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ABSTRACT Obstructive sleep apnea (OSA), characterized by intermittent hypoxia and
hypercapnia (IHC), affects the composition of the gut microbiome and metabolome. The
gut microbiome has diurnal oscillations that play a crucial role in regulating circadian
and overall metabolic homeostasis. Thus, we hypothesized that IHC adversely alters the
gut luminal dynamics of key microbial families and metabolites. The objective of this
study was to determine the diurnal dynamics of the fecal microbiome and metabolome
of Apoe2/2 mice after a week of IHC exposure. Individually housed, 10-week-old Apoe2/2

mice on an atherogenic diet were split into two groups. One group was exposed to daily
IHC conditions for 10h (Zeitgeber time 2 [ZT2] to ZT12), while the other was maintained
in room air. Six days after the initiation of the IHC conditions, fecal samples were col-
lected every 4h for 24h (6 time points). We performed 16S rRNA gene amplicon
sequencing and untargeted liquid chromatography-mass spectrometry (LC-MS) to assess
changes in the microbiome and metabolome. IHC induced global changes in the cyclical
dynamics of the gut microbiome and metabolome. Ruminococcaceae, Lachnospiraceae,
S24-7, and Verrucomicrobiaceae had the greatest shifts in their diurnal oscillations. In the
metabolome, bile acids, glycerolipids (phosphocholines and phosphoethanolamines), and
acylcarnitines were greatly affected. Multi-omic analysis of these results demonstrated
that Ruminococcaceae and tauro-b-muricholic acid (TbMCA) cooccur and are associated
with IHC conditions and that Coriobacteriaceae and chenodeoxycholic acid (CDCA) cooc-
cur and are associated with control conditions. IHC significantly change the diurnal dy-
namics of the fecal microbiome and metabolome, increasing members and metabolites
that are proinflammatory and proatherogenic while decreasing protective ones.

IMPORTANCE People with obstructive sleep apnea are at a higher risk of high blood
pressure, type 2 diabetes, cardiac arrhythmias, stroke, and sudden cardiac death. We
wanted to understand whether the gut microbiome changes induced by obstructive
sleep apnea could potentially explain some of these medical problems. By collecting
stool from a mouse model of this disease at multiple time points during the day, we
studied how obstructive sleep apnea changed the day-night patterns of microbes
and metabolites of the gut. Since the oscillations of the gut microbiome play a cru-
cial role in regulating metabolism, changes in these oscillations can explain why
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these patients can develop so many metabolic problems. We found changes in mi-
crobial families and metabolites that regulate many metabolic pathways contributing
to the increased risk for heart disease seen in patients with obstructive sleep apnea.

KEYWORDS circadian rhythm, metabolome, microbiome, animal models of human
disease, atherosclerosis, computational biology

Obstructive sleep apnea (OSA) is a major risk factor for cardiovascular disease
(CVD), including metabolic syndrome, insulin resistance, cardiac arrhythmias, and

atherosclerosis (1). The mechanism(s) of how OSA, or its characteristic components,
intermittent hypoxia and hypercapnia (IHC), increases CVD risks is poorly understood,
but disruption of circadian rhythms has long been suspected (2–4). The dyssynchrony
between central and peripheral clock machineries could explain why IHC is able to dis-
rupt so many different physiological systems simultaneously (5–7). OSA can affect the
central circadian clock through sleep fragmentation and increased sympathetic tone.
However, how OSA affects the agents that entrain peripheral circadian clocks is poorly
understood.

Hepatic and intestinal circadian rhythms are entrained by feeding/fasting cycles
and the gut microbiome (7, 8). The gut microbiome is necessary for the maintenance
of ileal and hepatic circadian clocks and their synchrony with central circadian rhythms
(9, 10). Moreover, the gut microbiome itself has cyclical fluctuations that are necessary
for metabolic homeostasis (9–15). Microbially produced compounds, such as short-
chain fatty acids (SCFAs) (16) as well as deconjugated and secondary bile acids (17),
link the luminal environment with host hepatic and ileal circadian rhythms (8). Given
that peripheral circadian rhythms regulate circulating lipids (18), hematopoietic stem
cells (19), vascular smooth muscle function, sympathetic tone, and blood pressure (20,
21), OSA-induced changes to the gut microbiome could aggravate multiple physiologi-
cal systems that promote atherosclerosis through their disruption. Moreover, disrupted
circadian luminal dynamics can affect gut microniches and promote the growth of bac-
teria that are proinflammatory (e.g., Ruminococcaceae [22]) and hinder those that may
be protective against CVD (e.g., Akkermansia [23]). Disruption of microbiome rhythms
can also increase systemic inflammation through disruption of the gut barrier function
(24). Thus, the effect of IHC on luminal diurnal dynamics can improve our understand-
ing of how OSA increases CVD risks.

Prolonged IHC exposure in atherosclerotic mouse models results in the faster devel-
opment and increased extent of atherosclerotic lesions, making them the preferred
animal models of OSA. Interestingly, IHC exposure also alters the composition of the
gut microbiome and fecal metabolome in both apolipoprotein E knockout (Apoe2/2)
and low-density lipoprotein (LDL) receptor knockout (Ldlr2/2) mice on atherogenic
diets (25, 26), findings that go beyond what is observed in these mice alone (27, 28).
Moreover, the fecal metabolomic changes observed in these mice included metabo-
lites known to affect atherosclerosis, including trimethylamine (TMA), deconjugated
and secondary bile acids, fatty acids, and phytoestrogens (25, 26, 29). However, some
of these luminal metabolites have diurnal fluctuations and are differentially absorbed
based on the enterocyte circadian clock (30, 31). Characterizing the time resolution of
these changes would further our understanding of how luminal content could contrib-
ute to dysmetabolism and atherosclerosis.

