep involves the following steps: If the current executing vertex is the source, the

distance to itself is 0, else it is MAX.DOUBLE. Line 6 selects the minimum value between

the current distance and the one received from neighbors by iterating over the messages

received. If the new distance is smaller than the current distance, Line 9 updates the value

of the current vertex and Line 12 sends a message to the neighbors with the new distance

plus the respective edge weight.

To analyze the behavior of SSSP at scale, Alice needs a provenance management

tool to look at the vertex values and messages at every superstep. This way, Alice can

investigate how much the distance of each vertex changes over the course of computation.

Moreover, she can determine the number of vertices whose distance doesn’t change and

the number of consecutive supersteps for which this phenomenon occurs.

Traditionally, provenance management at scale follows a pipeline that involves

72

Input&graph&

b

d
c

a e

Analy2c&& Analy2c&output&

Ariadne&
Provenance,Graph,Capture&

VC&system&
(a) Declarative provenance capturing.

PQL$result$

PQL$query$
Ariadne$

Provenance$Graph$ VC#system#
(b) Declarative offline provenance querying.

Figure 5.2. Architecture of Ariadne that improves traditional offline provenance usage.

provenance capturing, where no user customization is possible, storing of the captured

provenance, and offline querying it using imperative, tracing functionality. Ariadne

improves upon this to allow developers to customize provenance capturing and offline

analysis in a declarative manner. Figure 5.2a shows how Alice can issue a declarative

query alongside her unchanged graph analytic to capture its provenance. At the end of

computation, both the graph analytic’s result as well as the custom provenance information

exist. Then, Figure 5.2b shows how Alice can use Ariadne to analyze the captured

provenance, again via a declarative query on the same Vertex-Centric system the graph

analytic ran.

Besides improving the traditional approach of provenance capturing and offline

analysis, Ariadne enables a novel methodology where provenance is analyzed in an

73

Input&graph&

b

d
c

a e

Analy2c&&
Analy2c&output&

PQL$query$

PQL&vertex&
program&

Ariadne$

Append&

VC$system$

PQL$result$

Figure 5.3. Online provenance querying using Ariadne.

online manner, while the analytic is executing. To achieve this, Ariadne appends the

vertex program with provenance query evaluation, as shown in Figure 5.3, so that at every

superstep a vertex evaluates the graph analytic as well as the provenance query. Note, the

original graph analytic is unchanged from the perspective of the developer. Then, at the

end of computation, both the graph analytic result and the provenance query result exist.

Online provenance querying offers a shortcut to provenance management when a

developer knows upfront what information she is interested in. Alice can simply capture

information of the analytic execution such as vertex values, or she can analyze the

information to find, for example, the number of consecutive supersteps a vertex value

doesn’t change. In our scenario, Alice runs SSSP alongside Query 16 (described in

Section 5.4) and determines she can she can use a threshold, ε, as a convergence criterion

in an optimized version of SSSP, where a vertex sends its new distance to its neighbors,

only if the change is larger than ε. If the change is less than ε, the vertex is considered to

have converged. The optimized SSSP is in Figure 5.4.

74

Figure 5.4. Running example: Giraph SSSP with convergence criterion

5.3 Provenance model

In this section we present the provenance data model of Ariadne that is the same

as the data model of the analytics for which provenance is captured. This has the benefit

that provenance can be queried on the same engine the analytic ran and using the same

language (more on this in the next section).

Ariadne models provenance information as a graph, where a node represents a

vertex computation at a specific superstep. The provenance information on every node can

capture its value at every superstep, the messages it sent and received, and the value of

its edges. Moreover, it can be derivations of these in the form of provenance query results.

For example, Alice is not interested in the actual distances a vertex has in every superstep

but rather in how much the distance changed. In addition to nodes, the provenance graph

has two kinds of edges: The first, the send/receive message edges, connects nodes that

represent neighboring vertices in the input graph and shows the message exchange between

them. The second, the evolution edges, connects nodes that represent the same vertex

but at different supersteps providing information about when a vertex was active during

computation. Edges of the input graph are represented as nodes in the provenance graph.

75

y" z"x"
(a) Input graph

send%%
message%%evolu-on%

superstep!i"1 superstep%i superstep%i+1

yi31%

xi%

yi%

zi+1%

xi+1%

(b) Provenance graph

Figure 5.5. Provenance graph for SSSP

As an example, consider the excerpt of an input graph in Figure 5.5a with vertex x,

its incoming neighbor y and outgoing neighbor z. Alice executes SSSP on this graph and

captures in the provenance when a vertex updates its distance and sends messages to its

neighbors. Assume that at superstep i−1, y updates its distance and sends a message to

x. Then, x at superstep i receives the message, updates its distance and sends a message

to z. At superstep i, y sends again a message to x but this time x doesn’t update its

distance (at superstep i+1) and doesn’t send a message to z. The provenance graph is

seen in Figure 5.5b.

Ariadne employs a compact provenance graph representation. We observe that

the provenance graph at superstep i contains a node for every input vertex that computed

at superstep i. Moreover, it contains message edges for every edge in the input graph that

was used to send/receive messages. Hence, the nodes and edges of the provenance graph

that correspond to superstep i are a subset of the initial graph. Based on this observation,

we propose a compact, relational representation of the provenance graph that utilizes the

structure of the input graph, its vertices and edges, but not its values. Instead vertices are

annotated with relations (tables) that contain the captured provenance information. So,

76

y"

vertex""
value"sent"messages"

provenance"of"y"

y" x" i41" yi41"
y" x" i" yi"

yi41"
yi"

x"

vertex""
value"sent"messages"

provenance"of"x"

x" z" i" xi" xi"
xi+1"

Figure 5.6. Compact provenance graph

in the compact representation the provenance graph contains all the input vertices and

edges exactly once but with different data on them. The provenance relations annotating

the nodes are:

• vertex-values(x,d, i): Value d of vertex v at superstep i.

• edge-values(x,y,d, i): Value d of edge between vertices x and y at superstep i.

• send-message(x,y, i,m): Message m sent from vertex x to its outgoing neighbor y at

superstep i.

• receive-message(x,y, i,m): Messagem received by vertex x from its incoming neighbor

y at superstep i.

Figure 5.6 shows the compact representation of the provenance graph in Figure 5.5b.

The send-message edges of the graph become tuples in the send-message relation of vertices

x and y, and the receive-message edges become tuples in relation receive-message of

vertex x. The evolution of y and x is captured by the tuples in relation vertex-values

that has the value of each vertex at every superstep it was active.

Both formats contain the same information but they differ in their memory-

requirements. If the provenance graph contains n instances of a vertex, the compact

format contains one vertex with n tuples. It is easy to see that it is much cheaper to

represent n data items (like numbers or strings) in memory rather than vertex objects.

77

Note that this is a specific property of provenance graphs, not applicable to general graphs,

and is based on the intuition that nodes connected through evolution edges represent the

same vertex at different instances in the computation and hence can be compacted.

5.4 Provenance querying

We argue that provenance can convey more information than derivation tracing given

the correct tools. Providing a declarative high-level query language and a methodology to

evaluate queries at scale offers new means of exploiting provenance. We already discussed

the performance benefits Datalog offers for expressing graph analytics in Chapter 4. Since

the input of graph analytics and their provenance is represented as graphs, Datalog is

an excellent choice for a provenance query language. Moreover, this allows both graph

analytics and provenance queries to be expressed in the same language.

In this section, we describe Ariadne’s query language and its properties and how

we used Datalography to provide two novel evaluation methods allowing for efficient

and scalable evaluation.

5.4.1 Provenance Query Language

Datalog queries in Datalography have access to the EDB predicates vertices

and edges that describe the input graph. PQL queries need a richer vocabulary to

express the annotations on provenance nodes and the different kinds of provenance

edges. We introduce the EDB predicates shown in Table 5.1, populated by provenance

capturing. Notice, how they correspond to the relations in the compact provenance graph

representation of Section 5.3.

