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One-loop universality of holographic codes

Xi Dong and Donald Marolf

Department of Physics, University of California, Santa Barbara, CA 93106, USA

E-mail: xidong@ucsb.edu, marolf@ucsb.edu

Abstract: Recent work showed holographic error correcting codes to have simple

universal features at O(1/G). In particular, states of fixed Ryu-Takayanagi (RT) area

in such codes are associated with flat entanglement spectra indicating maximal en-

tanglement between appropriate subspaces. We extend such results to one-loop order

(O(1) corrections) by controlling both higher-derivative corrections to the bulk effec-

tive action and dynamical quantum fluctuations below the cutoff. This result clarifies

the relation between the bulk path integral and the quantum code, and implies that i)

simple tensor network models of holography continue to match the behavior of holo-

graphic CFTs beyond leading order in G, ii) the relation between bulk and boundary

modular Hamiltonians derived by Jafferis, Lewkowycz, Maldacena, and Suh holds as

an operator equation on the code subspace and not just in code-subspace expecta-

tion values, and iii) the code subspace is invariant under an appropriate notion of

modular flow. A final corollary requires interesting cancelations to occur in the bulk

renormalization-group flow of holographic quantum codes. Intermediate technical re-

sults include showing the Lewkowycz-Maldacena computation of RT entropy to take

the form of a Hamilton-Jacobi variation of the action with respect to boundary condi-

tions, corresponding results for higher-derivative actions, and generalizations to allow

RT surfaces with finite conical angles.
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1 Introduction

There has been much recent interest in the idea that the bulk/boundary dictionary of

AdS/CFT represents a quantum error correcting (QEC) code [1–8]. According to this

paradigm, full recovery of standard bulk physics can occur only on a ‘code subspace’

Hcode in the CFT Hilbert space HCFT. Consistent with either the firewall [9–12] or

state-dependent observables [13–18] hypotheses, the orthogonal complement of Hcode

is presumed to contain states describing generic black holes inside which at least any

given code will fail to reconstruct standard bulk physics.

The arguments [4, 5] for this paradigm are strong when one considers the more

restricted subspaces Hφ ⊂ HCFT whose bulk duals describe small quantum fluctuations

at lowest non-trivial order in the bulk Newton constant G around a given classical

solution φ. In that context, a QEC structure with code subspace Hφ follows from

the one-loop Faulkner-Lewkowycz-Maldacena relation [19]. In particular, given any
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partition of a CFT Cauchy surface into regions R and R, one obtains a code with a

property known as complementary recovery. We will review this structure in section 2

below.

It is natural to expect that such codes can be sewn together into a single code on

Hcode := ⊕φHφ. While the details of this operation remain to be understood, the recent

works [20, 21] discovered strong similarities between these codes at leading order in G.

The point here is that codes with complementary recovery are characterized by their

pattern of entanglement between appropriate factors of HCFT, and at leading order in

G Ref. [20, 21] showed this pattern to be the same in each Hφ up to unitary transforma-

tions. Specifically, at this order states of definite area for the relevant Ryu-Takayanagi

(RT) surface [22, 23] – or more generally the Hubeny-Rangamani-Takayanagi (HRT)

surface [24] – always induce density matrices on each tensor factor that are proportional

to projection operators. In other words, referring to this leading order as O(1/G) one

may say that at O(1/G) such density matrices take a universal form with a “flat” spec-

trum of eigenvalues λk, meaning that the λk are independent of k for λk 6= 0. Note

that one may equivalently say that at O(1/G) every such code involves maximal entan-

glement between subspaces of the tensor factors, or alternatively that the associated

density matrices are proportional to projection operators.

Our present work refines this result by establishing a sense in which it extends to

O(1). Since we treat bulk gravity as an effective field theory with a cut-off, there are

two different O(1) effects to consider. The first comes from higher derivative corrections

to the bulk effective action at some cut-off scale. Such corrections contain effects of

ultraviolet (UV) quantum fluctuations at energies above the cut-off that have been

integrated out. As is well known, such higher derivative terms in the action cause

the geometric entropy associated with the bulk entangling (RT or HRT) surface to

differ from A/4G by related higher derivative terms [25–28]. The second O(1) effect

comes from infrared (IR) bulk quantum fluctuations at energies below the cut-off which

remain to be integrated over in the path integral.

Though the two effects are physically related, they enter the code formalism in

qualitatively different ways. Indeed, as we discuss in section 2, it is natural to conjecture

that dynamical IR quantum fluctuations merely determine which state in the code

subspace arises from a given path integral, and thus that such fluctuations may be

completely ignored when computing certain entanglement properties of the code itself.

In effect, for such purposes one would then treat the effective action defined at the

cutoff scale as a classical variational principle. Our arguments below will verify that

this conjecture is correct.

However, it will first be necessary to deal with the higher derivative corrections to

the effective action at the cutoff scale. This is done in section 3 (with help from appen-
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dices A and B) by first reformulating the Lewkowycz-Maldacena procedure [29] for com-

puting Ryu-Takayanagi gravitational entanglement for two-derivative Einstein-Hilbert

gravity. Indeed, we show that their computation can be interpreted as a Hamilton-

Jacobi variation of an action with respect to boundary conditions, where in this case

the role of the boundary condition is played by a choice of conical defect angle δ on

the RT surface, and that the gravitational entanglement remains A/4G even on Eu-

clidean saddles with δ 6= 0. In particular, this confirms that the Lewkowycz-Maldacena

procedure is a direct generalization of the Carlip-Teitelboim approach to black hole en-

tropy [30] to cases that break the U(1) symmetry of [30]. Further extending this result

to arbitrary higher derivative actions allows one to repeat the arguments of [21] and

show that treating the effective action as a classical variational principle would again

yield density matrices proportional to projectors for states of fixed geometric entropy

σ = A/4G+ (higher derivative corrections).

It then remains to properly address the dynamical IR quantum fluctuations. We

do so in section 4 by considering states |ψ〉σ of fixed geometric entropy and tracing

them over R to define density matrices ρR. Taking the tensor product with the identity

operator 1R on R yields an operator ρR ⊗ 1R on HCFT. Using the results from section

3, for |ψ〉σ ∈ Hφ we show ρR ⊗ 1R to preserve an appropriately defined Hφ. It then

follows immediately that density matrices on R defined by the code itself must again

be proportional to projection operators. The universal flat entanglement spectrum of

the code itself is thus maintained at one-loop order, even though generic encoded states

no longer have flat entanglement. A corollary is confirmation of the above-mentioned

conjecture that dynamical IR quantum fluctuations merely determine which state in the

code subspace arises from a given path integral and that properties of the code itself

are determined by treating the cutoff-scale effective action as a classical variational

principle.

We conclude in section 5 with discussion focusing on implications for the renor-

malization group (RG) flow of holographic quantum codes and for the relation between

bulk and boundary modular Hamiltonians derived by Jafferis, Lewkowycz, Maldacena,

and Suh (JLMS) [31]. In the former context, our result implies precise cancelations

between a number of different effects. In the latter context, it shows that their relation

holds as an operator statement on each Hφ and not just in code-subspace expectation

values (see discussion in [4] and [21]). Although the structure of QEC with complemen-

tary recovery is expected to break down beyond one-loop order, many of our arguments

nevertheless remain valid more generally and must thus constrain any structure that

remains.
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2 Review of holographic quantum codes

It is useful to briefly review the role of quantum error correcting codes in holography.

Our discussion largely follows that of [21], which is in turn based on [1, 4, 5]. However,

since higher derivative corrections play a key role in the remainder of this work, we take

care to emphasize the relation to bulk effective field theory concepts and, in particular,

the evolution of the code under bulk renormalization-group flow. Such issues were also

mentioned in [19–21], but we wish to place them front and center.

As in the introduction, we focus on subspaces Hφ ⊂ HCFT whose bulk duals de-

scribe small quantum fluctuations at lowest non-trivial order in the bulk Newton con-

stant G around a given classical solution φ. Given any partition of a CFT Cauchy

surface into regions R and R and the associated RT/HRT-surface γR in the bulk space-

time, one may define the corresponding bulk entanglement wedges W (W ) [32–34] as

the bulk domain of dependence of any achronal bulk surface whose boundary is R∪ γR
(R∪ γR). States in Hφ then must obey a Faulkner-Lewkowycz-Maldacena (FLM) rela-

tion

S(ρR) = Tr (ρWLR) + SW (ρW ), (2.1)

where ρR is the CFT density matrix obtained by tracing over R and ρW is the den-

sity matrix describing bulk quantum fields in W . The operator LR is localized on the

RT/HRT-surface γR and takes the form A[γR]/(4G) + . . . where . . . represents appro-

priate higher derivative corrections. The entropy S(ρR) is computed as usual in the

CFT, but SW (ρW ) is the entropy of the bulk state ρW defined as a linear functional

on a von Neumann algebra MW of operators in W . The operator LR is an element of

MW , and by interchanging R and R it turns out also an element of the algebra MW on

W . As a result, LR commutes with all operators in MW and thus lies in the center of

MW . Note that MW is the commutant of MW in the algebra of bulk fields, and that

MW is also the commutant of MW .

A key point for our work below is that Ref. [19] derived (2.1) using the bulk path

integral, and in particular treated the bulk as an effective field theory. One should

thus understand [19] to rely on having a bulk effective action valid at locally-measured

energies below some bulk cutoff scale Λ. In particular, the operator LR is determined

by applying the Lewkowycz-Maldacena procedure [29] to this effective action and so

also depends on Λ; see [25–28] for treatments of higher derivative corrections. We will

discuss this procedure in more detail in section 3, but for now we note that, although

dynamical fluctuations below the cutoff Λ contribute to the expectation value of LR
in (2.1), the procedure determining the form of LR is entirely classical and makes no

reference to these fluctuations. As a result, the expression for LR is precisely given by

the classical geometric entropy defined by the effective action at the scale Λ.

– 4 –



Due to our high energy cutoff, we assume that we can treat our bulk theory in

parallel with quantum mechanics on a finite-dimensional Hilbert space – perhaps by

imposing further cutoffs as well. In that context it follows that any action of a von

Neumann algebra MW on a Hilbert space Hφ allows one to decompose Hφ as

Hφ = ⊕α∈S
(
HWα ⊗HWα

)
, (2.2)

where the decomposition defines HWα and HWα
, S is an appropriate index set, and

operators in either MW or its commutant MW are block diagonal in α; see e.g. the

appendix of [5]. See also related comments in [35]. We may also choose the tensor

factorization within each block such that MW (MW ) contains precisely those operators

that act trivially on HWα
(HWα). The intersection Z = MW ∩MW gives the center of

both MW and MW and contains block diagonal matrices that are proportional to the

identity on HWα ⊗HWα
within each block1. We may thus write

MW = ⊕α
(
L(HWα)⊗ 1Wα

)
,

MW = ⊕α
(
1Wα ⊗ L(HWα

)
)
, (2.3)

Z = ⊕αL(C)1WαWα
,

where L(H) denotes the set of linear operators on the Hilbert space H. We refer to α

as the superselection parameter below.

Since the above structure follows from (2.1), it is again valid only below some

cutoff Λ. While Λ is to some extent arbitrary, we should expect the Hilbert spaces,

the decomposition (2.2), and the algebras of operators to depend the value of Λ that is

chosen. This is especially true for the operator LR, whose form depends on the effective

action as noted above and which – as with all operators in MW ,MW – should be thought

of as being smeared over length scales 1/Λ. In particular, all of these structures can

experience non-trivial renormalization-group flows under changes in Λ.

