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Systemsmodeling of oncogenic G-protein
and GPCR signaling reveals unexpected
differences in downstream pathway
activation

Check for updates

Michael Trogdon1,9, Kodye Abbott 2, Nadia Arang3,4, Kathryn Lande5, Navneet Kaur 2, Melinda Tong1,
Mathieu Bakhoum6,7, J. Silvio Gutkind 3,8 & Edward C. Stites 2,7

Mathematical models of biochemical reaction networks are an important and emerging tool for the
study of cell signaling networks involved in disease processes. One promising potential application of
such mathematical models is the study of how disease-causing mutations promote the signaling
phenotype that contributes to the disease. It is commonly assumed that one must have a thorough
characterization of the network readily available for mathematical modeling to be useful, but we
hypothesized that mathematical modeling could be useful when there is incomplete knowledge and
that it could be a tool for discovery that opens newareas for further exploration. In thepresent study,we
first develop amechanisticmathematicalmodel of aG-protein coupled receptor signaling network that
is mutated in almost all cases of uveal melanoma and use model-driven explorations to uncover and
explore multiple new areas for investigating this disease. Modeling the two major, mutually-exclusive,
oncogenic mutations (Gαq/11 and CysLT2R) revealed the potential for previously unknown qualitative
differences between seemingly interchangeable disease-promoting mutations, and our experiments
confirmedoncogenicCysLT2Rwas impairedatactivating theFAK/YAP/TAZpathway relative toGαq/11.
This led us to hypothesize that CYSLTR2mutations in UM must co-occur with other mutations to
activate FAK/YAP/TAZ signaling, and our bioinformatic analysis uncovers a role for co-occurring
mutations involving the plexin/semaphorin pathway, which has been shown capable of activating this
pathway. Overall, this work highlights the power of mechanism-based computational systems biology
as a discovery tool that can leverage available information to open new research areas.

Data intensive computational methods have contributed to significant
advances in a variety of scientific disciplines. Cancer biology in particular
has seen many advances that follow from the application of computational
methods to emerging forms of acquired data1–6. However, not all cancers
have abundant data. Rare cancers, and rare subtypes of cancer, do not
generally have large data sets of the scale required for many computational
methods. The number of patient samples, tumor derived cell lines, and

mouse models that can be used to generate new, large data sets are com-
monly also limited for rare cancers.However, years of broad research efforts
for individual rare cancers have resulted in several areas where modest
amounts of data are available. For example, cell biological, biochemical,
genomic (DNA), and transcriptomic (RNA) characterizations are fre-
quently available for rare cancers. We hypothesized that biochemical-
mechanism based models of the essential molecular network(s) in a rare
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cancer may provide a useful approach for re-analyzing the available data to
generate new inferences and insights.

Previously, we have used mathematical modeling to investigate sig-
naling by pathogenic RAS pathwaymutations7–13. In these previous studies,
we simulated the core biochemical processes that regulate RAS signaling.
The model parameterized for wild-type proteins describes the dynamic
equilibrium of signaling in a resting cell. Mutant versions of RAS proteins
are characterized by changes in these biochemical rate constants and ele-
vated levels of steady-state signaling14–16. By substituting biochemical
parameters that involve the reactions of a givenproteinwith thebiochemical
kinetic parameters (e.g., kf, kr, kcat, Km, etc.) the model predicts how sig-
naling outcomes differ when the mutant is present17–19. This approach has
been useful for uncovering newaspects of RASmutant biology7,8, for solving
long-standingquestions aboutRASmutant biology10,11,20, and for generating
new ideas about targeting thepathway7,9,12,13. This general approachhas been
reproducibly used by different groups to study oncogenic RAS
signaling7,14,16,21–23, attesting to the reproducible nature of the general com-
putational approach even if the specific details of the model differ from
group to group (just as different experimental groups may utilize slightly
different reagents or methods for otherwise conceptually similar experi-
ments).Moreover, the approachof comparingphysiological signaling (from
wild-type proteins) with pathological signaling (by mutant proteins) has
been broadly used for diseases other than cancer and/or for proteins other
than RAS24–32, further highlighting the potential power of the method to be
generalized and applied more extensively. Previous work has also high-
lighted that mathematical models of a modest scope (approximately five to
twenty-fivemolecular species) can be generated andused to formulate novel
hypotheses about pathways important to disease on a time-scale compar-
able to experimental screens (~6months)33. Altogether, the previous studies
suggest thatmathematicalmodels of disease-causingmutations in signaling
networks could potentially be useful as a discovery tool that can open new
areas of research for subsequent validation of model-based inferences and
predictions.

To do this, we combine mechanism-based computational modeling
with bioinformatic analysis and experimental biology to investigate uveal
melanoma (UM), a form of cancer that has an incidence of approximately
five per million individuals in the United States34. We focused onUM as a
test case because there are much less data for UM than for more common
cancers, because of the importance of G-protein coupled receptor sig-
naling in UM, and because oncogenic G-proteins have proven well-suited
for mechanistic modeling. We first developed a biochemical mechanism-
based mathematical model of the biomolecular signaling pathway that is
mutated and plays a causal role in nearly all cases of UM. As part of our
model validation, we demonstrate our model can explain confusing
aspects of recently developed direct pharmacological inhibitors against
the major driver of this cancer35–38. Next, we modeled and compared two
major classes of UM. Our mechanistic model revealed gaps in available
knowledge that are of fundamental importance to understanding the
molecular basis of this disease. We addressed these existing gaps in
knowledge with new experiments and we updated our model to the new
information. These insights led us to hypothesize that there may be
another pathway that augments the known pathways driving UM. Eva-
luation of the available, limited, DNA sequencing data with our focused
hypothesis inmind ledus to identify statistically enrichedmutations in the
plexin/semaphorin signaling pathway. Overall, our study demonstrates
that this integrated approach, which we call MAGPIE for Model-Assisted
Generation of Predictions and Integration of Experimental Data, can
catalyze scientific progress through its ability to leveragemultiple “modest
data” resources.

Results
Developmentofamechanisticmathematicalmodelofoncogenic
GPCR-pathway signaling in UM
Uveal melanoma (UM) is a rare but deadly cancer of the eye34. Although
both UM and cutaneous melanoma arise from melanocytes, the two

malignancies are biologically and genetically distinct39. Despite the great
progressmade in recent years in the development of both targeted therapies
and immunotherapies for cutaneous melanoma40, there are no FDA
approved targeted therapies for UM39 and only one FDA approved
immunotherapy41. The identification of new pathways and targets for the
treatment of UM thus remains a priority.

UM is highly dependent upon G-protein coupled receptor (GPCR)
signaling (Fig. 1a). GPCRs are one of the largest andmost diverse families of
membrane receptors in the genome42. GPCRs bind a wide variety of
extracellular ligandswhich result in conformational changes of the receptor.
Activated GPCRs catalyze the exchange of GDP for GTP in the alpha
subunits (Gα) of heterotrimeric G-proteins downstream. Once bound to
GTP, theGα subunits effectivelydisassociate fromthebeta-gammasubunits
(Gβγ) to bind and activate effectors downstream. Evaluation of the soma-
tically acquired mutations in UM have highlighted a critical role for one
GPCR pathway. Mutually exclusive mutations in the CYSLTR2/GNAQ/
GNA11/PLCB4 signaling pathway occur in >95% of UM cases39. Mutations
to the Gα encoding genes GNAQ and GNA11 (which will be referred to
together as GNAQ/11) account for the overwhelming majority (~90%) of
these mutations in UM43.

The most frequent GNAQ/11 mutations occur in a hotspot at codon
209. Two of these mutations, GNAQ/11 Q209L and Q209P, have been
shown to encode mutant Gα subunits that differ in key biochemical prop-
erties, including binding to effector proteins and to regulator of G protein
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Fig. 1 | A mass-action kinetics-based dynamic equilibrium mathematical model
of Gαq/11 and CysLT2R signaling in UM. a Schematic of canonical G protein-
coupled receptor (GPCR) signaling. b Schematic of the mechanistic mathematical
model of Gαq/11 and CysLT2R signaling in uveal melanoma (UM) with chemical
kinetic parameter constants annotated.Within the G protein activation/inactivation
cycle, CysLT2R is the guanine nucleotide exchange factor (GEF) that activates the
small G-proteins Gαq and Gα11 by promoting the replacement of bound guanosine
diphosphate (GDP) for guanosine triphosphate (GTP), regulator of G protein sig-
naling (RGS) is the GTPase-activating protein (GAP) that inactivates the small
G-proteins Gαq and Gα11 by promoting the hydrolysis of bound GTP to GDP, and
both TRIO and PLCβ are effectors that bind GTP-bound Gαq and Gα11. Within
(a, b), the schematizedG-protein alpha subunits (red circles) can represent either (or
both) wild-type and mutant forms.
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signaling (RGS) proteins. RGS proteins are the GTPase-activating proteins
(GAPs) that catalyze the conversion of GTP-bound Gαq/11 to GDP-bound
Gαq/11

44. Although there are significant differences in several of the bio-
chemical properties of WT and Q209L/P mutant Gαq subunits, the
importance of these various differences for tumorigenesis in vivo remains
unclear. Mathematical modeling of GPCR signaling pathways has a sub-
stantial history of aiding in understanding the dynamics of GPCRs in
response to ligands andpharmacological targeting45–47.Wehere developed a
mechanistic mathematical model of the Gαq/11 pathway that begins at the
level of the GPCR CysLT2R (the protein encoded by the CYSLTR2 gene),
that includes theG-protein activation cycle, and that includes the binding to
its two primary effector proteins, PLCβ and TRIO48,49 (Fig. 1b). The acti-
vation of CysLT2R by ligand and the transmission of signals downstream
fromPLCβ andTRIOare not included explicitly in themodel (see below for
more details).