To focus solely on the effects of IHC conditions on the diurnal dynamics of the gut
microbiome and metabolome, we maintained consistent genotype (Apoe2/2) and die-
tary conditions (atherogenic diet) between groups. We wanted to evaluate whether
atherogenic gut luminal changes persist through a 24-h period or only during certain
windows of time. Overall, this study tests the hypothesis that IHC disrupts the diurnal
rhythms of the gut microbiome and metabolome, which may promote a proinflamma-
tory luminal environment.
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RESULTS
IHC change the composition of the gut microbiome. To determine the early

effects of OSA on the gut microbiome, we used the atherosclerosis-prone Apoe2/2 mu-
rine model and exposed half of the cohort to IHC conditions, while control mice were
exposed to room air. Since mice were individually housed for the experiment, cage
effects were not a confounding variable. Our analysis revealed a large overlap in the
sub-operational taxonomic units (sOTUs) (Fig. 1A), with 183 sOTUs in common
between the two groups. These shared sOTUs comprised 56% of the total air sOTUs
and 69% of the total IHC sOTUs. The air control group tended to have more sOTUs
than the IHC group (P=0.053 by a Mann-Whitney U test) (see Fig. S1A in the supple-
mental material). In addition, mice under the air conditions had overall higher Faith’s
phylogenetic a-diversity than mice under the IHC conditions (P=0.040 by a Kruskal-
Wallis test) (Fig. S1B). This finding is especially true for Zeitgeber time 18 [ZT18], where
a-diversity values diverged the most between the two groups (P=0.015 by a Mann-
Whitney U test). Gut microbiome biodiversity, such as that measured by Faith’s phylo-
genetic diversity, has previously been used as a surrogate measure of microbial com-
munity health (32).

Weighted UniFrac distances, a measure of b-diversity, were significantly different
between the two groups across all time points (Fig. 1B; Fig. S1C) (pseudo-F, 6.776;
P=0.002 by permutational multivariate analysis of variance [PERMANOVA]) (33). Analysis
of these b-diversity distances demonstrates that the microbiome composition of the IHC
in the dark period became more similar to that of the air controls during the light period
(Fig. 1B and C). Compositional analysis showed that Verrucomicrobiaceae, Lachnospiraceae,
and S24-7 were the top three most prevalent taxa of the microbiome under both condi-
tions across all time points (Fig. 1D). Family S24-7 (“Homeothermaceae” is one of the cur-
rently proposed names) is a relatively new family in the phylum Bacteroidetes, thought to
be involved in carbohydrate metabolism, among other functions (34). To determine
whether IHC disrupted the diurnal dynamics of the luminal environment, we determined
the proportion of bacterial families that had diurnal oscillation in their abundance
(P, 0.05) (35). Compared to control mice, the mice under the IHC conditions had about
two-thirds as many bacterial families (air, 13%; IHC, 8%) that had diurnal oscillations
(Fig. S1D), and these families accounted for fewer reads (Fig. S1E). See Table S3 in the

FIG 1 IHC affects the cyclical dynamics of the gut microbiome. (A) Venn diagram of unique nonzero detected sOTUs
in each cohort overall. Purple indicates sOTUs in common. (B) Weighted UniFrac (beta diversity) PCoA of samples.
Shading represents different time points as indicated. (C) Weighted UniFrac PCoA of only axis 1 over time. The solid
lines indicate the average for the group, and the dotted lines indicate individual mice. (D) Proportional-abundance
representation of the top 5 microbial families. Control samples exposed only to normal air conditions are in red (n= 4;
5 to 6 time points per mouse). Experimental samples exposed to IHC conditions are in blue (n= 4; 5 to 6 time points
per mouse).
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supplemental material for a full breakdown of changes in oscillation at the sOTU level.
Thus, IHC caused a significant change in luminal dynamics over the course of 24 h. This
shift in luminal dynamics is characterized by a decrease in overall cycling, wherein the
dark-period microbial composition in IHC is more similar to that of the light period in con-
trol mice. We did not see significant changes in rhythmicity (36).

IHC exposure results in diurnal disruption of the gut microbiome. To examine
the effects of IHC on the diurnal dynamics of the microbiome in more detail, we exam-
ined individual taxa over time. IHC induced dynamic changes in the composition of
the microbiome that were easily detectable at the phylum level (Fig. S2A to C). There
was no detectable cyclical fluctuation in the Bacteroidetes phylum (Fig. S2A). Under the
control conditions, Firmicutes had cyclical fluctuations with a peak in the late light pe-
riod (Fig. S2B), and Verrucomicrobia had cyclical fluctuations with a peak in the late
dark period (Fig. S2C). The phylum Verrucomicrobia contains only the sOTU for
Akkermansia muciniphila. However, under IHC conditions, Firmicutes lost, and
Bacteroidetes gained, cyclical oscillation (Fig. S2A and B). Cyclical oscillation was main-
tained in Verrucomicrobia under the IHC conditions (Fig. S2C). However, the relative
abundances of this phylum were significantly higher in the air controls during both
light and dark periods (Fig. S2C).

Next, we analyzed the cyclical dynamics of Ruminococcaceae and Lachnospiraceae,
two bacterial families in the Firmicutes phylum that have been associated with athero-
sclerosis formation (22). Both Ruminococcaceae (Fig. S2D) and Lachnospiraceae
(Fig. S2E) have cyclical oscillations in the control mice that are perturbed under the IHC
conditions. S24-7, a bacterial family in the Bacteroidetes phylum, was the only one that
had more robust cycling under the IHC conditions than it did under the control condi-
tions (Fig. S2F). In particular, S24-7 abundances increased significantly during the time
of IHC exposure, where they were 2- to 3-fold higher than what was measured under
the control conditions. In contrast, peak differences in the relative abundances of
Lachnospiraceae occurred during the dark period, where abundances were approxi-
mately 2-fold higher under the IHC conditions. Overall, IHC perturbed the cyclical dy-
namics of the bacterial families that can affect the atherosclerosis phenotype.

IHC change the composition of the fecal metabolome. An overview of the fecal
metabolome, analyzed using untargeted liquid chromatography-tandem mass spec-
trometry (LC-MS/MS), shows significant separation between groups (pseudo-F, 5.410;
P, 0.001 by PERMANOVA) (33) (Fig. 2A; Fig. S3A). Axis 2 (10.9%), which represents an
amount of variability in the data nearly similar to that of axis 1 (12.2%), shows a clearer
separation between groups over time (Fig. 2B). Overall, the IHC conditions led to an
increase in the relative amounts of fecal bile acids (;35%) as well as glycerolipids such
as phosphoethanolamines (;57%) and phosphocholines (;26%) (Fig. 2C). The cyclical
dynamics of these individual metabolites, which have been implicated in atherosclero-
sis, were significantly affected by IHC exposure (Fig. 2D and E; Fig. S3B) A list of all
annotated metabolites can be found in Table S2 in the supplemental material.