As a further comment on (2.3), we note that if the bulk were described by a

scalar field theory, we could choose the algebra MW so that the center Z is trivial,

containing only operators proportional to the identity on Hφ. The index set S would

then contain only one element so that (2.2) becomes a simple tensor product. But

the bulk is described by a theory of gravity, and the resulting diffeomorphism gauge

symmetry implies constraints that forbid quantum states (or even classical initial data)

1In fact, as we discuss in section 4 below, equation (2.2) has some tension with the context just

discussed. In particular, the right-hand side contains exact eigenstates of α, but such eigenstates

cannot be described as small quantum fluctuations around a classical background φ. We will resolve

this tension in section 4 by slightly generalizing the definition of Hφ so that it contains such α-

eigenstates, noting that the derivation of (2.1) holds equally well on these states.

– 5 –



in W and W from being chosen independently. In this context the set S is generally

non-trivial and – as in the case of Yang-Mills theories – taking MW to be the algebra

of gauge-invariant operators in W yields a non-trivial center [5, 36–39].

In contrast, we will ignore issues associated with constraints in the CFT dual and

write

HCFT = HR ⊗HR. (2.4)

While the dual CFT is often a gauge theory and thus does have similar issues involving

constraints and a lack of factorization, any such CFT gauge symmetry is expected to

be unrelated to bulk diffeomorphism invariance. As a result, the corresponding central

operators in the CFT will not directly relate to the bulk center Z discussed here.

Following standard practice, we thus ignore this complication in the present discussion.

Returning to the bulk, we can now explain the entropy SW (ρW ) in more detail.

Since α denotes the eigenvalues of center operators, the density matrix ρW must take

the block-diagonal form

ρW = ⊕αpαρWα , (2.5)

where Tr ρWα = 1 and
∑

α pα = 1. The desired entropy is then simply

SW (ρW ) = −
∑
α

pα log pα +
∑
α

pαS(ρWα). (2.6)

As shown in [5], the FLM formula (2.1) tightly constrains the relations between

the bulk factors HWα ,HWα
and the CFT factors HR,HR. In particular, if all states in

a code subspace Hφ ⊂ HR ⊗HR satisfy (2.1) and its analogue for R, then HR and HR

must admit decompositions of the form

HR = ⊕α
(
HR1

α
⊗HR2

α

)
⊕HR3 ,

HR = ⊕α
(
H
R

1
α
⊗H

R
2
α

)
⊕HR3

, (2.7)

where HR1
α
∼= HWα and H

R
1
α

∼= HWα
with ∼= denoting Hilbert space isomorphisms.

Furthermore, one can choose a basis |α, ij〉 of Hφ associated with the decomposition

(2.2). In particular we may take

|α, ij〉 = URUR

(
|α, i〉R1

α
⊗ |α, j〉

R
1
α
⊗ |χα〉R2

αR
2
α

)
(2.8)

for some unitaries UR, UR on HR and HR, bases {|α, i〉}, {|α, j〉} of HR1
α
,H

R
1
α
, and

some set of states |χα〉 ∈ HR2
α
⊗ H

R
2
α
. Ref. [5] called such codes “operator algebra

quantum error-correcting codes with complementary recovery”, as (2.8) is equivalent

to the requirement that the action of any operator in MW on a state in Hφ can be
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reproduced by acting on that state with an operator in R, and correspondingly for

MW , R.

Since arbitrary unitaries on HR1
α
, H

R
1
α
, HR2

α
, H

R
2
α

can be absorbed into UR, UR,

the only independent structure in (2.8) comes from the coefficients in the Schmidt

decomposition of |χα〉R2
αR

2
α
, or equivalently the spectrum of eigenvalues of the density

matrix χR2
α
≡ Tr

R
2
α
|χα〉〈χα| (which is also the spectrum of χ

R
2
α
≡ TrR2

α
|χα〉〈χα|). This

spectrum is thus the essence of any code, and it is this spectrum that was shown in

[21] to be flat at O(1/G) in states of fixed RT-area; see also [20].

Tracing (2.8) over R yields

ρR =
∑
α

pαUR
(
ρR1

α
⊗ χR2

α

)
U †R, (2.9)

where ρR1
α

is the image of ρWα under the isomorphism between HWα and HR1
α
. Using

(2.6), the von Neumann entropy of (2.9) immediately takes the form (2.1) with the

identification

LR =
∑
α

S(χR2
α
)1WαWα

. (2.10)

As described in [20, 21] the entropies of the normalized density matrices ρnR/(Tr ρnR)

take a similar form, though they will satisfy (2.1) with the same identification (2.10) if

and only if each χR2
α

satisfies χ2
R2
α
∝ χR2

α
; i.e., if each such density matrix is proportional

to a projection operator.

Note that eigenstates of the superselection parameter α are also eigenstates of LR.

In holography, it is an interesting question whether α is defined completely by the

eigenvalue of LR or whether it contains additional information, but in either case let

us simply consider an eigenstate of α. In such a state, if we for the moment ignore

information within a distance 1/Λ (set by the cutoff scale Λ) away from the bulk

entangling surface γR, the remaining information about bulk quantum fluctuations

below the cutoff Λ in a state |ψ〉 appears to be captured by the amplitudes 〈ψ|α, ij〉
and the details of the state factors |α, i〉R1

α
⊗ |α, j〉

R
1
α
; indeed, these ingredients suffice

to determine the correlation functions of operators in W ∪ W . The state |χα〉R2
αR

2
α

must thus be associated with bulk degrees of freedom with energies above the cutoff Λ.

Together with the sources at the AdS boundary, such high energy degrees of freedom

determine a natural classical background on which dynamical quantum fluctuations

propagate through the condition that the background be a stationary point of the

effective action that arises from integrating them out2. It is thus natural to conjecture

that many properties of |χα〉R2
αR

2
α

can be computed by using the cutoff-scale effective

2Note that the existence of a preferred classical background determined by a variational principle

does not necessarily imply that quantum fluctuations around this background are small.
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action as a corresponding classical variational principle. Indeed, the identification (2.10)

shows that its von Neumann entanglement entropy can be calculated using the classical

Lewkowycz-Maldacena procedure. It is thus reasonable to expect this to extend to

Renyi entropies Sn(χR2
α
). Below, we refer to this idea as the classical effective action

conjecture for the quantum code3.

We give a definitive, though somewhat indirect, argument for this result in section

4 below. The rough sketch of the idea is to consider a state |ψ〉σ in an appropriate code

subspace Hφ such that |ψ〉σ is an eigenstate of LR with eigenvalue σ. We use this state

to build a new state

|ψ3〉σ := (ρR ⊗ 1R) |ψ〉σ, (2.11)

where ρR is the density matrix defined on R by tracing |ψ〉σ over R. The new state is

labelled with a subscript 3 because TrR |ψ3〉σσ〈ψ3| = (ρR)3 and thus

σ〈ψ3|ψ3〉σ = Tr
(
ρ3
R

)
. (2.12)

We use a bulk calculation to argue that |ψ3〉σ also lies in the same code subspace

Hφ. Thus both states define the same density matrix χR2
α
≡ Tr

R
2
α
|χα〉〈χα| on HR2

α

for each superselection sector α consistent with the fixed geometric entropy σ (and on

which |ψ〉σ has non-zero projection). The relation (2.11) then requires(
χR2

α

)3 ∝ χR2
α
. (2.13)

Since eigenvalues of density matrices are real and non-negative, the relation (2.13)

allows χR2
α

to have only the eigenvalues 0 and 1 up to an overall normalization. Thus

the density matrix χR2
α

is proportional to a projector onto a subspace of dimension

dictated by its entropy, which is in turn dictated by the associated eigenvalue of LR.

Using the decomposition (2.8), one can then more generally show that multiplication

by (ρR ⊗ 1R) preserves the given code subspace Hφ.

We note that this result provides evidence supporting the above-mentioned classi-

cal effective action conjecture. In particular, the bulk calculation deriving (2.13) relies

on properties of variational principles for higher-derivative actions that we will estab-

lish in section 3 below. These properties imply that with fixed geometric entropy, a

purely classical (saddle-point) calculation of Renyi entropies would again give a flat

entanglement spectrum for the |χα〉R2
αR

2
α

state, and thus that the associated density

matrix on R2
α would be a projector onto a subspace of dimension set by the associated

saddle-point von Neumann entropy (i.e., by the geometric entropy). This is thus the

prediction of the classical effective action conjecture, and we see that it agrees precisely

with the results for the spectrum of |χα〉R2
αR

2
α

described above.

3We emphasize that our main results (derived in section 4) do not rely on this conjecture. Rather,

the conjecture is supported by – and provides an intuitive way of understanding – our main results.
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3 Higher derivative saddle-point Renyi entropies and states

of fixed geometric entropy

Before proceeding to the main argument in section 4, we must first develop certain

techniques for studying higher derivative actions and fixing the associated geometric

entropy. In particular, as mentioned above we will first need to show that a purely

classical saddle-point treatment (ignoring dynamical quantum fluctuations) would give

flat entanglement spectra. As motivation for this result, recall from [20, 21] that tracing

states of fixed RT-area over R defines density matrices ρR whose Renyi entropies

Sn(ρR) ≡ − 1

n− 1
log Tr(ρnR) (3.1)

are independent of n at O(1/G). Were these Renyi entropies exactly constant, one

could readily show all nonzero eigenvalues λk of ρR to be degenerate (λk independent

of k for λk 6= 0). Because the results of [20, 21] involved only the leading order behavior

in G, it sufficed to consider saddle points of the Euclidean action. Fluctuations about

such saddles can contribute only at higher orders. In addition, the analysis of [20, 21]

was limited to leading order in the inverse string tension α′ as the bulk was assumed

to be described by Einstein-Hilbert gravity with minimally-coupled matter fields.

Our purpose here is to extend such arguments to incorporate general higher deriva-

tive terms, including those representing higher order corrections in either α′ or G.

In particular, in this section we again consider only contributions from the classical

saddle-points themselves. Discussion of possible contributions associated with fluctua-

tions about such saddles will be deferred to section 4. We thus refer to the quantities

computed below as saddle-point Renyi entropies Ssaddle
n . As noted in section 2, if we

also fix the higher-derivative corrected geometric entropy σ = A/4G + . . . to some

value σ̂, it is natural to conjecture that Ssaddle
n computes entropies of the code state

|χα〉 ∈ HR2
α
⊗H

R
2
α

associated with the corresponding superselection sector α. We will

argue that this is indeed the case in section 4 below. Recall that σ is specified by the

choice of superselection sector α, though we have left open the issue of whether α is

fully specified by σ.

We will consider general higher derivative corrections which may involve an ar-

bitrarily large number of derivatives in the effective action, for the following reasons.

In addition to large numbers of derivatives that can appear at high orders in α′, it is

important to note that moderately large numbers of derivative can appear at leading

order in α′ already in the one-loop corrections. Indeed, in bulk spacetime dimension

d such corrections can involve up to d derivatives. In particular, if the effective ac-

tion happens to contain only an Einstein-Hilbert term at some cut-off energy Λ, then
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one-loop renormalization-group flow to a nearby scale Λ−∆Λ will generally induce all

terms with n ≤ d derivatives with coefficients of order GΛd−n (or G log Λ for d = n) rel-

ative to the Einstein-Hilbert term. The contributions of such terms to computations at

the scale Λ are thus uniformly suppressed (up to logs) by the dimensionless parameter

GΛd−2. We thus consider general higher derivative terms below.