Now, we can show the Datalog notation for our running example:

The first rule creates table eps at a node x if the distance d1 of vertex x at superstep

i and its distance d2 at the preceding superstep j differ less than a threshold ε. The next

rule, opt, has two bodies: the first creates table opt at superstep i and initializes the

78

Table 5.1. Provenance EDB predicates

Provenance predicate Description
superstep(x,i) True if vertex x was active at superstep i
value(x,i,d) True if vertex x was active at superstep i and had value d

evolution(x,i,j) True if vertex x was active at supersteps i, j and i is the
predecessor of j

send-message (x,y,i,m) True if vertex x sent message m to vertex y at superstep i
receive-message (x,y,i,m) True if vertex x received message y from vertex u at super-

step i

eps(x,i)← value(x,i,d1),value(x,j,d2),evolution(x,j, i),udf-diff(d1,d2, ε).
opt(x,0, i)←¬eps(x,i),superstep(x,i).
opt(x,c+ 1, i)← opt(x,c,j),eps(x,i),evolution(x,j, i).
max-opt(x,MAX(c))← opt(x,c, i).
Query 16. Running example: Tuning query

superstep counter (c) with 0 for every superstep a node x is not in eps. The second body

increments c by 1 whenever x is in eps. Effectively, these two rules count the number of

consecutive supersteps for which the distance of a vertex changed less than the threshold.

When the streak of consecutive supersteps is broken, the counter resets to 0. Rule max-opt

aggregates all the c values for a vertex and returns the maximum. In the end, a developer

has the information of how many times the distance of a vertex changed less than ε and

what is the longest streak of consecutive supersteps it occurred.

5.4.2 Layer-at-a-time evaluation

Ariadne uses PQL both for capturing and analyzing the provenance graph. Taking

advantage of the structure of the provenance graph and the normal form of PQL, Ariadne

offers scalable and efficient provenance management in which queries are evaluated online

while the analytic is computing. Then, at the end of computation the results of the

analytic and PQL queries exist.

We define a subclass of PQL, namely the directed queries, for which an ordering of

the provenance graph is possible so that the queries are evaluated on ”sliding windows” of

79

the graph instead of its entirety. These sliding windows are layers defined as:

Definition 3 (Layers). Let GP R be a provenance graph. Let n be the diameter of GP R

when captured for an analytic that computed for n supersteps. For 0≤ i≤ n we inductively

define the following family of layers:

• L0 is the set of leaves of GP R,

• Li is the set of leaves of GP R \L0∪ . . .∪Li−1

GP R can be decomposed into n+ 1 such layers.

Consider again the provenance graph of Figure 5.5 created by capturing provenance

for SSSP only this time both send/receive message edges are included. The layers of

the graph can be seen in Figure 5.7. Assume node xi in layer Li evaluates rule

R1(x, . . .)← T (y),receive-message(x,y, i,m),S(z),send-message(x,z, i,m)

The rule accesses remote predicate T(y) from a neighbor y that sent a message to

x during computation (provenance node yi−1 in layer Li−1) , and remote predicate S(z)

from a neighbor z that x sent a message to (provenance node zi+1 in layer Li+1). In order

to evaluate rule R1 at xi, the message communication of Figure 5.8 must occur where

node yi−1 sends relation T(y) and node zi+1 sends relation T(z) to xi.

We can assign an origin to the remote predicates in a rule determined by whether

their location specifier appears in a receive-message or send-message predicate. A

remote predicate, like T(y)∈ body(R1) has forward origin because its location specifier

(y) appears in a receive-message predicate and , during query evaluation,node y in a

lower layer sends relation T to x. On the other hand, remote predicate T(z)∈ body(R1)

has backwards origin as its location specifier (z) appears in a send-message predicate

80

layer&Li"1
layer&Li

layer&Li+1

yi)1&

xi&

yi&

zi+1&

xi+1&

Figure 5.7. Provenance graph of SSSP divided into three layers.

Li#1

T(y)% R(x)% S(z)%

Li Li+1
Figure 5.8. Information flow in evaluation of R1

and neighbor z of a higher layer must sent T to x. It is clear, that evaluation of rule R1

cannot impose an ordering on the layers of the provenance graph as its remote predicates

have both forward and backward origin.

On the other hand, consider rule

R2(x)← T (y),receive-message(x,y, i,m)

whose remote predicate is of forward origin. During query evaluation, node y in layer i−1

sends a message with relation T to x in layer i as seen in Figure 5.9a.

Additionally, consider rule

R3(x)← S(y),send-message(x,y, i,m)

81

Li#1

T(y)% R(x)%

Li
(a) Message sending in rule R2

T(z)%
Li+1

R(x)%
Li

(b) Message sending in rule
R3

Figure 5.9. Information flow in directed queries

whose remote predicate is of backward origin. Figure 5.9b shows the message flow during

query evaluation where a node z sends a message to x.

If all remote predicates in the rules of a PQL query are of the same origin, then

it is possible to define an ordering on the layers of the provenance graph and evaluate

queries in a layer-at-a-time manner. As such, all nodes in the same layer evaluate a query

and send their query results to nodes in the next layer. The next layer, according to the

ordering is a higher layer for forward queries or lower layer for backward queries. Then

all nodes in the next layer evaluate the query and so forth. Based on this, we define the

directed PQL queries as follows:

Definition 4 (Directed). A PQL query Q is directed if for every rule in Q the variables of

remote predicates in their bodies appear in either send-message predicates or receive-message

predicates but not both.

A directed PQL query is forward if its remote predicates are of forward origin (like

R2) or backward if they are of backward origin (R3). Query 16 from our running example

is a forward PQL query.

Looking at the direction messages are exchanged during query evaluation and the

order in which provenance layers are accessed, one realizes that forward query evaluation

follows the same direction as analytic computation. Capitalizing on this, Ariadne

evaluates forward queries online alongside the analytic. Ariadne intercepts the normal

execution of an analytic, after all vertices have updated their values and created their

82

eps(x, i) value(x, i,d1),value(x, j,d2),evolution(x, j, i),udf-diff(d1,d2,e).
opt(x,0, i) ¬eps(x, i),superstep(x, i).
opt(x,c+1, i) opt(x,c, j),eps(x, i),evolution(x, j, i).
max-opt(x,MAX(c)) opt(x,c, i).

Query 16. Running example: Tuning query

its distance d2 at the preceding superstep j differ less than a threshold e . The next rule, opt, has

two bodies: the first creates table opt at superstep i and initializes the superstep counter (c) with

0 for every superstep a node x is not in eps. The second body increments c by 1 whenever x is

in eps. Effectively, these two rules count the number of consecutive supersteps for which the

distance of a vertex changed less than the threshold. When the streak of consecutive supersteps

is broken, the counter resets to 0. Rule max-opt aggregates all the c values for a vertex and

returns the maximum. In the end, a data scientist has the information of how many times the

distance of a vertex changed less than e and what is the longest streak of consecutive supersteps

it occurred.

5.4.2 PQL Evaluation

ARIADNE uses PQL both for capturing and analyzing the provenance graph. Taking

advantage of the structure of the provenance graph and the normal form of PQL, ARIADNE

offers scalable and efficient provenance handling in which both capturing and analysis queries

are evaluated online while the analytic is computing. Then, at the end of computation the results

of the analytic and PQL queries (for capturing and analysis) exist.

We define a subclass of PQL, namely the directed queries, for which an ordering of the

provenance graph is possible so that the queries are evaluated on ”sliding windows” of the graph

instead of its entirety. These sliding windows are strata defined as:

Definition 2 (Strata). Let GPR be a provenance graph. Let n be the diameter of GPR when

captured for an analytic that computed for n supersteps. For 0 i n we inductively define the

following family of strata:

68

Analy&c(
(SSSP)(

vertex.setValue(…)(

sendMessage(…)(

Ariadne(

Vertex(program(PQL(query(

Figure 5.10. Vertex x at superstep i evaluates vertex program and PQL query.

messages to be sent, and uses this information as input to provenance query evaluation as

seen in Figure 5.10. Online query evaluation incurs minimal overheads, ranging from 1.3x

- 2x depending on the size of provenance information in the result of PQL queries.