Subclass analysis of the fecal metabolites demonstrated that time was an important
factor in metabolomic differences. For example, the greatest differences in bile acids
between IHC-conditioned mice and air controls occurred in the dark period (Fig. 2D),
except for ursodeoxycholic acid (UDCA), which demonstrated the greatest changes
during the light period. Phosphocholines, phosphoethanolamines, and acylcarnitines,
metabolites that play an important role in atherosclerosis, are also altered under the
IHC conditions (37–42). IHC resulted in comparatively high levels of phosphocholines
(Fig. 2C and E) and phosphoethanolamines (Fig. 2C; Fig. S3B) during IHC exposure (i.e.,
light period) (Fig. 2E; Fig. S3B). In addition, IHC mice also had higher levels of heme
breakdown derivatives, stercobilin and urobilin, during the dark period (Fig. S3B),
which may be an indication of altered liver metabolism (43). Overall, fecal IHC induced
global changes in fecal metabolomics, particularly in secondary metabolites that are
known to contribute to inflammation and atherosclerosis.

Diurnal dynamics of the fecal metabolome are altered under IHC conditions.
We performed a more detailed analysis of the effects of IHC on the diurnal dynamics of
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the luminal metabolites that are presumed to either exacerbate or protect against ath-
erosclerosis, affect circadian rhythms, or influence metabolic homeostasis. Bile acids
are some of the key metabolites that can influence peripheral circadian rhythms, host
metabolism, and atherosclerosis (44). Deoxycholic acid (DCA), a proinflammatory sec-
ondary bile acid (45), had diurnal oscillations under the IHC conditions but not under
the control conditions (air, P=1.000; IHC, P=0.002) (Fig. S4A). The relative abundance
of DCA was higher under IHC conditions than under control conditions at all time
points but especially during the dark period (P=0.001) (Fig. S4A). Tauro-b-muricholic
acid (TbMCA), known to contribute to the development of atherosclerosis through far-
nesoid X receptor (FXR) antagonism (46–48), had overall higher relative abundances in
mice under IHC conditions (Fig. S4B). Significantly high levels of TbMCA were observed

FIG 2 IHC affects the cyclical dynamics of the fecal metabolome. See Table S1 in the supplemental material for a list of the full annotations and
abbreviations of the metabolites displayed. (A) Canberra PCoA of metabolomics samples. Shading represents different time points. Significance was
determined by PERMANOVA. (B) Canberra PCoA of axis 2 over time. Solid lines indicate means for the group, and dotted lines indicate individual mice. The
yellow box indicates the time under IHC exposure for the treatment group. (C) Pie charts of key groups of metabolites, separated by condition. (D) Heat
map of level 1 bile acids, organized using hierarchical clustering based on controls. Yellow indicates the time under IHC exposure for the treatment group.
For other level 3 bile acids, see Fig. S3C. (E) Heat map of selected phosphocholines, organized using hierarchical clustering based on controls. The value of
each square of the heat map represents the mean relative abundance value for all mice under that condition for that time point. The heat maps are also
row normalized across both conditions and placed on a standard scale, referenced in the center, to allow easier comparison. # indicates a metabolite that
is also shown in Fig. 4 and Fig. S4. Air is in red (n= 4; 5 to 6 time points per mouse); IHC is in blue (n=4; 5 to 6 time points per mouse).
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in IHC-conditioned mice during the light period (P=0.019), with dark-period differen-
ces only approaching statistical significance (P=0.063). TbMCA appears to have 12-h
oscillations rather than 24-h oscillations. While proatherosclerotic TbMCA did not have
a cyclical oscillation under air or IHC conditions (air, P=0.270; IHC, P=1.000) (Fig. S4B),
antiatherosclerotic hyodeoxycholic acid (HDCA) (49, 50) displayed diurnal oscillations
under IHC but not under control conditions (air, P=1.000; IHC, P=0.002) (Fig. S4C).
Levels of anti-inflammatory UDCA (49, 51, 52) trended toward being lower in mice
under IHC conditions; however, this did not approach significance (Fig. S4D). Overall,
bile acid differences between the IHC and air conditions were far more pronounced
during the dark period (Fig. 2D). Furthermore, with increased levels of proinflammatory
and proatherosclerotic bile acids and a reduction in anti-inflammatory bile acids, IHC
conditions appear to shift the metabolome in a detrimental direction for the host.

IHC had a significant effect on the cyclical dynamics of other metabolites that are
important for atherosclerosis, such as acylcarnitines and glycerolipids, including phos-
phoethanolamines and phosphocholines (Fig. S5). High serum levels of long-chain
acylcarnitines such as palmitoylcarnitine (Fig. S5A) and oleoyl L-carnitine (Fig. S5B) can
promote inflammation and atherosclerosis (53, 54). However, fecal palmitoylcarnitine
levels are significantly lower in IHC-conditioned mice during both periods of the circa-
dian cycle (light period, P=0.013; dark period, P=0.017) (Fig. S5A). Overall levels of ole-
oyl L-carnitine, another acylcarnitine, are also reduced in IHC-conditioned mice, particu-
larly during the light period of the circadian rhythm (light period, P=0.053; dark
period, P= 0.761) (Fig. S5B). Phosphoethanolamines and phosphocholines are the main
proinflammatory glycerolipid derivatives that are absorbed into the bloodstream (55).
Fecal levels of phosphoethanolamines were generally increased in IHC-conditioned
mice, especially during the light period (Fig. 2). Levels of one such phosphoethanol-
amine, LysoPE[18:1(9Z)/0:0] [1-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine],
had robust diurnal oscillations (P, 0.001) under IHC conditions, with significantly
higher levels during the light period (P, 0.001) (Fig. S5C). In addition, overall levels of
phosphocholines were also increased in IHC-conditioned mice, especially during the
light period (Fig. 2). The levels of one phosphocholine in our study, PC(18:0/14:0) (1-
stearoyl-2-myristoyl-sn-glycero-3-phosphocholine), showed robust cycling under the
IHC conditions but not under the air conditions (air, P=1.000; IHC, P=0.002) and were
especially elevated during the light period (P=0.013) (Fig. S5D). Similar trends are seen
in other phosphocholines (Fig. S5E and F). Taken together, our results demonstrate
that IHC induces a rapid shift in the gut luminal metabolite profile.

