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University of California Irvine, Irvine, CA 92697

Email: {yuhangy5, syed}@uci.edu

Abstract

The optimal quantum communication cost of computing a classical sum of distributed sources
is studied over a quantum erasure multiple access channel (QEMAC). K classical messages com-
prised of finite-field symbols are distributed across S servers, who also share quantum entangle-
ment in advance. Each server s ∈ [S] manipulates its quantum subsystem Qs according to its
own available classical messages and sends Qs to the receiver who then computes the sum of
the messages based on a joint quantum measurement. The download cost from Server s ∈ [S]
is the logarithm of the dimension of Qs. The rate R is defined as the number of instances of
the sum computed at the receiver, divided by the total download cost from all the servers. The
main focus is on the symmetric setting with K =

(
S
α

)
messages where each message is replicated

among a unique subset of α servers, and the answers from any β servers may be erased. If
no entanglement is initially available to the receiver, then we show that the capacity (maximal

rate) is precisely C = max
{
min

{
2(α−β)

S , S−2β
S

}
, α−β

S

}
. The capacity with arbitrary levels of

prior entanglement (∆0) between the S data-servers and the receiver is also characterized, by
including an auxiliary server (Server 0) that has no classical data, so that the communication
cost from Server 0 is a proxy for the amount of receiver-side entanglement that is available
in advance. The challenge on the converse side resides in the optimal application of the weak
monotonicity property, while the achievability combines ideas from classical network coding and
treating qudits as classical dits, as well as new constructions based on the N -sum box abstraction
that rely on absolutely maximally entangled quantum states.

1 Introduction

Described by Schrodinger in 1935 [1] as the foremost distinctive feature of quantum mechanics,
entanglement – especially among many parties — remains one of the theory’s most intriguing
aspects. From a network information theoretic perspective, a key objective is to quantify multiparty
entanglement in terms of its utility as a resource, by the gains in communication efficiency that
are enabled by entanglement, not only for communication tasks but more generally for multiparty
computation tasks.

Going back at least four decades to the 1979 work of Korner and Marton in [2], it is understood
in classical network information theory, that the generalization from communication tasks, where
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Figure 1: A Σ-QMAC example with S = 4 data-servers, one auxiliary server (Server 0), and
K = 6 data streams (A,B,C, · · · ,F). A Σ-QEMAC setting allows some of the Qi (e.g., any one of
Q1,Q2,Q3,Q4) to be erased.

the receivers need to recover various desired input messages, to computation tasks, where the
receivers need to recover some functions of the distributed input messages, is highly non-trivial.
Remarkably, this is the case even when the function to be computed is simply a sum of inputs and
the network is simply a multiple access channel, as in [2]. Despite the challenges, with accelerating
trends towards distributed computing there has been an explosion of interest in the capacity of
communication networks when used for (typically, linear) computation tasks. Examples from an
abundance of literature on this topic include works on the capacity of sum-networks [3–5], network
function computation [6–8] and over-the-air computation [9], to name a few.

By the same token, there is growing interest in the fundamental limits of classical linear compu-
tation over a quantum multiple access channel (QMAC), spurred by a variety of applications ranging
from distributed quantum sensing and metrology [10–13] and quantum simultaneous message pass-
ing protocols [14–16] to quantum private information retrieval (QPIR) [17–22]. In particular, the
Σ-QMAC model introduced in [21] is the most closely related to our work in this paper. Here we
explore its generalization to a Σ-QEMAC, i.e., a Σ-QMAC that allows erasures.

Fig. 1 illustrates an example of a Σ-QMAC setting of [21]. In the example shown in the
figure, there are K = 6 data streams, denoted as A,B, · · · ,F, comprised of Fd symbols. Various
subsets of these data streams are made available to a set of servers who also have entangled quantum
resources (Q0, · · · ,Q4) distributed among them in advance (independent of the data). Any classical
information available to a server may be suitably encoded into its quantum system through local
operations, after which the quantum systems are sent to the receiver (Alice) through ideal (noise-
less) quantum channels. Note that Server 0, which has no data inputs and simply forwards its
quantum subsystems to Alice, is an auxiliary server that may be included to model any prior
entanglement that the data-servers share in advance with Alice. The cost of communicating each
quantum subsystem Qs to Alice (say, in qubits) is equal to the (base 2) logarithm of its dimension,
i.e., log |Qs|. Based on a joint measurement of the received quantum systems, Alice must be able to
recover the sum of the classical data streams. Communication rates are measured in terms of the
number of instances of the sum that are computed by Alice, per qubit of communication cost from
the data-servers, for any given rate from the auxiliary server (see Section 3.2 for formal definitions).
The supremum of achievable rates defines the capacity.
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As in the classical setting, the generalization from communication to computation tasks is also
non-trivial in the quantum setting. For example, while the capacity of classical communication
over a quantum multiple access channel (QMAC) is known under many fairly general noisy channel
models for well over a decade [23,24], the recent capacity characterization for the Σ-QMAC in [21] is
limited to ideal (noise-free) channels. The aforementioned studies of QPIR and Quantum Metrology
also typically choose an ideal channel model. While the classical communication capacity of an ideal
(noise-free) QMAC is trivial, what makes these problems non-trivial even with ideal channels is
the multiparty computation aspect — that Alice needs to recover a function of the distributed
inputs, instead of the inputs themselves. Indeed, instead of noisy channels, the focus in the Σ-
QMAC is on quantifying the utility of multiparty entanglement as a resource that facilitates desired
linear computations, by comparing the capacity with and without entanglement. What makes
the Σ-QMAC especially interesting is the interplay between classical dependencies (replication of
data across servers, mixing of inputs due to the desired computation), and multiparty quantum
entanglement, which creates opportunities for synergistic gains from a confluence of ideas from the
classical domain such as interference alignment [25], network coding [26], and network function
computation [27] on one hand, and the quantum domain such as teleportation, superdense coding
[28], and the N -sum box abstraction [29] on the other. The study of the Σ-QMAC in [21] takes
a perspective similar to degrees-of-freedom (DoF) analyses in wireless networks [25], where noise
is de-emphasized and the focus is entirely on quantifying the distributed accessibility of signal
dimensions as the key resource. Note the similarity to the resource-theoretic accounting of quantum
entanglement in facilitating classical and quantum communication in a two-party setting, also with
simplified channels, in [30,31]. The capacity of the Σ-QMAC in [21], and its generalization to include
erasures as in this work, can thus be seen as attempts to provide a resource-theoretic accounting
of multiparty entanglement for an elemental multiparty computation task — computing a sum of
distributed inputs.

Generalizing the Σ-QMAC model to a Σ-QEMAC, where erasures are possible, leads to in-
teresting questions. For example, consider the counterpoint that multiparty entanglement in the
presence of erasures could be a double-edged sword. On one hand, the quantum systems sent by
distributed servers to Alice are capable of facilitating more efficient linear computation if they are
entangled than if they are unentangled. But on the other hand, because Alice in general needs
to jointly measure the entangled systems, it is possible that the loss of some of the sub-systems
may turn the entanglement into a disadvantage, i.e., it is possible that the sub-systems that are
received successfully may be useless without the sub-systems that are lost, because of their entan-
glement. Recall that in the point to point setting, quantum erasure correction is in general less
efficient than classical erasure correction, as evident from their respective Singleton bounds [31].
In the classical case, in order to protect K symbols against D − 1 erasures, it suffices to encode
them into N symbols, such that N ≥ K + D − 1. However, in the quantum case, protecting K
qudits from D − 1 erasures requires encoding them into at least N ≥ K + 2(D − 1) qudits. For
example, 1 classical symbol can be protected from 1 erasure by simple repetition, i.e., by sending
2 symbols, which doubles the communication cost. Protecting quantum information carried by 1
qudit against one erasure on the other hand requires at least 3 qudits, tripling the communication
cost. Without entanglement, qudits can always be used as classical dits, allowing classical erasure
codes that are more efficient. With entanglement, especially in network computation settings, we
have the potential for superdense coding gain to improve communication efficiency, but can this
advantage overcome the potential loss of efficiency due to the greater cost of quantum erasures?
Such a question exemplifies the insights that we seek in this work.

3



Going back to the example in Fig. 1, and assuming for simplicity that no prior entanglement is
available to Alice (i.e., ignoring Server 0), suppose any one of the 4 quantum systems (Q1,Q2,Q3,
Q4) could be erased, e.g., lost in transit or known to be corrupted and therefore discarded by Alice.
Consider first a few natural baselines for comparison. The first baseline scheme does not utilize
quantum entanglement, it simply treats qudits as classical dits (TQC). The problem is reduced to
a classical sum-network coding problem (cf. [3, 4]) with possible link failure as considered in [27].
Applying the result of [27], the rate achieved is R = 1/4. As another baseline, consider a scheme
based on [21]. While the coding scheme in [21] does not allow for erasures, an erasure-tolerant
scheme can be built from it as follows. In the absence of erasures, [21] shows that Alice can
compute B + C + E with only the transmission from Server 1 and Server 2. Alternatively, the
same can also be done with only the transmission from Server 3 and Server 4. Implementing both
alternatives together produces a scheme that allows Alice to compute B+ C+ E even if any one of
the quantum subsystems Q1, · · · ,Q4 is unavailable at the decoder. Similarly, Alice can compute
A+D+F using only Servers 1 and 3, or by using only Servers 2 and 4. Combining both alternatives
allows Alice to also compute A+D+F while tolerating the erasure of any one quantum system, i.e.,
by tolerating any one unresponsive server. Overall, this approach also achieves the rate R = 1/4.
Note that while this approach combines entanglement-assisted coding schemes, the redundancy
required to tolerate erasures is such that the benefits of entanglement are lost, as reflected in the
fact that the rate achieved is the same as without entanglement assistance in the first baseline
scheme. Fortunately, it turns out that the optimal (capacity achieving) scheme improves upon
these baselines, and the benefits of entanglement do not vanish due to erasures. Applying the main
result of this work from Theorem 1 to this particular example will show that the rate R = 1/2
is achievable and optimal. With this brief preview of our main result, let us now summarize the
relevant background that we need for this work.