Below, we begin with a brief reminder (section 3.1) of certain features of fixed RT-

area states and their flat saddle-point Renyi entropies derived in [21]. Section 3.2 then

uses results from appendix A to rewrite this argument in an elegant form that (with

help from appendix B) allows ready generalization to the higher derivative case.

3.1 Review of fixed RT-area states

Suppose that we begin with a CFT state |ψ〉 defined by a Euclidean path integral, and

that a Cauchy surface ∂Σ for the CFT has been partitioned into regions R and R. As

in [21], for simplicity we take the state to be time-symmetric and the path integral to

be real. The AdS/CFT dictionary then defines a corresponding bulk path integral that

computes the bulk wavefunction 〈h|ψ〉 where |h〉 is an eigenstate of the bulk induced

metric on some bulk Cauchy surface Σ. After gauge-fixing Σ to run through the HRT-

surface γR and choosing coordinates on Σ that fix the location of γR on Σ, the bulk

wavefunction 〈h|ψA0〉 of the corresponding state |ψA0〉 of fixed RT-area A0 is defined

by simply restricting 〈h|ψ〉 to metrics h on Σ that give γR the desired area A0.

Note that the norm of |ψA0〉 may be computed via

〈ψA0|ψA0〉 =

∫
h

Dh |〈h|ψA0〉|2

=

∫
h with area A0 on γR

Dh |〈h|ψ〉|2. (3.2)

This is identical to the bulk path integral for 〈ψ|ψ〉 except that one treats the area of

the HRT surface as fixed and not as a variable over which one integrates. In the semi-

classical limit, this means that allowed saddles gA0 for (3.2) satisfy the same boundary

conditions at AdS-infinity as saddles for 〈ψ|ψ〉, but that one of the bulk equations of

motion fails to be enforced at γR. The effect on the allowed solutions can be seen by in-

troducing a term µ(A[γR]−A0) into the action and treating µ as a Lagrange multiplier.

In Euclidean Einstein-Hilbert gravity, this allows the introduction of a conical defect

on γR whose magnitude is determined by the condition A[γR] = A0. As a result, if g1

is an allowed bulk saddle satisfying boundary conditions B1 as in figure 1 (left), then

for boundary conditions Bn given by simply sewing together n copies of B1, we may

construct an allowed bulk saddle gn by applying an analogous cut-and-paste procedure

to g1 as in figure 1 (right).
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Figure 1. After cutting open the n = 1 bulk saddle g1 (left), three copies may be glued

together to construct the n = 3 bulk saddle g3 (right). The black dot in the center is the

HRT surface γR.

A direct calculation of saddle-point Renyi entropies or refined Renyi entropies [29,

40] then shows that they do not depend on n. In particular, defining the refined

Renyi entropy S̃n(ρR) as the von Neumann entropy of the normalized density matrix

ρnR/(Tr ρnR), this quantity is given by A/4G for the RT surface associated with the

saddle gn. Thus S̃n(ρR) = A0/4G is constant. But a short calculations also shows

S̃n(ρR) = n2∂n

(
n− 1

n
Sn(ρR)

)
. (3.3)

Integrating this relation for constant S̃n then gives Sn = S̃n = A0/4G, showing that

the usual Renyi entropies are constant as well.

3.2 Reformulation and higher derivative corrections

We now wish to rewrite the above argument for constant Renyi entropies in a more ele-

gant form that will generalize directly to actions with higher derivative corrections. As

stated above, our goal is to discuss classical variational principles for spacetimes with

fixed geometric entropy determined by a region R of their boundary. And as noted

above, at least for the two-derivative Einstein-Hilbert action the associated saddles in-

volve conical singularities. A complication, however, is that higher-derivative geometric

entropy has not previously been studied carefully in spacetimes with non-zero conical

defect angles. We must thus not only construct an appropriate variational principle

and find associated saddles, we must also determine what it means to fix geometric

entropy in this context.

We propose that all of these questions be answered simultaneously by an appro-

priate analytic extension of the fixed-geometric-entropy action from cases where the

results are clear. We will show that such an analytic extension can be constructed

by first considering variational principles for Euclidean spacetimes with codimension-2
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conical defects with defect angles that are fixed as a boundary condition. In the spirit

of [30], we may then perform a Hamilton-Jacobi-like variation with respect to the defect

angle boundary condition. At vanishing defect angle, this latter variation is equiva-

lent to the Lewkowycz-Maldacena computation of the entropy. However, we may also

perform this variation about backgrounds with non-zero conical defect angle and to

thus define geometric entropy in those backgrounds. A Legendre transform then gives

a variational principle appropriate to fixing this geometric entropy and simultaneously

provides the analytic extension mentioned above.

Our starting point will be to observe that the Lewkowycz-Maldacena procedure

for deriving the (two-derivative) Ryu-Takayanagi relation can be interpreted as just

such a Hamilton-Jacobi-like variation of a fixed-conical-deficit action with respect to

the conical deficit. This is established in detail in appendix A. In particular, we show

there that the Einstein-Hilbert action provides a well-defined variational principle for

an appropriate class of spacetimes with codimension-2 conical defects with fixed conical

deficit angle δ so long as one ignores (a la Lewkowycz-Maldacena) the contribution to

this action from the defect itself. This variational principle imposes Einstein’s equations

away from the defect and also imposes a natural analogue of the condition that the

defect lie on an extremal surface.

It is useful to parametrize the conical angle using a ‘replica number m’ such that

the opening angle at the defect is 2πm = 2π − δ; i.e., the defect-free case is m = 1.

Even though we call it a replica number, m can take any positive real value. Note that

this is a bulk replica number. In contrast, in the Lewkowycz-Maldacena construction

an integer boundary replica number n leads to a quotient geometry in the bulk with

opening angle 2π/n at the defect. So their n is related to our m by m = 1/n. With

this understanding, and assuming only minimal couplings of matter to gravity, the

two-derivative geometric entropy AHRT/4G is precisely the variation of the fixed-m

two-derivative action Ĩ
(2)
m with respect to m up to an overall sign:

dĨ
(2)
m

dm
= −AHRT

4G
. (3.4)

Here the tilde in Ĩ
(2)
m is meant to emphasize that it is the action for a fixed conical angle,

to be distinguished with the fixed-geometric-entropy action that we will introduce later.

In particular, Ĩ
(2)
m does not include any contribution from the conical defect itself.

Evaluating the result (3.4) at m = 1 (i.e., at δ = 0) gives a rewriting of the

Lewkowycz-Maldacena derivation [29] of the Ryu-Takayanagi entropy. But in the above

form the Lewkowycz-Maldacena argument now extends to saddles of the given action

with general m 6= 1. Passing to the Legendre transform simply adds a Lagrange

multiplier that fixes AHRT/4G to the desired value. As discussed in [21], this fixed-area
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action gives the leading semi-classical contribution to the partition function for states

with the given value of AHRT/4G.

We now wish to repeat the steps in the above argument for actions with higher

derivative corrections. The key technical point is established in appendix B, which

shows that a recipe analogous to the no-singularity-contribution Einstein-Hilbert pro-

tocol above continues to define a good variational principle with action Ĩm at fixed

conical deficit δ = 2π(1−m) for general m > 0 in the presence of perturbative higher

derivative terms.

In this context, ignoring contributions from the conical defect typically involves

cancelling divergences with counter-terms (including some divergences that now arise

from the Einstein-Hilbert term). In other words, the singularity can be associated with

contributions that are not just δ-functions localized at the defect. While it is thus not

a priori clear how to divide such contributions into parts “associated with the bulk”

and parts “associated with the defect,” we choose counter-terms that make the result

analytic in the conical angle. One may thus also think of this procedure as analytic

continuation from cases where counter-terms are not required, and in particular from

the cases of integer n = 1/m where the spacetime admits a smooth n-fold cover so that

the action may be defined as

Ĩm= 1
n

:=
1

n
Ĩ1(n-fold cover), (3.5)

with Ĩ1 being the usual higher derivative action on smooth spacetimes. At all m, repeat-

ing the Lewkowycz-Maldacena argument with this action then implies the geometric

entropy to be

σ = −dĨm
dm

, (3.6)

in analogy with (3.4). Again, the variational principle imposes a condition that one

may think of as placing the conical defect on a surface that extremizes the geometric

entropy4.

4The recipe of appendix B reproduces the standard definitions of both σ and the action at m = 1

(δ = 0). As a result, at first order in m− 1 our action Ĩm may be written Ĩm = Ĩ1 − (m− 1)σ. And

again, the result gives a natural analytic extension of results that follow from (3.5) when n = 1/m is

an integer and allows metric variations that may be interpreted as moving the surface on which σ is

evaluated relative to a smooth background geometry. In this context, it is clear that varying Ĩm about

m = 1 leads to a source of order (m− 1) on a surface extremizing σ in the m = 1 geometry. Now, for

more general m, the stationary points of Ĩm have deficit angles δ = 2π(1 −m) on the corresponding

surface. Taking Zn quotients then shows that σ is extremized on shell whenever 1/m ∈ Z. Finally,

appendix B derives a sense in which our construction analytically extends this condition to general

real m > 0. See this appendix for details.
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The variational principle appropriate to fixing the geometric entropy σ may then

be constructed as the Legendre transform

Iσ = Ĩm + (m− 1)σ. (3.7)

Recall that Legendre transform gives the unique such action up to the addition of a

function of σ. In (3.7) we have fixed this freedom by requiring consistency with the

standard problem where σ is unconstrained. In that case the outcome m = 1 may be

thought of as an equation of motion. Requiring the extremum of Iσ with respect to

σ to match this by setting m = 1 gives (3.7) up to the remaining freedom to add an

overall constant. As discussed in [21], this is equivalent to noting that the condition

m = 1 selects the dominant value of σ in the unconstrained problem. This observation

in turn means that Iσ should agree with the standard higher derivative action Ĩ1 when

m = 1 and removes the possibility of adding an overall constant to (3.7).

We may now repeat the argument of [21] to show that the associated saddle-point

Renyi entropies are flat, with Ssaddle
n independent of n. In particular, consider a CFT

state |ψ〉 defined by a CFT path integral with sources. Holographic duality allows the

norm 〈ψ|ψ〉 to be computed using a bulk gravitational path integral with boundary

conditions specified by the sources in the CFT path integral. We further wish to con-

sider the state |ψ〉σ defined by projecting |ψ〉 onto a (perhaps approximate) eigenstate

of the geometric entropy with eigenvalue σ. In the saddle-point approximation the

norm of |ψ〉σ is given by e−Iσ [g1] where the above action Iσ has been evaluated on a

saddle point g1 satisfying the above-mentioned boundary conditions at AdS infinity.

We wish to compute saddle-point Renyi entropies of |ψ〉σ. This means that we

consider the CFT path integral defined by appropriately gluing together n copies of

the path integral for |ψ〉, and then study the corresponding bulk gravitational path

integral with a constraint inserted to fix the geometric entropy to σ. We define the

associated saddle-point Renyi entropies Ssaddle
n by approximating such path integrals

by e−Iσ [gn] evaluated on Euclidean solutions gn satisfying this constraint.

Such saddles gn are now easy to construct. In the variational principle for fixed

σ, the conical deficit 2π(1−m) is a dynamical variable chosen to obtain the specified

geometric entropy. It will thus vanish only for certain values of σ for a given choice of

|ψ〉. For our choice of σ and the associated g1, we let φ1 = 2πm1 denote the opening

angle of the associated cone (so that the space is smooth only for φ1 = 2π or m1 = 1).