Trans-omic analysis of the microbiome and metabolome reveals a key relationship
between Ruminococcaceae and TbMCA. Next, we assessed whether there are specific
relationships between microbial families and metabolites that are individually impli-
cated in worsening CVD. One particular challenge in performing multi-omic analysis
with microbiome data is that 16S amplicon sequencing yields sum constraint-normal-
ized data (i.e., relative abundances). Thus, this increases the probability of type I errors
in the analysis and makes measurements of false discovery rates (FDRs) difficult (56).
Relative abundance values can fluctuate significantly from study to study due to arti-
factual differences in the total number of microbial reads (i.e., total feature load). For
example, when the relative abundance of a specific bacterial family is increased, we
cannot determine if this is due to an increase in the number of bacteria within that
family or a decrease in the number of other bacteria in other families. By using log
ratios for these analyses, we remove the biases created by the total feature load and
can calculate false discovery rates using previously established methods (56, 57). Thus,
these log-ratio-based methods are more likely to result in repeatable trends in inde-
pendently performed studies.

We used a machine learning neural network to predict the probability of microbe-
metabolite interactions (mmvec [58]) as well as a multinomial logarithmic regression
differential ranking analysis (songbird [56]). This analysis created ranked log-based con-
ditional probabilities of microbe and metabolite cooccurrences and identified relation-
ships between the microbiome and metabolome data, which were then validated
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using the individual log ratios. This analysis revealed not only which microbes and
metabolites cooccur but also whether they are correlated with differences between
the IHC and control conditions.

Based on this multi-omic analysis, chenodeoxycholic acid (CDCA) and TbMCA are
the two bile acids most differentially abundant between the IHC and control condi-
tions (Fig. 3A). CDCA, which is associated with the air conditions, cooccurred with
Coriobacteriaceae (Fig. S2G), and TbMCA, which is associated with the IHC conditions,
cooccurred with Ruminococcaceae (Fig. 3A and B). Plotting the microbes and metabo-
lites identified by mmvec validated its cooccurrence status (Fig. 3A and B). The log
ratios of the top differentially cooccurring microbes and metabolites result in the sepa-
ration of the two conditions. However, further studies are necessary to determine
whether these relationships are causal. We found a significant correlation (Pearson’s
correlation coefficient, r, = 20.539; R2 = 0.29; P, 0.001) between the log ratios of the
mmvec-identified metabolites (CDCA under the control conditions and TbMCA under
the IHC conditions) and the mmvec-identified microbes (Coriobacteriaceae under the
control conditions and Ruminococcaceae under the IHC conditions) (Fig. 3C and D).
Hence, after 1 week of IHC exposure, the cyclical dynamics of the luminal environment
show significant shifts in the fecal microbiome and metabolome. The shift toward FXR

FIG 3 Microbes and metabolites with linked expression levels as determined by mmvec analysis. (A) mmvec (58) cooccurrence
analysis (y axis) based on songbird (56) multinomial regression differential ranking analysis (x axis). Bile acids generally have level 1
identifications, except for cholic acid (CA), CDCA, and murideoxycholic acid (MDCA), which are level 3 annotations. (B) Log
conditional probability heat map, organized using hierarchical clustering, with the top 4 differentially abundant microbial families
and the top differentially abundant bile acids. Pink and green boxes highlight the top 2 points with the highest correlation values.
(C) Log ratios of the top correlated microbes (x axis) and metabolites (y axis) identified in panel B. Microbial log ratios were
determined as the number of all reads from sOTUs that belong to the family Ruminococcaceae divided by the number of all reads
from sOTUs that belong to the family Coriobacteriaceae. Metabolite log ratios were determined as the raw values from CDCA
divided by the raw values of TbMCA. (D) Linear regression plot using the same log ratios as the ones in panel C, with best-fit lines
and shaded areas representing 95% confidence intervals. Log ratios are based on natural log. Control samples with exposure only to
normal air conditions are in red (n=4; 5 to 6 time points per mouse). Experimental samples exposed to IHC conditions are in blue
(n=4; 5 to 6 time points per mouse). Complete metadata can be found in Table S3 at https://doi.org/10.6084/m9.figshare.14614434.
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antagonism via TbMCA and correlated with Ruminococcaceae is correlated with the
pathophysiology of OSA-related CVD.

However, relative-abundance analyses did not show a significant difference between
IHC and control conditions in these bacterial families (Fig. S2D and G). To determine
whether total feature load differences could have biased these results, we repeated our
assessment of these two bacterial families using log ratios. For the denominator of these
log ratios, we used the family Verrucomicrobiaceae due to its ubiquity and high abundance.
As predicted by the differential ranking analysis (Fig. 3B), mice under the IHC conditions
had higher log ratios of Ruminococcaceae to Verrucomicrobiaceae, especially during the
light period (Fig. 4A). Conversely, mice under the air conditions had higher log ratios of
Coriobacteriaceae to Verrucomicrobiaceae during the light/inactive period (Fig. 4B). Log
ratios of Ruminococcaceae to Coriobacteriaceae show persistently higher levels of Rumi-
nococcaceae in mice under IHC conditions, whereas mice under control conditions have
higher relative levels of Coriobacteriaceae (Fig. 4C).

Log ratio analysis of the two most different bile acids (i.e., CDCA and TbMCA) also
showed clear differences between IHC and control mice. As predicted by the differential
ranking analysis (Fig. 3A and B), mice under the IHC conditions have far more fecal
TbMCA relative to CDCA than mice under the control conditions (Fig. 4D). Interestingly,
CDCA is an FXR agonist, while TbMCA is an FXR antagonist. FXR is a bile sensor that reg-
ulates bile acid uptake, metabolism, and excretion that can affect atherosclerosis (47).
Although the mmvec analysis did not identify UDCA, a secondary bile acid with anti-
inflammatory properties (49, 51, 52), as being associated with any specific bacterial fam-
ily or any condition, we repeated the log ratio analysis with this secondary bile acid. In
this case, mice under the IHC conditions have far more of the proatherosclerotic bile
acid TbMCA relative to UDCA than mice under the control conditions (Fig. 4E).