Not all queries can be evaluated in an online fashion. Non-directed (like rule R1)

or backward (like rule R3) PQL queries must be evaluated offline, after the analytic has

terminated, since the order in which provenance layers are accessed does not follow the

order of analytic computation. However, even in this case, Ariadne offers a scalable

evaluation mode that does not require the entire provenance graph. As backward queries

are directed, they can also be evaluated on a layer of the provenance graph at a time. The

only difference with the online mode is that the layers are accessed in decreasing order of

supersteps, starting from layer Li and moving to layer Li−1. Our experiments show that

layer-at-a-time offline evaluation is scalable and more efficient than the naive approach of

querying on the entire provenance graph.

Layer-at-a-time online and offline query evaluation are possible because the super-

steps their evaluation requires are guarded by n, where n is the number of supersteps the

analytic ran.

Lemma 1. Evaluation of directed PQL queries requires at most n supersteps.

Proof. Directed PQL queries impose a view on the provenance graph that is a DAG. The

diameter of the DAG is n and its traversal requires at most n steps.

83

For online PQL evaluation to be correct, we must ensure that query evaluation does

not interfere with analytic computation and vice versa. Let us denote as OnlineA,Q(G)

the lockstep evaluation of analytic A on input graph G and PQL query Q on the transient

provenance information of A. The result of OnlineA,Q(G) contains both the result of A

(modified vertex and edge values of G), as well as Q’s results (new tables annotating the

vertices of G). Correctness is ensured if the results of evaluating A by itself on G is the

same as evaluating A in lockstep with Q and if the result of evaluating Q on the captured

provenance of A is the same as evaluating Q using OnlineA,Q(G).

We define πx to be the function that partitions the result of OnlineA,Q(G) into

data (vertex and edge values) read/written by A or Q. Then,

Theorem 3. Let A be a graph analytic, Q a forward PQL query, G the input graph and

GP R the provenance information of A. Then, A(G) = πA(OnlineA,Q(G)) and

Q(GP R) = πQ(OnlineA,Q(G)).

Proof. It suffices to show that i) data modified by A are disjoint from the data modified

by Q and ii) a vertex evaluating Q sends messages only when the vertex computing A

sends messages and to the same neighbors.

i) A reads/writes vertex/edge data and messages. Q reads this data (by means of

provenance) and appends tables resulting from query evaluation to the data and messages

of a vertex. These tables are never accessed by A as it is agnostic to query evaluation.

ii) The definition of forward queries specifies that remote predicates in the body of a rule

must be guarded by predicates receive-message. Hence, message exchange during query

evaluation can only happen between vertices that exchanged messages during analytic

computation.

84

5.5 Experimental evaluation

The main purpose of our evaluation is to investigate the effectiveness of Ariadne

in declarative provenance management. Up to now, provenance had been captured

imperatively and in its entirety whereas querying (limited to tracing) would occur offline.

However, Ariadne enables a new methodology that tailors capturing to the user’s needs

via declarative queries. Moreover, instead of just capturing provenance, developers can use

Ariadne to analyze the provenance while the analytic is computing. Finally, Ariadne

can be used to query the captured provenance in an offline manner as well. As we will

see below, materializing the entire provenance graph for offline querying is not scalable.

Ariadne takes advantage of the characteristics of PQL and offers a stratified offline

querying mode, materializing strata of the provenance graph, that is scalable and efficient.

The experiments were carried out on a cluster containing 7 Intel(R) Xeon(R) CPU

E3-1270 v3 @ 3.50GHz machines, with 4 cores (2 hyper-threads per core), 32GB of RAM

and 800GB of HDD. The operating system is Ubuntu 14.04, with jdk-1.0.7. We installed

Hadoop 2.5 and Giraph 1.2. The datasets were all stored in HDFS with a replication

factor of 2.

Algorithms and Datasets: We evaluate provenance capturing and querying on

three graph algorithms that exhibit different computation and communication patterns:

PageRank where all vertices execute at every superstep and send messages to all their

outgoing neighbors, SSSP where the number of computing vertices starts out small (only

the source), peaks and then reduces again and WCC where all vertices are active initially

but drop as the computation proceeds. Note, we assigned random positive weights in the

range of 0−1 to the edges of the input graph for SSSP.

We used real-world datasets1, namely indochina-2004 (IN-04), uk-2002 (UK-02),

arabic (AR-05) and uk-2005 (UK-05). Their characteristics can be seen in Table 5.2. UK-2
1http://www.dis.uniroma1.it/challenge9/download.shtml

85

has the smallest degree, which as we will see below affects the runtime of both capturing

and querying.

Table 5.2. Dataset characteristics

Dataset V E Avg Degree Avg Diameter
IN-04 7.4M 194M 26.17 28.12
UK-02 18.5M 298M 16.01 21.59
AR-05 22.7M 640M 28.14 22.39
UK-05 39.5M 936M 23.73 23.19
ML-20 16.5K 20M 121 1

Moreover, we experimented on the Alternating Least Squares (ALS) recommender

algorithm using the MovieLens 20M2 dataset with varying sizes of features (5-15). The

user-movie ratings are represented as a bipartite graph, where an edge between user i and

movie j carries a weight w indicating that user i gave the rating w to movie j. At every

iteration, only one side of the bipartite graph computes, either the items or the movies

since the algorithm optimizes the error function by fixing one set of variables and solving

for the other. ALS converges when the error reaches an acceptable threshold. The ML-20

graph has 20M edges, 138493 users and 26744 movies. In the figures, for brevity, we use

the notation ML-205, ML-2010 and ML-2015 for the variants of dataset ML-20 according

to the number of features.

5.5.1 Capturing overheads

In traditional provenance management, the entire provenance graph is captured and

stored for offline querying. We simulate this scenario with Query 17 that captures the full

provenance graph and contains information about the vertex values at every superstep, and

the messages sent and received. Table 5.3 shows the space overhead of the full provenance

graph. For PageRank and SSSP the captured provenance is consistently 10x larger than
2 http://grouplens.org/datasets/movielens/20m/

86

the input graph whereas for WCC it is 5x.

prov-value(x,i,v)← value(x,i,v),superstep(x,i).
prov-send(x,y, i,m)← send-message(x,y, i,m).
prov-receive(x,y, i,m)← receive-message(x,y, i,m).
Query 17. Capture full provenance graph

Table 5.3. Size comparison of input graph and full provenance graph

Dataset Input PageRank SSSP WCC
IN-04 4.1GB 45.1GB 42.7GB 22.6GB
UK-02 6.5GB 71GB 63.3GB 48.1GB
AR-05 13.8GB 148.1GB 118.6GB 76.4GB
UK-05 20.5GB 218.1GB 221.4GB 158.3GB

On the other hand, a declarative query language allows a user to tailor provenance

capturing to her needs reducing this way space and time overheads. Consider for example

Query 18 that captures information of what other vertices are influenced by a vertex in

the input. This information is sufficient to answer the common provenance operation of

forward tracing. We ran Query 18 for vertices that would reveal an upper bound for the

overhead: for PageRank and WCC we chose the highest degree vertex whereas for SSSP

we chose the source. Table 5.4 shows the size of the tailored provenance graph which in

all three cases contains more than 80% of the input vertices.

prov(x,i,v)← value(x,i,v),superstep(x,i),x== α,i== 0.
prov(x,i,v)← receive-message(x,y, i,m,),prov(y,j),value(x,i,v).
Query 18. Capture tailored provenance

Figure 5.11 shows the runtime overhead full and tailored provenance capturing

incur. We see that the overhead of Query 17 ranges in 2.7x− 3.4x for PageRank and

3x−5.6x for SSSP and WCC. The overhead of Query 18 is always lower than 2x. When the

provenance graph exceeds the size of available RAM, Ariadne offloads it asynchronously

87

Table 5.4. Size comparison of input graph and tailored provenance graph

Dataset Input PageRank SSSP WCC
IN-04 4.1GB 2.6GB 2.1GB 1.8GB
UK-02 6.5GB 3.5GB 2.9GB 2.5GB
AR-05 13.8GB 8GB 6.3GB 5.5GB
UK-05 20.5GB 13.9GB 14.3GB 8.4GB

to HDFS. The rate of capturing and the rate of offloading play an important role in the

scalability of the system. For ALS, for example, Ariadne could not capture the full

provenance graph as the size of provenance for the smallest dataset (ML-205), for one

superstep, exceeded 80GB. Further research is required on how to support such sizes and

generation rates of provenance information.