The saddles gn are then found by cutting open n copies of g1 and sewing them together

as described in figure 1 to give mn = nm1.

This gn clearly satisfies the desired boundary conditions at AdS infinity. Further-

more, as shown in appendix B, σ[g1] is fully determined by the properties of g1 in the

region near the defect. In particular, it may be computed by taking a limit as one
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approaches the conical defect from any fixed direction. As a result, σ[gn] = σ[g1] and

the geometric entropy takes the desired value as well. It follows that gn is a saddle for

Iσ satisfying all boundary conditions. We shall assume such saddles to dominate in the

path integral, though of course this issue deserves more study in the future.

Let us now discuss the value of Iσ on gn following [21]. We begin with the funda-

mental saddle g1 and compute Iσ[g1] = Ĩm1 [g1] + (m1 − 1)σ. As stated above, the first

contribution Ĩm1 comes from ignoring contributions from the conical defect. In partic-

ular, it can be obtained by cutting out a region of radius ε around the defect, including

appropriate counter-terms at the new inner boundary, and taking the limit ε → 0.

Since gn consists of n copies of g1 away from the defect, this implies Ĩmn [gn] = nĨm1 [g1].

Since mn = nm1, the full action satisfies

Iσ[gn] = nĨm1 [g1] + (nm1 − 1)σ. (3.8)

Taking into account proper normalization of ρR then yields

(log TrρnR)saddle = log
e−Iσ [gn]

e−nIσ [g1]
= −(Iσ[gn]− nIσ[g1]) = −(n− 1)σ, (3.9)

so that the saddle-point Renyi entropies defined by (3.1) yield Ssaddle
n = σ and are

indeed independent of n. Alternatively, we could again have noted that the saddle-

point refined Renyi entropies S̃saddle
n are again fixed by the condition on σ and then

integrated (3.3) to find Ssaddle
n = σ as well.

4 Density matrix multiplication in states of fixed geometric

entropy

We now have all the tools in hand to flesh out the argument sketched at the end of sec-

tion 2 that multiplication by a code-subspace density matrix preserves code-subspaces

with fixed geometric entropy. We begin with a careful description of the appropriate

code subspaces Hφ. As discussed in footnote 1, the usual description of Hφ as the space

of states describing small quantum fluctuations about a given classical background is

not consistent with the statement that it contains states of fixed geometric entropy σ, as

any observable O that fails to commute with σ will necessarily have significant fluctu-

ations. This is much like the statement in familiar non-relativistic quantum mechanics

that position eigenstates allow large fluctuations in momenta.

Since we wish to work with such fixed-σ states, it is useful to instead define Hφ as

the linear span of states constructed from fixed-σ Euclidean path integrals using some

given set of classical sources and arbitrary additional sources of order 1 in counting
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powers of G; i.e., we consider small deviations from some given fixed-σ state. States

defined in this way allow what we may call large fluctuations in the conical angle at

the defect, but fluctuations elsewhere are small. Furthermore, the large fluctuations

in conical angle need not obstruct semiclassical computations of σ〈ψ|ψ〉σ, and indeed

it is precisely such large fluctuations that allow the conical angle of a saddle to be

tuned to satisfy the constraint on σ. This is in direct parallel to the situation in non-

relativistic quantum mechanics when using the semiclassical approximation to study

the propagator 〈x′, t′|x, t〉 between exact position eigenstates.

In making the above definition of Hφ, one should note that sources generally have

non-trivial conformal dimensions so that the magnitude of any source depends on a

choice of conformal frame. Now, in considering Renyi entropies associated with the

division of a CFT Cauchy surface into regions R,R, the natural conformal frames to

use are those in which the mutual boundary ∂R = ∂R of R, R has been pushed to

infinity. We have in mind such frames below.

In this context the arguments of [19] again imply an FLM formula on this Hφ,

from whence Ref. [1, 4, 5] show states in Hφ to be a code subspace5 with the QEC

structure described in section 2. It will remain useful to think of φ as a classical

background (perhaps with a conical defect) and to take σ to be the corresponding

geometric entropy.

We now choose a state |ψ〉σ ∈ Hφ and consider the new state |ψ3〉σ defined by

multiplying |ψ〉σ by the density matrix that it defines on R. Specifically, we define

|ψ3〉σ := (ρR ⊗ 1R) |ψ〉σ =
(
e−KR ⊗ 1R

)
|ψ〉σ, (4.1)

where ρR is the density matrix defined on R by tracing |ψ〉σ over R and KR is the

associated modular Hamiltonian. The state is labelled with a subscript 3 because

TrR |ψ3〉σσ〈ψ3| = ρ3
R and thus

σ〈ψ3|ψ3〉σ = Tr
(
ρ3
R

)
. (4.2)

It will be useful to also consider the bulk operator (ρW ⊗ 1W ) defined by the

density matrix for bulk quantum fields in the entanglement wedge W of the CFT

region R induced by the global state |ψ〉σ. One may think of ρW as defined by a

bulk path integral for quantum fluctuations on the dominant classical saddle g1 in the

path integral computation of the norm σ〈ψ|ψ〉σ, after cutting this path integral open

5These arguments are typically made for finite-dimensional Hilbert spaces. As stated above, we use

a conformal frame where the CFT has non-compact Cauchy surfaces. So even with a UV cutoff, the

Hilbert space has infinite dimension. We assume that the conclusion nevertheless continues to hold.

We presume this can be argued by first imposing and then removing a suitable IR regulator.
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along the slice defined by the Z2 symmetry that exchanges (and complex conjugates)

corresponding sources associated with the bra- and ket-vectors. As a result, acting with

(ρW ⊗ 1W ) extends a bulk path integral for quantum fluctuations by splicing in a copy

of g1 in much the same manner that inserting two copies of (ρR ⊗ 1R) into the path

integral for σ〈ψ|ψ〉σ extends it to the 3-replica path integral for (4.2). Indeed, at this

order in the bulk semiclassical approximation, the only difference between insertions of

these two operators is that the latter also changes the classical contribution e−Iσ while

the former does not.

We can now use this observation to show that |ψ3〉σ lies in the same code subspace

Hφ. We will proceed by proving that the results of acting on |ψ〉σ with either (ρW ⊗ 1W )

or (ρR ⊗ 1R) yield identical states up to an overall normalization and corrections that

can be neglected at our one-loop level. In particular, let us define

|ψ3
′〉σ := (ρW ⊗ 1W ) |ψ〉σ =

(
e−KW ⊗ 1W

)
|ψ〉σ, (4.3)

where ρW and KW are the bulk density matrix and bulk modular Hamiltonian defined

on the entanglement wedge of R by |ψ〉σ. We also recall the construction of n-replica

saddles gn defined as in figure 1 by cutting and sewing copies of g1. Assuming as

in section 3 that gn is the dominant saddle in the computation of TrρnR, the above

observations imply

σ〈ψ3|ψ3〉σ = e−Iσ [g3]Zbulk flucts[g3], (4.4)

σ〈ψ3
′|ψ3

′〉σ = e−Iσ [g1]Zbulk flucts[g3], (4.5)

and

σ〈ψ3|ψ3
′〉σ = e−Iσ [g2]Zbulk flucts[g3], (4.6)

at all orders in G.

The important observation above is then that since all three inner products involve

two insertions of ρR, two insertions of ρW , or one of each, in each case Zbulk flucts is

evaluated on the same 3-replica saddle g3. As a result, these contributions cancel when

computing
σ〈ψ3|ψ3

′〉2σ
σ〈ψ3|ψ3〉σσ〈ψ3

′|ψ3
′〉σ

= e−2Iσ [g2]+Iσ [g1]+Iσ [g3] = 1, (4.7)

where the last equality follows from the linearity in n of Iσ[gn] = nĨm1 [g1]− (nm1−1)σ

in (3.8). Equation (4.7) should be understood to hold to all orders in G, though there

are non-perturbative corrections due to sub-leading saddles in (4.4)–(4.6).

As ρW is a bulk operator that acts within the code subspace Hφ, the state |ψ′3〉
must lie in Hφ. We thus see that (ρR ⊗ 1R) |ψ〉σ lies in Hφ up to small corrections

as claimed. Furthermore, as described at the end of section 2, this in turn requires
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(
χR2

α

)3 ∝ χR2
α

(equation (2.13)) for each superselection sector α that appears in Hφ.

And since density matrices have real non-negative eigenvalues, the eigenvalues of χR2
α

can be only 0 and 1 up to an overall normalization. We thus conclude that χR2
α

is a

projector onto a subspace of dimension dictated by its entropy, and that multiplication

by (ρR ⊗ 1R) leaves Hφ invariant6.

5 Discussion

As reviewed in section 2, at O(1) in the bulk Newton constant G, holographic quantum

codes allow complementary recovery and thus are characterized up to unitaries by the

spectrum of a class of density matrices called χR2
α
, where α labels superselection sectors

with respect to the bulk algebra recovered by the code. Our arguments above used

properties of bulk gravitational path integrals to show, again up to higher order O(G)

corrections, that each χR2
α

is proportional to a projection operator of rank determined

by the geometric entropy σ = A/4G+ . . . (with . . . denoting higher derivative terms)

associated to the given superselection sector α. Here we measure the magnitude of any

corrections by their impact on the Renyi entropies Sn(ρR) ≡ − 1
n−1

log Tr(ρnR), taking n

fixed in the limit of small G.

Because the non-zero eigenvalues λk of χR2
α

are independent of k up to the stated

corrections, we refer to this result as one-loop flatness of the entanglement spectrum

for holographic quantum codes. Our arguments apply to gravitational systems where

the effective action is Einstein-Hilbert plus matter with arbitrary perturbative higher

derivative corrections, such as those controlled by small α′ or G. In parallel with

past assumptions [21, 29] that any breaking of replica symmetry is subdominant, our

arguments assume that saddles of the form shown in figure 1 dominate the relevant

path integrals. It would clearly be of use to explore this assumption more completely

in future work.

An important technical step (see appendices A and B) was to construct good vari-

ational principles that even in the presence of arbitrary higher derivative corrections

allow spacetimes with conical defects, and to show (see section 3) that the geometric en-

tropy is given by a Hamilton-Jacobi-like variation of the on-shell action Ĩm with respect

to the defect angle. This in particular identifies the Lewkowycz-Maldacena procedure

[29] as the natural analogue of the Carlip-Teitelboim approach to black hole entropy

[30] generalized to cases that lack the U(1) symmetry of [30]. It also further devel-

ops the machinery of higher-derivative corrections for use in other applications, and in

6This follows from the decomposition (2.8) and the identity (2.13), though one can also generalize

the above argument directly to the case where ρR is the density matrix of a distinct state |ψ′〉σ 6=
|ψ〉σ ∈ Hφ.
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particular provides an appropriate analogue at finite conical angle of the extremality

condition for the geometric entropy σ.

As in [21], the fact that our defects are spacelike means that the corresponding

path integrals prepare states of the original defect-free theory, and in particular that

the defect makes no contribution to the Hamiltonian or momentum constraints on any

Cauchy surface Σ passing through the defect. This follows from the fact that the defect

in no way constraints the lapse and shift on Σ, and from the fact that (since it is a

geometric invariant) the counter-term defined in appendix B can be constructed from

canonical data on Σ without involving either lapse or shift. Integrating over lapse

and shift thus imposes the defect-free constraints as in [41], though here including

appropriate higher derivative corrections.