DISCUSSION

In this study, we demonstrate that the compositional and diurnal dynamics of the
microbiome and metabolome of atherogenic Apoe2/2 mice are significantly impacted
by IHC conditions. Despite the low number of mice used in this study (n=4), we have
found significant differences in both microbial families and metabolites at different
time points. IHC exposure leads to significant changes in diurnal oscillations of second-
ary metabolites that are key contributors to the pathogenesis of atherosclerosis. It is
currently unclear if a gain or loss of oscillations is more important for disease outcomes
based on the literature. Taken together, IHC result in circadian dyssynchrony of the gut
microbiome and metabolome, which promotes a proinflammatory luminal environ-
ment through which atherosclerosis is exacerbated. Moreover, it suggests that bile
acid signaling and disturbed peripheral circadian rhythms likely contribute to the IHC-
induced increase in cardiovascular risk.

Several studies, in both mice and humans, demonstrate the metabolic implications
of disruptions to the circadian homeostasis of the microbiome (7, 8). In humans, jet
lag-induced disruption of microbiome diurnal dynamics leads to increased adiposity in
gnotobiotic mice (10). More recently, a large-scale epidemiological study demon-
strated that circadian dyssynchrony of microbial oscillations was associated with type 2
diabetes. Moreover, these arrhythmic microbial risk signatures were highly predictive
of metabolic disease (59). Disruption of the circadian dynamics of the microbiome is a
hallmark of animal models of obesity and dysmetabolism (9–11). In this study, we
show that diurnal disruption of the gut microbiome is also a hallmark of preclinical
models of OSA. Since the gut microbiome is necessary to entrain peripheral circadian
rhythms, OSA could contribute to dysmetabolism by inducing circadian dyssynchrony.
This finding could explain why OSA can increase CVD risk across so many different
physiological systems (e.g., hypertension and insulin resistance).

Our previous work in preclinical models of OSA demonstrates that IHC induce reproduci-
ble microbiome and metabolome changes across two different mouse models of atheroscle-
rosis, Apoe2/2 and Ldlr2/2 mice (29). These luminal changes were predictive of IHC exposure
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and could be used potentially to highlight atherosclerotic risk (26). Despite measuring the
microbiome and metabolome composition only 1 week after the initiation of daily IHC inter-
vention, we found similar changes in this study. Moreover, since the study was focused
solely on OSA and the impact of IHC, we used the most well-defined model (Apoe2/2 mice
on an atherogenic diet) and determined the impact of a single factor (environmental
changes in gases) that exacerbates atherosclerosis and whether it impacts the dynamics of
the gut microbiome. Since genetics and diet were adequately controlled for under our ex-
perimental and control conditions, there is no need to disentangle their effects from the

FIG 4 Cyclical dynamics of log ratios of key microbes and metabolites. Additional selected log ratios (natural log), their cyclical
dynamics over time (double-line plots) (top), and their relative abundances grouped by cycle phase (box plots) (bottom) are
shown. (A) Log ratios of all reads from sOTUs that belong to the family Ruminococcaceae divided by all reads from sOTUs that
belong to the family Verrucomicrobiaceae. (B) Log ratios of all reads from sOTUs that belong to the family Coriobacteriaceae
divided by all reads from sOTUs that belong to the family Verrucomicrobiaceae. (C) Log ratios of all reads from sOTUs that belong
to the family Ruminococcaceae divided by all reads from sOTUs that belong to the family Coriobacteriaceae. (D) Log ratios of raw
values of CDCA divided by raw values of TbMCA, the two most differentially abundant bile acids identified in Fig. S5B in the
supplemental material. (E) Log ratios of the raw values of UDCA divided by the raw values of TbMCA. Solid lines represent the
means, and error bars indicate standard errors of the means. Individual mice are indicated by dashed lines. Shading indicates
when room lights are off (i.e., active/feeding time for the mice). Yellow squares indicate the 10 h of the day where mice under
the IHC conditions would be exposed to experimental conditions (ZT2 [after collection] until ZT12). MetaCycle with the JTK
method was used to determine cyclicity. *, P, 0.05; **, P, 0.01; ***, P, 0.001; ****, P, 0.0001 (by a Mann-Whitney-Wilcoxon
test). @ indicates diurnal oscillations as determined by MetaCycle (JTK) with a P value of ,0.05. Control samples with exposure to
only normal air conditions are in red (n= 4; 5 to 6 time points per mouse). Experimental samples exposed to IHC conditions are
in blue (n= 4; 5 to 6 time points per mouse). Error bars were not placed for time points where there were fewer than 3 log ratios
available.
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observed effects of IHC. Although the circadian impacts of genetics and diet have not yet
been investigated in the context of atherosclerosis, several studies have shown that they
impact diurnal dynamics of the gut microbiome (25–28). Experiments were performed using
best-practice guidelines to minimize maternal, founder, and cage effects (60–62). In addition,
all mice were from the same source vivarium, room, and maternal line (to minimize maternal
effects); were acclimated in shared holding cages in the vivarium (to control for founder
effects); and were then pseudorandomized into individually housed cages (to control for
cage effects).

IHC imposed microbiome compositional changes that are often observed in dysmeta-
bolic states, including changes in the diversity and abundances of specific bacterial fami-
lies. IHC-induced reduction of microbial diversity and richness occurred within 1 week of
exposure. This observation suggests that IHC make the lumen uninhabitable for many
commensal microbes, likely by changing environmental microniches. Moreover, these
changes are not restricted to only the time of exposure to IHC (i.e., light period); there are
global shifts in the gut microbiome even during the times of the day when the animal is
not being exposed to IHC. Interestingly, the dark-period microbiome of the IHC is more
similar to the light-period microbiome composition of the control mice. Importantly,
changes to the microbiome oscillations occur almost immediately, within 1 week of IHC
exposure, confirming that this change results from IHC, rather than the atherosclerotic
phenotype, which can take 10weeks to develop (25, 26, 29). Importantly, these changes
can create a lasting and profound impact on the metabolic health of the host.