2 Preliminaries

2.1 Miscellaneous

N denotes the set of positive integers. For n1, n2 ∈ N, [n1 : n2] denotes the set {n1, n1 + 1, · · · , n2}
if n1 ≤ n2 and ∅ otherwise. [n] ≜ [1 : n] for n ∈ N. C denotes the set of complex numbers. R+

denotes the set of non-negative real numbers. Fq denotes the finite field with q = pr a power of a
prime. Define compact notations A[n] ≜ (A(1), A(2), · · · , A(n)) and A[n] ≜ (A1, A2, · · · , An). Sa×b

denotes the set of a × b matrices with elements in S. For an element x ∈ Fq = Fpr , define tr(x)
as the field trace of x that maps it to an element in Fp. For a set A, the set of its cardinality-m
sub-sets is denoted as

(A
m

)
≜ {A ⊆ A | |A| = m}. The notation 2A denotes the power set of A. The

notation f : A 7→ B denotes a map f from A to B. M † denotes the conjugate transpose of a matrix
M , and Tr(M) denotes the trace of a square matrix M . H denotes a finite-dimensional Hilbert
space. D(H) denotes the set of density operators acting on H, i.e., the set of positive semi-definite
matrices that have trace one. L(H) denotes the set of square linear operators acting on H. Pr(E)
denotes the probability of an event E.

2.2 Quantum information and entropy

For a classical random variable X, the support set and probability mass function are denoted as X
and pX(x) by default. For a quantum system A, HA is used to denote its underlying Hilbert space
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by default, so that a pure state of A is described by a unit vector in HA. A general (mixed) state
of A is described a density operator ρA ∈ D(HA). We may write D(HA) as D(A) for simplicity. A
classical random variable X may be regarded as a special quantum system with density operator
ρX =

∑
x∈X pX(x) |x⟩ ⟨x|X where {|x⟩}x∈X is an orthonormal basis of HX . For quantum systems

A1, A2, · · · , AS , the composite system is compactly written as A1A2 · · ·AS . The underlying Hilbert
space for the composite system is HA1A2···AS

= HA1 ⊗HA2 ⊗ · · · ⊗ HAS
.

Let Sv(ρ) ≜ −Tr(ρ log ρ) be the von-Neumann entropy of a density operator ρ. For a quantum
system A in the state ρA ∈ D(A), define H(A)ρA ≜ Sv(ρA) as the entropy of A. The subscript ρA
in H(A)ρA may be omitted for compact notation when it is obvious from the context.

For a bipartite quantum system AB in the (joint) state ρAB ∈ D(AB), the reduced state on A
is described by ρA = TrB(ρAB) ∈ D(A), where TrB(ρAB) is the partial trace with respect to system
B. H(A)ρAB ≜ Sv(TrB(ρAB)) and similarly H(B)ρAB ≜ Sv(TrA(ρAB)).

Define the conditional entropy (A conditioned on B) as H(A | B)ρAB ≜ H(AB)ρAB −H(B)ρAB .
Define the mutual information (between A and B) as I(A;B)ρAB ≜ H(A) + H(B) − H(AB) =
H(A)−H(A | B) = H(B)−H(B | A). For a tripartite quantum system ABC in the state ρABC ,
the conditional mutual information is defined as I(A;B | C)ρABC ≜ H(A | C)+H(B | C)−H(AB |
C) = H(AC) +H(BC)−H(C)−H(ABC) = H(A | C)−H(A | BC) = H(B | C)−H(B | AC) =
I(A;BC)− I(A;C) = I(AC;B)− I(C;B).

For a classical-quantum system XA where X is classical, if conditioned on X = x, A is in the

state ρ
(x)
A for x ∈ X , then XA is in the joint state ρXA ≜

∑
x∈X pX(x) |x⟩ ⟨x|X ⊗ ρ

(x)
A . In this

case, the reduced state on A becomes ρA = TrX(ρXA) =
∑

x∈X pX(x)ρ
(x)
A . We say that H(A)

ρ
(x)
A

is the entropy for A conditioned on X = x, which is also written as H(A | X = x)ρXA . With these
definitions, H(A | X)ρXA =

∑
x∈X pX(x)H(A | X = x)ρXA (e.g., see [32, Eq. (11.54)]), similar to

classical information measures.
We similarly define H(A | B,X = x)ρXAB = H(A | B)

ρ
(x)
AB

, I(A;B | X = x)ρXAB ≜ I(A;B)
ρ
(x)
AB

and I(A;B | C,X = x)ρXABC ≜ I(A;B | C)
ρ
(x)
ABC

as the corresponding information measures with

conditioning on X = x. It is also true that H(A | BX)ρXAB =
∑

x∈X pX(x)H(A | B,X =
x)ρXAB , I(A;B | X)ρXAB =

∑
x∈X pX(x)I(A;B | X = x)ρXAB and I(A;B | CX)ρXABC =∑

x∈X pX(x)I(A;B | C,X = x)ρXABC .

2.3 Quantum channel

A quantum channel is a completely positive trace-preserving (CPTP) map Φ: L(H) 7→ L(H′)
between two spaces of square linear operators. It has a Choi-Kraus decomposition as Φ(M) =∑n

i=1 ViMV †
i for any M ∈ L(H), where Vi is a linear operation that takes L(H) to L(H′) for

i ∈ [n], such that
∑n

i=1 V
†
i Vi = I is the identity matrix [32, Thm. 4.4.1]. {Vi} are referred to as the

Kraus operators of the quantum channel Φ. For two quantum channels ΦA : L(HA) 7→ L(H′
A) and

ΦB : L(HB) 7→ L(H′
B), ΦA⊗ΦB : L(HA⊗HB) 7→ L(H′

A⊗H′
B) denotes their parallel concatenation.

Trace and partial trace are quantum channels. The identity channel is denoted as the identity
matrix I which maps any input operator to the same output.

In this paper, quantum channels are used to model encoding operations and measurements on
quantum systems. When we say that an operation Φ (a quantum channel) is applied to a quantum
system A, we mean that the system A with initial state ρA has state ρ′A = Φ(ρA) after the operation.

A quantum measurement Ψ is a quantum channel that maps any density operator ρA to Ψ(ρA) =∑
x∈X Tr(Λ

(x)
A ρA) |x⟩ ⟨x|X with {Λ(x)}x∈X a set of matrices that define a POVM (positive operator

5



valued measurement) and {|x⟩} an orthonormal basis [32, Sec. 4.6.6]. Ψ(ρA) thus corresponds to

the density operator of a classical random variable X with pX(x) = Tr(Λ
(x)
A ρA) for x ∈ X . When

we say that a quantum system A in the state ρA is measured by Ψ (a quantum measurement), we
define a classical random variable X such that pX(x) = Tr(Λ(x)ρ) for x ∈ X , and we refer to X as
the output of that measurement.

An important set of operations, referred to as the Pauli operations, are defined as follows. Let
{|a⟩}a∈Fq denote the standard basis of a q-dimensional quantum system such that q = pr is a power
of a prime. For x ∈ Fq, define the X(x) operation on the system such that X(x) |a⟩ = |a+ x⟩ for
a ∈ Fq. Define the Z(z) operation on the system such that Z(z) |b⟩ = ωtr(bz) |b⟩ for b ∈ Fq.

2.4 Useful Lemmas

For our converse proofs, the following lemmas will be useful.

Lemma 1 (No-signaling [33, 34]). Let XAB be a classical-quantum system where X is classical.

Say AB is in the state ρinitAB ∈ D(AB) initially. Let {Φ(x)
A }x∈X be a set of quantum channels (to be

applied to A). Let ρ
(x)
AB = Φ

(x)
A ⊗ IB(ρ

init
AB) for x ∈ X and let ρXAB =

∑
x∈X pX(x) |x⟩ ⟨x| ⊗ ρ

(x)
AB.

Then I(B;X)ρXAB = 0.

Proof. It suffices to show that H(B)ρXAB = H(B | X)ρXAB . First note that TrA(ρ
(x)
AB) = TrA(ρ

init
AB)

for x ∈ X because only the identity operation is applied to B. By definition,

H(B)ρXAB = Sv
(
TrAX(ρXAB)

)
= Sv

(
TrATrX(ρXAB)

)
= Sv

(
TrA(

∑
x∈X

pX(x)ρ
(x)
AB)

)
= Sv

(∑
x∈X

pX(x)TrA(ρ
(x)
AB)

)
= Sv

(∑
x∈X

pX(x)TrA(ρ
init
AB)

)
= Sv

(
TrA(ρ

init
AB)

)
(1)

On the other hand, by definition, H(B | X = x)ρXAB = Sv
(
TrA(ρ

(x)
AB)

)
= Sv

(
TrA(ρ

init
AB)

)
for all

x ∈ X , and thus H(B | X)XAB =
∑

x∈X pX(x)H(B | X = x)ρXAB = Sv
(
TrA(ρ

init
AB)

)
.

Lemma 2 (Holevo Bound [35]). Let XA be a classical-quantum system where X is classical,

ρ
(x)
A ∈ D(A) for x ∈ X and ρXA =

∑
x∈X pX(x) |x⟩ ⟨x|⊗ρ(x)A . Let Ψ be a quantum measurement that

measures A in the state ρA = TrX(ρXA), and denote the output as Y . Then, I(X;Y ) ≤ I(X;A)ρXA.

Proof. Since the density operator for Y after the measurement is ρY = Ψ(ρA) where Ψ is a given
channel, quantum data processing inequality [32, Thm. 11.9.4] implies I(X;Y ) ≤ I(X;A)ρXA .

3 Problem Statement

3.1 Σ-QEMAC Model

The Σ-QEMAC problem is specified by a finite field Fd, a set of S data-servers with indices 1, · · · , S,
an auxiliary server (Server 0) with index 0 that may be included to explicitly model prior shared
entanglement between Alice and the data-servers, K data streams, T erasure patterns, the data
replication map W : [K] 7→ 2[S] that specifies the subsets of data-servers among which a data
stream is replicated, and the map E : [T ] 7→ 2[S] that specifies the subsets of servers from which
the transmissions may be unavailable (erased). Specifically, for k ∈ [K], the kth data stream, Wk
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is comprised of symbols W
(ℓ)
k ∈ Fd for ℓ ∈ N. The data stream Wk is available at Servers s for all

s ∈ W(k) ⊆ [S]. The coding scheme must allow Alice to recover W1+W2+ · · ·+WK given that the
answers from a subset of servers E(t) ⊆ [S] are unavailable to the receiver (Alice), for any t ∈ [T ].
Note that no data stream is available to Server 0, and the answer from Server 0 cannot be erased,
because it represents the shared entanglement that is already available in advance to Alice. Define
S = {0} ∪ [S] as a compact notation for the set of all S + 1 server indices.