5.5.2 Online provenance querying

With Ariadne, a user can capture tailored provenance “on-demand”: she can

dynamically specify the vertices for which provenance is captured, in which circumstances

and what information is part of the provenance. Moreover, she can issue provenance

tracing operations on demand, only for the vertices identified by online queries. The same

queries can be evaluated in an offline manner as well. Offline querying is useful when

one does not know the queries up front. However, we see that the overhead of online

provenance querying is so much lower than capturing-querying offline, that it is more

performant to run the analytic multiple times, each with a different query.

In the figures below, we compare the running time of:

• A graph analytic running on Giraph without any provenance capturing or querying

(Giraph).

• Online querying (Online).

• Offline querying in a layer-at-a-time manner (Offline-L).

88

IN-04 UK-02 AR-05 UK-050

200

400

600

800

R
un

ni
ng

 ti
m

e
in

 s
ec

Giraph Full Custom

(a) PageRank

IN-04 UK-02 AR-05 UK-050
100
200
300
400
500
600
700
800

R
un

ni
ng

 ti
m

e
in

 s
ec

Giraph Full Custom

(b) SSSP

IN-04 UK-02 AR-05 UK-050

100

200

300

400

500

600

R
un

ni
ng

 ti
m

e
in

 s
ec

Giraph Full Custom

(c) WCC

Figure 5.11. Runtime overhead of Query 17 and Query 18.

89

• Offline querying on the full provenance graph (Offline).

Note, the running times reported for offline querying do not include the capturing

overheads.

Execution monitoring

Queries in this group specify conditions that should always be true for every vertex

and every superstep. The provenance in the result of the queries contains instances where

the condition fails. We envision these queries to be always “on”, in the sense that they

would be part of every run of an analytic. For that, it is imperative for them to incur

minimal overhead.

We provide two queries for every analytic.

PageRank Query 19 checks that when the sum of the received messages of a vertex is

greater than 0, then the in-degree of that vertex is greater than 0. In Giraph, messages

can be sent to vertices by using their vertex ID. If the vertex ID is not that of an actual

neighbor, a vertex without any incoming neighbors may receive a message erroneously.

The runtime overhead in Figure 5.12a for Online is on average 1.14x whereas for Offline-L

it is 3x and for Offline it is 4x.

in-degree(x,COUNT(y))← edge(y,x).
check-failed(x,y, i)← in-degree(x,d),receive-message(x,y, i,m),d== 0.
Query 19. PageRank Audit 1

Query 20 highlights a vertex as problematic, if its rank changed but the rank of its

incoming neighbors hasn’t changed. The query is parameterized by a threshold of how

much change in rank a developer considers interesting. The query compares the old and

new rank of a vertex and if their difference is larger than a threshold ε= 0.1, it notifies

the outgoing neighbors of that vertex. If none of the incoming neighbors changed (more

than ε) but the rank of the vertex did, then that vertex is part of the result. The runtime

overhead in Figure 5.12b is 1.4x using Online, 3.1x for Offline-L, and 3.7x for Offline.

90

big-change(x,i)← value(x,i,d1),value(x,j,d2),evolution(x,i, j), |d1−d2|> ε.
neighbor-change(x,i)← receive-message(x,y, i,m),big-change(y, i).
problem(x,i)← big-change(x,i),¬neighbor-change(x,i)
Query 20. PageRank Audit 2

IN-04 UK-02 AR-05 UK-050
100
200
300
400
500
600
700

R
un

ni
ng

 ti
m

e
in

 s
ec

Giraph Online Offline-L Offline

(a) Query 19

IN-04 UK-02 AR-05 UK-050
100
200
300
400
500
600
700
800

R
un

ni
ng

 ti
m

e
in

 s
ec

Giraph Online Offline-L Offline

(b) Query 20

Figure 5.12. Running time of PageRank audit queries.

SSSP and WCC Query 21 checks that when a vertex updates its value, it is because it

received messages and because its new value is smaller than the previous one. SSSP and

WCC work under the assumption of positive weights and positive vertex IDs respectively.

If the input is corrupted, such as if there is an edge with negative weight, or the algorithm

assigns the wrong label, the query will highlight it. Figure 5.13a shows the runtime for

SSSP: The overhead of Online is on average 1.13x whereas for Offline-L it is 3.5x and for

Offline it is 4.6x. The running time overheads for WCC in Figure 5.13c are similar.

check-failed(x,i)← value(x,i,d1),value(x,j,d2),evolution(x,i, j),
receive-message(x,y, i,m),d2 ≤ d1.

Query 21. SSSP and WCC Audit 1

For SSSP and WCC, a vertex updates its distance or label only when it receives a

message from an incoming neighbor with a smaller distance or label. Query 22 ensures

that if a vertex did not receive a message from any of its neighbors, then its value doesn’t

change. Figure 5.13b shows the overhead for SSSP is on average 1.3x for Online whereas

91

IN-04 UK-02 AR-05 UK-050

200

400

600

800

1000
R

un
ni

ng
 ti

m
e

in
 s

ec
Giraph Online Offline-L Offline

(a) SSSP Query 21

IN-04 UK-02 AR-05 UK-050

200

400

600

800

R
un

ni
ng

 ti
m

e
in

 s
ec

Giraph Online Offline-L Offline

(b) SSSP 22

IN-04 UK-02 AR-05 UK-050

100

200

300

400

500

600

R
un

ni
ng

 ti
m

e
in

 s
ec

Giraph Online Offline-L Offline

(c) WCC 21

IN-04 UK-02 AR-05 UK-050

100

200

300

400

500

600

R
un

ni
ng

 ti
m

e
in

 s
ec

Giraph Online Offline-L Offline

(d) WCC 22

Figure 5.13. Running time of SSSP and WCC audit queries.

for Offline it is 4.7x and for Offline-L it is 3.6x. In Figure 5.13d the overhead for WCC

and Online is 1.2x, for Offline-L it is 3.7x and Offline it is 4.3.

neighbor-change(x,i)← receive-message(x,y, i,m).
problem(x,i)← value(x,i,d1),value(x,j,d2),evolution(x,i, j),¬neighbor-change(x,i),

d1 6= d2.

Query 22. SSSP and WCC Audit 2

ALS Query 23 checks that the local error for every vertex is between the range of 0−5

which is the range of the ratings in the input file. The error is computed by subtracting

the actual rating from the predicted one during every superstep of the computation. The

query identifies, when a vertex fails the check, if it is because the input file contains a

92

rating outside of the expected range (0− 5), or because the prediction computed at a

superstep is outside the range. Figure 5.14a shows the runtime overhead for this query is

1.04x for Online.

input-failed(x,y, i)← prov-error(x,y, i,e),edge-value(x,y, i,w), e < 0, e > 5,w < 0,w > 5.
algo-failed(x,y, i)← prov-error(x,y, i,e),prov-prediction(x,y, i,p), e < 0, e > 5,p < 0,

p > 5.
Query 23. ALS Audit 1

Query 24 identifies users or items whose average error in rating prediction increases

in consecutive supersteps. It first computes the local average error per vertex and superstep

by summing the errors across all its neighbors and dividing by the out-degree. It then

compares the average error for two consecutive supersteps and checks that the error has

not increased more than a threshold. For a threshold of 0.5, the query returns 30% of

the vertices indicating that their error has increased. Finding such vertices is useful as

it can indicate that these vertices converge to a wrong solution and should be handled

differently by the algorithm. Figure 5.14b shows the runtime overhead for this query is

1.2x for Online.

degree(x,COUNT (y))← receive-message(x,y, i,m).
sum-error(x,i,SUM(e))← prov-error(x,y, i,e).
avg-error(x,i,s/d)← sum-error(x,s),degree(x,d).
problem(x,e1, e2, i)← avg-error(x,i,e1),avg-error(x,j,e2),evolution(x,i, j), e1 > e2 + ε

Query 24. ALS Audit 2

Performance tuning

We now turn to a novel idea of provenance usage that assists developers in tuning

their algorithms. We measure the overhead of our running example Query 16, copied here

for ease of readability. Moreover, we show that insights gained from using the query on

one dataset, are transferable to unseen datasets.