Our one-loop flatness for χR2
α

provides a useful extension of the results of [20,

21], which showed any semi-classical bulk state to have flat entanglement spectrum at

O(1/G). It is not possible that such a strong result holds at O(1) since one can use the

dynamical IR quantum fluctuations to engineer by hand a state (on the whole system)

with non-flat entanglement spectrum at O(1), but we identify the essence of the result

as relating to the structure of the quantum code rather than to individual encoded

states.

The above universal form of holographic codes matches well with that found in

simple tensor network models [2, 3], with the caveat that such models should be in-

terpreted as describing states of fixed geometric entropy. As described in [42], such

models can be extended to so-called edge-mode tensor networks which describe more

general states.

As noted in [21], and as we now briefly review, one-loop flatness of χR2
α

also im-

mediately implies a stronger version of the JLMS relation [31] between boundary and

bulk modular Hamiltonians than has previously been derived. A CFT density matrix

ρR in a subregion R defines a so-called boundary modular Hamiltonian KR = − log ρR,

and on the Hilbert space Hφ associated with bulk quantum fluctuations around a given

classical background the bulk density matrix ρW in the corresponding bulk entangle-

ment wedge defines an analogous bulk modular Hamiltonian KW = − log ρW . JLMS

showed KR to be related to KW and the area operator A on the RT/HRT surface in a

manner that is often written

KR =
A

4G
+KW +O(G). (5.1)

However, it is important to recall that the argument [31] for (5.1) involves taking

expectation values in code subspace states Hφ associated with small fluctuations about
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a given classical solution7. As a result, as stressed in [4] (but using the notation of [21])

the conclusion is best written

PCKRPC =

(
A

4
+KW

)
PC +O(G), (5.2)

where PC denotes the projection onto the appropriate Hφ.

Although KR is naturally defined as an operator on HR, following [4, 21] we use KR

here and below to denote the operator KR⊗1R involving the identity 1R on R and thus

to define an operator on the full CFT Hilbert space. We similarly use KW to denote

KW ⊗ 1W . On the right-hand side of (5.2), since both A and KW are semi-classical

bulk operators in the bulk effective field theory with a cutoff, they preserve any Hφ and

so commute with PC . Thus it is sufficient to have a single PC on the right. We refer to

(5.1) as the unprojected JLMS relation in contrast to the projected relation (5.2).

A corollary of our one-loop flatness argument is that the stronger version of the

JLMS relation (5.1) does in fact hold when both sides are viewed as operators on the

given Hφ. As noted in [21], since (5.2) is already known to hold this is equivalent to

the statement that PC commutes with KR = − log ρR , and thus also to the statement

that multiplication by ρR ⊗ 1R preserves Hφ. But that is precisely what was shown in

section 4. Our result is also equivalent to the requirement that the boundary modular

flow induced by KR preserves Hφ (i.e., e−iKRs acts within Hφ), or equivalently

e−iKRsPCe
iKRs = PC . (5.3)

As a result, establishing (5.1) may allow greater use of modular flow in AdS/CFT8.

The fact that our code subspace Hφ is invariant under multiplication by (ρR ⊗ 1R)

and thus by (ρisR ⊗ 1R) also immediately implies that the set of density matrices on R

defined by Hφ is invariant under the modular flow induced by any such state. Again,

this extends an O(1/G) result from [21]. A related invariance of Hcode = ⊕φHφ was

conjectured on physical grounds in [43]. A relevant comment here is that we defined Hφ

so as to allow rather large bulk IR effects at O(1) at a level analogous to allowing finite

temperature states in flat-space quantum field theory. Effects of this size are usually

7It is interesting to consider varying the FLM relation under ρR → ρR + εδρR where ρR, δρR are

associated with distinct Hφ, Hφ′ . The FLM relation generally describes changes in the associated

entropy S(ρR) to order G0. But in such cases this accuracy may not suffice to study very small values

of ε, where the changes in S(ρR) can be exponentially small. So the full argument of [4, 31] holds only

within some fixed Hφ.
8Nonetheless, see [43–45] for important applications thus far. In particular, as noted in [21], while

(5.2) does not generally imply a useful relation between bulk and boundary modular flows of arbitrary

operators, it does suffice for modular flows of operators in R that reconstruct bulk operators. In

particular, it suffices for the algorithm described in [43].
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thought of as taking one outside of the Hilbert space that contains the Minkowski

vacuum. In our context, in a conformal frame where these bulk IR effects correspond

to the UV in the dual CFT, they may similarly take one outside the natural Hilbert

space of states with good CFT duals. However, this issue can be cured by imposing

appropriate UV/IR cutoffs. It would also be interesting to return to this issue using

the technology of [46].

To discuss further interpretations and implications of our results, recall from sec-

tion 2 that holographic quantum codes should in fact be viewed as families of codes

labelled by an energy scale Λ. At each Λ, properties of the code are determined by the

bulk effective action at this scale, and the RG flow of the action must induce an asso-

ciated RG flow of the quantum code. Furthermore, because properties of the quantum

fluctuations at scales below Λ define the state to be encoded, it is natural to expect

that the manner in which such states are encoded is determined by other aspects of the

bulk theory, and in particular by saddle-point computations involving the bulk effective

action at the scale Λ. This would mean that such calculations would determine the

properties of χR2
α
. Our work supports this conjecture, as we found in section 3 that

Renyi entropies computed using only saddle-point contributions to the gravitational

path integrals would indeed match the above results for χR2
α
.

Since the form of the effective action and thus the quantum code generally vary

with Λ, the universal form of our result requires interesting cancellations to occur

between various aspects of the associated RG flow. In particular, shifting Λ generates

changes in the effective action by integrating out additional degrees of freedom under

the assumption that they remain in their local vacuum state. But vacuum states are

known to have thermal spectra and, especially in a context with a large-N matter

sector where there are many bulk matter fields but only a single graviton, constraining

the geometric entropy will have little effect on this thermal result. Thermal spectra

are not flat, but have a Boltzmann distribution of eigenvalues. So a coarse graining

that simply reorganizes vacuum dynamical quantum fluctuations from HR1
α
,H

R
1
α

by

absorbing them into the states |χα〉 ∈ HR2
α
⊗ H

R
2
α

would violate flatness at one-loop

order. Such effects must thus cancel against others, perhaps associated with the fact

that superselection operators like the geometric entropy σ evolve with Λ, so that changes

in the decomposition (2.2) itself must also be taken into account. Indeed, the geometric

entropy evolves in at least two ways as its explicit form depends on couplings in the

effective action at the scale Λ and also because σ should be understood as being smeared

over length scales of order 1/Λ in directions transverse to the RT surface. It would be

interesting to study such effects using either bulk gravitational path integrals or tensor

network models.

As a final comment, we mention that we described our main results as being valid
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at one loop because we relied on the framework of QEC with complementary recovery.

Beyond one-loop order, the complementary recovery aspect is expected to break down,

though some notion of QEC may remain; see e.g. the discussion in the final paragraph

of [5]. However, our intermediate results concerning variational principles and the bulk

computation (4.7) in fact remain valid at arbitrary orders in perturbation theory. As

a result, they will continue to constrain whatever structures remain at higher orders.

Improving the understanding of QEC and higher order corrections is thus an important

goal for future work.
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A The Lewkowycz-Maldacena argument as a Hamilton-Jacobi

variation

In this appendix, we work with Euclidean Einstein gravity and show that for metrics

with a fixed conical defect angle, the Einstein-Hilbert action without including any

contribution from the conical defect leads to a well-defined variational principle. We

find that the Hamilton-Jacobi variation of such an action with respect to the conical

defect angle is determined by the area of the conical defect. The Lewkowycz-Maldacena

argument for computing the gravitational entropy can be interpreted as the special

case of performing this Hamilton-Jacobi variation about backgrounds with vanishing

conical deficit. We also explicitly construct solutions to Einstein’s equations with a

general conical defect angle in a systematic expansion valid near the defect and show

that the trace of the analogue of the extrinsic curvature tensor vanishes on the defect.

Under appropriate asymptotic boundary conditions, the solution is generically unique

up to residual gauge transformations.

Let us start by defining a suitable space of (generally off-shell) metric configura-

tions that contain a conical defect on a codimension-2 surface with opening angle 2πm,

so that smooth spacetimes have m = 1. Here m is any positive real number and not

necessarily an integer. We will work in a convenient set of quasi-cylindrical coordi-

nates [47] defined by constructing normal geodesics from the conical defect, where the
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metric can be taken to be of the form

ds2 = dr2 +
[
m2 + ô(r)

]
r2dφ2 +O(r0)dyidyj +O(r2)dφdyi (A.1)

near r = 0, the location of the conical defect. Here φ is an angular coordinate taking

values in [0, 2π), the yi denote an arbitrary set of coordinates on the conical defect,

and we have introduced the notation ô(r) to denote terms that vanish as r → 0 at least

as fast as some power law rη with η > 1. The ô(r), O(r0), and O(r2) terms generally

depend on all coordinates (r, φ, yi) – although due to the required periodicity under

φ ∼ φ+ 2π they can be expanded as a Fourier series using integer powers of eiφ.

Below, we first show in section A.1 that the above action gives a good variational

principle for the class of metrics (A.1) with fixed m. We then argue in section A.2

that Einstein’s equations indeed admit solutions compatible with (A.1), and in fact

do so with a particular form for the expansion around r = 0 (so that, if desired, our

variational principle could then be further restricted to metrics of this asymptotic form).

Furthermore, assuming this expansion, the equations of motion impose a condition that

generalizes the extremal surface condition satisfied by RT surfaces at m = 1. Finally,

we give a counting argument in section A.3 to show that the freedom in such solutions

is precisely what one expects to need to match general boundary conditions at large r.

In other words, we show that there are enough solutions of the form (A.1) to describe

the expected physics, and we also show that matching solutions of the more specific

asymptotic form described in section A.2 to given large-r boundary conditions will

generally leave no continuous free parameters. Instead, such solutions form a discrete

set as one expects of a good non-linear elliptic boundary value problem.

A.1 Variational principle

We define an action Ĩ[g] for these metric configurations as simply the Einstein-Hilbert

action (with a cosmological constant9 Λ) but without including any contribution from

the conical defect:

Ĩ[g] = − 1

16πG
lim
ε→0+

∫
r≥ε

dd+1x
√
g(R− 2Λ). (A.2)

Here the total dimension is d+ 1 and x = (r, φ, yi) denotes the collection of all coordi-

nates. If the spacetime has boundaries (other than r = 0), such as an asymptotically

AdS boundary at r = ∞, the action (A.2) should be supplemented by the standard

boundary terms there although we do not write them explicitly.

We use a tilde on the left-hand-side of (A.2) to emphasize that we simply integrate

the Lagrangian down to r = 0 and do not include any delta-function contribution or

9This should not be confused with our UV cutoff called Λ in the main text.
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Gibbons-Hawking-York boundary term at the defect. In particular, (A.2) coincides with

the prescription for computing actions in conical defect spacetimes used by Lewkowycz

and Maldacena in [29]. In their case, for 1
m
∈ Z the prescription followed from the

fact that they actually wished to study the action of the smooth 1
m

-fold cover, and

for 1
m
/∈ Z it then followed by analytic continuation. In contrast, we wish to directly

study metrics with conical singularities for which the opening angle 2πm is fixed as

a boundary condition. However, the connections with geometric entropy described in

[29] inspire us to conjecture that (A.2) provides a good variational principle for our

problem. This conjecture will be verified below.