A quantum coding scheme is specified by a 5-tuple(
L, δS , ρ

init,Enc[S],Dec
)
.

Here, L ∈ N is the batch size, which specifies the number of instances of the data to be en-

coded together, i.e., the data to be encoded is W
[L]
[K] = (W

[L]
1 ,W

[L]
2 , · · · ,W[L]

K ). We use w =

(w1, w2, · · · , wK) ∈ FKL
d to represent a realization of (W

[L]
1 ,W

[L]
2 , · · · ,W[L]

K ), where wk is the re-
alization of the kth data stream. The superscript ‘[L]’ over the data streams may be omitted for
compact notation. Given w, for s ∈ [S], let xs be the part of w that is available to Server s, i.e.,
xs ≜ (wk : s ∈ W(k)).

Q0

Q1

...

QS

E
n
ta
n
g
le
d
Q
u
a
n
tu
m

S
y
st
em

s

I

Φ
(x1)
1

Φ
(xS)
S

...

Ψt

Tr

... QS\E(t)

... QE(t)

Y
(w)
t

(Server 0)

(Server 1)

(Server S)

(Alice)

(Erasure)
ρinit ρ

(w)
Q0···QS

∀w = (w1, · · · , wK) ∈ FKL
d , t ∈ [T ]

Figure 2: A quantum coding scheme for the Σ-QEMAC. The output measured at the receiver,

Y
(w)
t , must be the sum w1 + w2 + · · ·+ wK .

A quantum system QS = Q0Q1 · · · QS is prepared in advance in the initial state ρinit and
shared among the servers so that Server s has the subsystem Qs for s ∈ S. For any data realization

w ∈ FKL
d , the encoder Encs at Server s ∈ [S] is represented by a quantum channel Φ

(xs)
s that

depends on xs. The output dimension is upper bounded by δs, s ∈ S for all w. For w ∈ FKL
d ,

ρ
(w)
Q0···QS

≜ I⊗ Φ
(x1)
1 ⊗ · · · ⊗ Φ

(xS)
S

(
ρinit

)
(2)

denotes the output state for the joint quantum system Q0Q1 · · · QS , after the channel Φ
(xs)
s is

applied to Qs, for each s ∈ [S].
For t ∈ [T ], the decoder Dec is represented by a quantum measurement, Ψt, that depends on t,

i.e., the erasure pattern that is encountered. For the case when the answers from Servers s ∈ E(t)
are unavailable at Alice, the remaining subsystem QS\E(t) in the reduced state,

ρ
(w)
QS\E(t)

= TrQE(t)
(ρ

(w)
Q0···QS

)
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is measured by Ψt, with the output represented by the random variable Y
(w)
t . It is required that

the decoding must be always correct, i.e.,

Pr
(
Y

(w)
t = w1 + w2 + · · ·+ wK

)
= 1 (3)

for all data realizations w ∈ FKL
d , and for any case of erasure indexed by t ∈ [T ].

For such a coding scheme, we define ∆s = logd δs/L as the (normalized) download cost from
Server s for s ∈ S, and ∆ ≜ (∆0,∆1, · · · ,∆S) as the cost tuple achieved by the scheme.

Let CL be the set of coding schemes with batch size L. Define D∗ as the closure of the cost
tuples achieved by the schemes in CL as L→ ∞. The ultimate goal is to study D∗.

3.2 Symmetric setting

To counter the combinatorial complexity of the problem, we will focus especially on a particular
symmetric setting of the Σ-QEMAC. For clarity, it will be useful to identify the symmetric setting
by including a superscript s (for symmety), as in Σs-QEMAC. The Σs-QEMAC setting is specified
by a tuple (Fd, S, α, β). The data symbols are from Fd. S, α, β are integers and S ≥ α > β ≥ 0
for the problem to be feasible. As in the general Σ-QEMAC, the Σs-QEMAC contains S data-
servers, indexed by [S] = {1, · · · , S} and an auxiliary server, Server 0 is included if prior shared
entanglement is available to Alice. There are K =

(
S
α

)
data streams, each replicated among a

unique cardinality-α subset of the data-servers. The answers from any β-subset of the data-servers
may be erased. Mathematically, the storage is specified as W : [

(
S
α

)
] 7→

(
[S]
α

)
and the erasure map

as E : [
(
S
β

)
] 7→

([S]
β

)
, both being bijections. As before, note that none of the K data streams is

available to Server 0 and we assume that the answer from Server 0 cannot be erased.
For an illustration of a Σs-QEMAC setting, consider Figure 1, where we have S = 4 data-

servers and an auxiliary Server 0, with α = 2 so that there are K =
(
4
2

)
= 6 classical data streams,

W1,W2,W3,W4,W5,W6, relabeled as A,B,C,D,E,F, respectively, in the figure for convenience.
There is a data stream corresponding to each subset of cardinality α = 2 out of the S = 4
data-servers, that is available precisely to those α = 2 servers. Specifically, the data stream
W1 (equivalently, A) is available to the data-servers with indices in the set W(1) = {1, 2}, B
to W(2) = {1, 3}, C to W(3) = {1, 4}, D to W(4) = {2, 3}, E to W(5) = {2, 4}, F to W(6) = {3, 4}.
Say in this example β = 1, which means any one of Q1,Q2,Q3,Q4 may be erased. Thus, there
are T =

(
4
1

)
= 4 erasure cases that must be tolerated, comprised of all cardinality-1 subsets of the

4 data-servers, i.e., the indices of the erased servers can be any one of the sets {1}, {2}, {3}, {4}.
Note that Server 0 has no data stream and Q0 is not subject to erasures.

Recall that the closure of the cost tuples ∆ = (∆0,∆1, · · · ,∆S) achieved by the coding schemes
is denoted as D∗. We are interested in the trade-off between ∆0 and ∆1 + · · · + ∆S , i.e., the
(normalized) cost of entanglement provided by Server 0 (modeling entanglement previously available
to Alice) and the sum (normalized) download cost from the data-servers. R = (∆1+ · · ·+∆S)

−1 is
referred to as the data-server rate (reciprocal of the sum-download cost from the data-servers). For
each ∆0 ∈ R+, we wish to find the capacity, which is defined as C(∆0) ≜ max(∆0,∆1,··· ,∆S)∈D∗ R.
Due to the symmetry among data-servers, there is no loss of generality in the assumption that
∆1 = ∆2 = · · · = ∆S = ∆. Therefore, the optimal tradeoff is equivalently represented as ∆∗(∆0) ≜
min(∆0,∆,··· ,∆)∈D∗ ∆. Note that C(∆0) = (S∆∗(∆0))

−1.
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4 Result

4.1 Achievability for an arbitrary Σ-QEMAC

The following theorem states our achievability result for an arbitrary (not necessarily symmetric)
Σ-QEMAC.

Theorem 1 (General Achievability). For the Σ-QEMAC with parameters (Fd,S,K, T,W, E), we
have Dachi ⊆ D∗, where

Dachi = conv(D+
AME ∪D+

TQC), (4)

D+
x ≜ {(∆+

0 , · · · ,∆
+
S ) ∈ RS+1

+ | ∃(∆0, · · · ,∆S) ∈ Dx, ∆+
s ≥ ∆s,∀s ∈ S}, x ∈ {AME,TQC}, (5)

DAME =
{
∆ ∈ RS+1

+

∣∣∣ min
{∑

s∈S ∆s,
∑

s∈W(k) 2∆s

}
−
∑

s∈E(t) 2∆s ≥ 1, ∀k ∈ [K], t ∈ [T ]
}
, (6)

DTQC =
{
∆ ∈ RS+1

+

∣∣∣ ∑s∈W(k)∆s −
∑

s∈E(t)∆s ≥ 1,∀k ∈ [K], t ∈ [T ]
}
. (7)

Theorem 1 is an inner bound (based on an achievability argument) on the optimal tradeoff region
D∗. The proof appears in Section 6. We first prove DAME ⊆ D∗ by constructing coding schemes
that make use of quantum entanglement. The name ‘AME’ comes from the fact that the quantum
state in the scheme is an “absolutely maximally entangled” state (e.g., see [36–38]). The design
is facilitated by the N -sum box protocol in [29]. On the other hand, DTQC ⊆ D∗ is directly
implied by a classical network coding result in [27] together with the idea of ‘treating qudits as
classical dits’ (TQC). It then follows that D+

AME ⊆ D∗ and D+
TQC ⊆ D∗. Finally, by a time-sharing

argument, any convex combination of the tuples in D+
AME ∪ D+

TQC is also in D∗. This means that

Dachi = conv(D+
AME ∪D+

TQC) ⊆ D∗.

4.2 Known converse bounds

Let us recall a useful bound from [30,31], which we present here under the framework of Σs-QEMAC
to make the connection more transparent.

Theorem 2 (EACQ singleton bound [31]). Consider the Σs-QEMAC with S data-servers and an
auxiliary Server 0, with α = S so that we have only K = 1 data stream W, which is available
only to the data-servers, and the answers from any β of the data-servers may be erased. Then any
(∆0,∆1, · · · ,∆S) ∈ D∗ must satisfy the bounds,∑

s∈I
∆s ≥ 1/2, ∀I ∈

(
[S]

S − β

)
, (8)

and ∆0 +∆1 + · · ·+∆S ≥ S

S − β
. (9)

Note that in this theorem since there is only one data stream, computing the sum is equivalent
to recovering the data stream. So the Σ-QEMAC problem reduces to a standard communication
problem. Thus, this theorem essentially follows from the EACQ singleton bound [31], for the special
case of trading qudits and entanglement for classical information. Since the erasure in our model is
assumed to be server-wise instead of channel-wise as assumed in [31], for the sake of completeness
we provide in this paper the proof for our model in Appendix D.
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In some cases, following a cut-set argument (separating the parties into into two groups and
allowing full cooperation within each group, e.g., [5]), the converse for the resulting point to point
communication problem yields useful outer bounds on D∗ for our computation problem. However,
we will see that this approach does not suffice in general, and new converse bounds are needed.

4.3 The Capacity of the Σs-QEMAC

Next we specialize from arbitrary Σ-QEMAC settings to symmetric settings, and present a sharp
capacity characterization for the Σs-QEMAC, which is the main contribution of this work. Recall
that the feasibility for the symmetric case requires that S ≥ α > β ≥ 0.