Some key features of the proposed model are as follows: first, the
reactions are modeledmechanistically using ordinary differential equations
(ODEs). Thismathematical formalism is based onmass action and classical
enzyme kinetics. Direct measurements of kinetic rate constants for the
various reactionswere taken from the literaturewherever possible. Second, a
key component of themodel is thatwhenconsidering aparticular oncogenic
mutation (i.e., the Q209L mutation in Gαq) this mutant protein is con-
sidered explicitly as a distinct species in themodel with its own biochemical
properties. For example, tomodel the case of a heterozygousGNAQQ209L
mutation, of the total pool of Gα subunits in themodel, 75%will beWTand
25% will be mutant (this reflects an assumption of the model that the Gαq
and Gα11 subunits are biochemically identical and expressed in similar
amounts in vivo, thus Gαq and Gα11 each account for 50% of the total Gα
pool in the model). The main biochemical differences between WT and
mutant Gαq subunits reported in the literature are the rates of basal and
GAP-stimulated GTP hydrolysis and the affinities for effectors and GAPs
(the supplement includes a full discussion of the literature concerning
biochemical characterization of various mutants). For model para-
meterization,we initiate our study by identifying a set of approximate values
for each parameter based upon the relevant literature (see the supplement
for details). Additional mathematical details, references for the biochemical
parameters of themodel, and aPythonnotebook that includes all of the code
needed to run and reproduce the model are included as supplementary
information and/or on github.

While oncogenic activation ultimately depends on downstream tar-
gets, such as Yes-associated protein (YAP) for TRIO and the Extracellular
Signal-Regulated Kinase (ERK)MitogenActivated Protein Kinase (MAPK)
pathway via protein kinase C (PKC) for PLCβ, the model remains agnostic
to these outcomes by focusing specifically on the part of the pathway
mutated in UM. Activation of both downstream pathways, ERK and YAP,
by oncogenic driver mutations in the CYSLTR2/GNAQ/GNA11/ PLCB4
pathway has been identified as critical for the clinical pathogenesis of UM,
and combinations of inhibitors targeting these pathways are currently in
early phase clinical trials50. One key aspect of PLCβ that we include in our
model is that, in addition to acting as a Gαq/11 effector protein that can
transmit signals downstream, PLCβ can also act as a GAP for Gαq/11

51.
Lastly, while the time dynamics of signaling pathways are critical in certain
circumstances, here we focus on the steady-state activation of effectors
because in cancer it is the sustained levels of growth signals that seem to be
most relevant. Thus, we focus on the dynamic equilibrium that occurs at
steady state. As we do not explicitly model signaling downstream of PLCβ
and TRIO, we implicitly assume that there is a monotonic relationship
between each of these effectors and their downstream pathways (i.e.,
increased TRIO activation results in increased Rho/Rac/FAK/YAP signal-
ing, and increased PLCβ activation results in increased IP3/DAG/PKC/ERK
signaling). Similarly, themodel assumes a small basal level of receptor in the
active conformation52 that implicitly takes the steady-state levels of
β-arrestin desensitization into account. While the activation of a GPCR by
its ligand can involve a complex set of intramolecular reconfigurations and is
an important aspect of canonical G-protein signaling in response to time-

varying ligand concentrations, here we focus on the steady-state activation
levels relevant in oncogenic signaling. Thus, themain functional outputs for
the model are the steady-state levels of activated TRIO and PLCβ (by either
WT or mutant Gα subunits).

In summary, the model presented here attempts to capture the fol-
lowing key underlying biochemical steps: basal activeCysLT2R catalyzes the
exchange of GDP for GTP in the alpha subunits (Gαq/11) of heterotrimeric
G-proteins downstream. Once bound to GTP, the Gαq/11 subunits effec-
tively disassociate from the beta-gamma subunits (Gβγ). Once dis-
associated, the GTP-bound Gαq/11 can either directly bind and activate one
the downstream effectors PLCβ or TRIO, disassociate fromGTP to become
nucleotide-free Gαq/11 or catalyze the hydrolysis of GTP to GDP through
either intrinsic GTPase activity or through the catalyzed action of RGS. The
cycle is then completed when GDP-bound Gαq/11 again binds Gβγ to form
the heterotrimeric G-protein. Themutant CysLT2R andGαq/11 proteins are
modeled explicitly as distinct species in the model that undergo the same
reactions described here but with different biochemical properties com-
pared to the WT proteins based on available data.

The mathematical model reproduces key signaling outputs for
different modeled disease genotypes
As a first evaluation of the mathematical model described above, we
simulated the common Gαq/11 mutants: Q209L and Q209P. The Q209L/P
mutants were considered heterozygous (i.e., 75% of Gα subunits are mod-
eled as WT and 25% mutant, as described above). These assumptions are
based on the TCGAdata fromcBioPortal which show thatGNAQQ209L/P
mutations are typically heterozygous53,54. The model naturally and emer-
gently results in significantlyhigher steady-state levels of complexes between
activated (GTP-bound) Gα and its effectors TRIO and PLCβ (hereafter,
“activated TRIO” and “activated PLCβ”) for each of the mutant Gαq cases
when compared to the basal WT case (Fig. 2a). This suggests that the
mechanisms considered by our mathematical model, when combined with
approximate parameters for the WT and mutant proteins, are sufficient to
explain the activation of these mutants.

We considered the anticipated behavior if the oncogenicmutationwas
homozygous instead of heterozygous. Modeling this case, where there was
now twice as much of the mutant protein abundance in the model but the
same total amount of wild-type plus mutant Gαq/11, resulted in a slight
increase in total steady-state signal of activated TRIO and activated PLCβ
(Fig. 2b). We extended our model to include the less strongly activating
R183C Gαq/11 mutations. Introduction of the approximate mutant para-
meters also resulted in constitutive signaling of the pathway for this mutant
in both heterozygous and homozygous cases (Fig. 2b).

Themathematicalmodel reproducesunanticipated responses to
pharmacological G-protein inhibition
One of the major goals of understanding the molecular causes of tumor-
igenesis in UM is to develop better therapies. Most efforts in the clinic up to
this point have focused on direct inhibition of downstream effectors such as
MEK and PKC or on an immunotherapy approach. Both general approa-
ches have had limited success39.

Onekeydevelopment in thefieldover the last several yearshas been the
discovery and exploration of direct pharmacological inhibitors of Gαq/11
subunits such as YM-254890 (YM) and the naturally occurring cyclic
depsipeptide FR900359 (FR)35–38. Specifically, FR has been shown to inhibit
Gαq/11 signaling in UM cells and mouse xenograft models37,38. The current
consensus is that FR acts as a guanine nucleotide disassociation inhibitor
(GDI), effectively lockingGα q/11 in theGDP-bound, inactive state, although
it is unclear if this is the only mechanism responsible for the inhibition of
oncogenic signaling observed in various in vitro and in vivomodels ofUM38.
While it has been recently shown that themajor effects of FR/YMare in fact
on-target for Gαq/11

55, the efficacy of a drug that targets the inactive (GDP-
bound) form of a mutant protein that is “constitutively active”, where the
active form is GTP-bound, has created confusion about this mechanism of
action. This confusion regarding mechanism is similar to the issues
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originally surrounding the direct targeting the KRAS G12C oncoprotein
with inhibitors that target the GDP-bound form of the constitutively active
KRAS G12C mutant9,56–58.

As another test of whether mathematical modeling can be useful
in situations that are confusing to domain experts of the biological subject
matter, we expanded the model to include drug targeting. Specifically, we
modeled a FR/YM-type GDI drug that can reversibly bind and sequester
GDP-boundGα subunits (Fig. 3a).We then simulated themodel at varying

drug concentrations for bothWT/WT andWT/mutant cases (Fig. 3b). The
model suggests the proposed FRmechanism of binding to the GDP-bound
form of the “constitutively active” Gα mutants is sufficient to explain its
action. In other words, modeling reveals that the issues that superficially
appearedconfusing arenot actually problematic anddonot indicate a gap in
mechanistic understanding. Interestingly, the model is able to replicate a
reported59 log-shift in sensitivity betweenGαqmutants that are known to be
partially GAP-sensitive (e.g., R183Q/C)60 and more common oncogenic
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https://doi.org/10.1038/s41540-024-00400-1 Article

npj Systems Biology and Applications |           (2024) 10:75 4



mutants such as Gαq Q209L (Fig. 3b). Themodel’s ability to predict relative
differences in response to pharmacological inhibition, including the ability
to reproduce the non-intuitive effects of a drug that binds selectively to
GDP-bound forms of Gαq/11, help validate our mathematical model and
suggest it may have future value to help contextualize and interpret drug
development studies for UM.

Mathematical model illuminates unknown differences in down-
stream signal activation between mutant Gαq and mutant
CysLT2R
UM cases without GNAQ/GNA11 mutations often contain activating
mutations upstream in the associated receptor CysLT2R

61,62 or in the
canonical downstream effector of Gαq, PLCβ4 (the protein encoded by
PLCB4)63 (Fig. 4a). Most of the genomic data on UM is for GNAQ/GNA11
mutant cases and most clinical data is from patients with a GNAQ/GNA11
mutation. Additionally, while there are several preclinical experimental
model systems to study GNAQ/GNA11 mutant UM, from cell lines to
mouse models64, there are no equivalent experimental model systems for
CYSLTR2 mutant UM65. Although the biochemical properties have been
measured for the most common point mutations, Q209L and Q209P, in
Gαq/11

44, similar biochemical data for point mutations in CysLT2R (the
upstream receptor that activates Gαq) are not available. We hypothesized
that, despite the gaps in knowledge, our mechanistic model mapping

between biochemical properties and cellular phenotypes may be able to
clarify ranges of potential behaviors and be able to generate insights that
prioritize new areas for experimental and/or bioinformatic investigation.

We updated our model to the most common CysLT2R mutation:
L129Q (Fig. 4b). This mutation was taken to be heterozygous based on
TCGA data and modeled as a higher surface concentration of activated
receptor (i.e., 50% of the CysLT2R receptor population wasmodeled asWT
and 50%mutant). Recent work has demonstrated that the CysLT2R L129Q
mutantpoorly recruitsβ-arrestin to avoiddesensitization66.Current opinion
in thefield is that themutually exclusiveGNAQ/11 andCYLSTR2mutations
provide similar oncogenic signals, andour initial parameterization estimates
based on the best available data for the CysLT2R L129Qmutant resulted in
anelevationof activeTRIOthatwas slightly tomoderatelyweaker thanwhat
themodel predicts for Gαq/11mutations (Fig. 2b). However, we also noticed
that our initial parameter estimates resulted in a near complete loss of PLCβ
activation compared to the Gαq/11 mutations (Fig. 2b). We hypothesized
that this might suggest our initial parameter estimates need to be adjusted.