The first step is to note that the ε→ 0+ limit in (A.2) does in fact converge for the

metric configurations (A.1). To see this, note that in the (z, z̄, yi) coordinates defined

by z = reimφ, the metric (A.1) can be written

ds2 = dzdz̄ + T
(z̄dz − zdz̄)2

zz̄
+ hijdy

idyj + 2iUjdy
j(z̄dz − zdz̄), (A.3)

T = ô(r), hij = O(r0), Uj = O(r0) (A.4)

where T , hij, and Uj are functions of all coordinates (z, z̄, yi). In these coordinates, we

have

gµν = gµν

∣∣∣
r=0

+ ô(r), Γρµν =
ô(r)

r
, Rµ

νρσ =
ô(r)

r2
. (A.5)

In particular, the Ricci scalar R = ô(r)/r2 is locally integrable near r = 0. Thus the

action Ĩ[g] is finite, assuming that any potential divergences near asymptotic boundaries

have been dealt with by the standard counterterms.

We now show that the action Ĩ[g] leads to a well-defined variational principle

under the boundary condition that fixes m (or equivalently the conical angle). Under

a general, infinitesimal variation δgµν of the metric, the action changes by

δĨ[g] =
1

16πG
lim
ε→0+

[∫
r≥ε

dd+1x
√
g(Gµν + Λgµν)δgµν

+

∫
∂

ddX
√
γnµ(∇νδgµν −∇µδg

ν
ν)

∣∣∣∣
r=ε

]
, (A.6)

where the first integral is a bulk term that vanishes if the equation of motion is satisfied

(setting the Einstein tensor Gµν to −Λgµν in this case), and the second integral is

a boundary term at r = ε. Here X = (φ, yi) and γ denote the coordinates and

determinant of the induced metric on this codimension-1 boundary, while nµ is the

unit normal vector in the r direction.

In order to have a well-defined variational principle, the boundary term in (A.6)

must vanish for metric variations that preserve m. To see that this is the case, note
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that in the (z, z̄, yi) coordinates we have

δgµν = δgµν

∣∣∣
r=0

+ ô(r), ∇ρδgµν =
ô(r)

r
, (A.7)

as long as δgµν preserves m. This, together with
√
γ ∼ r and nµ ∼ r0, shows that the

boundary term in (A.6) vanishes as o(ε) as ε→ 0.

In addition, we note that varying the on-shell action with respect to m gives the

area of the conical defect, for any value of m. To see this, note that in (A.6) the bulk

term vanishes if the equation of motion is satisfied, but the boundary term may be

nonzero for a metric variation that changes m. Working for example in the (r, φ, yi)

coordinates, we find

lim
ε→0+

√
γnµ(∇νδgµν −∇µδg

ν
ν)

∣∣∣∣
r=ε

= lim
r→0+

√
γΓrφφδg

φφ = −2δm
√
h̄ (A.8)

where h̄ is the determinant of the induced metric h̄ij ≡ hij
∣∣
r=0

on the conical defect.

Therefore,
dĨm
dm

= − 1

4G

∫
dd−1y

√
h̄ = − A

4G
, (A.9)

where Ĩm denotes the on-shell action with the boundary condition set by m.

A.2 General solutions

We wish to show that the metric ansatz (A.3) allows general solutions to Einstein’s

equations. In particular, we now show that one can solve the equations of motion with

functions T , Ui, and hij having expansions near r = 0 of the form

T =
∞∑

p,q,s=0
pq>0 or s>0

Tpqsz
p
m z̄

q
m (zz̄)s, (A.10)

Ui =
∞∑

p,q,s=0

Ui,pqsz
p
m z̄

q
m (zz̄)s, (A.11)

hij =
∞∑

p,q,s=0

hij,pqsz
p
m z̄

q
m (zz̄)s. (A.12)

Here the coefficients Tpqs, Ui,pqs, hij,pqs can be arbitrary functions of the yi. Such a

solution is manifestly periodic under φ ∼ φ+2π (or equivalently z ∼ ze2πim) as required.

In the present subsection we show only that the above expansions are consistent with the

equations of motion, and that those equations impose a generalization of the extremal
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surface condition satisfied by RT surfaces at m = 1. We will return to the issue of

whether they admit sufficiently general such solutions in section A.3.

Note that if m happens to be a rational number, the expansions (A.10)–(A.12)

involve redundant terms. We will first study the generic case where m is irrational,

and then obtain results for rational m by taking limits of the generic case. We will find

such limits to be well-behaved in Einstein gravity.

Let us start with the generic case where m is an irrational number. To see that

(A.10)–(A.12) can consistently solve Einstein’s equations, we first introduce some ter-

minology. We say that a function f is of type [α] if it satisfies all three conditions

below:

1) At r = 0 it has the expansion

f =
(z
z̄

)`/2 ∞∑
p,q,s=0

fpqsz
p
m z̄

q
m (zz̄)s−α, (A.13)

with some integer ` (which we will call the angular momentum) and some α such

that α+ `/2 is an integer. Note that both ` and α can have either sign, and that

α is either integer or half-integer.

2) Nonzero terms in the expansion (A.13) do not have negative integer powers of z

or z̄. In particular, fpqs vanishes if p = 0 and s − α + `/2 < 0 or if q = 0 and

s − α − `/2 < 0. This condition has the nice property that it is preserved by

derivatives, additions, and multiplications.

3) Each coefficient fpqs is determined by the coefficients Tp′q′s′ , Ui,p′q′s′ , and hij,p′q′s′

at lower orders, by which we mean

p′ ≤ p, q′ ≤ q, s′ ≤ s, (p′, q′, s′) 6= (p, q, s). (A.14)

We will use

(p′, q′, s′) < (p, q, s) (A.15)

to denote the full set of conditions (A.14).

Using an overline to indicates a form of closure, not complex conjugation, we will also

say that a function is of type [α] if it fulfills conditions 1) and 2) above but, instead of

3), it satisfies the following variant:

3) Each coefficient fpqs only depends on Tp′q′s′ , Ui,p′q′s′ , and hij,p′q′s′ of lower or equal

orders, by which we mean

(p′, q′, s′) ≤ (p, q, s) ⇐⇒ p′ ≤ p, q′ ≤ q, s′ ≤ s. (A.16)
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Let us now find a few useful properties of these two types of expansions. We will

think of [α] as a set and write

f ∈ [α] (A.17)

if f is of type [α], and similarly for [α]. A function of type [α] is also a function of type

[α] which is in turn of type [α + 1]:

[α] ⊂ [α] ⊂ [α + 1]. (A.18)

Any two such functions with the same angular momentum ` can be added to yield a

function with a similar expansion. Using [α, `], [α, `] to denote functions of type [α],

[α] with angular momentum `, we may thus write

[α, `] + [β, `] ⊂ [max(α, β), `], [α, `] + [β, `] ⊂ [max(α, β), `]. (A.19)

We also have

z, z̄ ∈ [−1/2], (A.20)

∂a[α] ⊂ [α + 1/2], ∂a[α] ⊂ [α + 1/2], (A.21)

∂i[α] ⊂ [α], ∂i[α] ⊂ [α], (A.22)

where indices such as a denote either z or z̄. For products we have the general rules

[α][β] ⊂ [α + β], [α][β] ⊂ [α][β] ⊂ [α + β], (A.23)

as well as three special rules associated with the subset [α]+ ⊂ [α] defined to contain

precisely those functions f ∈ [α] with f000 = 0 (where f000 is defined using the expansion

(A.13) with the given α value10) and similarly for [α]+:

[α]+[β] ⊂ [α + β]+, (A.24)

[α]+[β] ⊂ [α + β]+, (A.25)

[α]+[β]+ ⊂ [α + β]+. (A.26)

It is worth noting that f ∈ [α] automatically satisfies f ∈ [α]+ if either α > 0 or

f ∈ ∂a[α−1/2]. In other words, we have [α] = [α]+ for α > 0 (in which case we usually

omit the plus sign for simplicity), and ∂a[α− 1/2] ⊂ [α] for any α.

We will now use this terminology to show that the expansions (A.10)–(A.12) con-

sistently solve Einstein’s equations. First, from (A.10)–(A.12) we find

T ∈ [0]+, Ui, U
i, hij, h

ij ∈ [0], (A.27)

10Since [α] ⊂ [α + 1], relevant functions f will lie in many such classes. One should thus be aware

that the definition of the coefficients fpqs depends on the choice of α.
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where condition 3) is satisfies trivially and indices such as i in U i are raised using hij,

the inverse of the metric hij. From the metric ansatz (A.3), we find the components to

satisfy

gzz = T
z̄

z
∈ [0]+, (A.28)

gzz̄ =
1

2
− T ∈ [0], (A.29)

gzi = iUiz̄ ∈ [−1/2], (A.30)

gij = hij ∈ [0]. (A.31)

In establishing (A.28), and in particular that gzz satisfies condition 2) for type [0], it is

important that the expansion (A.10) for T requires pq > 0 or s > 0 and thus includes

no purely holomorphic or anti-holomorphic terms.

We similarly find the inverse metric to have components

gzz = − 4T ′

1− 4T ′
z

z̄
∈ [0]+, (A.32)

gzz̄ = 2 +
4T ′

1− 4T ′
∈ 2 + [0]+ ⊂ [0], (A.33)

gzi =
2iU iz

1− 4T ′
∈ [−1/2], (A.34)

gij = hij +
4U iU jzz̄

1− 4T ′
∈ hij + [−1] ⊂ [0], (A.35)

where T ′ ≡ T +U iUizz̄ ∈ [0]+, and find the Christoffel symbols Γρµν = 1
2
(gρµ,ν +gρν,µ−

gµν,ρ) to satisfy

Γabc, Γabc ∈ [1/2], (A.36)

Γabi, Γiab, Γabi, Γiab ∈ [0]+, (A.37)

Γaij, Γija, Γaij, Γija ∈ [1/2], (A.38)

Γijk, Γijk ∈ [0]. (A.39)

The Riemann tensor

Rµνρσ =
1

2
(gµσ,νρ + gνρ,µσ − gµρ,νσ − gνσ,µρ) + ΓλµσΓλνρ − ΓλµρΓ

λ
νσ (A.40)
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has components

Rzz̄z̄z ∈ T,zz̄ +
1

2

(
T
z

z̄

)
,zz

+
1

2

(
T
z̄

z

)
,z̄z̄

+ [1], (A.41)

Rzz̄zi ∈
1

2

{
i(Uiz̄),zz̄ + i(Uiz),zz − T,zi −

(
T
z̄

z

)
,z̄i

}
+ [1/2], (A.42)

Rzz̄ij ∈ [1], (A.43)

Raibj ∈ −
1

2
hij,ab + [1], (A.44)

Raijk ∈
1

2
(hij,a;k − hik,a;j) + [1/2], (A.45)

Rijkl ∈ [1]. (A.46)

Here indices following commas (,), such as the a index in hij,a;k, denote coordinate

derivatives and those following semicolons (;), such as the k index in hij,a;k, denote

covariant derivatives in the yk direction defined using the (d − 1)-dimensional metric

hij. Here it is important that since a ∈ {z, z̄}, the ∂a operation preserves the tensorial

nature of hij in the yk directions. On the other hand, we will use ∇µ to denote the

covariant derivative in the xµ direction defined using the full spacetime metric gµν .