Theorem 3. For ∆0 ∈ R+, the capacity of the Σs-QEMAC is C(∆0) = (S∆∗)−1, where

∆∗ ≜ min
(∆0,∆,··· ,∆)∈D∗

∆

=

max
{

1
2(α−β) ,

1−∆0
S−2β

}
, S ≥ α+ β

max
{

1
2(α−β) ,

1
α−β − ∆0

2α−S

}
, S < α+ β

. (10)

The proof appears in Section 7. Note that Theorem 3 is a capacity result, and as such requires both
a proof of achievability and a tight converse. The achievability is obtained by letting ∆0 ∈ R+ and
∆1 = ∆2 = · · · = ∆S = ∆ in Theorem 1 and evaluating the smallest ∆ with respect to ∆0 such
that (∆0,∆, · · · ,∆) ∈ Dachi. The smallest ∆ turns out to be ∆∗ in (10). Then C(∆0) ≥ (S∆∗)−1

establishes the inner (lower) bound for C(∆0). The outer (upper) bound C(∆0) ≤ (S∆∗)−1 utilizes
not only the EACQ singleton bound (Theorem 2) combined with a cut-set argument, but also a new
bound that is derived in this work, where weak monotonicity [39,40] of quantum entropy plays an
important role. Insufficiency of the EACQ singleton bound and cut-set argument is demonstrated
by an example in Section 5.

The next two corollaries follow directly from Theorem 3. The first corollary considers the
case ∆0 = 0, i.e., when no entanglement is shared initially between Alice and the data-servers.
Essentially Server 0 does not exist in this case. However, entanglement is still allowed among the
data-servers.

Corollary 1 (∆0 = 0). For ∆0 = 0,

C(0) = max

min

{
2(α− β)

S
,
S − 2β

S

}
︸ ︷︷ ︸

RAME

,
α− β

S︸ ︷︷ ︸
RTQC

 (11)

=


2(α−β)

S = RAME, S ≥ 2α
S−2β

S = RAME, α+ β ≤ S ≤ 2α
α−β
S = RTQC, S ≤ α+ β

. (12)

RAME that appears in (11) is defined as the maximal value of (∆1+ · · ·+∆S)
−1 (given ∆0 = 0)

for ∆ ∈ DAME. Thus, RAME is achieved by our quantum coding scheme. Similarly, RTQC is defined
as the maximal value of (∆1+ · · ·+∆S)

−1 (given ∆0 = 0) for ∆ = (∆0,∆1, · · · ,∆S) ∈ DTQC. Thus,
RTQC is achieved by treating qudits as classical dits. It can be seen from (12) that when S > α+β,

10



we have RAME > RTQC, i.e., the optimal scheme is our proposed scheme that is facilitated by the
N -sum box abstraction and utilizes quantum entanglement, outperforming the classical scheme
which does not require quantum entanglement.

Fig. 3 illustrates the capacity (and the rates RAME, RTQC) from Corollary 1 with S = 8 data-
servers and erasure levels β ∈ {1, 2} for various data replication levels α.

2 3 4 5 6 7 8
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0.6

0.8
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C
a
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ty

(R
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te
)

Capacity, β = 1

Capacity, β = 2

(RAME), β = 1

(RTQC), β = 1

(RAME), β = 2

(RTQC), β = 2

Figure 3: The capacity (and rates RAME and RTQC) are shown for S = 8, β ∈ {1, 2} versus α
when the receiver Alice has no prior shared entanglement with the data-servers (∆0 = 0). The
data-servers are still allowed to be entangled. Note that RTQC is the capacity of classical codes.

As ∆0 is increased, i.e., as the amount of initially shared entanglement between Alice and the
data-servers is increased, there appears a critical threshold beyond which the capacity saturates,
i.e., additional entanglement does not improve the capacity of the Σs-QEMAC. This threshold is
highlighted in the second corollary.

Corollary 2 (Saturation). C(∆0) =
2(α−β)

S if ∆0 ≥ 2α−S
2(α−β) .

Evidently, when ∆0 is above the threshold1 value 2α−S
2(α−β) , then the capacity is equal to 2(α−β)

S

which is 2 times the classical capacity RTQC that appears in (12). The factor of 2 represents a
superdense coding gain [21, 41], and one might wonder if it can be achieved with only pairwise
entanglements of each data-server with Server 0 based on the original superdense coding protocol
[41]. Indeed, such a pairwise superdense coding strategy can achieve the rate R = 2(α−β)

S but it
requires ∆0 ≥ S

2(α−β) , i.e., more entanglement than the threshold in Corollary 2. This is explained

as follows. The classical scheme achieves the cost tuple (∆1, · · · ,∆S) = ( 1
α−β , · · · ,

1
α−β ). Then

using pairwise superdense coding, ∆0 =
S

2(α−β) and ∆1 = · · · = ∆S = 1
2(α−β) is achievable.

Let us reiterate that the saturation threshold in Corollary 2 is non-trivial because this threshold
is reached with strictly smaller ∆0. Note that S > α when we have more than one data-stream, so
2α−S < S. Thus, pairwise superdense coding is not sufficient to achieve the capacity in Corollary

1If 2α−S
2(α−β)

≤ 0, then any ∆0 ≥ 0 suffices.
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2. Indeed, our achievable scheme utilizes entanglement across all servers, instead of merely pairwise
entanglements.

Fig. 4 illustrates the functional form of ∆∗(∆0) defined in (10) evaluated for (S, α, β) = (4, 3, 2).

∆0

∆

• P1 : (0, 1)

•
P2 :

(
1, 1

2

)
•
P3 :

(
2, 1

2

)
(∆0,∆, · · · ,∆) /∈ D∗

(∆0,∆, · · · ,∆) ∈ D∗

∆∗

Figure 4: The functional form of ∆∗(∆0) defined in (10) is illustrated for (S, α, β) = (4, 3, 2). P1

is achieved by treating qudits as classical dits (TQC). (This follows from Corollary 1 since for this
example S ≤ α + β. If S > α + β, entanglement is still required to achieve ∆∗ for ∆0 = 0). P2

is achieved by our quantum coding scheme (AME). P3 is achievable with the original superdense
coding scheme based on pairwise entanglements.

5 Example

5.1 Converse bounds for symmetric (S, α, β) = (3, 2, 1)

Let us show the insufficiency of the cut-set argument through an example of a Σs-QEMAC with
(S, α, β) = (3, 2, 1). There are K =

(
3
2

)
= 3 data streams, denoted as A,B,C. Without loss of

generality, say Server 1 has (A,B), Server 2 has (A,C) and Server 3 has (B,C). To simplify the
example further, let us set ∆0 = 0, so that Server 0 can be ignored. Say, β = 1, meaning that one
of Q1,Q2 or Q3 may get erased.

Let us first apply the EACQ singleton bound with a cut-set argument to establish a baseline.
For the cut-set argument, we need to separate the parties {Alice, Server 1, Server 2, Server 3} into
2 groups. The group that contains Alice will jointly act as a receiver while the other group jointly
acts as a transmitter in the resulting communication problem. Consider the following cuts.

1. “A cut”: We collect the parties that have the data-stream A, i.e., {Server 1, Server 2} into one
group (transmitter) and {Server 3, Alice} into the other group (receiver). Suppose B = C = 0
(or any constant, that is known by the receiver). Then the receiver must be able to determine
A, even if one of Q1 or Q2 gets erased. According to Theorem 2, with ∆1 = ∆2 = ∆3 = ∆,
we have the bound,

2∆ ≥ 1/2, and 3∆ ≥ 2 =⇒ ∆ ≥ 2/3. (13)

2. “AB cut”: We collect the parties that have at least one of the data-streams A,B, i.e., {Server
1, Server 2, Server 3} into the transmitter group, leaving only {Alice} in the receiver group.

12



Server 1 Server 2 Server 3

A B C

A+ B+ C

Q1 Q2 Q3

Original sum-computation problem

Server 1 Server 2 Server 3

A

A

Q1 Q2 Q3

Reduced communication problem

from the “A” cut

(One of Q1,Q2 or Q3

may be erased)

Figure 5: Original sum-computation problem and the reduced communication problem from the
“A” cut.

Suppose C = 0. Then the receiver must be able to determine A+ B (which can be regarded
as a single data stream). According to Theorem 2, we have

3∆ ≥ 1/2, and 3∆ ≥ 3/2 =⇒ ∆ ≥ 1/2. (14)

3. “ABC cut”: The grouping can be also based on who has either (A or B or C), but this will
yield the same partitioning and thus the same bound as the second case.

Other cuts also do not produce new bounds due to the symmetry of the problem, e.g., “B cut”
produces the same bound as the “A cut”, “BC cut” produces the same bound as the “AB cut”, etc.
Therefore, the cut-set and the EACQ singleton bound give us at best the converse bound ∆ ≥ 2/3,
which comes from the “A cut”.

However, this bound ∆ ≥ 2/3 is not tight for the Σs-QEMAC problem where Alice must recover
the sum A+ B+ C. As shown by Theorem 3, the smallest ∆ given ∆0 = 0 for (S, α, β) = (3, 2, 1)
is equal to ∆∗ = 1.

One may wonder if this is because the EACQ bound implicitly assumes that Q3 cannot be
erased. Taking into consideration that Q3 may also be erased, we prove in Appendix A that
∆ = 3/4 < 1 is still achievable for the communication problem reduced from the “A cut”, based
on superdense coding. This shows that such a cut-set argument cannot provide stronger bounds
than ∆ ≥ 3/4, establishing the insufficiency of the cut-set argument for the Σs-QEMAC. This
observation shows an interesting distinction between the Σ-QEMAC, where erasures are allowed,
and the original Σ-QMAC setting of [21], in which no erasure is considered. A cut-set argument
combined with a tight communication bound suffices for the converse bounds for the Σ-QMAC
in [21], but not for the Σ-QEMAC considered in this work.

In fact the property of weak monotonicity2 of quantum entropy (see e.g., [39, 43]) plays an
important role in proving a tight converse for the Σs-QEMAC. Intuitively, this is reminiscent of
a result in [40] referred to as the exclusion principle in dense coding. However, since the Σs-
QEMAC has distributed data streams and the information desired by Alice is a function (sum) of
the data-streams rather the data-streams themselves, the connection to [40] is not straightforward.