93

ML-20^5 ML-20^10 ML-20^150

10

20

30

40

50

60
R

un
ni

ng
 ti

m
e

in
 s

ec
Giraph Online

(a) Query 23

ML-20^5 ML-20^10 ML-20^150
10
20
30
40
50
60

R
un

ni
ng

 ti
m

e
in

 s
ec

Giraph Online

(b) Query 24

Figure 5.14. Running time for ALS audit queries.

We use the same query for all our analytics by parameterizing it with different

thresholds and vertex value comparison functions. For instance for PageRank, SSSP

and WCC the query subtracts the previous and new vertex value whereas for ALS it

compares their euclidean distance. At the end of computation, the query results contain

the provenance information: i) at what supersteps did a vertex value change less than

a threshold and ii) The number of consecutive supersteps a vertex is a candidate for

optimization. The larger the fraction of vertices whose value doesn’t change and the longer

the length of consecutive supersteps is, the more optimization is achieved.

We measure the error of approximation in the same manner as [63] by using the

Lp norm of a vector v defined as: Lp(v) = (∑n
i=1 vi

p)
1
p . Let r0 be the vector of results of

the original analytic and r1 the vector of results for the optimized analytic. Then the

normalized error is: Lp(r0− r1)/Lp(r0). We choose the correct error definition based on

the characteristics of the data and algorithms.

eps(x,i)← value(x,i,d1),value(x,j,d2),evolution(x,j, i),udf-diff(d1,d2, ε).
opt(x,0, i)←¬eps(x,i),superstep(x,i).
opt(x,n+ 1, i)← opt(x,n,j),eps(x,i),evolution(x,j, i)
Running example 16

94

Figure 5.16 reports the runtime of the optimization query for all datasets. However,

we analyzed the results only for UK-02 and based on the findings on this dataset, we

applied the optimization with the same threshold to the other datasets to see if it is

applicable on unseen graphs.

For PageRank ε = 0.01, the query finds that for 60% of the vertices their rank

doesn’t change in 10 out of 20 supersteps. This is a very strong result and since the

optimization is already part of some PageRank implementation, it highlights how useful

this query is. The error when computing the optimized PageRank is shown in Table5.5

and ranges between 10−3 to 10−5. The table also shows the median of the ranks for the

initial analytic and the optimized analytic as a means of comparison with the error. The

speedup of the optimized version in Figure 5.15a is 1.4x. The overhead of the query, shown

in Figure 5.16a is 1.3x for Online, 3.2x for Offline-L and 3.8 for Offline.

For SSSP and ε= 0.1 the query result contains 87% of the input vertices with 11%

of them not changing their value for more than 10 consecutive supersteps. The overhead

of the query is 1.5x on average for Online, 3.5x for Offline-L and 5x for Offline. Again

the results lead a developer to incorporate the optimization to SSSP (to get the code in

Figure 5.16b). Table 5.6 shows the error across all datasets is 10−2 when using the same

threshold. The runtime improvements, see Figure 5.15b, are 1.8x over the baseline.

Table 5.5. PageRank: Relative error (L2) for ε= 0.01 and median values of original (A)
and optimized (B) analytics.

Dataset Error Median A Median B
IN-04 10−3 0.18 0.16
UK-02 10−3 0.2 0.17
AR-05 10−4 0.18 0.15
UK-05 10−5 0.2 0.17

We don’t expect this idea of optimization to work with WCC as it’s values are

categorical and cannot be approximated this way. We used a threshold of 1 for the query

95

Table 5.6. SSSP: Relative error (L1) for ε= 0.1 and median values of original (A) and
optimized (B) analytics.

Dataset Error Median A Median B
IN-04 10−2 5 5.2
UK-02 10−2 4.4 4.5
AR-05 10−2 5.6 5.8
UK-05 10−2 3.7 3.8

IN-04 UK-02 AR-05 UK-050
100
200
300
400
500
600
700

R
un

ni
ng

 ti
m

e
in

 s
ec

Giraph Online Offline-L Offline

(a) PageRank

IN-04 UK-02 AR-05 UK-050
100
200
300
400
500
600
700
800

R
un

ni
ng

 ti
m

e
in

 s
ec

Giraph Online Offline-L Offline

(b) SSSP

Figure 5.15. Runtime improvement between original (Giraph) and optimized
(Giraph - opt) analytic

since the amount of difference between component IDs doesn’t matter, but rather the fact

that vertices are assigned to different components. The query finds that 60% of the vertices

are an optimization candidate at some superstep but never for a consecutive streak. This

result already proves a developer should not pursue the optimization. Sure enough, when

running the ”optimized” version, the normalized relative error is 0.9 across all datasets.

The overhead of evaluating the query, in Figure 5.16c using Online is 1.6x, for Offline is 5

and 3.6x for Offline-L.

Finally, for ALS the query returns too few vertices (optimization candidates) to

pursue this optimization since it requires a more fine-tuned convergence criterion. As future

work, we plan to do a user study with developers using Ariadne to write algorithm-aware

96

IN-04 UK-02 AR-05 UK-050
100
200
300
400
500
600
700

R
un

ni
ng

 ti
m

e
in

 s
ec

Giraph Online Offline-L Offline

(a) PageRank

IN-04 UK-02 AR-05 UK-050
100
200
300
400
500
600
700
800

R
un

ni
ng

 ti
m

e
in

 s
ec

Giraph Online Offline-L Offline

(b) SSSP

IN-04 UK-02 AR-05 UK-050
100
200
300
400
500
600
700

R
un

ni
ng

 ti
m

e
in

 s
ec

Giraph Online Offline-L Offline

(c) WCC

ML-20^5 ML-20^10 ML-20^150

10

20

30

40

50

60

R
un

ni
ng

 ti
m

e
in

 s
ec

Giraph Online

(d) ALS

Figure 5.16. Running time of running example Query 16

tuning queries. Nevertheless, the running time overhead for ALS is in Figure 5.16d and is

always lower than 1x.

5.5.3 Offline provenance querying

Tracing the provenance backward (with respect to the direction the computation

unfolds) to identify the input data items that lead to an item in the output is a common

operation. Ariadne supports this kind of reasoning via offline querying. Below we

compare two approaches: i) Capture the entire provenance graph and perform backward

tracing using Query 26 and ii) Capture a tailored provenance graph using Query 27 and

trace it using Query 28. In both cases, the tracing query specifies the starting vertex α and

97

superstep σ. Relation back-lineage contains the vertices the trace reaches at superstep 0.

start(x,i)← superstep(x,i), i= σ,x= α.
back-trace(x,i)← start(x,i).
back-trace(x,i)← prov-send(x,y, i,m),back-trace(y,j), j = i+ 1.
back-lineage(x,d)← back-trace(x,i),prov-value(x,i,d), i= 0.
Query 26. Backward lineage on full provenance graph

Query 26 traces the provenance graph using send-message edges. Notice how the

values of messages are never accessed. Using Ariadne, users can customize capturing

and disable capturing of message values as they are not needed. Moreover, for analytics

that send messages to all their outgoing neighbors (instead of a dynamic subset) it is

not necessary to capture the send-message edges that replicate the information of which

neighbor a message is sent to across supersteps. Instead, a user can specify to capture

only the edges EDB relation of the input graph that contains the same information.