The Ricci tensor has components

Rzz̄ ∈ 2T,zz̄ +
(
T
z

z̄

)
,zz

+
(
T
z̄

z

)
,z̄z̄
− 1

2
hijhij,zz̄ + [1] ⊂ [1], (A.47)

Rzz ∈ −
1

2
hijhij,zz + [1] ⊂ [1], (A.48)

Rzi ∈ −i(Uiz̄),zz̄ − i(Uiz),zz + T,zi +
(
T
z̄

z

)
,z̄i

+ iU jzhij,zz − iU j z̄hij,zz̄

+
1

2
hjk(hij,z;k − hjk,z;i) + [1/2] ⊂ [1/2],

(A.49)

Rij ∈ −2hij,zz̄ + [1] ⊂ [1]. (A.50)

We now solve the vacuum Einstein equations with a cosmological constant11 which

can be written in the following (trace-reversed) form:

Eµν ≡ Rµν −
2Λ

d− 1
gµν = 0, (A.51)

where Λ is the cosmological constant. Inserting (A.28)–(A.31) and (A.47)–(A.50) into

(A.51), we find that Eµν satisfies the same equations (A.47)–(A.50) as Rµν .
12 In other

words, we may replace R with E in (A.47)–(A.50).

11It is straightforward to generalize the discussion to include matter fields with standard two-

derivative actions.
12For example, Eij differs from Rij only by 2Λ

d−1gij ∈ [0] ⊂ [1] which can be absorbed into (A.50).
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First setting Eij to zero at order z
p
m z̄

q
m (zz̄)s−1, we find

Eij,pqs = −2
( p
m

+ s
)( q

m
+ s
)
hij,pqs + [1]pqs = 0,

for all p, q, s ≥ 0 with either pq > 0 or s > 0. (A.52)

Here Eij,pqs is defined by expanding Eij as a function of type [1] according to (A.13)

with ` = 0, and for each i, j the object [1]pqs denotes some fpqs defined by the expansion

(A.13) for a function f of type [1]. The values of fpqs for the various i, j need have

no relation to each other, and we similarly allow [1]pqs to denote a new coefficient each

time it appears below.

Now, condition 2) for being type [1] requires that (A.52) be trivially satisfied in

cases of pq = s = 0, as can be seen directly from the vanishing of the coefficient(
p
m

+ s
) (

q
m

+ s
)

and of the second term [1]pqs. In the remaining cases, we use (A.52)

to solve for hij,pqs with pq > 0 or s > 0 in terms of Tp′q′s′ , Ui,p′q′s′ , and hij,p′q′s′ at lower

orders.

Setting Ezz̄ to zero at order z
p
m z̄

q
m (zz̄)s−1, we find

Ezz̄,pqs =

(
p+ q

m
+ 2s

)(
p+ q

m
+ 2s+ 1

)
Tpqs −

1

2

( p
m

+ s
)( q

m
+ s
)
hij,000hij,pqs

+ [1]pqs = 0, for all p, q, s ≥ 0 with either pq > 0 or s > 0. (A.53)

Here hij,000 (as well as the more general hij,pqs that will appear later is defined by

expanding hij as a function of type [0] according to (A.13) with ` = 0. Again, (A.53)

is trivially satisfied in cases of pq = s = 0. For pq > 0 or s > 0, we may insert the

previously obtained expressions for hij,pqs and solve for Tpqs in terms of Tp′q′s′ , Ui,p′q′s′ ,

and hij,p′q′s′ at lower orders.

Similarly setting Ezi to zero at order z
p
m
−1z̄

q
m (zz̄)s, we find

Ezi,pqs = −i
( p
m

+ s
)(p+ q

m
+ 2s+ 2

)
Ui,pqs +

(
p+ q

m
+ 2s+ 1

)
Tpqs,i

+ i
( p
m

+ s
)(p− q

m
− 1

)
Uj,000h

jk
,000hik,pqs +

1

2

( p
m

+ s
)
hjk,000(hij,pqs;k − hjk,pqs;i)

+ [1/2]pqs = 0, for all p, q, s ≥ 0 with either p > 0 or s > 0. (A.54)

Here, in a slight change of notation, indices after a semicolon (;) denote covariant

derivatives defined using the metric hij,000. We will use this definition to take covariant

derivatives of individual coefficients with subscript pqs in an expansion of the form

(A.13) as opposed to taking covariant derivatives of the full sum. Note that Ezi is of
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type [1/2] with ` = −1, so (A.54) is trivially satisfied in cases of p = s = 0. For p > 0

or s > 0, we may insert the previously obtained expressions for Tpqs, hij,pqs and solve

for Ui,pqs in terms of Tp′q′s′ , Ui,p′q′s′ , and hij,p′q′s′ at lower orders.

Setting Ez̄i to zero at order z
p
m z̄

q
m
−1(zz̄)s, we find the complex conjugate of (A.54)

with p and q exchanged in the coefficients:

Ez̄i,pqs = i
( q
m

+ s
)(p+ q

m
+ 2s+ 2

)
Ui,pqs +

(
p+ q

m
+ 2s+ 1

)
Tpqs,i

− i
( q
m

+ s
)(q − p

m
− 1

)
Uj,000h

jk
,000hik,pqs +

1

2

( q
m

+ s
)
hjk,000(hij,pqs;k − hjk,pqs;i)

+ [1/2]pqs = 0, for all p, q, s ≥ 0 with either q > 0 or s > 0. (A.55)

This equation is trivially satisfied in cases of q = s = 0. For q > 0 or s > 0, we may

insert the previously obtained expressions for Tpqs, hij,pqs and solve for Ui,pqs in terms

of Tp′q′s′ , Ui,p′q′s′ , and hij,p′q′s′ at lower orders. However, some of these Ui,pqs (those with

pq > 0 or s > 0) have already been determined from (A.54), and we will need to show

that the two solutions agree. This is true and guaranteed by the contracted Bianchi

identities, as we will show in a moment.

Setting Ezz to zero at order z
p
m
−2z̄

q
m (zz̄)s, we find

Ezz,pqs = −1

2

( p
m

+ s
)( p

m
+ s− 1

)
hij,000hij,pqs + [1]pqs = 0,

for all p, q, s ≥ 0 with either p > 0 or s > 1. (A.56)

Here Ezz is of type [1] with ` = −2, so (A.56) is trivially satisfied in cases with p = 0,

s ≤ 1. In cases with p > 0 and q = s = 0, we use (A.56) to express the trace hij,000hij,p00

in terms of Tp′q′s′ , Ui,p′q′s′ , and hij,p′q′s′ at lower orders. In the remaining cases, (A.56)

is guaranteed by equations that we have already satisfied, as we will show in a moment

using the contracted Bianchi identities.

Finally setting Ez̄z̄ to zero at order z
p
m z̄

q
m
−2(zz̄)s, we find the complex conjugate

of (A.56) with p and q exchanged in the coefficients:

Ez̄z̄,pqs = −1

2

( q
m

+ s
)( q

m
+ s− 1

)
hij,000hij,pqs + [1]pqs = 0,

for all p, q, s ≥ 0 with either q > 0 or s > 1. (A.57)

This equation is trivially satisfied in cases of q = 0, s ≤ 1. Again, in cases with q > 0

and p = s = 0 we use (A.57) to write the trace hij,000hij,0q0 in terms of Tp′q′s′ , Ui,p′q′s′ ,

and hij,p′q′s′ at lower orders. In the remaining cases, (A.57) will be guaranteed by the

contracted Bianchi identities.
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We now turn to the contracted Bianchi identities

Bµ ≡ ∇νR
ν
µ −

1

2
∇µR = ∇νE

ν
µ −

1

2
∇µE = 0 (A.58)

and, given our earlier solutions, show that for µ = i they guarantee Ez̄i,pqs = 0 with

pq > 0 or s > 0, for µ = z they guarantee Ezz,pqs = 0 with q > 0 or s > 0, and for

µ = z̄ they guarantee Ez̄z̄,pqs = 0 with p > 0 or s > 0 as claimed above. To see this,

note that (A.58) leads to

Bi,pqs = 2
( p
m

+ s
)
Ez̄i,pqs + · · · = 0, (A.59)

Bz,pqs = 2
( q
m

+ s
)
Ezz,pqs + · · · = 0, (A.60)

Bz̄,pqs = 2
( p
m

+ s
)
Ez̄z̄,pqs + · · · = 0, (A.61)

where · · · denotes terms that are linear combinations of Ez̄i,p′q′s′ , Ezz,p′q′s′ , and Ez̄z̄,p′q′s′

at lower orders, as well as Eij,p′q′s′ , Ezi,p′q′s′ , and Ezz̄,p′q′s′ of any orders. The desired

conclusion then follows immediately.

In summary, we have now shown that the expansions (A.10)–(A.12) consistently

solve Einstein’s equations, at least in the generic case where m is irrational. Before

discussing rational m, note that it is possible to find an exact expression for Ezz,p00

that may then be used to solve for the traces hij,000hij,p00:

Ezz,p00 = Rzz,p00 = −
p∑

p1=1

p1

2m

(p1

m
− 1
)
hij,p100h

ij
,(p−p1)00

+
∑

p1,p2>0, p3≥0
p1+p2+p3≤p

p1p2

4m2
hij,p100hkl,p200h

ik
,p300h

jl
,(p−p1−p2−p3)00 = 0, ∀ p > 0. (A.62)

Similarly for Ez̄z̄,0q0 we have

Ez̄z̄,0q0 = Rz̄z̄,0q0 = −
q∑

q1=1

q1

2m

(q1

m
− 1
)
hij,0q10h

ij
,0(q−q1)0

+
∑

q1,q2>0, q3≥0
q1+q2+q3≤q

q1q2

4m2
hij,0q10hkl,0q20h

ik
,0q30h

jl
,0(q−q1−q2−33)0 = 0, ∀ q > 0. (A.63)

These two equations simplify for p = 1 and q = 1 respectively to yield

Ezz,100 = − 1

2m

(
1

m
− 1

)
hij,000hij,100 = 0 ⇒ hij,000hij,100 = 0, (A.64)

Ez̄z̄,010 = − 1

2m

(
1

m
− 1

)
hij,000hij,010 = 0 ⇒ hij,000hij,010 = 0. (A.65)
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Defining Kzij ≡ 1
2
hij,100 and Kz ≡ hij,000Kzij, and making the corresponding definitions

for complex conjugates, we find

Kz = Kz̄ = 0. (A.66)

This condition is valid for general values of m, and taking the limit m→ 1 it becomes

the familiar requirement that the trace of the extrinsic curvature tensor vanish.

Now, even with a conical singularity, in Euclidean signature it is a well-defined

question to ask whether the area of a given surface is locally minimal with respect to

small deformations. Here it is important to realize that, even in smooth Euclidean

spacetimes, extremal surfaces are not necessarily locally minimal in this sense13, but

can instead give more general saddles. But all extremal surfaces in smooth Euclidean

geometries are locally minimal with respect to variations that are also sufficiently local

in space – i.e., where most of the surface is held fixed and only an arbitrarily small piece

of the surface is allowed to vary. We will refer to variations of this sort as doubly-local.