To conclude this example, let us prove the bound ∆ ≥ 1. Since a coding scheme must be
correct for every realization of (A,B,C), it must be correct if A,B,C are independent random

2Weak monotonicity is regarded as equivalent to the strong subadditivity property of quantum entropies [42].
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variables uniformly distributed in FL
d . Depending on the case of erasure, the measurement result is

denoted as Y1 (if Q1 gets erased); Y2 (if Q2 gets erased) and Y3 (if Q3 gets erased). Note that given
any coding scheme, after the servers apply their encoding operations, the state of ABCQ1Q2Q3 is
determined, denoted as ρ. Let us consider the erasure of Q1 and conditioning on (B,C). In this
case we have,

L = I(A,B,C;A+ B+ C | B,C) (15)

= I(A,B,C;Y1 | B,C) (16)

= I(A;Y1 | B,C) (17)

≤ I(A;Q2,Q3 | B,C)ρ (18)

= I(A;Q3 | B,C)ρ︸ ︷︷ ︸
=0

+I(A;Q2 | Q3,B,C)ρ (19)

= I(A;Q2 | Q3,B,C)ρ (20)

= H(Q2 | Q3,B,C)ρ −H(Q2 | Q3,A,B,C)ρ (21)

≤ H(Q2)ρ −H(Q2 | Q3,A,B,C)ρ (22)

Step (18) is by Lemma 2 since Alice obtains Y1 conditioned on any realization of (B,C) by measuring
Q2Q3. Step (20) is by Lemma 1 conditioned on any realization of (B,C), since A is not available
to Server 3. Step (22) is because conditioning does not increase entropy. By symmetry, one can
similarly obtain,

L ≤ H(Q2)ρ −H(Q2 | Q1,A,B,C)ρ (23)

by considering the erasure of Q3 and conditioning on (A,B). Adding (22) and (23), we have

2L ≤ 2H(Q2)ρ −
(
H(Q2 | Q3,A,B,C)ρ +H(Q2 | Q1,A,B,C)ρ

)︸ ︷︷ ︸
≥0

(24)

≤ 2H(Q2)ρ (25)

because of weak monotonicity,3 conditioned on any realization of (A,B,C). This shows that ∆2 =
logd δ2/L ≥ H(Q2)ρ/L ≥ 1.

5.2 N-sum box based coding scheme for the example in Fig. 1 with ∆0 = 0

Let us present the solution for the example in Fig. 1 for the case where Alice has no prior entangle-
ment with the data-servers, i.e., ∆0 = 0 so Server 0 can be ignored. Let Aℓ,Bℓ, · · · ,Fℓ ∈ F5 for all
ℓ ∈ [L], and set L = 2 as the batch size of the coding scheme. Thus, the coding scheme must allow
Alice to compute A[2]+B[2]+ · · ·+F[2], with each server transmitting a δ = 5 dimensional quantum
system, while tolerating the loss of the quantum subsystem from any one of the servers. The rate
to be achieved is R = 2/(4 log5 5) = 1/2. The scheme makes use of the N -sum box formulation
in [29], which is summarized as a lemma below.

Lemma 3 (N -sum box [29]). Given a field Fq, a positive integer N , and an N × 2N matrix
M = [Ml,Mr] where Ml,Mr ∈ FN×N

q satisfy the self-orthogonality constraint: MrM
⊤
l = MlM

⊤
r ,

there exists a set of orthogonal quantum states, denoted as {|a⟩M}a∈FN×1
q

on N q-dimensional

3For a tripartite quantum system XY Z in the state ρ, H(X|Y )ρ +H(X|Z)ρ ≥ 0.
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quantum subsystems Q1, Q2, · · · , QN , such that applying X(xi)Z(zi) to Qi for all i ∈ [N ], the
state of the composite quantum system Q changes from |a⟩M to |a+M[ xz ]⟩M (with global phases
omitted), i.e., ⊗i∈[N ]X(xi)Z(zi) |a⟩ ≡ |a+M[ xz ]⟩M, where x ≜ [x1, · · · , xN ]⊤ ∈ FN×1

q and z ≜
[z1, · · · , zN ]⊤ ∈ FN×1

q . We say that (Fq, N,M, {|v⟩M}a∈FN×1
q

) is an N -sum box defined in Fq with

transfer matrix M.

Suppose the 5-dimensional quantum subsystems available to the 4 servers are Q1, Q2, Q3 and
Q4, respectively. Let us construct an N = 4-sum box defined in F5 with transfer matrix

M =

[
1 1 1 1 0 0 0 0
1 2 3 4 0 0 0 0
0 0 0 0 1 2 3 4
0 0 0 0 1 4 4 1

]
(26)

= [m1x, · · · ,m4x,m1z, · · · ,m4z] (27)

wheremix,miz are the i
th, (i+4)th columns ofM for i ∈ [4]. One can verify that thisM satisfies the

self-orthogonality constraint required by Lemma 3. Moreover, this M has the following property.
Property P1: Given any subset I ⊆ [4], the submatrix of M with columns mix,miz for i ∈ I has
full rank, equal to min{4, 2|I|}.

For s ∈ [4], Server s applies X(xs)Z(zs) to its quantum subsystem, so that [xs, zs]
⊤ is a linear

function of the data that is available to Server s. Generally, we can write [xs, zs]
⊤ as,

[ x1
z1 ] = V1a

[
A1
A2

]
+ V1b

[
B1
B2

]
+ V1c

[
C1
C2

]
(28)

[ x2
z2 ] = V2a

[
A1
A2

]
+ V2d

[
D1
D2

]
+ V2e

[
E1
E2

]
(29)

[ x3
z3 ] = V3b

[
B1
B2

]
+ V3d

[
D1
D2

]
+ V3f

[
F1
F2

]
(30)

[ x4
z4 ] = V4c

[
C1
C2

]
+ V4e

[
E1
E2

]
+ V4f

[
F1
F2

]
(31)

where Vs∗ is a 2× 2 matrix with elements free to be chosen in F5, for all s ∈ [4], ∗ ∈ {a, b, c, d, e, f}.
According to Lemma 3, if the initial state of the composite quantum system Q is |0⟩M, then after
the operations, the state becomes |Y ⟩M and

Y = [m1x m1z m2x m2z ]
[
V1a
V2a

][
A1
A2

]
+ [m1x m1z m3x m3z ]

[
V1b
V3b

][
B1
B2

]
+ [m1x m1z m4x m4z ]

[
V1c
V4c

][
C1
C2

]
+ [m2x m2z m3x m3z ]

[
V2d
V3d

][
D1
D2

]
+ [m2x m2z m4x m4z ]

[
V2e
V4e

][
E1
E2

]
+ [m3x m3z m4x m4z ]

[
V3f

V4f

][
F1
F2

]
(32)

≜ MaVa

[
A1
A2

]
+ · · ·+MfVf

[
F1
F2

]
(33)

where in the last equation (33) we define the compact notations M∗,V∗ for ∗ ∈ {a, b, c, d, e, f}.
The matrix V∗ is 4× 2 with elements in F5 yet to be determined. It remains to specify V∗. Let us
first define a matrix,

U =

[
4 3
1 1
2 2
1 3

]
. (34)
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There is nothing too special about this choice of U, except that we need it to satisfy the following
property.
Property P2: rk([U,mtx,mtz]) = 4, i.e., [U,mtx,mtz] is invertible for t ∈ [4].

By Property P1, for ∗ ∈ {a, b, c, d, e, f}, the matrix M∗ has full rank 4 and is invertible. Now
we can specify V∗ such that

Y = U
[
A1
A2

]
+U

[
B1
B2

]
+ · · ·+U

[
F1
F2

]
(35)

= U
([

A1
A2

]
+
[
B1
B2

]
+ · · ·+

[
F1
F2

])
(36)

by letting V∗ = M−1
∗ U for ∗ ∈ {a, b, c, d, e, f}.

The next step is to consider the transmission of the quantum subsystems. Suppose during the
transmission, there exists one t ∈ [4] such that Qt is subjected to another operation X(x̃)Z(z̃) where
x̃, z̃ are unknown. The state of the composite system now becomes |Y ′⟩M and

Y ′ = U
([

A1
A2

]
+
[
B1
B2

]
+ · · ·+

[
F1
F2

])
+ [mtx,mtz ]

[
x̃
z̃

]
. (37)

After receiving the composite system, Alice obtains Y ′ as the result of her measurement with
certainty. By Property P2, if Alice knows t, then she can retrieve[

A1
A2

]
+
[
B1
B2

]
+ · · ·+

[
F1
F2

]
(38)

by multiplying [U,mtx,mtz]
−1 to Y ′ and taking the top 2 elements. Note that the scheme works

no matter which quantum subsystem Qt is subjected to the unknown operations X(x̃)Z(z̃). In
addition, x̃, z̃ can be any value in F5. Therefore, the scheme also works if x̃, z̃ are independent and
uniformly drawn in F5. But if Qt is subjected to the operation X(x̃)Z(z̃) with independent x̃, z̃
chosen uniformly in F5, then it puts Qt in the maximally mixed state and makes it independent of
(and unentangled with) the rest of the quantum subsystems (Lemma 4). In other words, Alice is
able to recover the desired sum even if any one of the 4 quantum systems (Alice knows which one)
is subjected to random X(x̃)Z(z̃) operations that make it independent of the rest of the quantum
systems. Recall that positions of erasures are by definition known to the receiver.

What this implies is that even if Qt is lost, i.e., not received by Alice, the scheme still works [44]
if Alice simply replaces the missing Qt by an ancillary 5-dimensional quantum subsystem Q̂ that
is in the maximally mixed state described by the density operator ρ

Q̂
= I5/5, where I5 denotes the

5× 5 identity matrix, and Q̂ is independent of the quantum system Q (with density operator ρQ)

composed of Q1, Q2, Q3, Q4, i.e., the joint state of Q and Q̂ is ρ
QQ̂

= ρQ ⊗ ρ
Q̂
.

Lemma 4. Let A,B denote two quantum subsystems in the joint state ρAB where B has dimension
d = pr with d being a power of a prime. Suppose B is subjected to a random operation X(x̃)Z(z̃)
with independent x̃, z̃ drawn uniformly in Fd. Denote the joint state, the partial state of A, and the
partial state of B after the random operation as ρ′AB, ρA and ρ′B, respectively. Then ρ′AB = ρA⊗ρ′B
and ρ′B = Id/d, where Id denotes the d× d identity matrix.