Query 27 captures the tailored provenance for backward tracing. Rule prov-value

captures the value of a vertex at every superstep. Rule prov-send captures the superstep

at which a vertex sends messages and rule prov-edges captures the outgoing edges of a

vertex. The tailored backward tracing Query 28 differs from Query 26 in using relation

edges instead of send-message.

prov-value(x,i,v)← value(x,i,d),superstep(x,i).
prov-send(x,i)← send-message(x,y, i,m,).
prov-edges(x,y)← edges(x,y).
Query 27. Capture tailored provenance for backward query

start(x,i)← prov-value(x,i,v), i= σ,x= α.
back-trace(x,i)← start(x,i).
back-trace(x,i)← prov-edges(x,y),prov-send(x,i),back-trace(y,j), j = i+ 1.
back-lineage(x,d)← back-trace(x,i),prov-value(x,i,d), i= 0.
Query 28. Backward lineage on tailored provenance graph

We compare the runtime of layer-at-a-time offline evaluation using the full prove-

98

IN-04 UK-02 AR-05 UK-050
100
200
300
400
500
600

R
un

ni
ng

 ti
m

e
in

 s
ec

Giraph Full Custom

(a) PageRank

IN-04 UK-02 AR-05 UK-050
100
200
300
400
500
600
700
800

R
un

ni
ng

 ti
m

e
in

 s
ec

Giraph Full Custom

(b) SSSP

IN-04 UK-02 AR-05 UK-050

100

200

300

400

500

600

R
un

ni
ng

 ti
m

e
in

 s
ec

Giraph Full Custom

(c) WCC

Figure 5.17. Runtime overhead for backward lineage query 26

nance graph (Full) against using the tailored provenance graph(Custom). The times don’t

include capturing. Moreover, we include the analytic’s time (Giraph) for reference. We

started the trace from a vertex that computed in the last superstep of the analytic and

traversed the provenance graph to superstep 0.

In all cases, Custom’s runtime is 50% of the runtime of the base analytic. For

PageRank the overhead for Full is 2.6x whereas for Custom it is 0.5x. For SSSP, the

overhead of Full is 3.4x and for Custom it is 0.5x. For WCC the overheads are similar.

This highlights the strength of tailored capturing showing can one can take advantage of

the characteristics of her analytic and provenance queries to reduce the size of captured

provenance and cut down significantly the querying time.

99

5.6 Related work

Although provenance querying has been studied in the context of databases [29, 40],

scientific workflows [21, 8] and large-scale distributed engines [38, 18], there is no work

addressing provenance in a setting where the data model of the computation and the

data model of the provenance are both graphs. Moreover, with the exception of [29], no

previous work addresses online provenance querying while the computation that produces

the provenance unfolds.

Focusing on approaches on large-scale distributed engines, their limitations can be

summarized in: i) Provenance is captured imperatively, behind the scenes. This does not

allow a developer to customize what information is included in the captured provenance.

ii) Provenance can be used only offline. iii) Only imperative tracing of provenance is

offered.

Graft [60], is the only other tool addressing debugging in VC systems. Users can

imperatively specify a small set of vertices (less than 10) to visualize and analyze using

a step-wise debugger locally. Although, visualization is helpful in understanding graph

algorithms, users need help in identifying on which vertices to narrow down. Moreover,

debugging the computation logic locally gives no guarantee as to whether the fixes will

translate into a fix at scale.

Provenance on batch-processing system was first addressed by Newt [44] and

Ramp [55] that capture provenance for MapReduce workflows on Hadoop [2] and offer

offline tracing using external tools. Titian [38] instruments Spark with provenance capturing

and is the only other large-scale system that allows provenance tracing using the same

language the analytics are expressed. Titian manages to incur an overhead of 1.4x over

the base runtime, much smaller to ours, due to three reasons: i) The provenance size of

batch processing analytics is smaller than the size of the input (30%−50%) as compared

to 10x size for graph analytics ii) the workflows they experimented on have two stages

100

compared to the 20− 200 supersteps of our graph analytics iii) Spark offers a built-in

intermediary storage mechanism and Titian offloads to disk only when provenance does

not fit in memory taking advantage of native Spark tools. As future work, we plan to look

into out-of-core graph processing systems [64, 59, 83] to improve Ariadne’s performance

when capturing the full provenance graph.

[7] tracks How-Provenance [32] for Pig Latin operators. How-provenance is more

expressive than lineage as it conveys not only what input items contributed to the

computation of an output but also how. Like us, they model provenance as a graph that

however, must be built through an offline process. A separate module allows querying of

the provenance graph in the limited form of graph transformations such as zoom-in/out

and deletion propagation (tracing).

[18] addresses backward provenance tracing on a differential dataflow system [52]

for iterative analytics. A common problem with backward tracing is that the input data

items returned are too many to be useful. The authors propose interesting ideas to prune

the tracing size such as considering the time data items were produced and exploiting

characteristics of algorithms like WCC that follow a top-k logic where only top-k input

items are necessary to explain outputs. Using Ariadne, a developer is able to apply

provenance pruning both to capturing (capture only the top-k data items) and to querying

by customizing her queries.

5.7 Chapter summary

This chapter presented Ariadne, a first approach in capturing and querying

provenance on large-scale graph analytics. We show that provenance can be used in more

scenarios than traditional debugging given the right tools. Ariadne offers a high-level

query language, PQL, that developers can use to mine provenance, without the need of

capturing it. They can pose queries that validate invariants on the data and computation

101

to ensure correct execution, queries that identify corner cases of an algorithm or outliers

in the data, and queries that investigate the runtime behavior of fixpoint graph analytics.

We identified a class of queries, namely directed, that can be evaluated on layers of

the provenance graph instead of its entirety. Experiments showed that layer-at-a-time

evaluation is more scalable and efficient than the straightforward approach of materializing

the entire provenance graph. Finally, for a sublcass of directed queries, we presented a novel

online evaluation mode that obviates the need for provenance capturing. Online evaluation

shortcuts the traditional provenance querying approach by evaluation provenance queries

while a graph analytic is executing. Our experiments showed that online evaluation incurs

an average overhead of 1.3x.

This chapter, in full, has been submitted for publication of the material. Vicky

Papavasileiou, Ken Yocum, Alin Deutsch. The dissertation author was the primary

investigator and author of this paper.

102

Chapter 6

Conclusion and Future Directions

In this dissertation we presented a declarative framework that supports the entire life-

cycle of Big Graph analytics, from developing to tuning their behavior. First, we presented

Datalography, a Datalog compiler and evaluation engine for Vertex-Centric systems.

We showed our theoretical work on rewriting general Datalog queries to VC-Datalog

queries that follow the Vertex-Centric paradigm thus amenable to efficient distributed

evaluation. We designed and implemented optimizations in the form of logical rewritings

that are portable to other evaluation frameworks. More specifically, we defined the logical

abstraction of super-vertices that enable set-at-a-time evaluation in a transparent to

the user way. Then, we presented the optimization of source-side combiners enabled by

super-vertices. Our experiments showed that the concise, declarative formulation of Big

Graph analytics on Datalography outperforms imperative code by a factor of 2.3x-7.8x

(depending on the dataset and algorithm) over Apache Giraph whereas it achieves a

speed-up of 1.4x-2.5x when compared to a custom partition-aware implementation of

Apache Giraph.

Then, we proposed Ariadne a declarative approach for provenance management of

Big Graph analytics on Vertex-Centric engines. We showed how a declarative provenance

language (PQL) enables users to tailor provenance capturing and querying to their needs

cutting down significantly on space and time overheads. Moreover, we introduced a novel

103

provenance querying methodology that enables online provenance querying while a Big

Graph analytic is executing so that the end of execution both the results of the analytic

and the provenance query exist. Finally, we presented novel provenance queries that go

beyond the traditional forward and backward tracing and allow developers to audit and

fine-tune the behavior of their graph analytics. In our experiments with different graph

analytics and input graphs, the overhead of online querying is on average 1.3x versus 8x

of the traditional approach (capture everything, query offline).