To further explore the potential ranges of behaviors with themodel for
alternative parameter sets, we evaluated the potential similarity of model-
predicted behaviors for CysLT2R andGαq/11mutant conditions over a wide
range of concentrations of the proteins considered in the model and over a
wide range of kinetic rate constants for the considered reactions. For each
parameter set, we simulated our mathematical model of the Gαq/11 Q209L
and CysLT2R L129Q mutations. We then performed a global sensitivity
analysis to compare the downstream activation of these twomutations over
the whole parameter range (Fig. 4c and the supplement). The rate constant
for GAP-stimulated hydrolysis of Gαq/11-bound GTP by PLCβ (denoted by
khyd2) was determined to be themost sensitive parameter with respect to the
difference in PLCβ activation between the two mutants, while the total
concentration of TRIO was the most sensitive parameter with respect to
TRIO activation. As the biochemical parameters of this system have not
been fully measured, this sensitivity analysis is evaluating the scope of
potential behaviors that are within the realm of possibility of available
knowledge as much as it is evaluating the robustness of the model.

Although the prevailing assumption is that GNAQ/11 and
CYSLTR2 mutant networks are effectively equivalent, we were intri-
gued that our model suggested that the available data do not require
them to be equivalent (Fig. 4d). The unknown parameters of the
system could potentially allow CYSLTR2 mutant UM to have strong
ERK but weak YAP signaling (~5% of parameter sets sampled), to have
weak ERK but strong YAP signaling ( ~ 50% or parameter sets sam-
pled), or to have weak activation of both pathways (~25% of parameter
sets sampled). While it is difficult to translate the relative frequency of
behaviors over the entire parameter range into predictions about the
true parameter values and behavior, we were intrigued at the possi-
bility of there being a lack of functional equivalency between the
GNAQ/11 and CYSLTR2 mutants as this is counterintuitive based on
the canonical view of the pathway. As recent studies have highlighted
both ERK and YAP signaling as being critical to GNAQ/11 mutant
UM, we thought it was important to experimentally determine whe-
ther CysLT2R L129Q can also activate both pathways.

Experiments reveal thatwhileoncogenicGNAQcanactivateERK
and YAP signaling, oncogenic CYSLTR2 can only strongly
activate ERK
To experimentally explore model-suggested potential for divergent cellular
phenotypes, we expressedWT ormutantGNAQ or CYSLTR2 constructs in
HEK293Tcells andquantifieddownstream signaling and activation of ERK
and YAP signaling via RNA-sequencing. HEK 293 T cells have often been
used to explore signaling from these mutants48,49,61,67 and provide a con-
venient system for comparing signaling phenotypes of the mutants. (Note:
UMcell lines that allowcomparisonsbetweenGNAQ/GNA11 andCYSLTR2
mutants in an isogenic background are not currently available). Gene-set
enrichment analysis (GSEA)68,69 revealed that both mutants yielded a sta-
tistically significant enrichment in the hallmark “KRAS signaling up”
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signature (active KRAS activates ERK) and the “YAP conserved” signature70

compared to the mock transfection control (Fig. 5a, Supplementary Fig. 1).
In addition, when the GNAQ Q209L expressing cells’ gene expression sig-
naturewas compared to the gene expression signature of the cells expressing
CYSLTR2 L129Q, it was noted to be significantly enriched in the “YAP
conserved” signature (suggesting that there was much more YAP signaling
in the GNAQ Q209L cells) while there was no enrichment in the hallmark
“KRAS signaling up” signature (suggesting that both GNAQ and CYSLTR2
mutants activatedKRAS/ERK tomore similar levels) (Fig. 5b).We validated
these signaling differences by western blot (Fig. 5c). Based on these experi-
ments, the CYSLTR2 L129Qmutant appears to have strong ERK activation
but weak YAP signaling, in contrast to the GNAQ Q209L mutant, which
seems to activate both pathways strongly (Fig. 5d).

Iterative evaluation and adjustment of model parameters based
on the new experimental data
We determined which simulated alternative parameter sets matched our
experimentally observed activation patterns and which did not (i.e., which
parameter sets gave the result that the CysLT2R L129Q mutation yielded
greater than or equal levels of PLCβ activation and lower levels of TRIO
activation compared to the Gαq Q209L mutation). The two parameters
which showed the most significant discrimination between which simula-
tions matched the experiments and which simulations did not match the
experiments based on a Kolmogorov-Smirnov test were: the bias of the Gαq
Q209L mutant binding effectors to PLCβ relative to TRIO (denoted by the
ratio of the association rate constants for each reaction: kat2

mut/wt/kat1
mut/wt)

and the rate constant for GAP-stimulated hydrolysis of Gαq-boundGTP by
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PLCβ (khyd2) (Fig. 6a, Supplementary Fig. 2 and the supplement). A receiver
operating characteristic (ROC) analysis suggested that, for the given para-
meter ranges, kat2

mut/wt/kat1
mut/wt was the more effective binary classifier for

which simulationsmatched the experiments andwhich simulations did not
match the experiments (Fig. 6b). Of note, co-immunoprecipitation studies
that compared the abilities of GαqQ209L andGαqWT to bind to TRIO and
PLCβ suggested amodest bias for TRIOover PLCβ effector binding forGαq
Q209L compared to Gαq WT44. The rate constant for GAP-stimulated
hydrolysis of Gαq-bound GTP by PLCβ (khyd2) was another critical

parameter. Parameter sets in which khyd2 was ~1–40-fold faster than basal
hydrolysis were more likely to match the experimental results than para-
meter sets in which khyd2was >50-fold faster than basal hydrolysis (Fig. 6a).

To explicitly compare the behavior of the Gαq Q209L and CysLT2R
L129Q mutations at varying values of khyd2, we plotted the levels of active
PLCβ and active TRIO for each (Fig. 6c), while keeping other parameters
fixed. This suggests that when PLCβ has very strong GAP activity (i.e.,
rapidly promotes the conversion of GTP-bound Gα subunits to GDP-
bound Gα subunits), our model of the CysLT2R L129Q mutation will not
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yield significant steady-state activation of PLCβ because all of the Gα sub-
units areWT and thus fully GAP sensitive (i.e., anyGαq-boundGTPwill be
quickly hydrolyzed by PLCβ resulting in termination of the signal). Overall,
these experimental and computational analyses suggest that there is a

significant difference in the downstream activation patterns of activating
GNAQ and CYSLTR2mutations. Specifically, the CYSLTR2 L129Qmutant
appears to be relatively deficient in activating the TRIO- > FAK, YAP
pathway compared to the GNAQ Q209L mutant.
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Fig. 6 | Experimentally informed re-evaluation of parameter sets and parameter
ranges. a Normalized distributions of parameter values: the bias of the Gαq Q209L
mutant binding effectors (denoted by kat2

mut/kat1
mut) and the GAP-stimulated

hydrolysis of Gαq-bound GTP by PLCβ (denoted here as the fold over basal
hydrolysis khyd2/khyd) for simulations that qualitatively reproduced the experimental
activation patterns (shown in pink) and simulations that did not (shown in cyan). A
total of n = 11,200 parameter sets were simulated (Fig. 4c and the supplement).
b Plotted are the receiver operating characteristic (ROC) curves for using either: (1)
the bias of the Gαq Q209L mutant binding effectors (denoted by kat2

mut/wt/kat1
mu/wt)

with a threshold between kat2
mut/wt/kat1

mu/wt ≥1 and kat2
mut/wt/kat1

mu/wt ≥14, or (2) the
rate constant for GAP-stimulated hydrolysis of Gαq-bound GTP by PLCβ (denoted
here as the fold over basal hydrolysis khyd2/khyd) with a threshold between khyd2/khyd

<1 and khyd2/khyd <100, as a binary classifier to identify whether the model simulated
at various parameter sets eithermatched or did notmatch the experiment. It is worth
noting that khyd2/khyd was set to roughly 770 in Fig. 2 based on the available data.
cActive TRIO and PLCβ levels resulting from simulation of themathematical model
for the WT, GNAQ Q209L, and CYSLTR2 L129Q settings over a range of GAP-
stimulated hydrolysis of Gαq-bound GTP by PLCβ (denoted here as the fold over
basal hydrolysis khyd2/khyd). The pink region denotes the parameter range for which
the simulations qualitatively reproduced the experimental activation patterns and
the cyan region denotes the parameter range for which the simulations did not
qualitatively reproduce the experimental activation patterns. Based on the experi-
mental observations in Fig. 5 and the analysis in (a, b) above, the bias of Q209L
TRIO/PLCB binding was set to kat2

mut/wt/kat1
mu/wt = 4 for these simulations.
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We also present an updated set of parameter estimates that is similar
to our initial parameters, but where we have chosen new values for
parameters kat2

mut/wt/kat1
mut/wt and khyd2 based on this analysis (see the

supplement for details). These new parameters are able to reproduce all of
the same behaviors as our initial parameter set and they also better
reproduce the qualitative differences in downstream signaling observed
during our new experiments with CYSLTR2 and GNAQ mutants (Sup-
plementary Fig. 3). We therefore suggest these updated parameters,
combined with the model, may serve as a good foundation for further
model-driven studies of UM.