Previous studies investigating diurnal cycling of the gut microbiome have used
samples collected under 24-h (9, 11, 13) and 48-h (10, 12, 63) conditions. Although in
general, it is preferable to use 48-h data for circadian studies since it reduces type I
errors, recent advances in bioinformatic tools, such as MetaCycle (35), allow rigorous
analysis of 24-h circadian data. This allows investigators to determine circadian/diurnal
cycling from more limited data while still reducing type I errors. Although these tools
were created for transcriptional data, as opposed to microbiome data, since our work
ultimately replicates and expands upon the results of previous microbiome IHC studies
(64) and is consistent with diurnal microbiome studies, these potential issues do not
significantly impact interpretation. Nevertheless, a more thorough study comparing
24-h and 48-h diurnal microbiome data is warranted to determine if MetaCycle is as ro-
bust for this type of data as it is for transcriptional data.

IHC significantly affected the diurnal dynamics of the gut microbiome. Verrucomicrobia,
Firmicutes, and Bacteroidetes, phyla that composed more than 90% of the gut microbiome,
were all affected by the IHC conditions. The relative abundances of families implicated in
atherosclerosis, Ruminococcaceae and Lachnospiraceae (22, 65), had circadian oscillations in
control mice but lost these oscillations in mice exposed to IHC conditions. In particular, the
family Lachnospiraceae, a bacterial family that has been associated with increases in proa-
therosclerotic TMA N-oxide (TMAO) and an increase in a thrombotic phenotype, was signifi-
cantly elevated in IHC mice during the dark period (66). IHC also led to the relative reduction
of Akkermansia muciniphila, the only microbe in the phylum Verrucomicrobia found in the
gut luminal environment of mammals. A. muciniphila is crucial for gut barrier integrity, which
helps prevent a proinflammatory state by impeding the translocation of luminal compounds
into the portal system (67). Replenishing these species in the microbiome of Western-diet-
fed Apoe2/2 mice resulted in a decrease in atherosclerotic lesions (68). Furthermore, IHC
induced a gain of oscillation in S24-7, a family in the Bacteroidetes phylum. This family had
significantly increased relative abundances during the light period. Some members of S24-7
contain an SpeB homolog, a cysteine protease (34), which helps these bacteria avoid detec-
tion by the immune system (34, 69) and can potentially degrade the protective biofilm pres-
ent on the surface of the mucosal layer (70). Together, the increase in S24-7 and decrease in
A. muciniphila suggest a disruption of the host mucosal layer and a breakdown of the gut
barrier function. Whether these microbiome changes are the sole cause of the IHC-induced
increase in CVD risks or exacerbators of the dysmetabolic phenotype warrants further
investigation.
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Along with changes to the gut microbiome, the IHC-conditioned metabolome was
also altered with increased levels of proinflammatory metabolites, particularly bile
acids. A comparative analysis of dark-period versus light-period fecal samples revealed
higher levels of proinflammatory and proatherosclerotic bile acids, such as DCA and
TbMCA, in IHC mice regardless of the time of collection. Moreover, atherosclerosis
studies that collect fecal pellets during the light period for metabolomics analysis may
underestimate their potential role in CVD risk associated with IHC. DCA gains circadian
oscillation in IHC mice, with the most significant changes from controls occurring dur-
ing the dark period. Elevated fecal DCA boosts overall systemic inflammation (71–73),
which in IHC may be especially problematic in the context of a potentially disrupted in-
testinal barrier. TbMCA, a naturally occurring FXR antagonist (46), was also significantly
elevated in IHC, especially during IHC exposure. There is conflicting evidence on the
role of FXR in atherosclerosis development and progression, and thus, it is possible
that these proinflammatory changes are protective as opposed to pathogenic.
However, deletion of FXR in Apoe2/2 mice results in lesion exacerbation (48), suggest-
ing that FXR antagonism with excessive TbMCA contributes to worse CVD under the
IHC conditions in our preclinical model of OSA. In addition, anti-inflammatory and anti-
atherosclerotic bile acids (e.g., UDCA) were decreased under IHC conditions.

Overall differences in bile acid levels between the IHC and control groups were more pro-
nounced during the dark period. Moreover, our trans-omic analysis (mmvec plus ranked mul-
tinomial regression), which divulges relationships between luminal microbial composition
and luminal metabolites that are related to our experimental conditions, resulted in condi-
tional probabilities with two key findings. First, the abundance of Ruminococcaceae cooccurs
with TbMCA. Many members of the Ruminococcaceae have 7a-dehydroxylation and 7b-
dehydrogenation genes that help them perform bile acid biotransformations (74, 75). In fact,
the Ruminococcaceae family is positively correlated with fecal DCA levels (76), which it likely
helps create with 7a-dehydroxylation. Increased levels of both Ruminococcaceae and
TbMCA were associated with IHC exposure, further highlighting the presence of a proinflam-
matory, proatherosclerotic environment under these conditions. Second, our trans-omic anal-
ysis found that the abundance of Coriobacteriaceae cooccurred with CDCA. Increased levels
of both Coriobacteriaceae and CDCA were associated with mice under the control conditions.
FXR agonism with CDCA protects against dyslipidemia and atherosclerosis in Apoe2/2 mice
(77). Further investigation is required to understand how CDCA and Coriobacteriaceae may
be linked. Coriobacteriaceae have been thought to have beneficial metabolic effects (78),
including resistance to obesity and liver pathologies (79).

Bile acids are not the only atherosclerosis-related metabolites that were affected by IHC.
There were also significant increases in proatherosclerotic glycerolipids, including phospho-
cholines and phosphoethanolamines, under the IHC conditions. Phosphocholines are known
to be components of LDL (“bad”) cholesterol and interact with C-reactive protein in a proin-
flammatory and proatherosclerotic manner (80–82). Increased excretion of bilirubin break-
down products, stercobilin and urobilin, under IHC conditions may be an early biomarker of
liver dysmetabolism (43). Interestingly, IHC mice had significantly decreased levels of acylcar-
nitines during both phases of the day compared to control mice. This is the only proathero-
sclerotic metabolite that we measured that was decreased under the IHC conditions. Since
changes in the microbiome suggest increased gut permeability, decreased levels of acylcar-
nitines in stool may indicate increased absorption into the serum, where they promote
inflammation and are associated with an increased risk of myocardial infarction (83), or this
may indicate that IHC-induced atherosclerosis is not driven by acylcarnitines. Future studies
will need to determine the relationship between fecal and serum acylcarnitines to help
determine if this is the case.