The argument in the lemma is standard in quantum literature [44], [32, Exercise 4.7.6 (Qudit
Twirl)]. A proof is provided in Appendix B.
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6 Proof of Theorem 1

6.1 Scheme with download cost tuple in DAME

Let us design a scheme which allows Alice to compute L = λl instances of the sum
∑

k∈[K]W
[L]
k

∈ FL×1
d . To do so, let the S+1 servers prepare N = N0+N1+N2+ · · ·+NS q-dimensional quantum

subsystems, Q0, Q1, Q2, · · ·QN , with q = dλ. For s ∈ S = {0, 1, · · · , S}, Server s possesses Ns of
these quantum subsystems indexed by Is ⊆ [N ]. Let M ∈ FN×2N

q be the transfer matrix of an
N -sum box where N =

∑
s∈S Ns. By definition, an element of Fq is equivalent to a λ-length vector

in Fd. Thus, let Wk ∈ Fl×1
q denote W

[L]
k written in Fq for k ∈ [K]. Recall that Server s possesses

the Ns q-dimensional quantum subsystems Qi for i ∈ Is.
Define xi = 0, zi = 0, for all i ∈ I0, since the auxiliary server has no data inputs. Let Server

s ∈ S apply the operation X(xi)Z(zi) to Qi for i ∈ Is. Suppose that each xi, zi is equal to the
output of a linear function of the data available to the server. If the initial state of the composite
system is |0⟩M, then after each server applies the operations, the output state can be written as

|M[ xz ]⟩M =

∣∣∣∣∣∣
∑
k∈[K]

MkVkWk

〉
M

, (39)

where for k ∈ [K], Vk is a
∑

s∈W(k) 2Ns × l matrix with elements freely chosen in Fq, and Mk is
the submatrix composed of the columns of M ‘controlled’ by Servers s ∈ W(k). Specifically, for
k ∈ [K], Mk contains the ith and (i+N)th columns of M for i ∈ ∪s∈W(k)Is and thus Mk has size
N ×

∑
s∈W(k) 2Ns. It is proved in [21] that if q ≥ N , then there exists an M (as the transfer matrix

of an N -sum box) such that rk(Mk) = min{N,
∑

s∈W(k) 2Ns} for all k ∈ [K].
Recall that during the transmission, the quantum subsystems possessed by Servers s ∈ E(t) may

be erased for any t ∈ [T ]. To tolerate this erasure, let us find a matrix U ∈ FN×u
q with u = N −

maxt∈[T ]

∑
s∈E(t) 2Ns that has full column rank u. Here, we require that N ≥ maxt∈[T ]

∑
s∈E(t) 2Ns

for the scheme to work. Further, for t ∈ [T ], define Et as the submatrix of M composed by
the columns indexed by i, i + N for i ∈ ∪s∈E(t)Is. We require that [U,Et] must have full rank
u+

∑
s∈E(t) 2Ns for all t ∈ [T ]. The existence of such a U is guaranteed if q > TN (proof provided

in Appendix C). In the following, let ⟨A⟩ denote the linear subspace spanned by the columns of A
with coefficients chosen in Fq. For k ∈ [K], denote Uk as a basis of the linear subspace spanned
by the intersection of ⟨U⟩ and ⟨Mk⟩. Since ⟨Uk⟩ ⊆ ⟨Mk⟩ for all k ∈ [K], we can specify V[K] such
that the output state (39) of the composite quantum system becomes∣∣∣∣∣∣

∑
k∈[K]

UkV
′
kWk

〉
M

, (40)

where V′
k ∈ Frk(Uk)×l

q has full column rank, equal to rk(Uk) if l ≤ rk(Uk),∀k ∈ [K]. By the
dimension law for linear subspaces,

rk(Uk) = rk(U) + rk(Mk)− rk([U,Mk]) (41)

≥ u+min{N,
∑

s∈W(k)

2Ns} −N (42)

= min{N,
∑

s∈W(k)

2Ns} − max
t∈E(t)

∑
s∈E(t)

2Ns (43)
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for all k ∈ [K]. After the servers apply the operations to their quantum subsystems, suppose in the
transmission, the operations X(x̃i)Z(z̃i) are applied to the ith quantum subsystem, with unknown
x̃i, z̃i for i ∈ ∪s∈E(t). The state received by Alice becomes∣∣∣∣∣∣∣∣∣∣

∑
k∈[K]

UkV
′
kWk +Et


x̃i1

...
x̃in
z̃i1
...

z̃in


〉

M

(44)

where {i1, · · · , in} = ∪s∈E(t)Is. Alice can now measure the result

Y =
∑
k∈[K]

UkV
′
kWk +Et


x̃i1

...
x̃in
z̃i1
...

z̃in

 (45)

with certainty given any t ∈ [T ]. Since for any t ∈ [T ], [U,Et] has full column rank, and ⟨Uk⟩ ⊆ ⟨U⟩
for all k ∈ [K], Alice is then able to retrieve∑

k∈[K]

UkV
′
kWk ∈ FN×1

q (46)

and further compute

Vdec

∑
k∈[K]

UkV
′
kWk =

∑
k∈[K]

RkWk ∈ Fl×1
q (47)

where Rk is an l× l invertible square matrix for k ∈ [K]. The existence of the Vdec is guaranteed if
q > Kl (proof provided in Appendix C). Since Rk is invertible for all k ∈ [K], the servers can simply
treat Wk as R−1Wk when coding so that Alice is able to compute the desired sum

∑
k∈[K]Wk in

the end.

6.2 Extend the scheme to tolerate erasures

In the analysis of the scheme, we assumed that the quantum subsystems for Servers s ∈ E(t) are
subjected to unknown X and Z operations during the transmission. If these quantum subsystems
are lost during the transmission, a simple solution is to replace the lost quantum systems with
ancillary quantum subsystems generated locally by Alice, which are independent of the quantum
systems sent from the servers. The reasoning follows from Lemma 4. Thus, the scheme in Section
6.1 now tolerates erasures. Note that such a scheme exists if

l ∈ N,
∆s = Ns/l,∀s ∈ [S],
min{N,

∑
s∈W(k) 2Ns} −maxt∈E(t)

∑
s∈E(t) 2Ns ≥ l,∀k, t ∈ [T ].

(48)

Then by definition,

closure

∆ ∈ RS
+

∣∣∣∣∣∣
l ∈ N,
∆s = Ns/l,∀s ∈ [S],
min{N,

∑
s∈W(k) 2Ns} −maxt∈E(t)

∑
s∈E(t) 2Ns ≥ l,∀k, t ∈ [T ]

 ⊆ D∗. (49)
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Note that the LHS of (49) is equal toDAME. Therefore, DAME ⊆ D∗. It then follows thatD+
AME ⊆ D∗

as one can always send extra unentangled quantum resource.

6.3 Treating Qudits as Classical-dits (TQC)

Let us show that DTQC ⊆ D∗. Suppose for s ∈ S, Server s sends Ns q-dimensional quantum
subsystems by treating them as classical q-ary symbols, where q = dλ. Denote N ≜ N0+N1+ · · ·+
NS . During the transmission, the quantum subsystems (now regarded as classcial q-ary symbols)
from servers s ∈ E(t) may be lost. Alice should be able to compute l instances of the sum, written
in Fq as

∑
k∈[K]Wk, where Wk ∈ Fl×1

q . Let us restate the result of [27] in the following lemma.

Lemma 5 (Restatement of [27]). The classical scheme exists if q > N , and

max
t∈[T ]

∑
s∈E(t)

Ns ≤ min
k∈[K]

∑
s∈W(k)

Ns − l. (50)

Since q > N can always be satisfied by choosing large enough λ, we have by definition,

closure

∆ ∈ RS
+

∣∣∣∣∣∣
l ∈ N,
∆s = Ns/l,∀s ∈ [S],
maxt∈[T ]

∑
s∈E(t)Ns ≤ mink∈[K]

∑
s∈W(k)Ns − l

 ⊆ D∗. (51)

Note that the LHS of (51) is equal to DTQC. Therefore, DTQC ⊆ D∗. It then follows that D+
TQC ⊆ D∗

as one can always send extra unentangled quantum resource. Finally, by a time-sharing argument,
any convex combination of the tuples in D+

AME ∪D+
TQC ⊆ D∗. This concludes the proof of Theorem

1.

7 Proof of Theorem 3

7.1 Achievability

Apply Theorem 1 to the Σs-QEMAC setting, with the cost tuple in the form ∆ = (∆0,∆, · · · ,∆).
From (6) we have ∆ ∈ DAME if

min{∆0 + S∆, 2α∆} − 2β∆ ≥ 1. (52)

Similarly (7) implies that ∆ ∈ DTQC if

(α− β)∆ ≥ 1. (53)

Consider two cases.

Case 1: S ≥ α + β. It follows from α > β that S − 2β > 0 and from (52) that for any ∆0 ∈ R+

and ∆ = max{ 1
2(α−β) ,

1−∆0
S−2β }, we have (∆0,∆, · · · ,∆) ∈ DAME ⊆ D∗.

Case 2: S < α + β. It follows from (52) that for
(
∆0 = 2α−S

2(α−β) ,∆ = 1
2(α−β)

)
the cost tuple

(∆0,∆, · · · ,∆) ∈ DAME. Also (53) implies that for
(
∆0 = 0,∆ = 1

α−β

)
the cost tuple

(∆0,∆, · · · ,∆) ∈ DTQC. It can be verified that the equation for the straight line connecting
these two points is ∆ = 1

α−β − ∆0
2α−S . It thus follows that for any ∆0 ∈ R+ and ∆ =

max{ 1
2(α−β) ,

1
α−β − ∆0

2α−S }, we have (∆0,∆, · · · ,∆) ∈ conv(D+
AME ∪D+

TQC) ⊆ D∗.