Bioinformatic analysis of patient data reveals CYSLTR2muta-
tions co-occur with semaphorin/plexin gene mutations
Based on our computational and experimental analysis presented in the
previous sections, we propose the hypothesis that CysLT2R L129Q muta-
tionsmay be deficient in TRIO- > FAK, YAP pathway activation compared
to Gαq Q209L mutations. This hypothesis raises the important question:
what is happening inUMpatients withCYSLTR2 L129Qmutations?While
there aremanypotential explanations, one intriguingpossibility is that there
are compensating mutations in UM patients with CYSLTR2 L129Q
mutations that provide additional FAK- > YAPpathwayactivation (Fig. 7a).
None of the UM genomics studies have reported such co-occurring
mutations, but the limited number of CYSLTR2mutant UM (less than ten
cases sequenced to date) leaves this subset underpowered for unbiased
discovery analysis of the mutation data. Of note, in a previous bioinfor-
matics analysis of TCGA data, CYSLTR2 mutant UM patients do not
localize to specific molecular or clinical subsets of UM43, suggesting there is
ultimately similar signaling activity in these patient tumors. We also per-
formed a differential expression analysis of GNAQ/GNA11 mutant vs.
CYSLTR2mutant patients in TCGA followed by GSEA, which revealed no
statistically significant difference in either of the “KRAS signaling up” or
“YAPconserved” signaturesmentionedpreviously (Supplementary Fig. 4a).
It is worth noting that of the 14 genes identified as significantly differentially
expressed between GNAQ/GNA11 and CYSLTR2 mutant UM patient
samples in TCGA, PRAME (preferentially expressed in melanoma) has
previously been identified as independent marker of metastasis in UM71

(Supplementary Fig. 4b).
Although the number of genomically sequenced CYSLTR2 mutant

UM samples may be underpowered for unbiased discovery analyses, we
speculated that the number may be sufficient for focused exploration of
genes that could potentially activate FAK- > YAP signaling. We first ana-
lyzedUMpatient data inTCGAusing cBioPortal53,54. A gene ontology (GO)
analysis72–74 of the list of genes mutated in these CYSLTR2mutant patients
using the Reactome Knowledgebase75 yielded a statistically significant
enrichment of the axon guidance pathway (Fig. 7a, Supplementary Fig. 4c).
Inspection of the genes revealed a statistically significant enrichment of
mutations in the semaphorin/plexin signaling family in UM patients with
CYSLTR2 L129Q mutations (Fig. 7b). Semaphorins are membrane-bound
or diffusible ligands that signal through the plexin receptors and were ori-
ginally identified as important in axon guidance and angiogenesis but have
more recently been implicated in several aspects of cell-cell communication,
cancer76 and FAK activation77–79. Previous work has identified that BAP1
loss in UM can lead to significant deregulation of axon guidance pathways,
including several semaphorin/plexin genes80 and another study identified
several semaphorin genes as differentially expressed in melanocytes
expressingGNAQQ209L81. Thus, therewere some reasons to speculate that
the observed mutations in the semaphorin/plexin pathway may be pro-
viding the hypothesized contribution to FAKactivation. Importantly,UM is
relatively unique among malignancies that impact adults in that there are
typically a very low number of coding mutations. Thus, there were few co-
occurring mutations within the CYSLTR2 mutant cancers (between 5 and
19 coding mutations per sample), intuitively reducing the chance that the
enrichment of semaphorin/plexin mutations in CYSLTR2 mutant UM
relative toGNAQ/GNA11mutantUMwas a false discovery. Our analysis of
co-occurring BAP1 monosomy or mutation as a covariate found no

significant correlation with CYSLTR2 mutations and BAP1 monosomy/
mutation.

To prospectively test whether this observed enrichment of mutations
existed in other available datasets, we found and analyzed additional UM
genomics data82. Of note, these data included two additional patients with
CYSLTR2L129Qmutations andboth samples have codingmutations in the
semaphorin/plexin pathway (Fig. 7b). Thus, a total of 4/5 patients with
CYSLTR2 L129Q mutations from TCGA and ref. 82 have at least one co-
occurring mutation in the semaphorin/plexin signaling family. Analysis of
the observed semaphorin/plexin mutations observed in TCGA and ref. 82
with PolyPhen283 revealed two of the mutations (PLXNA4 T642I and
PLXNA4 R1626Q) were predicted to be damaging while two mutations
(PLXND1 Q657H and SEMA7A E183K) were predicted to be benign. The
observedmutations inPLXNA4 andPLXND1 inTCGAare found in similar
domains of the respective proteins (Supplementary Fig. 4d). We also
observed a statistically significant difference in disease-specific survival in
UMpatientswith low expressionofPLXNB1 andPLXNA1mRNAandhigh
expression of PLXNC1 and SEMA4D mRNA, thus providing additional
circumstantial evidence that plexin/semaphorin signaling has a role in uveal
melanoma (Supplementary Fig. 5a). There are several reports in the lit-
erature of the tumor suppressor effects of semaphorin/plexin signaling in
cutaneous melanoma84–86. Thus, although a role for semaphorin/plexin
signaling in uveal melanomagenesis has only been briefly mentioned in the
literature80,81, our analysis finds a variety of suggestive data.

Treatment of GNAQmutant uveal melanoma cells with FAK
inhibitors further suggests a role for semaphorin/plexin
signaling in UM
FAK inhibitors are being evaluated for use inUM50,87.We hypothesized that
the semaphorin/plexin pathway may play a role in the response to FAKi
targeted therapy in the UM context. To experimentally test this hypothesis,
we continually passaged GNAQmutant UM 92.1 cells in either 100 nM of
the selective FAK inhibitor VS-4718 or DMSO control for 21 days (Fig. 7c).
At this dose, there is a strong suppression of signaling (Supplementary
Fig. 5b) but little to no suppression of proliferation (Supplementary Fig. 5c).
We hypothesized that there may be compensatory changes in semaphorin
and/or plexin genes that counteract the targeting of FAK to maintain pro-
liferation at thesemodest dosesof FAK inhibitor. To evaluate, we performed
RNA-sequencingon samples collected at 0, 3, 7, 14, and 21days.Differential
expression analysis revealed that several of the semaphorin/plexin genes
were significantly up or downregulated in response to continued FAK
inhibitor treatment compared to DMSO control, with 3/29 or 10.34% of
these genes significantly upregulated on all 4 days of sample collection
(Fig. 7d). In comparison, the background rate of genes significantly up or
downregulated on all 4 days of sample collection was 0.21%. A GO analysis
of the 36 genes that were significantly up or downregulated on all 4 days of
sample collection revealed that the semaphorin-plexin signaling pathway
was the most significantly enriched GO term and that all of the GO terms
that were significantly enriched contained SEMA6A and SEMA6D (Fig. 7e).
The patterns of expression for each semaphorin/plexin gene in response to
FAK inhibitor treatment can be seen in Supplementary Fig. 5d.

Discussion
In this study, we investigated whether biochemical-mechanism based
mathematicalmodels of critical oncogenic signaling networks could be used
to help open new areas for research into mechanisms of disease.

We here found this to be the case: the model-based analysis first
revealed that pathogenic and mutually exclusive GNAQ/11 and CYSLTR2
mutations are not functionally equivalent.We found that although the dual-
activation of ERK and YAP pathways that is essential for UM can be gen-
erated by a canonicalGNAQmutation, a pathogenic CYSTLR2mutation is
only able to strongly activate the ERK pathway and may require an addi-
tional, co-occurring event to activate the YAP pathway. The lack of equiv-
alency was first suggested by our mathematical modeling, tested and
confirmed experimentally, and then evaluated with genomic and
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transcriptomic analyses. This new understanding uncovered the potential
mechanism that CYSLTR2 mutant UM use to activate the YAP pathway:
deregulation of the semaphorin/plexin pathway.

There are reports of various semaphorin/plexin mutations in the
context of cutaneousmelanoma and other cancers88,89. However, a role
for semaphorin and plexin signaling in UM does not have extensive

prior evidence. Our mathematical modeling led us to uncover sig-
naling differences between oncogenic Gαq and oncogenic CysLT2R,
which we then experimentally confirmed. We more generally hypo-
thesize that there may be signaling differences for PLCB4 mutant
melanoma and for other mutant forms of GNAQ/11 and of CYSLTR2.
Additional characterization of signaling by other mutants found in
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UM appears to be an important area for more experimental investi-
gation that our model-based study has motivated.

Our hypothesis that secondary, compensating mutations are required
for CYSLTR2mutant UM provides a potential explanation for the relative
scarcity ofUMpatientswithCYSLTR2L129Qmutations. If bothGαq/11 and
CysLT2R mutations behaved exactly the same in terms of signaling acti-
vation, they might be expected to occur in more even proportion in UM
patients. On the other hand, if CYSLTR2 L129Q mutant tumors need a
second compensating mutation to become fully oncogenic, it is logical that
theywould be rarer. An important test of our hypothesis in the futurewill be
if the enrichment of semaphorin/plexin mutations we identified for
CYSLTR2 mutant UM patients is confirmed as more patient samples are
sequenced. Of note, there was one additional UM patient sample90 that
harbors aCYSLTR2L129Qmutation and that is not in either of the datasets
mentionedpreviously. This patientwas identified to have aPLXND1 coding
mutation90, but upon our re-analysis of the raw data we determined that the
mutation was intronic. While we cannot easily determine the meaning of
this mutation, it is at the very least an intriguing coincidence, and could
potentially be functional91,92. Another area of future exploration suggested
by this model-driven study is additional sequencing of UM patients, spe-
cifically to evaluate co-occurrence of plexin and semaphorin gene muta-
tions. Biochemical and biophysical characterization of plexin and
semaphorin gene mutations is another emerging area for future study, as
motivated by this study.

The enrichment of plexin and semaphorin mutations in CYSLTR2
mutant UM patients and evidence of survival differences based on gene
expression make a strong case that plexin and semaphorin proteins play a
role in uveal melanoma. As this is a large family with related, but diverging,
roles, a more thorough characterization of the different plexins and sema-
phorin proteins in uveal melanoma, including context-specific function,
cross-talk, and feedback would provide important information that is
needed to more fully interpret experimental data and could potentially
identify new therapeutic strategies.

Our computational analyses reveal that the effectorbindingpropertiesof
theGαqmutant and the rate constant forGAP-stimulated hydrolysis of Gαq-
boundGTPbyPLCβare critical forourmathematicalmodel to reproduce the
experimentally observed activation patterns. This result was not intuitive to
experimental biologists working in the field or to computational biologists
working on the model. That the behavior of the system depends upon the
specific parameters of the model further highlights that it is not possible to
simply look at a model schematic and infer model outcomes. However, once
an empirical observation ismade and parameters of themodel are found that
reproduce the empirical observations, the model may facilitate the develop-
ment of an intuitive understanding of the system behavior. In this study, we
experimentally found that CysLT2R L129Q is impaired at activating TRIO/
YAP signaling relative to Gαq/11 and does not seem to be impaired at acti-
vating PLCβ/ERK. This was the opposite of the computational inference that
resulted from using our initial parameter estimates.