One of the limitations of this study is that, due to methodological constraints, we
were not able to assess the levels and diurnal oscillations of known proatherosclerotic
and anti-inflammatory small molecules, such as TMA (which is then converted to
TMAO in the liver) and SCFAs, respectively. Cyclical fluctuations in SCFAs have been
documented in control mice as well as those with dysmetabolic phenotypes, and

IHC Alter Luminal Diurnal Dynamics

May/June 2021 Volume 6 Issue 3 e00116-21 msystems.asm.org 11

https://msystems.asm.org


SCFAs can affect hepatic peripheral circadian rhythms (8). Given the extent of the IHC-
induced diurnal changes in the luminal environment, there is little doubt that these
metabolites likely fluctuate with OSA as well. Taken together, changes in the gut
microbiome oscillations and the different types of metabolites have complex patholog-
ical implications that require further investigation.

Since IHC had a remarkable influence on the oscillations of the microbiome and metabo-
lome in the luminal gut, and since IHC are composed of synchronous changes in O2 and
CO2 in opposite directions, our results in this work indicate that each specific gas change
may have an influence on the cyclicity of the gut microbiome. On the other hand, perturbed
luminal dynamics suggest altered nutrient availability. IHC may disrupt normal feeding pat-
terns, likely due to increased stress or lack of sleep in these mice. Normal feeding patterns
are essential for the maintenance of the peripheral circadian clock. Time-restricted feeding
(TRF), where a normal feeding pattern is maintained by consolidating access to food only to
the active time period, enforces central and peripheral circadian clock synchrony and pre-
vents dysmetabolic phenotypes in a number of nutritional and nonnutritional challenges to
metabolic homeostasis (7, 84–86). Whether TRF can protect against IHC-induced CVD risks is
yet to be determined. Moreover, understanding how bile acid modifications performed by
the gut microbiome modulate host metabolic mechanisms will provide valuable insight into
the pathophysiology of IHC-induced atherosclerosis. Although there is sufficient evidence
that bile acid signaling plays an important role in atherosclerosis, a better understanding of
bacterial bile acid biotransformations and their contribution to IHC-induced pathogenesis
will yield novel therapeutic targets. Since the changes in bile acids found in this study are
centered around FXR expression, future experiments should further investigate the role of
bile acid receptors (i.e., FXR and TGR5) in mediating the effects of IHC on host atherosclero-
sis. Importantly, our study clearly demonstrates the importance of considering the time of
sample collection in the experimental design, as many of the differences observed in our
study would have gone unnoticed if samples were collected at a single time point or only
during the light period.

MATERIALS ANDMETHODS
Animal model and description of IHC induction. Individually housed, 10-week-old Apoe2/2 mice

(littermates from Jackson Laboratories) were fed an irradiated regular chow diet (catalog number LB-485,
diet number 7912; Envigo Teklad) prior to the start of the experiment. Upon starting the experiment, the
mice were fed an atherogenic diet consisting of 1.25% cholesterol and 21% milk fat (4.5 kcal/g) (catalog
number TD.96121; Envigo-Teklad, Madison, WI) ad libitum. There were 8 mice in total, with 4 mice pseu-
dorandomly assigned to each of 2 groups (based on weight and acclimation cage). The vivarium was
maintained in a 12-h–12-h light-dark-cycle room at 68°F to 72°F and below 40% humidity during the study.
IHC exposure occurred as previously described (25). In brief, mice were exposed to 10h of IHC conditions
during the light period (ZT2 to -12). IHC exposure consisted of 4 min of a synchronized reduction of O2

from 21% to 8% with a synchronized elevation of CO2 from 0.5% to 8%, followed by alternating periods of
4 min of normoxia and normocapnia with 1- to 2-min ramp intervals. Control mice were kept in room air
(21% O2 and 0.5% CO2) for the duration of the experiment. The introduction of both the atherogenic diet
and IHC conditions commenced on day 0. The 1-week time point was chosen so that the mice would have
several days to adjust to the IHC chamber. We wanted to focus on early environment-induced changes,
which drive the phenotype, rather than later in phenotype development, where the effects of the dysme-
tabolic state could affect the gut microbiome composition. All animal experiments were conducted in ac-
cordance with the guidelines of the IACUC of the University of California, San Diego.

After 1 week of maintaining the mice in their relative environmental conditions, fecal samples were
collected every 4 h (ZT2, -6, -10, -14, -18, and -22) over a 24-h period. After collection, fecal samples were
immediately stored at 280°C until the end of the study. The microbiome was characterized by 16S rRNA
amplicon sequencing, and the metabolome was characterized by untargeted liquid chromatography-
tandem mass spectrometry (LC-MS/MS) in a manner consistent with those of previous studies (25, 26).

Characterization of the microbiome. DNA extraction and 16S rRNA amplicon sequencing were
done using the standard protocol for the Earth Microbiome Project (https://earthmicrobiome.org/
protocols-and-standards/) (87). In brief, DNA was extracted using the Qiagen PowerSoil DNA extraction
kit (Qiagen, Carlsbad, CA). The resulting DNA library was prepared for 16S rRNA amplicon sequencing as
described previously (87). These pooled samples were purified using a Qiagen UltraClean PCR cleanup
kit (Qiagen, Carlsbad, CA) and then sequenced on the Illumina HiSeq 2500 sequencing platform. The V4
region of the 16S rRNA gene was sequenced using the primer pair 515F-806R with Golay error-correct-
ing barcodes on the reverse primer (88).