A declarative framework for authoring and fine-tuning Big Graph analytics enables

exciting opportunities for further research. One first direction is to investigate multi-query

optimization techniques when both analytic and provenance queries are expressed in

Datalog. Moreover, the high generation rate of provenance information as well as its size,

incur large overheads when provenance is captured. One possible future direction is to

investigate online provenance graph compression techniques as well as out-of-core graph

processing. Lastly, we envision our declarative framework to play the role of a mediator over

Vertex-Centric systems and graph databases, providing a common declarative abstraction.

Such mediator is useful to identify the parts of a graph analytic that are best evaluated by

an in-memory system compared to a database and vice-versa.

104

Bibliography

[1] Giraph. https://giraph.apache.org/.

[2] Hadoop. http://hadoop.apache.org.

[3] Parmetis - parallel graph partitioning and fill-reducing matrix ordering. http://glaros.
dtc.umn.edu/gkhome/metis/parmetis/overview. Accessed: 2016-05-24.

[4] Foto N. Afrati and Jeffrey D. Ullman. Transitive closure and recursive datalog
implemented on clusters. In EDBT, pages 132–143, 2012.

[5] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, Joseph M. Hellerstein,
and Russell Sears. Boom analytics: exploring data-centric, declarative programming
for the cloud. In EuroSys, pages 223–236, 2010.

[6] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak. Consis-
tency analysis in bloom: a CALM and collected approach. In CIDR, 2011.

[7] Yael Amsterdamer, Susan B. Davidson, Daniel Deutch, Tova Milo, Julia Stoyanovich,
and Val Tannen. Putting lipstick on pig: Enabling database-style workflow provenance.
PVLDB, 5(4):346–357, 2011.

[8] Manish Kumar Anand, Shawn Bowers, and Bertram Ludäscher. Techniques for
efficiently querying scientific workflow provenance graphs. In EDBT, volume 10, pages
287–298, 2010.

[9] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu, Emir
Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. Design and implementation of
the logicblox system. In SIGMOD, 2015.

[10] François Bancilhon and Raghu Ramakrishnan. An amateur’s introduction to recursive
query processing strategies. In SIGMOD, pages 16–52, 1986.

[11] Vinayak R. Borkar, Michael J. Carey, Raman Grover, Nicola Onose, and Rares
Vernica. Hyracks: A flexible and extensible foundation for data-intensive computing.
In ICDE, pages 1151–1162, 2011.

[12] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of
sophisticated points-to analyses. In OOPSLA, pages 243–262, 2009.

105

https://giraph.apache.org/
http://hadoop.apache.org
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

[13] Yingyi Bu, Vinayak R. Borkar, Michael J. Carey, Joshua Rosen, Neoklis Polyzotis,
Tyson Condie, Markus Weimer, and Raghu Ramakrishnan. Scaling datalog for
machine learning on big data. CoRR, abs/1203.0160, 2012.

[14] Yingyi Bu, Vinayak R. Borkar, Jianfeng Jia, Michael J. Carey, and Tyson Condie.
Pregelix: Big(ger) graph analytics on a dataflow engine. PVLDB, 8(2):161–172, 2014.

[15] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. Haloop: Efficient
iterative data processing on large clusters. PVLDB, 3(1):285–296, 2010.

[16] Brian Chin, Daniel von Dincklage, Vuk Ercegovac, Peter Hawkins, Mark S. Miller,
Franz Josef Och, Christopher Olston, and Fernando Pereira. Yedalog: Exploring
knowledge at scale. In SNAPL, 2015.

[17] Avery Ching. Scaling apache giraph to a trillion edges. Facebook Engineering blog,
2013.

[18] Zaheer Chothia, John Liagouris, Frank McSherry, and Timothy Roscoe. Explaining
outputs in modern data analytics. PVLDB, 9(12):1137–1148, 2016.

[19] Mariano P. Consens and Alberto O. Mendelzon. Low complexity aggregation in
graphlog and datalog. Theor. Comput. Sci., 116(1):95–116, 1993.

[20] Neil Conway, William R. Marczak, Peter Alvaro, Joseph M. Hellerstein, and David
Maier. Logic and lattices for distributed programming. In SOCC, page 1, 2012.

[21] Yingwei Cui and Jennifer Widom. Lineage tracing for general data warehouse
transformations. PVLDB, 12(1):41–58, 2003.

[22] Jason Eisner and Nathaniel Wesley Filardo. Dyna: Extending datalog for modern AI.
In Datalog Reloaded, pages 181–220, 2010.

[23] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae, Judy
Qiu, and Geoffrey C. Fox. Twister: a runtime for iterative mapreduce. In HDPC,
pages 810–818, 2010.

[24] Benedikt Elser and Alberto Montresor. An evaluation study of bigdata frameworks
for graph processing. In IEEE Big Data, pages 60–67, 2013.

[25] Sumit Ganguly, Sergio Greco, and Carlo Zaniolo. Minimum and maximum predicates
in logic programming. In PODS, pages 154–163, 1991.

[26] Allen Van Gelder. The well-founded semantics of aggregation. In PODS, pages
127–138, 1992.

[27] Allen Van Gelder. Foundations of aggregation in deductive databases. In DOOD,
pages 13–34, 1993.

106

[28] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic pro-
gramming. In ICLP/SLP, pages 1070–1080, 1988.

[29] Boris Glavic and Gustavo Alonso. Perm: Processing provenance and data on the
same data model through query rewriting. In ICDE, pages 174–185, 2009.

[30] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
Powergraph: Distributed graph-parallel computation on natural graphs. In OSDI,
pages 17–30, 2012.

[31] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. Graphx: Graph processing in a distributed dataflow
framework. In OSDI, pages 599–613, 2014.

[32] Todd J. Green, Gregory Karvounarakis, and Val Tannen. Provenance semirings. In
SIGMOD, pages 31–40, 2007.

[33] Muhammad Ali Gulzar, Matteo Interlandi, Tyson Condie, and Miryung Kim. De-
bugging big data analytics in spark with BigDebug. In SIGMOD, pages 1627–1630,
2017.

[34] Yong Guo, Marcin Biczak, Ana Lucia Varbanescu, Alexandru Iosup, Claudio Martella,
and Theodore L. Willke. How well do graph-processing platforms perform? an
empirical performance evaluation and analysis. In IPDPS, pages 395–404, 2014.

[35] Minyang Han and Khuzaima Daudjee. Giraph unchained: Barrierless asynchronous
parallel execution in pregel-like graph processing systems. PVLDB, 8(9):950–961,
2015.

[36] Minyang Han, Khuzaima Daudjee, Khaled Ammar, M. Tamer Özsu, Xingfang Wang,
and Tianqi Jin. An experimental comparison of pregel-like graph processing systems.
PVLDB, 7(12):1047–1058, 2014.

[37] Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. Datalog and emerging
applications: an interactive tutorial. In SIGMOD, pages 1213–1216, 2011.

[38] Matteo Interlandi, Kshitij Shah, Sai Deep Tetali, Muhammad Ali Gulzar, Seunghyun
Yoo, Miryung Kim, Todd Millstein, and Tyson Condie. Titian: Data provenance
support in spark. PVLDB, 9(3):216–227, 2015.

[39] Martin Junghanns, André Petermann, Martin Neumann, and Erhard Rahm. Man-
agement and analysis of big graph data: Current systems and open challenges. In
Handbook of Big Data Technologies, pages 457–505. 2017.

[40] Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Querying data provenance.
In SIGMOD, pages 951–962, 2010.

107

[41] David B. Kemp and Kotagiri Ramamohanarao. Efficient recursive aggregation and
negation in deductive databases. IEEE Trans. Knowl. Data Eng., 10(5):727–745,
1998.

[42] Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani Jamjoom, Dan Williams, and
Panos Kalnis. Mizan: a system for dynamic load balancing in large-scale graph
processing. In EuroSys, pages 169–182, 2013.

[43] Donald Kossmann. The state of the art in distributed query processing. ACM CSUR,
32(4):422–469, 2000.

[44] Dionysios Logothetis, Soumyarupa De, and Kenneth Yocum. Scalable lineage capture
for debugging DISC analytics. In SOCC, 2013.