Our revised parameter estimates are consistent with the experimental
observations and consideration of how parameters needed to change to
match the observations does help produce an intuitive understanding of the
system. The observed behavior of the two mutants, and the parameter
changes,may be intuitively understood as follows: (a) our initial estimate for
PLCβ-mediated hydrolysis of active, GTP-bound,WTGαq/11 was too large,
resulting in a profound inhibition of PLCβ (and thereby ERK) activation
even when CysLT2R L129Q was driving WT Gαq/11 activation. Corre-
spondingly, alternative parameter sets where the value of PLCβ-mediated
hydrolysis of active, GTP-bound, WT Gαq/11 was smaller than the original
estimate were more likely to result in activation of PLCβ/ERK. The other
parameters that needed to be updated for the model to be more consistent
with empirical observations involved the association rate constants between
mutant Gαq/11 with its two effectors, TRIO and PLCβ. If Gαq/11 Q209L has
similar affinity for TRIO as WT Gαq/11, and if both Gαq/11 Q209L and
CysLT2R L129Q induce similar total levels of GTP-bound Gαq/11 (i.e., WT
andmutant combined), then one would expect Gαq/11 Q209L and CysLT2R

L129Q to bind TRIO and activate YAP/TAZ signaling similarly. However,
the experiments found that CysLT2R L129Q was impaired at activating
YAP/TAZ signaling. Our updated parameters therefore assume an elevated
association rate constant for Gαq/11 Q209L binding to TRIO so that the
model better matches the experimental observation.

Our finding that CysLT2R L129Q is not impaired at activating ERK
suggests that the PLCβ isoforms present in uveal melanoma catalyze
hydrolysis to amoremodest extent.A considerationof experimental reports
of these parameters can help evaluate the potential validity of this inference.
For our initial parameterization, we chose the rate constant for GAP
mediated hydrolysis by PLCβ based on one study that reported the rate
constant for GAP mediated hydrolysis of PLCβ was up to 1000-fold faster
than basal hydrolysis for PLCβ151. Other isoforms in other studies are
reported to have a wide range of rate constants93. The rate constant for GAP
mediated hydrolysis of PLCβ in ourmodel can be thought of as an aggregate
effect from all the PLCβ isoforms present. It should also be noted that the
binding of Gαq to PLCβ has been reported to exhibit anomalous affinity94

and theremay bemore complex activationmechanisms that are beyond the
scope of our current model.

We highlight several important qualifiers for our parameter sets. Our
initial parameter estimates represented reasonable first estimates based on
the literature, such as what one would use when initiating a new study. Our
revised parameter estimates are an updated set that is more consistent with
the experimental observations, but is not formally fit or optimized. If and
when parameters are formally fit to a model, it is common for there to be
many alternative parameter sets that can reproduce the behavior of a
system95. We could therefore have potentially identified a completely dif-
ferent alternative parameter set that would have been effectively equally
consistent with the behaviors we would like the model to match. Therefore,
our updatedparameters shouldnot be interpreted as improved estimates for
the underlying biochemical parameter. As another way to state this, in our
computational analysis we kept the equilibrium dissociation constants for
protein-protein interactions constant and only allowed the association rate
constant to vary. Had we instead varied the dissociation rate constant while
keeping the equilibrium dissociation constant fixed, we would have esti-
mated changes to dissociation rates thatwould yield the sameoverall change
in equilibrium dissociation constant. Overall, many other alternative
parameterizations could have been found. Future studies could attempt to
better constrain parameters, and these overall results highlight a thorough
biochemical characterization of PLCβ as an important area for future
research in the study of UM molecular pathogenesis. Additionally, the
empirical observation of CysLT2R L129Q is not impaired at activating ERK
but is relatively impairedat FAKactivation further suggests thatGαq/11 has a
bias for binding to PLCβ relative to TRIO; this is another model-based
inference that can be pursued in subsequent experimental work.

Lastly, it should also be noted that there are several possible future
extensions to the model that could complement any future experimental
studies. As an example, explicitly including components of the semaphorin/
plexin pathway in themodel could help explore possiblemechanisms of co-
activation with the CysLT2R L129Q mutant receptor. Although several
aspects of semaphorin and plexin signaling have been investigated with
computational and mathematical models96–100 biochemical-mechanism
based mathematical models do not appear to have heavily utilized with
respect to investigations of signaling from plexins through its downstream
effectors. Mathematical models that investigate cross-talk between Gαq/11
and semaphorin/plexin signaling could potentially be enlightening; for
example, a simple model may help estimate how much plexin-driven FAK
activation would be needed in combination with a CysLT2R L129Qmutant
to achieve a total signal comparable towhat aGαqQ209Lwould induce.We
envision this as an area where mathematical modeling could be particularly
useful. Other potential modeling directions include explicitly modeling
downstream from PLCβ and TRIO, as well as expanding the characteriza-
tion of PLCβ to investigate pathogenic PLCβmutations.

One challenge in the development of a mechanistic model is the
identification of the appropriate parameter values. For example, even
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though GPCR and G-protein signaling has been extensively studied, the
characterization of fundamental rate constants for reactions and for
mutants is an ongoing area of research44,101–104. Thus, publishedmechanistic
models that focus on GPCR signaling and downstream G-proteins must
estimate and approximate parameter values. In contrast, the RAS GTPases
(HRAS/NRAS/KRAS)have been verywell studied at the level of component
reactions, including for several oncogenicmutations14,15,105. This has enabled
the development ofmathematical models of RAS signaling that can directly
incorporate these experimental data as parameters7,106,107. These models of
RAS have been useful for understanding why pathogenic mutations are
activating, for inferring new aspects of cancer genetics, and for under-
standing mutation-specific treatment responses. However, it has been
unclear whether biochemically detailed mechanistic models can also add a
meaningful contribution to studies of pathogenic mutations when the
chemical-kinetic properties of the pathway and mutations are far less
thoroughly quantified. Our work here demonstrates that this approach can
still catalyze progress and uncover previously unknown features of a system.
It is worth noting that mutations in the CYSLTR2/GNAQ/GNA11/PLCB4
signaling pathway have been identified in other malignancies such as blue
nevi108,109 and tumors of the central nervous system110–113, and somatic
GNAQmutations are known to cause the congenital disorder Sturge-Weber
syndrome67. Looking forward, our mathematical model could be applicable
to these cases as well.

This study highlights how model-based inference can help break new
ground through the re-analysis of existing data to suggest new ideas that can
be tested with focused, hypothesis-driven, experiments. We refer to this
approach as MAGPIE (Model Assisted Generation of Predictions and
Interpretation of Experimental data) (Fig. 8). The value of this approach can

be better understood if one considers why some of these observations were
not previouslymade. For example, although our analysis relies upon readily
available genomic data, previous analyses of these data did not identify the
co-occurrence of semaphorin/plexin pathway mutations in CYSLTR2
mutant UM43,114. This is likely because a relatively small number of UM
patient samples have received exome-level sequencing; only 106 cases are
currently listed in cBioPortal. Of those, 97 have GNAQ/GNA11mutations
and nine do not. This is an extremely small dataset, and a non-focused
analysis that considers all pathways is unlikely to yield meaningful results.
Our mechanistic mathematical modeling led to experimental discoveries,
which in turn suggested very focused analyses of the limited genomic data.
In thismanner,wewere able touncover anewaspect ofUMbiology thatwas
featured in the available data (biochemical, biophysical, and genomic) but
that may not have been detected without an integrated, mechanistic
approach to evaluate the pathway. It should be noted that there are several
prominent examples in the literature utilizing the combination of
mechanistic modeling and data-driven approaches to generate insight into
diverse biological systems115,116.

Our work highlights the power of integrating multiple computational
and bioinformatics methods with experimental and genomic biology. Such
integrated studies that iteratively alternate between (new or existing)
experimental data andmathematical and computational analyses have great
potential for elucidating unknown aspects of cancer biology. For example,
the integration of additional datasets to generate novel, evidence-based,
hypotheses can allow for focused queries of genomic datawhere the signal of
a biologically important process can be better uncovered than through an
unbiased, all-hypotheses considered query of genomic data. Our ability to
extract new insights intoUM, a rare cancerwith a small number of cases that

Fig. 8 | MAGPIE—Model-assisted generation of predictions and integration of
experimental data. This work demonstrates how an integrated approach involving
mechanistic modeling, bioinformatic analysis, and experimental approaches can

uncover new directions and aid in our understanding of cancer biology. The figure
was created by illustrator Amy Cao with express permission to use.
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have been sequenced, by focusing on an even smaller number of cases attests
to the power of these integrated approaches as a tool for moving forward
when vast datasets are not available and mechanism agnostic big data
approaches cannot be utilized.

Methods
Mathematical model
A description of the mechanistic mathematical model of oncogenic Gα
signaling presented here can be found in the main text and the explicit
reactions, rate constants, protein abundances, and relevant references canbe
found in the supplement. Our model is a set of ODEs that we solve
numerically using Python (RRID:SCR_008394). The global sensitivity
analysis presented in Fig. 4c of themain text was performed using the SALib
Python library117. Code that allows all computational results and figures to
be reproduced is provided in the form of a Python notebook at https://
github.com/StitesLab/GNAQ_model. A PDF that shows the executed
Python notebook with outputs is also included for convenience.

Cell line models and culture method
HEK 293T cells were grown in DMEM supplemented with fetal bovine
serum (FBS) (10%), penicillin (100 U/ml), and streptomycin (100 μg/ml).
92.1 UM cells (RRID:CVCL_8607) were grown in RPMImedia containing
10% FBS (Atlanta Biologicals) and 1% penicillin/streptomycin (Corning).

Expression plasmid transfection
HEK 293T cells were plated in a 6-well plate in DMEM supplemented with
10% FBS, penicillin (100 U/ml), and streptomycin (100 μg/ml) 24 h before
transfection. The following day, cells were transfected with expression
plasmids with duplex containing 0.25 μg of DNA, 250 μl of optimem, and
10 μl of Lipofectamine 2000 per well. All constructs were provided by the
Gutkind lab and mutations were verified by sequencing in the Stites lab.
Cells were harvested 24 h after transfection.

Western blot analysis
Cell lysates were generated using Lysis buffer (Thermo Fisher Scien-
tific, 1862301) containing protease inhibitor cocktail (Cell Signaling
Technology) and incubated on ice for 1 h, with brief vortexing every
5 min. The total protein concentration was determined by Pierce
Protein assay (Thermo Fisher Scientific). Protein samples were
resolved by electrophoresis on 12% SDS–polyacrylamide gels and
electrophoretically transferred to polyvinylidene difluoride (PVDF)
membranes (Millipore Corporation) for 20 min at 25 Vwith the trans-
blot turbo (Bio-Rad Laboratories). The blots were probed with the
appropriate primary antibody and the appropriate fluorophore-
conjugated secondary antibody. The protein bands were visualized
using the Licor CLx Odyssey imaging station (Licor Biosystems)
(RRID:SCR_014579). Comparative changes weremeasuredwith Licor
Image Studio software from independent experiments. The antibodies
used are: anti-phospho-Thr202/Tyr204-ERK1/2 (BioLegend, catalog
#675502) (RRID:AB_2565604) (1:1000 dilution); anti-phospho-
Ser127-YAP (Cell Signaling Technology, catalog #4911) (RRI-
D:AB_2218913) (1:1000 dilution); anti-phospho-Tyr397-FAK (Cell
Signaling Technology, catalog #8556) (RRID:AB_10891442) (1:1000
dilution);anti-GNAQ (Cell Signaling Technology, catalog #14373)
(RRID:AB_2665457) (1:1000 dilution); anti-GAPDH (Santa Cruz
Biotechnology, catalog #47724) (RRID:AB_627678). Multiple blots
were run in parallel from the same lysates. Uncropped blots are pro-
vided as a source data file within the supplementary methods.