Given ∆0 ∈ R+, by definition, C(∆0) ≥ (S∆)−1 if (∆0,∆, · · · ,∆) ∈ D∗. Thus, C(∆0) ≥ (S∆∗)−1

with the ∆∗ defined in (10).
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7.2 Converse

Recall that the Σs-QEMAC contains K =
(
S
α

)
data streams and S + 1 servers. There are T =

(
S
β

)
possible cases of erasure, each corresponding to a unique β subset of the answers from the S data-
servers being erased. For any scheme with batch size L, since the decoding must be correct for
all data realization w = (w1, w2, · · · , wK) ∈ FKL

d , it must be correct if the K data streams are
uniformly distributed over FKL

d . Therefore, for the purpose of proving a converse, it will not hurt
to assume that the data is uniformly distributed over FKL

d , and let (W1,W2, · · · ,WK) denote these
K random variables, one for each data stream. This facilitates entropic proofs. After the coding
operations applied by the servers, the classical-quantum system of interest

W1 · · ·WKQ0Q1 · · · QS

is in the state

ρW1···WKQ0Q1···QS
=

∑
w∈FKL

d

1

dKL
ρ
(w)
Q0Q1···QS

. (54)

Also recall that for the case of erasure indexed by t ∈ [T ], the measurement result is a random
variable, denoted as Yt such that

Pr(Yt = y | W[K] = w) = Tr(Λ
(y)
t ρQ0Q[S]\E(t)

), (55)

where {Λ(y)
t }y is the set of POVM matrices associated with the measurement Ψt. The joint distri-

bution of W1 · · ·WKYt is thus determined. According to the definition (3), the scheme must have

Pr
(
Yt =

∑
k∈[K]Wk

)
= 1 for t ∈ [T ]. For s ∈ S = {0, 1, · · · , S}, the dimension of Qs is δs and due

to symmetry there is no loss of generality in considering schemes with δ1 = δ2 = · · · = δS = δ.
The proof proceeds as follows. We shall show that for any ∆0 ∈ R+, if (∆0,∆, · · · ,∆) ∈ D∗,

then

∆ ≥ 1

2(α− β)
(56)

and in addition,

∆ ≥ 1−∆0

S − 2β
, if S ≥ α+ β, (57)

∆ ≥ 1

α− β
− ∆0

2α− S
, if S < α+ β. (58)

First, consider any data stream (say W1), and condition on any realization of W[K]\{1}, the problem
reduces to a communication problem with one data stream W1, such that α servers (Servers s ∈
W(1)) know the data stream, while the rest of the servers merely provide entanglement to Alice.
Theorem 2 (Eq. (8)) then implies that (α− β)∆ ≥ 1/2 =⇒ ∆ ≥ 1

2(α−β) (by substituting S by α).
Now, consider the following cases.

Case 1: S ≥ α+ β. Partition [S] = {1, 2, · · · , S} such that

[S] = {1, 2, · · · , β}︸ ︷︷ ︸
I1 (β)

∪{β + 1, · · · , 2β}︸ ︷︷ ︸
I2 (β)

∪{2β + 1, · · · , α+ β}︸ ︷︷ ︸
I3 (α−β)

∪{α+ β + 1, · · · , S}︸ ︷︷ ︸
I4 (S−α−β)

. (59)
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Identify indices k1, k2, t1, t2 such that

W(k1) = I1 ∪ I3︸ ︷︷ ︸
(α)

, (60)

W(k2) = I2 ∪ I3︸ ︷︷ ︸
(α)

, (61)

E(t1) = I1︸︷︷︸
(β)

, (62)

E(t2) = I2︸︷︷︸
(β)

. (63)

For the case of erasure indexed by t1, i.e., when QI1 is erased, we have

L = I
(
W[K];

∑
k∈[K]

Wk | W[K]\{k1}

)
(64)

≤ I
(
W[K];Yt1 | W[K]\{k1}

)
(65)

≤ I
(
Wk1 ;Q0QI2QI3QI4 | W[K]\{k1}

)
ρW1···WKQ0Q1···QS

(66)

= I
(
Wk1 ;QI2 | W[K]\{k1}

)
︸ ︷︷ ︸

=0

+I
(
Wk1 ;Q0QI3QI4 | QI2 ,W[K]\{k1}

)
(67)

= I
(
Wk1 ;Q0QI3QI4 | QI2 ,W[K]\{k1}

)
(68)

= H
(
Q0QI3QI4 | QI2 ,W[K]\{k1}

)
−H

(
Q0QI3QI4 | QI2 ,W[K]

)
(69)

≤ H(Q0QI3QI4)−H
(
Q0QI3QI4 | QI2 ,W[K]

)
(70)

≤ logd δ0 + (S − 2β) logd δ −H
(
Q0QI3QI4 | QI2 ,W[K]

)
(71)

Information measures on and after Step (66) are with respect to the state ρW1···WKQ0Q1···QS
.

Step (66) is by Lemma 2 since Alice obtains Yt1 conditioned on any realization of W[K]\{k1}
by measuring Q0QI2QI3QI4 . Step (68) is by Lemma 1 conditioned on any realization of
W[K]\{k1}, since Wk1 is not available to any server in I2. Step (71) is because conditioning
does not increase entropy [32, Thm. 11.4.1].

For the case of erasure indexed by t2, by the same reasoning, we similarly have (I2 replaced
by I1),

L ≤ logd δ0 + (S − 2β) logd δ −H
(
Q0QI3QI4 | QI1 ,W[K]

)
. (72)

Adding (71) and (72), we have

2L ≤ 2
(
logd δ0 + (S − 2β) logd δ

)
−

(
H
(
Q0QI3QI4 | QI2 ,W[K]

)
+H

(
Q0QI3QI4 | QI1 ,W[K]

))
︸ ︷︷ ︸

≥0

(73)
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≤ 2
(
logd δ0 + (S − 2β) logd δ

)
(74)

=⇒ ∆0 + (S − 2β)∆ ≥ 1 (75)

=⇒ ∆ ≥ 1−∆0

S − 2β
. (76)

Step (74) follows from weak monotonicity4 [39,43] conditioned on W[K] = w for any w ∈ FKL
d .

Step (75) is by dividing by 2L on both sides and using the definition ∆0 = logd δ0/L, ∆ =
logd δ/L.

Case 2: S < α+β. The idea is similar but the proof requires a few more steps. Partition [S] such
that,

[S] = {1, 2, · · · , 2α− S}︸ ︷︷ ︸
I1 (2α−S)

∪{2α− S, · · · , α}︸ ︷︷ ︸
I2 (S−α)

∪{α+ 1, · · · , S}︸ ︷︷ ︸
I3 (S−α)

. (77)

Note that since S < α + β, we have 2α − S > α − β. Let J ∈
([2α−S]

α−β

)
be any subset of I1

with cardinality equal to α− β. Identify indices k, t such that

W(k) = I1 ∪ I3︸ ︷︷ ︸
(α)

, (78)

E(t) = (I1 \ J ) ∪ I3︸ ︷︷ ︸
(β)

. (79)

We have

L = I
(
W[K];

∑
k∈[K]

Wk | W[K]\{k}
)

(80)

≤ I
(
W[K];Yt | W[K]\{k}

)
(81)

≤ I
(
Wk;Q0QJQI2 | W[K]\{k}

)
ρW1···WKQ0Q1···QS

(82)

= I
(
Wk;Q0QI2 | W[K]\{k}

)︸ ︷︷ ︸
=0

+I
(
Wk;QJ | Q0QI2 ,W[K]\{k}

)
(83)

= I
(
Wk;QJ | Q0QI2 ,W[K]\{k}

)
(84)

≤ H(QJ )−H(QJ | Q0QJ2 ,W[K]) (85)

≤ (α− β) logd δ −H(QJ | Q0QJ2 ,W[K]) (86)

Information measures on and after Step (82) are with respect to the state ρW1···WKQ0Q1···QS
.

Step (82) is by Lemma 2 since Alice obtains Yt conditioned on any realization of W[K]\{k} by
measuring Q0QJQI2 . Step (84) is by Lemma 1 conditioned on any realization of W[K]\{k},
since Wk is not available to any server in {0}∪I2. Step (85) is because conditioning does not
increase entropy.

By symmetry, (86) holds for any J ∈
([2α−S]

α−β

)
. Taking the sum over all J ∈

([2α−S]
α−β

)
(in total(

2α−S
α−β

)
terms), we have(

2α− S

α− β

)
L ≤

(
2α− S

α− β

)
(α− β) logd δ −

∑
J
H(QJ | Q0QI2 ,W[K]) (87)

4For a tripartite quantum system ABC in the state ρ, H(A|B)ρ +H(A|C)ρ ≥ 0.
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≤
(
2α− S

α− β

)
(α− β) logd δ −

(
2α− S − 1

α− β − 1

)
H(Q[2α−S] | Q0QI2 ,W[K]) (88)

=⇒ L ≤ (α− β) logd δ −
α− β

2α− S
H(Q[2α−S] | Q0QI2 ,W[K]) (89)

= (α− β) logd δ −
α− β

2α− S
H(Q[2α−S]Q0 | QI2 ,W[K]) +

α− β

2α− S
H(Q0 | QI2 ,W[K])

(90)

Step (88) follows from [30, Lemma 3] (which may be viewed as the quantum conditional
version of Han’s inequality). By similar reasoning, we have (I2 replaced by I3),

L ≤ (α− β) logd δ −
α− β

2α− S
H(Q[2α−S]Q0 | QI3 ,W[K]) +

α− β

2α− S
H(Q0 | QI3 ,W[K]). (91)

Adding (90) and (91), and noting that,

H(Q[2α−S]Q0 | QI2 ,W[K]) +H(Q[2α−S]Q0 | QI3 ,W[K]) ≥ 0, (92)

because of weak monotonicity conditioned on W[K] = w for any w ∈ FKL
d , we have

2L ≤ 2(α− β) logd δ +
2(α− β)

2α− S
logd δ0 (93)

=⇒ 1 ≤ (α− β)∆ +
α− β

2α− S
∆0 (94)

=⇒ ∆ ≥ 1

α− β
− ∆0

2α− S
(95)

In Step (94) we divide both sides by 2L and apply the definitions ∆0 = logd δ0/L,∆ =
logd δ/L.

This concludes the proof of the converse.