[45] Boon Thau Loo, Tyson Condie, Minos N. Garofalakis, David E. Gay, Joseph M.
Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica.
Declarative networking: language, execution and optimization. In SIGMOD, pages
97–108, 2006.

[46] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph M. Hellerstein. Distributed graphlab: A framework for machine learning in
the cloud. PVLDB, 5(8):716–727, 2012.

[47] Yi Lu, James Cheng, Da Yan, and Huanhuan Wu. Large-scale distributed graph
computing systems: An experimental evaluation. PVLDB, 8(3):281–292, 2014.

[48] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph
processing. In SIGMOD, 2010.

[49] William R. Marczak, Shan Shan Huang, Martin Bravenboer, Micah Sherr, Boon Thau
Loo, and Molham Aref. Secureblox: customizable secure distributed data processing.
In SIGMOD, pages 723–734, 2010.

[50] Mirjana Mazuran, Edoardo Serra, and Carlo Zaniolo. A declarative extension of horn
clauses, and its significance for datalog and its applications. TPLP, 13(4-5):609–623,
2013.

[51] Mirjana Mazuran, Edoardo Serra, and Carlo Zaniolo. Extending the power of datalog
recursion. VLDB J., 22(4):471–493, 2013.

[52] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. Differen-
tial dataflow. In CIDR, 2013.

[53] Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. The magic of
duplicates and aggregates. In VLDB, pages 264–277, 1990.

108

[54] Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright. Hogwild!: A
lock-free approach to parallelizing stochastic gradient descent. In NIPS, 2011.

[55] Hyunjung Park, Robert Ikeda, and Jennifer Widom. RAMP: A system for capturing
and tracing provenance in mapreduce workflows. PVLDB, 4(12):1351–1354, 2011.

[56] Teodor C. Przymusinski. On the declarative semantics of deductive databases and
logic programs. In Foundations of Deductive Databases and Logic Programming, pages
193–216. Morgan Kaufmann, 1988.

[57] Kenneth A. Ross. Modular stratification and magic sets for datalog programs with
negation. J. ACM, 41(6):1216–1266, 1994.

[58] Kenneth A. Ross and Yehoshua Sagiv. Monotonic aggregation in deductive databases.
In PODS, 1992.

[59] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: Edge-centric graph
processing using streaming partitions. In SOSP, pages 472–488. ACM, 2013.

[60] Semih Salihoglu, Jaeho Shin, Vikesh Khanna, Ba Quan Truong, and Jennifer Widom.
Graft: A debugging tool for apache giraph. In SIGMOD, pages 1403–1408, 2015.

[61] Semih Salihoglu and Jennifer Widom. GPS: a graph processing system. In SSDBM,
2013.

[62] Jiwon Seo, Stephen Guo, and Monica S. Lam. Socialite: Datalog extensions for
efficient social network analysis. In ICDE, 2013.

[63] Zechao Shang and Jeffrey Xu Yu. Auto-approximation of graph computing. PVLDB,
7(14):1833–1844, 2014.

[64] Zhiyuan Shao, Jian He, Huiming Lv, and Hai Jin. Fog: A fast out-of-core graph
processing framework. International Journal of Parallel Programming, 45(6):1259–
1272, 2017.

[65] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie,
and Carlo Zaniolo. Big data analytics with datalog queries on spark. In SIGMOD,
pages 1135–1149, 2016.

[66] Alexander Shkapsky, Mohan Yang, and Carlo Zaniolo. Optimizing recursive queries
with monotonic aggregates in deals. In ICDE, pages 867–878, 2015.

[67] Yogesh Simmhan, Alok Gautam Kumbhare, Charith Wickramaarachchi, Soonil Na-
garkar, Santosh Ravi, Cauligi S. Raghavendra, and Viktor K. Prasanna. Goffish:
A sub-graph centric framework for large-scale graph analytics. In Euro-Par, pages
451–462, 2014.

[68] S. Sudarshan and Raghu Ramakrishnan. Aggregation and relevance in deductive
databases. In VLDB, pages 501–511, 1991.

109

[69] Narayanan Sundaram, Nadathur Satish, Md. Mostofa Ali Patwary, Subramanya
Dulloor, Michael J. Anderson, Satya Gautam Vadlamudi, Dipankar Das, and Pradeep
Dubey. Graphmat: High performance graph analytics made productive. PVLDB,
8(11):1214–1225, 2015.

[70] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and
John McPherson. From ”think like a vertex” to ”think like a graph”. PVLDB,
7(3):193–204, 2013.

[71] Jingjing Wang, Magdalena Balazinska, and Daniel Halperin. Asynchronous and fault-
tolerant recursive datalog evaluation in shared-nothing engines. PVLDB, 8(12):1542–
1553, 2015.

[72] Da Yan, Yingyi Bu, Yuanyuan Tian, and Amol Deshpande. Big graph analytics
platforms. Foundations and Trends in Databases, 7(1-2):1–195, 2017.

[73] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. Effective techniques for message
reduction and load balancing in distributed graph computation. In WWW, pages
1307–1317, 2015.

[74] Weipeng P. Yan and Per-Ake Larson. Eager aggregation and lazy aggregation. In
VLDB, 1995.

[75] Mohan Yang and Carlo Zaniolo. Main memory evaluation of recursive queries on
multicore machines. In IEEE Big Data, pages 251–260, 2014.

[76] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In NSDI,
pages 15–28, 2012.

[77] Carlo Zaniolo, Natraj Arni, and KayLiang Ong. Negation and aggregates in recursive
rules: the LDL++ approach. In DOOD, pages 204–221, 1993.

[78] Carlo Zaniolo, Mohan Yang, Ariyam Das, Alexander Shkapsky, Tyson Condie, and
Matteo Interlandi. Fixpoint semantics and optimization of recursive datalog programs
with aggregates. TPLP, 17(5-6):1048–1065, 2017.

[79] Carlo Zaniolo, Mohan Yang, Matteo Interlandi, Ariyam Das, Alexander Shkapsky,
and Tyson Condie. Declarative bigdata algorithms via aggregates and relational
database dependencies. In AMW, 2018.

[80] Qizhen Zhang, Hongzhi Chen, Da Yan, James Cheng, Boon Thau Loo, and Pu-
rushotham Bangalore. Architectural implications on the performance and cost of
graph analytics systems. In SOCC, pages 40–51, 2017.

[81] Yanfeng Zhang, Qinxin Gao, Lixin Gao, and Cuirong Wang. Priter: a distributed
framework for prioritized iterative computations. In SOCC, page 13, 2011.

110

[82] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau Loo, and Yun
Mao. Efficient querying and maintenance of network provenance at internet-scale. In
SIGMOD, pages 615–626, 2010.

[83] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Gridgraph: Large-scale graph
processing on a single machine using 2-level hierarchical partitioning. In USENIX
ATC, pages 375–386, 2015.

111

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Overview
	Datalography: Declarative Big Graph Analytics
	Ariadne: Online Provenance Querying for Big Graph Analytics
	Contributions

	Datalog
	Introduction
	Program evaluation
	Datalog recursion with aggregates
	Stratified semantics
	Monotonic aggregation

	Vertex-Centric Graph Processing
	Introduction
	Vertex-Centric
	Think like a graph

	Declarative Graph Analytics on Vertex Centric Engines
	Introduction
	Declarative Big Graph analytics
	Efficient recursive aggregation
	VC-Datalog
	Vertex-Centric normal form
	Vertex-Centric rewriting
	Compilation and Planning

	Optimizations
	Compilation
	Super-vertices
	Combiners

	Implementation
	Experimental evaluation
	Experimental setup
	Runtime analysis
	Scaling super-vertices

	Related work
	Chapter summary

	Ariadne: Online Provenance Querying For Big Graph Analytics
	Introduction
	Running example and System overview
	Provenance model
	Provenance querying
	Provenance Query Language
	 Layer-at-a-time evaluation

	Experimental evaluation
	Capturing overheads
	Online provenance querying
	Offline provenance querying

	Related work
	Chapter summary

	Conclusion and Future Directions
	Bibliography