Bioinformatic analysis of somatic mutations in patient samples
To calculate the probability of the observed enrichment of sema-
phorin/plexin family mutations in TCGA (RRID:SCR_003193) and
ref. 82 cited in the main text occurring by chance, we explicitly cal-
culated the number of ways of having the observed number of co-
mutations divided by the total number of ways of distributing the

mutations at random as follows in Eq. 1:

enrichment probability ¼ N � kð Þ!
x � kð Þ! y � k

� �
! N þ k� x � y
� �

!

ðNk Þ
ðNx ÞðNy Þ

ð1Þ

Where N = total number of patients (80 for TCGA, 103 for ref. 82), k =
number of co-mutations (2 for TCGA, 2 for ref. 82), x = total number of
CYSLTR2 mutations (3 for TCGA, 2 for ref. 82) and y = total number of
semaphorin/plexin mutations (4 for TCGA, 11 for ref. 82). We also
independently confirmed this expression via Monte Carlo simulation. This
value describes the probability of observing this enrichment ofmutations by
chance for the givennumber ofmutations and patients. All other analysis of
patient data presented in Supplementary Fig. 4 was performed using
cBioPortal (RRID:SCR_014555)53,54.

Bulk RNA-sequencing analysis
HEK293Tcellswere transfected as described above andharvested36 h after
transfection. RNA was isolated using miRNeasy (QIAGEN) and mRNA
sequencing libraries were prepared according to manufacturer’s protocol
using RNA using Illumina TruSeq Stranded mRNA library preparation kit
(Illumina). Three independent biological replicates were obtained for
transfections, lysates, and RNA preparation. Raw reads from bulk RNA-
sequencing were trimmed with Trim Galore (RRID:SCR_011847)
v0.4.4_dev (https://www.bioinformatics.babraham.ac.uk/projects/trim_
galore/) and quality-checked with FastQC v0.11.8 (RRID:SCR_014583)
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Trimmed
reads were then aligned to the hg38 human reference genome with STAR
aligner v2.5.3a118 (RRID:SCR_004463), and converted to gene counts with
the analyzeRepeats.pl script in HOMER119 (RRID:SCR_010881). Differ-
ential expression: Gene counts were normalized and queried for differential
expression usingDESeq2 v1.30.0120 (RRID:SCR_015687). For each pairwise
comparison, genes with fewer than 20 total raw counts across all samples
were discarded prior to normalization, and genes with an absolute log2-
foldchange > 1 and an FDR-corrected p ≤ 0.05 were pulled as significant.
Functional Enrichment: Genes were queried for treatment-specific func-
tional enrichment using over-representation analysis (ORA) and gene set
enrichment analysis (GSEA) in WebGestaltR v0.4.4121. Differentially
expressed genes in each pairwise comparison were queried against the
biological process ontology with ORA, while pairwise GSEAs were used to
query pathway gene sets from KEGG (RRID:SCR_012773) (https://www.
genome.jp/kegg/pathway.html), and MSigDB (http://www.gsea-msigdb.
org/gsea/msigdb/collections.jsp).

Cancer cell drug adaptation assay
92.1 UM cells were treated with either 100 nM of the FAKi VS-4718 (pro-
vided by theGutkind lab) orDMSO for a period of 21 days. Treatments and
media were refreshed every 72 h. Cells were plated for each condition in
triplicate, and three biological replicates of the complete experiment were
performed. RNA was isolated using E.Z.N.A. Total RNA kit I (Omega) at
intervals of 0, 3, 7, 14, and 21 days. mRNA sequencing libraries were pre-
pared according to manufacturer’s protocol using RNA using Illumina
TruSeq Stranded mRNA library preparation kit (Illumina).

Data availability
All information needed to reproduce the model are included in the Sup-
plementary Information. RNAseq data from the experiments new to this
manuscript are available from the Gene Expression Omnibus (GEO) with
accession numbers GSE267152 and GSE267153. A Python notebook that
includes all of the information needed to reproduce themodel is available at
https://github.com/StitesLab/GNAQ_model. A PDF version is also inclu-
ded to facilitate review, in case one does not have Python installed.

https://doi.org/10.1038/s41540-024-00400-1 Article

npj Systems Biology and Applications |           (2024) 10:75 13

https://github.com/StitesLab/GNAQ_model
https://github.com/StitesLab/GNAQ_model
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp
http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp
https://github.com/StitesLab/GNAQ_model


Received: 12 July 2023; Accepted: 27 June 2024;

References
1. Perou, C. M. et al. Molecular portraits of human breast tumours.

Nature 406, 747–752 (2000).
2. Shipp,M. A. et al. Diffuse largeB-cell lymphoma outcomeprediction

by gene-expression profiling and supervised machine learning.Nat.
Med. 8, 68–74 (2002).

3. Beroukhim, R. et al. Assessing the significance of chromosomal
aberrations in cancer:methodology and application to glioma.Proc.
Natl Acad. Sci. USA 104, 20007–20012 (2007).

4. Cancer Genome Atlas Research. The cancer genome atlas pan-
cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

5. Alexandrov, L. B. et al. Signatures ofmutational processes in human
cancer. Nature 500, 415–421 (2013).

6. Marty, R. et al. MHC-I genotype restricts the oncogenic mutational
landscape. Cell 171, 1272–1283.e1215 (2017).

7. Stites, E. C., Trampont, P. C., Ma, Z. & Ravichandran, K. S. Network
analysis of oncogenic Ras activation in cancer. Science 318,
463–467 (2007).

8. Stites, E. C., Trampont, P. C., Haney, L. B., Walk, S. F. &
Ravichandran, K. S. Cooperation between noncanonical Ras
network mutations. Cell Rep. 10, 307–316 (2015).

9. Stites, E. C. & Shaw, A. S. Quantitative systems pharmacology
analysis of KRAS G12C covalent inhibitors. CPT Pharmacomet.
Syst. Pharm. 7, 342–351 (2018).

10. McFall, T. et al. A systems mechanism for KRAS mutant allele-
specific responses to targeted therapy. Sci. Signal. 12,
eaaw8288 (2019).

11. McFall, T., Schomburg, N. K., Rossman, K. L. & Stites, E. C.
Discernment between candidate mechanisms for KRAS G13D
colorectal cancer sensitivity to EGFR inhibitors. Cell Commun.
Signal. 18, 179 (2020).

12. McFall, T. & Stites, E. C. Identification of RASmutant biomarkers for
EGFR inhibitor sensitivity using a systems biochemical approach.
Cell Rep. 37, 110096 (2021).

13. McFall, T. et al. Co-targeting KRAS G12C and EGFR reduces both
mutant and wild-type RAS-GTP. NPJ Precis. Oncol. 6, 86 (2022).

14. Wey, M., Lee, J., Jeong, S. S., Kim, J. & Heo, J. Kinetic mechanisms
ofmutation-dependentHarveyRasactivation and their relevance for
the development of Costello syndrome. Biochemistry 52,
8465–8479 (2013).

15. Hunter, J. C. et al. Biochemical and structural analysis of common
cancer-associated KRAS mutations.Mol. Cancer Res. 13,
1325–1335 (2015).

16. Donovan, S., Shannon, K. M. & Bollag, G. GTPase activating
proteins: critical regulators of intracellular signaling. Biochim.
Biophys. Acta 1602, 23–45 (2002).

17. Stites, E. C. & Ravichandran, K. S. Mechanistic modeling to
investigate signaling by oncogenic Ras mutants.Wiley Interdiscip.
Rev. Syst. Biol. Med. 4, 117–127 (2012).

18. Stites,E.C.&Ravichandran,K.S.Mathematical investigationof how
oncogenic ras mutants promote ras signaling.Methods Mol. Biol.
880, 69–85 (2012).

19. Stites, E. C. Chemical kineticmechanisticmodels to investigate cancer
biology and impact cancer medicine. Phys. Biol. 10, 026004 (2013).

20. McFall, T. & Stites, E. C. A mechanism for the response of
KRAS(G13D) expressing colorectal cancers to EGFR inhibitors.Mol.
Cell Oncol. 7, 1701914 (2020).

21. Markevich, N. I. et al. Signal processing at the Ras circuit: what
shapes Ras activation patterns? Syst. Biol. 1, 104–113 (2004).

22. Kiel, C. & Serrano, L. Cell type-specific importance of ras-c-raf
complex association rate constants for MAPK signaling.Sci. Signal.
2, ra38 (2009).

23. Wolf, J., Dronov, S., Tobin, F. & Goryanin, I. The impact of the
regulatory design on the response of epidermal growth factor
receptor-mediated signal transduction towards oncogenic
mutations. FEBS J. 274, 5505–5517 (2007).

24. Saucerman, J. J., Healy, S.N., Belik,M. E., Puglisi, J. L. &McCulloch,
A. D. Proarrhythmic consequences of a KCNQ1 AKAP-binding
domain mutation: computational models of whole cells and
heterogeneous tissue. Circ. Res. 95, 1216–1224 (2004).

25. Lew, E. D., Furdui, C. M., Anderson, K. S. & Schlessinger, J. The
precise sequenceof FGF receptor autophosphorylation is kinetically
driven and is disrupted by oncogenic mutations. Sci. Signal. 2,
ra6 (2009).

26. Yeung, E. et al. Inferenceofmultisite phosphorylation rate constants
and their modulation by pathogenic mutations. Curr. Biol. 30,
877–882.e876 (2020).

27. Zewde, N. &Morikis, D. A computational model for the evaluation of
complement system regulation under homeostasis, disease, and
drug intervention. PLoS ONE 13, e0198644 (2018).