Raw sequence data were uploaded to Qiita (89) (https://qiita.ucsd.edu/) and processed using the
Deblur (90) workflow with default parameters. There were 2,490,504 reads for 94 samples with an
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average of 28,519 reads per sample. This process generated a BIOM (91) format table that was rarefied
to a depth of 12,000 sequences/sample to control for sequencing effort. This process removed two sam-
ples from the analysis, one from air (ZT2) and one from IHC (ZT14), that had read counts similar to those
of the blanks. A rooted phylogenetic tree was inferred using the SATé-enabled phylogenetic placement
plug-in (92) using QIIME 2 (93) version 2019.10, which was used to insert 16S Deblur sub-operational tax-
onomic units (sOTUs) into Greengenes (94) 13_8 at 99%. Because it takes into account both phylogeny
and abundance, weighted UniFrac (95) distances were used for microbiome principal-coordinate analy-
sis (PCoA) plots. Overall group differences were tested using PERMANOVA (33). All sOTUs were collapsed
to the phylum and family levels for analysis and comparison because critical sOTUs that distinguish IHC
and air from each other did not identify past the family level. MetaCycle using the JTK method and cor-
rection for multiple hypotheses with Fisher’s method was applied to determine circadian/diurnal oscilla-
tory patterns (35). Rhythmicity was tested using LimoRhyde (36). A Mann-Whitney-Wilcoxon test was
used to compare groups presented in the box plots. Data were visualized using custom Python scripts
(the Python code is available at https://github.com/knightlab-analyses/circadian-ihc/).

Characterization of the metabolome. Untargeted LC-MS/MS was performed on the stool samples
for metabolomics as previously described (25). In brief, samples were prepared by adding 500ml of
50:50 methanol-H2O to all fecal samples (approximately 30 to 50mg), followed by homogenization and
centrifugation. Next, 450 ml of the resulting supernatant was transferred to a 96-well deep-well plate
and dried using centrifugal evaporation (CentriVap centrifugal vacuum concentrator; Labconco, Kansas
City, MO). Next, samples were resuspended, and samples were analyzed on a Vanquish ultrahigh-per-
formance liquid chromatography (UPLC) system coupled to a Q Exactive orbital ion trap (Thermo Fisher
Scientific, Bremen, Germany). For chromatographic separation, a C18 core shell column (Kinetex column,
50 by 2mm, 1.7-mm particle size, 100-Å pore size; Phenomenex, Torrance, CA) with a flow rate of 0.5ml/
min (solvent A, H2O–0.1% formic acid [FA]; solvent B, acetonitrile–0.1% FA) was used. Flowthrough pa-
rameters were set and run, and data were collected as previously described (25).

The raw data resulting from the method described above were converted to m/z extensible markup lan-
guage (mzXML) in centroid mode using MSConvert (part of ProteoWizard) (96). The mzXML files were cropped
using anm/z range of 75.00 to 1,000.00Da for further sample processing. Using a signal threshold of 2.0e5 and
a 0.3-s minimum peak width to remove low-quality spectra, MZmine2 (97) (http://mzmine.sourceforge.net/)
was used for feature extraction. The local minimum search algorithm was used with a minimum relative peak
height of 1% for chromatographic deconvolution. The minimum retention time range was set to 0.6 s. The
maximum peak width was set to 1min. After that, alignment of the peak lists of all samples was performed
with a retention time deviation of 10 s, and a mass tolerance of 10ppm was set for features. Next, MZmine2
(97) (version 2.37) was used to create a feature matrix file that could then be linked to the metadata. The signal
intensities of the features were normalized for subsequent analysis. Identification of molecular features was
performed using MS1-based feature detection and MS2-based molecular networking using the GNPS (98)
workflow (https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp). The actual GNPS jobs can be found at
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=9d8ee19ec2654d46a065080a0ff2290a. Using a decoy data-
base approach in GNPS, we determined that the false discovery rate (FDR) was less than 1% above a 0.6 cosine
similarity score (99). Thus, we used a cosine score of 0.65 to determine annotations. The MS/MS spectral anno-
tations were determined by using MS/MS-based spectral library matches for GNPS level 2 or 3 annotations for
all molecules (100). Bile acid standards were purchased from Cayman Chemical (Ann Arbor, MI) and analyzed
using the same LC-MS/MS method as the one described above to attain level 1 identification as defined by the
2007 Metabolomics Standards Initiative (101). The annotated frequency table was analyzed using QIIME 2 (93)
version 2019.10. Canberra distances (102), which are more sensitive to rare features than Bray-Curtis distances,
were used for metabolomic PCoA plots, and significance was tested using PERMANOVA (33). MetaCycle (35)
utilizing the JTK method was used to determine circadian/diurnal rhythmicity. A Mann-Whitney-Wilcoxon test
was used to compare groups presented in the box plots. Data were visualized using custom Python scripts
(the Python code is available at https://github.com/knightlab-analyses/circadian-ihc/).

Differential abundance and multi-omic analyses. Differential abundance analysis was performed
with songbird, which accounts for the compositional nature of microbial data and uses a multinomial regres-
sion model to estimate differential ranks (56). Optimized model parameters for the covariate of exposure treat-
ment and the interaction of time in hours were determined for the microbiome and metabolomics data (differ-
ential prior of 1.5 and learning rate of 0.001) and compared to a baseline model of 1 on the same parameters.
The model fits were compared by the Q-squared (12model coefficient of variation [CV]/baseline CV) value,
where a Q-squared value of.0 ensures a good model fit. Q-squared values of 0.14 and 0.22 were obtained for
the microbiome and metabolite data, respectively. The resulting differentials were explored and verified by log
ratios through Qurro (103). Multi-omic analyses of microbiome and metabolomics data were performed
through mmvec (microbe-metabolite vectors), a neural network method for producing log-conditional proba-
bilities of cooccurrence between microbial and metabolite features visualized as heat maps and paired latent
representations in few dimensions, which can be visualized in scatterplot or biplot ordinations (58). A high con-
ditional probability of close spatial similarity in the ordination indicates high cooccurrence between a microbe
and metabolite pair, while a negative conditional probability or a high spatial distance in the ordination indi-
cates low cooccurrence. The mmvec model parameters were optimized (batch size of 5 and learning rate of
1e23) to minimize the low cross-validation error and model likelihood. Differential cooccurrence patterns
(mmvec microbe-metabolite interactions) in relation to the exposure treatment were evaluated by correlating
the mmvec PC1 loading with respect to the songbird log fold change differential with respect to the exposure
treatment, which was significantly correlated (metabolites) (Spearman rho=0.26; P=1.23e207) (see Results).

Data availability. The EBI accession number for the microbiome is ERP110592; the MassIVE identifier
for the metabolome is MSV000084847. The Python code is available at https://github.com/knightlab
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-analyses/cir
cadian-ihc/.
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