8 Conclusion

Generalizing the Σ-QMAC model to Σ-QEMAC, which allows erasures, we construct a coding
scheme to show that the communication efficiency gains that are enabled by quantum multiparty
entanglement are not dominated in general by the higher cost of quantum erasure correction. The
advantage provided by quantum entanglement is evident, e.g., from Corollaries 1 and 2. For the
symmetric setting we also show by quantum entropic analysis that the proposed coding scheme, in
combination with the simple idea of treating qudits as classical dits, is exactly optimal in commu-
nication efficiency for the Σs-QEMAC, for any given level of prior entanglement between the data-
servers and the receiver. In other words, we characterize the precise capacity of the Σs-QEMAC for
arbitrary levels of receiver entanglement. A natural next step would be to find the capacity of the
asymmetric Σ-QEMAC. Additional insights are needed to overcome the combinatorial complexity
of asymmetric settings. This is left as an open problem for future work.
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A Proof of achievability of ∆ = 3/4

Let us first formulate the problem. The reduced communication problem contains 3 servers, referred
to as Server 1, Server 2 and Server 3. The answer from one of them can get erased. The data
stream A is only known to Server 1 and Server 2. The receiver must be able to recover A. Now,
let us prove that ∆ = 3/4 is achievable for the communication problem reduced from the “A cut”
from Section 5. Let [A1,A2,A3,A4] be symbols from Fdz that constitute 4z instances of the data
stream A. Let [

A′
1 A′

2 · · · A′
8

]
=
[
A1 A2 A3 A4

]
M4×8 (96)

where M ∈ F4×8
dz is the generator matrix of a (k = 4, n = 8) MDS linear code defined in Fdz . z

is allowed to be chosen freely to allow the existence of M. Let Q1, Q2, · · · , Q8 be dz-dimensional
quantum systems, distributed to Server 1, Server 2 and Server 3 such that

1. Server 1 has Q1, Q2, Q3;

2. Server 2 has Q4, Q5, Q6;

3. Server 3 has Q7, Q8.

Let (Q1, Q7) and (Q4, Q8) be initially prepared in the entangled state for superdense coding. Recall
that only Server 1 and Server 2 know (A′

1, · · · ,A′
8). Server 1 and Server 2 perform the encoding

operations as follows.

1. Server 1 encodes (A′
1,A

′
2) into Q1 using superdense coding, and encodes A′

3 into Q2, A
′
4 into

Q3 classically.

2. Server 2 encodes (A′
5,A

′
6) into Q4 using superdense coding, and encodes A′

7 into Q5, A
′
8 into

Q6 classically.

Depending on different cases of erasure, the receiver applies one of the following decoding options.

1. In the case that the answer from Server 1 gets erased (this also ruins Q7), Alice is able to
measure Q4, Q5, Q6, Q8 to obtain (A′

5,A
′
6,A

′
7,A

′
8) and recover (A1,A2,A3,A4) by the property

of the MDS code.

2. In the case that the answer from Server 2 gets erased (this also ruins Q8), Alice is able to
measure Q1, Q2, Q3, Q7 to obtain (A′

1,A
′
2,A

′
3,A

′
4) and recover (A1,A2,A3,A4) by the property

of the MDS code..

3. In the case that the answer from Server 3 gets erased (this also ruins Q1, Q4), Alice is able to
measure (Q2, Q3, Q5, Q6) to obtain (A′

3,A
′
4,A

′
7,A

′
8) and recover (A1,A2,A3,A4) by the property

of the MDS code..

Therefore, Alice gets 4z instances of the data stream A by downloading at most 3z qudits from
each of the servers. We thus conclude that ∆ = 3/4 is achievable for the communication problem.
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B Proof of Lemma 4

Let HA,HB denote the Hilbert spaces related to System A and System B. It suffices to prove for
pure state ρAB = |ψ⟩AB ⟨ψ|AB. Let us first show the case for d = p being a prime. Without loss of
generality, we write

|ψ⟩AB =

p−1∑
i=0

|ϕi⟩A |i⟩B (97)

for a set of vectors {|ψi⟩A}
p−1
i=1 defined in HA, and {|i⟩B}

p−1
i=0 is the computational basis for HB.

After the random X(x̃)Z(z̃) operation is applied to System B, the state becomes a mixed state
with density operator

ρ′AB =
1

p2

p−1∑
x̃=0

p−1∑
z̃=0

(
I⊗ X(x̃)Z(z̃)

)︸ ︷︷ ︸
Ux̃z̃

|ψ⟩AB ⟨ψ|AB U
†
x̃z̃. (98)

By (97),

Ux̃z̃ |ϕ⟩AB ⟨ϕ|AB U
†
x̃z̃

=

p−1∑
i=0

p−1∑
j=0

ωz̃(i−j) |ϕi⟩A ⟨ϕj |A |i+ x̃⟩B ⟨j + x̃|B . (99)

Therefore, (98) is equal to (the subscripts A,B are omitted for simplicity)

1

p2

p−1∑
x̃=0

p−1∑
z̃=0

p−1∑
i=0

p−1∑
j=0

ωz̃(i−j) |ϕi⟩ ⟨ϕj | |i+ x̃⟩ ⟨j + x̃| (100)

=
1

p2

p−1∑
i=0

p−1∑
j=0

|ϕi⟩ ⟨ϕj |
p−1∑
x̃=0

p−1∑
z̃=0

ωz̃(i−j) |i+ x̃⟩ ⟨j + x̃| (101)

=
1

p2

p−1∑
i=0

p−1∑
j=0

|ϕi⟩ ⟨ϕj |
p−1∑
z̃=0

ωz̃(i−j)

︸ ︷︷ ︸
pδ(i−j)

p−1∑
x̃=0

|x̃⟩ ⟨x̃| (102)

=
1

p

p−1∑
i=0

p−1∑
j=0

|ϕi⟩ ⟨ϕj | Ipδ(i− j) (103)

=
( p−1∑

i=0

|ϕi⟩ ⟨ϕi|
)
⊗
(Ip
p

)
(104)

where δ(x) ≜ 1 if x = 0 and δ(x) ≜ 0 otherwise.
This shows that B is independent of A and is in the maximally mixed state. To generalize the

argument to general d = pr, it is important to note that applying a random X(x̃)Z(z̃) operation to
a qudit is equivalent to applying a random X(x̃i)Z(x̃i) operation to the ith p-dimensional subsystem
for all i ∈ [r], where x̃i, z̃i ∈ Fp. Therefore, the argument generalizes to d = pr.
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C Proofs of claims in Section 6

C.1 The existence of U

Recall that we are given Et ∈ F
N×

∑
s∈E(t) 2Ns

q that has full column rank for t ∈ [T ]. We will prove
the existence of the matrix U ∈ FN×u

q , where u = N − maxt∈[T ]

∑
s∈E(t)Ns, such that [U,Et]

has full column rank for all t ∈ [T ]. For t ∈ [T ], there exists a realization of U ∈ FN×u
q and

a deterministic matrix Zt ∈ F
N×(N−u−

∑
s∈E(t) 2Ns)

q such that [U,Et,Zt] is invertible. Therefore,
Pt ≜ det([U,Et,Zt]) is a non-zero polynomial in the elements of U, with degree more than N for
all t ∈ [T ]. Consider the polynomial P =

∏T
t=1 Pt, which is a non-zero polynomial with degree

not more than TN . By Schwartz-Zippel Lemma, if the element of U is chosen i.i.d. uniformly in
Fq, then the probability of P evaluating to 0 is not more than TN

q , which is strictly less than 1 if
q > TN . Therefore, if q > TN , there exists U such that [U,Et] has full column rank for all t ∈ [T ].

C.2 The existence of Vdec

Recall that we are given Uk ∈ FN×rk(Uk)
q , V′

k ∈ Frk(Uk)×l
q that has full column rank for k ∈ [K]. We

will prove the existence of the matrix Vdec ∈ Fl×N
q such that VdecUkV

′
k is an l× l invertible matrix

Rk for all k ∈ [K]. The proof is as follows. By definition, there exists a realization of Vdec ∈ Fl×N
q

such that VdecUkV
′
k is invertible. Therefore, Pk ≜ det(VdecUkV

′
k) is a non-zero polynomial

in the elements of Vdec, with degree not more than l for all k ∈ [K]. Consider the polynomial
P =

∏K
k=1 PK , which is a non-zero polynomial with degree not more than Kl. By Schwartz-Zippel

Lemma, if the element of Vdec is chosen i.i.d. uniformly in Fq, then the probability of P evaluating
to 0 is not more than Kl

q , which is strictly less than 1 if q > Kl. Therefore, if q > Kl, there exists

Vdec such that VdecUkV
′
k is invertible for all k ∈ [K].

D Proof of Theorem 2

We continue to use the notations as defined in Section 7.2. After the coding operations done by
the servers, the classical-quantum system of interest WQ0Q1 · · · QS is in the state,

ρWQ0Q1···QS
=
∑
w∈FL

d

1

dL
ρ
(w)
Q0Q1···QS

. (105)

For t ∈ [T ], Alice measures Q0Q[S]\E(t) to obtain Yt such that Pr(Yt = W) = 1. Recall that in this
theorem {E(1), E(2), · · · , E(T )} constitute the collection of all cardinality-β subsets of {1, 2, · · · , S}.
Denote It ≜ [S] \ E(t). We have, for all t ∈ [T ],

L = H(W) = I(W;Yt) (106)

≤ I(W;Q0QIt)ρWQ0Q1···QS
(107)

= I(W;Q0)︸ ︷︷ ︸
=0

+I(W;QIt | Q0) (108)

= I(W;QIt | Q0) (109)

= H(QIt | Q0)−H(QIt | Q0,W) (110)

≤ H(QIt)−H(QIt | Q0,W) (111)
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≤ H(QIt) +H(QIt) (112)

≤ 2 logd
∑
s∈It

δs (113)

=⇒
∑
s∈I

∆s ≥ 1/2, ∀I ∈
(

[S]

S − β

)
(114)

Information measures on and after Step (107) are with respect to the state ρWQ0Q1···QS
. Step

(107) is by Holevo bound (Lemma 2). Step (108) is by Lemma 1 since Server 0 does not know W.
Step (111) is because conditioning does not increase entropy. (112) is from the Ariki-Lieb triangle
inequality5. This proves (8). We next show (9). From (111), we have,

L ≤ H(QI)−H(QI | Q0,W), ∀I ∈
(

[S]

S − β

)
. (115)

Taking the sum over all I ∈
( [S]
S−β

)
(in total

(
S
β

)
terms), we have(

S

β

)
L ≤

∑
I∈( [S]

S−β)

H(QI)−
∑

I∈( [S]
S−β)

H(QI | Q0,W) (116)

≤
(
S − 1

β

) ∑
s∈[S]

logd δs −
∑

I∈( [S]
S−β)

H(QI | Q0,W) (117)

≤
(
S − 1

β

) ∑
s∈[S]

logd δs −
(
S − 1

β

)
H(Q[S] | Q0,W) (118)

≤
(
S − 1

β

) ∑
s∈[S]

logd δs +

(
S − 1

β

)
H(Q0) (119)

≤
(
S − 1

β

)( ∑
s∈[S]

∆s +∆0

)
(120)

=⇒ ∆0 +∆1 + · · ·+∆S ≥ S

S − β
(121)

Step (118) follows from [30, Lemma 3]. Step (119) is due to non-negativity of entropy and the fact
that conditioning does not increase entropy. This concludes the proof of Theorem 2.
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