28. Kraikivski, P., Chen, K. C., Laomettachit, T., Murali, T. M. & Tyson, J.
J. From START to FINISH: computational analysis of cell cycle
control in budding yeast. NPJ Syst. Biol. Appl. 1, 15016 (2015).

29. Benary, U., Kofahl, B., Hecht, A. & Wolf, J. Modeling Wnt/beta-
catenin target gene expression in APC andWnt gradients under wild
type and mutant conditions. Front Physiol. 4, 21 (2013).

30. Mitchell, S., Tsui, R., Tan, Z. C., Pack, A. & Hoffmann, A. The NF-
kappaB multidimer system model: a knowledge base to explore
diverse biological contexts. Sci. Signal. 16, eabo2838 (2023).

31. Basak, S. et al. A fourth IkappaB protein within the NF-kappaB
signaling module. Cell 128, 369–381 (2007).

32. Chen, J., Yue, H. & Ouyang, Q. Correlation between oncogenic
mutations and parameter sensitivity of the apoptosis pathway
model. PLoS Comput. Biol. 10, e1003451 (2014).

33. Benedict, K. F. et al. Systems analysis of small signaling modules
relevant to eight human diseases. Ann. Biomed. Eng. 39,
621–635 (2011).

34. Krantz,B. A., Dave,N., Komatsubara, K.M.,Marr, B. P. &Carvajal, R.
D. Uveal melanoma: epidemiology, etiology, and treatment of
primary disease. Clin. Ophthalmol. 11, 279–289 (2017).

35. Takasaki, J. et al. A novel Galphaq/11-selective inhibitor. J. Biol.
Chem. 279, 47438–47445 (2004).

36. Schrage, R. et al. The experimental power of FR900359 to studyGq-
regulated biological processes. Nat. Commun. 6, 10156 (2015).

37. Onken, M. D. et al. Targeting nucleotide exchange to inhibit
constitutively active G protein alpha subunits in cancer cells. Sci.
Signal. 11, eaao6852 (2018).

38. Annala, S. et al. Direct targeting of Galpha(q) and Galpha(11)
oncoproteins in cancer cells. Sci. Signal. 12, eaau5948 (2019).

39. Yang, J., Manson, D. K., Marr, B. P. & Carvajal, R. D. Treatment of
uveal melanoma: where are we now? Ther. Adv. Med. Oncol. 10,
1758834018757175 (2018).

40. Jenkins, R. W. & Fisher, D. E. Treatment of advanced melanoma in
2020 and beyond. J. Investig. Dermatol. 141, 23–31 (2021).

41. Nathan, P. et al. Overall survival benefit with tebentafusp in
metastatic uvealmelanoma.N.Engl. J.Med.385, 1196–1206 (2021).

42. Oldham,W.M. &Hamm,H. E. Heterotrimeric G protein activation by
G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9,
60–71 (2008).

43. Robertson, A. G. et al. Integrative analysis identifies four molecular
and clinical subsets in uveal melanoma. Cancer Cell 32,
204–220.e215 (2017).

44. Maziarz,M. et al. Atypical activation of theGproteinGalpha(q) by the
oncogenic mutation Q209P. J. Biol. Chem. 293,
19586–19599 (2018).

45. Linderman, J. J. Modeling of G-protein-coupled receptor signaling
pathways. J. Biol. Chem. 284, 5427–5431 (2009).

https://doi.org/10.1038/s41540-024-00400-1 Article

npj Systems Biology and Applications |           (2024) 10:75 14



46. Turcotte, M., Tang, W. & Ross, E. M. Coordinate regulation of G
protein signaling via dynamic interactions of receptor and GAP.
PLoS Comput. Biol. 4, e1000148 (2008).

47. Katanaev, V. L. & Chornomorets, M. Kinetic diversity in G-protein-
coupled receptor signalling. Biochem. J. 401, 485–495 (2007).

48. Feng, X. et al. Hippo-independent activation of YAP by the GNAQ
uveal melanoma oncogene through a trio-regulated rho GTPase
signaling circuitry. Cancer Cell 25, 831–845 (2014).

49. Feng, X. et al. A platform of synthetic lethal gene interaction
networks reveals that theGNAQuvealmelanomaoncogenecontrols
the hippo pathway through FAK. Cancer Cell 35,
457–472.e455 (2019).

50. Carvajal, R. D. et al. Advances in the clinical management of uveal
melanoma. Nat. Rev. Clin. Oncol. 20, 99–115 (2023).

51. Mukhopadhyay, S. & Ross, E. M. Rapid GTP binding and hydrolysis
byG(q) promotedby receptor andGTPase-activatingproteins.Proc.
Natl Acad. Sci. USA 96, 9539–9544 (1999).

52. Wingler, L.M. et al. Angiotensin analogswith divergent bias stabilize
distinct receptor conformations. Cell 176, 468–478.e411 (2019).

53. Gao, J. et al. Integrative analysis of complex cancer genomics and
clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

54. Cerami, E. et al. The cBio cancer genomics portal: an open platform
for exploring multidimensional cancer genomics data. Cancer
Discov. 2, 401–404 (2012).

55. Patt, J. et al. An experimental strategy to probe Gq contribution to
signal transduction in living cells. J. Biol. Chem. 296, 100472 (2021).

56. Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-
Ras(G12C) inhibitors allosterically control GTP affinity and effector
interactions. Nature 503, 548–551 (2013).

57. Lito, P., Solomon,M., Li, L. S., Hansen,R. &Rosen,N. Allele-specific
inhibitors inactivate mutant KRAS G12C by a trapping mechanism.
Science 351, 604–608 (2016).

58. Skoulidis, F. et al. Sotorasib for lung cancers with KRAS p.G12C
mutation. N. Engl. J. Med. 384, 2371–2381 (2021).

59. Ma, J., Weng, L., Bastian, B. C. & Chen, X. Functional characterization
of uveal melanoma oncogenes. Oncogene 40, 806–820 (2021).

60. Chidiac, P. & Ross, E. M. Phospholipase C-beta1 directly
acceleratesGTP hydrolysis byGalphaq and acceleration is inhibited
byGbeta gamma subunits. J. Biol. Chem. 274, 19639–19643 (1999).

61. Moore, A. R. et al. Recurrent activating mutations of G-protein-
coupled receptor CYSLTR2 in uveal melanoma. Nat. Genet. 48,
675–680 (2016).

62. Nell, R. J. et al. Involvement ofmutant andwild-typeCYSLTR2 in the
development and progression of uveal nevi and melanoma. BMC
Cancer 21, 164 (2021).

63. Johansson, P. et al. Deep sequencing of uvealmelanoma identifies a
recurrent mutation in PLCB4. Oncotarget 7, 4624–4631 (2016).

64. Moore, A. R. et al. GNA11Q209Lmousemodel reveals RasGRP3 as
an essential signaling node in uveal melanoma. Cell Rep. 22,
2455–2468 (2018).

65. Slater, K. et al. Evaluation of oncogenic cysteinyl leukotriene
receptor 2 as a therapeutic target for uveal melanoma. Cancer
Metastasis Rev. 37, 335–345 (2018).

66. Ceraudo, E. et al. Direct evidence that the GPCR CysLTR2 mutant
causative of uveal melanoma is constitutively active with highly
biased signaling. J. Biol. Chem. 296, 100163 (2021).

67. Shirley, M. D. et al. Sturge-Weber syndrome and port-wine stains
caused by somatic mutation in GNAQ. N. Engl. J. Med. 368,
1971–1979 (2013).

68. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles.
Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

69. Mootha, V. K. et al. PGC-1alpha-responsive genes involved in
oxidativephosphorylation are coordinatelydownregulated in human
diabetes. Nat. Genet. 34, 267–273 (2003).

70. Cordenonsi,M. et al. TheHippo transducer TAZconfers cancer stem
cell-related traits on breast cancer cells. Cell 147, 759–772 (2011).

71. Field, M. G. et al. PRAME as an Independent Biomarker for
Metastasis in Uveal Melanoma. Clin. Cancer Res. 22,
1234–1242 (2016).

72. Gene Ontology, C. The Gene Ontology resource: enriching a GOld
mine. Nucleic Acids Res. 49, D325–D334 (2021).

73. Ashburner, M. et al. Gene ontology: tool for the unification of
biology. The Gene Ontology Consortium. Nat. Genet. 25,
25–29 (2000).

74. Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D.
PANTHER version 14: more genomes, a new PANTHER GO-slim
and improvements in enrichment analysis tools. Nucleic Acids Res.
47, D419–D426 (2019).

75. Jassal, B. et al. The reactome pathway knowledgebase. Nucleic
Acids Res. 48, D498–D503 (2020).

76. Worzfeld, T. & Offermanns, S. Semaphorins and plexins as
therapeutic targets. Nat. Rev. Drug Discov. 13, 603–621 (2014).

77. Sakurai, A. et al. Semaphorin 3E initiates antiangiogenic signaling
through plexin D1 by regulating Arf6 and R-Ras.Mol. Cell Biol. 30,
3086–3098 (2010).

78. Ng, T. et al. Class 3 semaphorin mediates dendrite growth in adult
newborn neurons through Cdk5/FAK pathway. PLoS One 8,
e65572 (2013).

79. Bechara, A. et al. FAK-MAPK-dependent adhesion disassembly
downstream of L1 contributes to semaphorin3A-induced collapse.
EMBO J. 27, 1549–1562 (2008).

80. Field, M. G. et al. BAP1 loss is associated with DNA methylomic
repatterning in highly aggressive class 2 uveal melanomas. Clin.
Cancer Res. 25, 5663–5673 (2019).

81. Urtatiz, O., Haage, A., Tanentzapf, G. & Van Raamsdonk, C. D.
Crosstalk with keratinocytes causes GNAQ oncogene specificity in
melanoma. Elife 10, e71825 (2021).

82. Johansson, P. A. et al. Whole genome landscapes of uveal
melanoma show an ultraviolet radiation signature in iris tumours.
Nat. Commun. 11, 2408 (2020).

83. Adzhubei, I. A. et al. A method and server for predicting damaging
missense mutations. Nat. Methods 7, 248–249 (2010).

84. Argast, G. M. et al. Plexin B1 is repressed by oncogenic B-Raf
signaling and functions as a tumor suppressor in melanoma cells.
Oncogene 28, 2697–2709 (2009).

85. Chakraborty, G., Kumar, S., Mishra, R., Patil, T. V. & Kundu, G. C.
Semaphorin 3A suppresses tumor growth and metastasis in mice
melanoma model. PLoS ONE 7, e33633 (2012).

86. Stevens, L. et al. Plexin B1 suppresses c-Met inmelanoma: a role for
plexin B1 as a tumor-suppressor protein through regulation of
c-Met. J. Investig. Dermatol. 130, 1636–1645 (2010).

87. Paradis, J. S. et al. Synthetic lethal screens reveal cotargeting FAK
and MEK as a multimodal precision therapy for GNAQ-driven uveal
melanoma. Clin. Cancer Res. 27, 3190–3200 (2021).

88. Wong, O. G. et al. Plexin-B1mutations in prostate cancer.Proc. Natl
Acad. Sci. USA 104, 19040–19045 (2007).

89. Balakrishnan, A. et al. Molecular profiling of the “plexinome” in
melanoma and pancreatic cancer. Hum. Mutat. 30,
1167–1174 (2009).

90. Martin, M. et al. Exome sequencing identifies recurrent somatic
mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3.
Nat. Genet. 45, 933–936 (2013).

91. Diederichs, S. et al. The dark matter of the cancer genome:
aberrations in regulatory elements, untranslated regions, splice
sites, non-coding RNA and synonymous mutations. EMBO Mol.
Med. 8, 442–457 (2016).

92. Jung, H., Lee, K. S. & Choi, J. K. Comprehensive characterisation of
intronic mis-splicing mutations in human cancers. Oncogene 40,
1347–1361 (2021).

https://doi.org/10.1038/s41540-024-00400-1 Article

npj Systems Biology and Applications |           (2024) 10:75 15



93. Lyon, A. M. & Tesmer, J. J. Structural insights into phospholipase
C-beta function.Mol. Pharm. 84, 488–500 (2013).

94. Navaratnarajah, P., Gershenson, A. & Ross, E. M. The binding of
activated Galpha(q) to phospholipase C-beta exhibits anomalous
affinity. J. Biol. Chem. 292, 16787–16801 (2017).

95. Gutenkunst, R. N. et al. Universally sloppy parameter sensitivities in
systems biology models. PLoS Comput. Biol. 3, 1871–1878 (2007).

96. Bender, R. J. & Mac Gabhann, F. Dysregulation of the vascular
endothelial growth factor andsemaphorin ligand-receptor families in
prostate cancer metastasis. BMC Syst. Biol. 9, 55 (2015).

97. Zhang, L., Polyansky, A. & Buck, M. Modeling transmembrane
domain dimers/trimers of plexin receptors: implications for
mechanisms of signal transmission across the membrane. PLoS
ONE 10, e0121513 (2015).

98. Calmelet, C., Madamanchi, A. & Zutter, M. Multiscale coupled
modeling of Plexin-D1 and notch signaling in retinal sprouting
angiogenesis. J. Coupled Syst. Multiscale Dyn. 5, 1–17 (2017).

99. Tanaka, T. et al. Hybrid in vitro/in silico analysis of low-affinity
protein-protein interactions that regulate signal transduction by
Sema6D. Protein Sci. 31, e4452 (2022).

100. Sakumura, Y., Tsukada, Y., Yamamoto, N. & Ishii, S. A molecular
model for axon guidancebased on cross talk between rhoGTPases.
Biophys. J. 89, 812–822 (2005).

101. Hu, Q. & Shokat, K. M. Disease-causing mutations in the G protein
Galphas subvert the roles of GDP and GTP. Cell 173,
1254–1264.e1211 (2018).

102. Chen, Q. et al. Structures of rhodopsin in complex with G-protein-
coupled receptor kinase 1. Nature 595, 600–605 (2021).

103. Masuho, I. et al. A global map of G protein signaling regulation by
RGS proteins. Cell 183, 503–521.e519 (2020).

104. Inoue, A. et al. Illuminating G-protein-coupling selectivity of GPCRs.
Cell 177, 1933–1947.e1925 (2019).

105. Gremer, L. et al. Germline KRAS mutations cause aberrant
biochemical and physical properties leading to developmental
disorders. Hum. Mutat. 32, 33–43 (2011).

106. Kiel, C. & Serrano, L. Structure-energy-based predictions and
network modelling of RASopathy and cancer missense mutations.
Mol. Syst. Biol. 10, 727 (2014).

107. Gillies, T. E. et al. Oncogenic mutant RAS signaling activity is
rescaled by the ERK/MAPK pathway.Mol. Syst. Biol. 16,
e9518 (2020).

108. Moller, I. et al. Activating cysteinyl leukotriene receptor 2 (CYSLTR2)
mutations in blue nevi.Mod. Pathol. 30, 350–356 (2017).

109. Goto, K., Pissaloux, D., Paindavoine, S., Tirode, F. & de la
Fouchardiere, A. CYSLTR2-mutant Cutaneous melanocytic
neoplasms frequently simulate “pigmented epithelioid
melanocytoma,” expanding the morphologic spectrum of blue
tumors: a clinicopathologic studyof 7 cases.Am. J. Surg. Pathol.43,
1368–1376 (2019).

110. van de Nes, J. et al. Targeted next generation sequencing reveals
uniquemutation profile of primarymelanocytic tumors of the central
nervous system. J. Neurooncol. 127, 435–444 (2016).

111. Kusters-Vandevelde, H. V. N. et al. Whole-exome sequencing of a
meningeal melanocytic tumour reveals activating CYSLTR2 and
EIF1AX hotspot mutations and similarities to uveal melanoma.Brain
Tumor Pathol. 35, 127–130 (2018).

112. van deNes, J. A. P. et al. ActivatingCYSLTR2 andPLCB4mutations
in primary leptomeningeal melanocytic tumors. J. Investig.
Dermatol. 137, 2033–2035 (2017).

113. Zhou, J. et al. Somatic mutations of GNA11 and GNAQ in CTNNB1-
mutant aldosterone-producing adenomas presenting in puberty,
pregnancy or menopause. Nat. Genet. 53, 1360–1372 (2021).

114. Akin-Bali, D. F. Bioinformatics analysis of GNAQ, GNA11, BAP1,
SF3B1,SRSF2, EIF1AX, PLCB4, and CYSLTR2 genes and their role
in the pathogenesis of uveal melanoma. Ophthalmic Genet. 42,
732–743 (2021).

115. Yang, J. H. et al. A white-box machine learning approach for
revealing antibiotic mechanisms of action. Cell 177,
1649–1661.e1649 (2019).

116. AlQuraishi, M. & Sorger, P. K. Differentiable biology: using deep
learning for biophysics-based and data-driven modeling of
molecular mechanisms. Nat. Methods 18, 1169–1180 (2021).

117. Herman, J. & Usher, W. SALib: an open-source Python library for
sensitivity analysis. J. Open Source Softw. 2, 97 (2017).

118. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner.
Bioinformatics 29, 15–21 (2013).

119. Heinz, S. et al. Simple combinations of lineage-determining
transcription factors prime cis-regulatory elements required for
macrophage and B cell identities.Mol. Cell 38, 576–589 (2010).

120. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome
Biol. 15, 550 (2014).

121. Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z. & Zhang, B. WebGestalt
2019: gene set analysis toolkit with revampedUIs and APIs.Nucleic
Acids Res. 47, W199–W205 (2019).

Acknowledgements
Wewould like to thank Nasun Hah and themembers of the Next Generation
Sequencing (NGS) Core at Salk, Ling Huang, and the Razavi Newman
Integrative Genomics and Bioinformatics (IGC) Core, and Amy Cao. We
would also like to thank all members of the Stites lab for helpful comments
and advice, in particular Thomas McFall and Jianfeng Huang for offering
helpful experimental design suggestions, and GauravMendiratta for helpful
discussions on statistical analysis. This work was supported by NIH
T32CA009370 (M.T.), NIH DP2AT011327 (E.C.S.), the Melanoma Research
Alliance Young Investigator Award (E.C.S.), the Conrad Prebys Foundation
(E.C.S.), by the Razavi Newman Integrative Genomics and Bioinformatics
and the NGS Core Facility of the Salk Institute with funding from NIH-NCI
CCSG: P30 014195, the Chapman Foundation, and the Helmsley Chari-
table Trust.

Author contributions
Conceptualization: M.Tr., E.C.S.; Performed computational analysis: M.Tr.,
K.L.; M.To.,M.B. Performedexperimental analysis:M.Tr., N.K., K.A.;Writing
—original draft: M.Tr., E.C.S.; Writing—review and editing: M.Tr., K.A., N.A.,
M.To., M.B., J.S.G., E.C.S.; Resources: M.B., J.S.G., E.C.S.; Supervision:
J.S.G., E.C.S.; Funding acquisition: E.C.S.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41540-024-00400-1.

Correspondence and requests for materials should be addressed to
Edward C. Stites.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/s41540-024-00400-1 Article

npj Systems Biology and Applications |           (2024) 10:75 16

https://doi.org/10.1038/s41540-024-00400-1
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s41540-024-00400-1 Article

npj Systems Biology and Applications |           (2024) 10:75 17

http://creativecommons.org/licenses/by/4.0/

	Systems modeling of oncogenic G-protein and GPCR signaling reveals unexpected differences in downstream pathway activation
	Results
	Development of a mechanistic mathematical model of oncogenic GPCR-pathway signaling in UM
	The mathematical model reproduces key signaling outputs for different modeled disease genotypes
	The mathematical model reproduces unanticipated responses to pharmacological G-protein inhibition
	Mathematical model illuminates unknown differences in downstream signal activation between mutant Gαq and mutant CysLT2R
	Experiments reveal that while oncogenic GNAQ can activate ERK and YAP signaling, oncogenic CYSLTR2 can only strongly activate ERK
	Iterative evaluation and adjustment of model parameters based on the new experimental data
	Bioinformatic analysis of patient data reveals CYSLTR2 mutations co-occur with semaphorin/plexin gene mutations
	Treatment of GNAQ mutant uveal melanoma cells with FAK inhibitors further suggests a role for semaphorin/plexin signaling in UM

	Discussion
	Methods
	Mathematical model
	Cell line models and culture method
	Expression plasmid transfection
	Western blot analysis
	Bioinformatic analysis of somatic mutations in patient samples
	Bulk RNA-sequencing analysis
	Cancer cell drug adaptation assay

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