It is thus of interest to ask how the condition (A.66) relates to the possibility that

the conical singularity may lie on a surface of doubly-locally minimal area. Let us

consider such a doubly-local variation of a surface from the conical defect to a nearby

location parameterized by z = εz̃(yi). From the metric (A.3) and the expansions

(A.10)–(A.12), we find that without imposing Einstein’s equations the area generally

changes by O(ε2) and O(ε1/m) effects. The coefficient of the O(ε2) term is positive when

the variation is sufficiently localized in the directions along the surface. For m ≤ 1
2
, the

leading area change is O(ε2) and doubly-local minimality follows directly as in smooth

Euclidean geometries14. For 1
2
< m ≤ 1, doubly-locally minimality would have failed

without the equations of motion, but once we impose them, (A.66) forces the O(ε1/m)

terms in the area change to vanish, ensuring that the leading area change is still O(ε2)

and doubly-local minimality holds. For m > 1, the leading area change is generally

dominated by O(ε2/m) effects involving quadratic terms in hij,100 and hij,010 which do

not have a definite sign, so the conical defect is not doubly-locally minimal in this case.

Nonetheless, (A.66) holds in this case (as in the previous two cases), and it imposes a

nontrivial constraint on on-shell geometries that postpones a potential O(ε1/m) change

in the area to O(ε2/m).

13Such examples are directly analogous to a geodesic in 2-dimensional space over the top of a hill.
14Although we have not yet discussed rational m, for the case of integer n = 1/m, this is clear

from the fact that the n-fold cover is a smooth geometry with a replica Zn symmetry about the

would-be singularity. This symmetry then requires the would-be singularity to be extremal, and thus

to be doubly-locally minimal. Indeed, the full extrinsic curvature tensor must vanish by symmetry.

It follows that the conical singularity lies on a doubly-locally minimal surface in the Zn quotient. It

is worth noting that (A.66) in this case imposes an additional trace condition for not the extrinsic

curvature but a higher-order version of it (i.e., ∂nz hij and its complex conjugate).
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Let us now consider the special case where m is a rational number. We could work

out this case directly by following a procedure similar to that above, but it is easier

to take a limit where m approaches a rational number from a sequence of irrational

numbers. To see that the limit is well-behaved, note that when we solve the equations

of motion (A.52)–(A.57), the coefficients of the terms for which we solve are continuous

functions of m that do not generally vanish at rational m. Indeed, the only exception

is the coefficient −1
2

(
p
m

+ s
) (

p
m

+ s− 1
)

in (A.56), which vanishes for q = s = 0 when

m approaches the positive integer p. In this case, (A.56) is given by the more precise

version (A.62), and instead of solving for the trace hij,000hij,p00 we will simply leave the

trace undetermined and interpret (A.62) with p = m as a constraint on the coefficients

hij,p′00 with p′ < m for which we did not solve above. For p = m > 1, this constraint

is manifestly nontrivial15 as can be seen from (A.62), and a solution to the constraint

would typically exist. As a result, the total number of free parameters will be the same

as in more generic cases of non-integer m. This is the key point that we require for the

discussion of uniqueness of solutions in section A.3 below.

A.3 Uniqueness of solutions

We now give a counting argument to show that the freedom in the solutions constructed

in the previous subsection is precisely what one expects to need to match general bound-

ary conditions at large r. In other words, we will show that there are enough solutions

of the form (A.10)–(A.12) to describe the expected physics, and also that solutions of

this form that are compatible with given large-r boundary conditions generally have no

continuous free parameters. Instead, such solutions form a discrete set as one expects

of a good non-linear elliptic boundary value problem.

In the Asymptotically locally AdS (AlAdS) context, one generally requires the in-

duced geometry on a constant r slice to be conformal to a given d-dimensional boundary

metric in the limit r → ∞. The boundary metric has d(d + 1)/2 independent compo-

nents, involving d(d+ 1)/2 general functions of (φ, yi). However, when matching to the

boundary metric we can use any conformal factor16 and any d-dimensional diffeomor-

15This does not apply to p = m = 1 for which (A.62) is trivially satisfied and leads to no constraint.

In this case, our problem reduces to finding standard smooth solutions, and the “missing” constraint

from (A.62) – as well as its complex conjugate – is explained by the additional diffeomorphism gauge

invariance associated with moving the location of the codimension-2 surface marked by r = 0 (which

is possible only when there is no conical defect).
16Alternatively, one can fix the conformal factor but allow the freedom to use surfaces Σε defined

by r = r̄(φ, yi)/ε which nevertheless approach r = ∞ as ε → 0, with the same counting due to the

arbitrary function r̄(φ, yi). This latter formulation is preferred in odd bulk dimensions due to the

boundary conformal anomaly [48]. Similarly, one might instead impose a finite-distance Dirichlet

boundary condition, requiring that there be a surface at finite distance with a fixed induced geometry,
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phism to identify the constant r slice with the given conformal geometry, and these are

parameterized by d+1 general functions of (φ, yi). Therefore, the asymptotic boundary

conditions are parameterized by (d+ 1)(d− 2)/2 functions of (φ, yi).

We now show that, after removing residual gauge transformations, the free pa-

rameters in the small r expansions (A.10)–(A.12) are also precisely (d + 1)(d − 2)/2

functions of (φ, yi). To begin, note that at non-integer m our procedure for solving

the equations of motion (A.52)–(A.57) expressed the solution in terms of the following

unconstrained coefficients:

1. Ui,000: We refer to these coefficients as d − 1 “zero modes,” by which we mean

that they are functions of the yi alone and have vanishing angular momentum on

the φ circle.

2. hij,000: These give an additional d(d− 1)/2 zero modes.

3. The traceless parts of hij,p00, hij,0q0 for any p, q > 0: Since a general periodic func-

tion of φ can be expanded in a Fourier series, these coefficients can be equivalently

expressed as d(d−1)/2−1 functions of (φ, yi) whose components at zero angular

momentum on the φ circle are constrained to vanish; i.e., they are missing the

corresponding zero modes.

Putting these together, the remaining free data consists of d(d − 1)/2 − 1 = (d +

1)(d− 2)/2 functions of (φ, yi) (now with freely specifiable zero modes), together with

d additional zero modes.

To proceed, we must also count residual gauge transformations. These are diffeo-

morphisms that preserve the form of the metric ansatz (A.3). They consist of (d− 1)-

dimensional diffeomorphisms in the yi directions, as well as arbitrary yi-dependent

shifts of the φ coordinate: φ → φ + ξ(yi). In total, these residual gauge transforma-

tions are parameterized by d zero modes, which we should subtract from the number of

free parameters in the small r expansions (because the residual gauge transformations

preserve the asymptotic boundary conditions up to conformal factors and boundary

diffeomorphisms).

Up to residual gauge transformations, the free parameters in the small r expansions

can thus be expressed as (d+1)(d−2)/2 functions of (φ, yi). This precisely matches the

freedom in the large-r boundary conditions. For non-integerm, the solution constructed

in the previous subsection thus contains precisely the right amount of freedom to solve

the desired boundary value problem. Indeed, modulo residual gauge transformations,

for given such boundary conditions the solutions will generally admit no continuous

though in that case the coordinate location of the surface should not be fixed.
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parameters, and will thus form a discrete set as expected of a good elliptic boundary-

value problem.

The special case of integer m is much the same. As noted at the end of section

A.2, in that case our procedure leaves the trace hij,000hij,p00 undetermined, and instead

enforces a different constraint on the coefficients hij,p′00 with p′ < m. Although this

case does not organize itself as nicely into the Fourier transform of d(d − 1)/2 − 1 =

(d+1)(d−2)/2 functions, it contains the same number of free parameters. Furthermore,

since we are attempting to match to boundary conditions at large r, and since the

equations of motion are non-linear, the free parameters we find should generally be

expected to match all Fourier components of the boundary data as desired. A counting

argument of this form is thus the best one can expect to achieve at this level of analysis.

Even in the smooth case m = 1, to our knowledge there is no theorem guaranteeing

the existence of solutions with arbitrary boundary data.

B Higher derivative variational principles by minimal subtrac-

tion

In this appendix, we generalize the discussion in appendix A for Einstein gravity to

include arbitrary higher-derivative corrections. The action is defined in a similar way

as in (A.2):

Ĩ[g] = lim
ε→0+

{∫
r≥ε

dd+1x
√
gL+ IεCT

}
, (B.1)

where the higher-derivative Lagrangian has the general form

L = − 1

8πG

(
R− 2Λ

2
+ λ1R

2 + λ2RµνR
µν + λ3RµνρσR

µνρσ + λ4R∇2R + · · ·
)

(B.2)

and IεCT is an appropriate counterterm to be specified later.

We will work in the perturbative limit where higher-derivative corrections are small

and physical quantities can be solved as Taylor expansions in the higher-derivative

coupling constants λk. In particular, the metric has the form

gµν =
∞∑

n1,n2,···=0

g(n1n2··· )
µν λn1

1 λ
n2
2 · · · . (B.3)

We we will sometimes abbreviate g
(n1n2··· )
µν as g

(~n)
µν .

As before, we may choose quasi-cylindrical coordinates so that the metric is of the

form (A.3) to any order in the perturbative expansion. However, the corresponding

functions T (~n), U
(~n)
i , and h

(~n)
ij generally have more singular behaviors at r = 0 than
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indicated in the expansions (A.10)–(A.12). To see this precisely, let us start again

with the generic case where m is an irrational number. Instead of the expansions

(A.10)–(A.12), we will show

T (~n) =
∞∑

p,q,s=0
pq>0 or s>n

T (~n)
pqsz

p
m z̄

q
m (zz̄)s−n, (B.4)

U
(~n)
i =

∞∑
p,q,s=0

pq>0 or s≥n

U
(~n)
i,pqsz

p
m z̄

q
m (zz̄)s−n, (B.5)

h
(~n)
ij =

∞∑
p,q,s=0

pq>0 or s≥n

h
(~n)
ij,pqsz

p
m z̄

q
m (zz̄)s−n. (B.6)

Here n is a nonnegative number determined by ~n:

n =
∞∑
k=1

nk

(
Dk

2
− 1

)
, (B.7)

where Dk is the total number of derivatives in the term whose coefficient in the La-

grangian (B.2) is λk. For example, we have D1 = D2 = D3 = 4 for the 4-derivative

terms and D4 = 6 for the 6-derivative term in (B.2).

We say that a function f is of type [α](~n) if it satisfies conditions 1) and 2) used

previously in appendix A to define type [α], but instead of 3) it satisfies the following

generalization:

3~n) Each coefficient fpqs only depends on T
(~n′)
p′q′s′ , U

(~n′)
i,p′q′s′ , and h

(~n′)
ij,p′q′s′ at lower orders,

meaning either ~n′ = ~n and (p′, q′, s′) < (p, q, s) as defined in (A.14), or ~n′ < ~n.

Here ~n′ < ~n is defined by the conditions

n′k ≤ nk for all k ≥ 1 and ~n′ 6= ~n. (B.8)

We define type [α](~n) in the same way as [α](~n), except that in condition 3~n) we allow

lower or equal orders, meaning either ~n′ = ~n and (p′, q′, s′) ≤ (p, q, s) as defined in

(A.16), or ~n′ < ~n.

Using this terminology and working at any perturbative order, we find the metric
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components

g(~n)
zz = T (~n) z̄

z
∈ [n](~n), (B.9)

g
(~n)
zz̄ =

1

2
δ~n,0 − T (~n) ∈ [n](~n), (B.10)

g
(~n)
zi = iU

(~n)
i z̄ ∈ [n− 1/2](~n), (B.11)

g
(~n)
ij = h

(~n)
ij ∈ [n](~n), (B.12)

the Riemann tensor components

R
(~n)
zz̄z̄z ∈ T

(~n)
,zz̄ +

1

2

(
T (~n) z

z̄

)
,zz

+
1

2

(
T (~n) z̄

z

)
,z̄z̄

+ [n+ 1](~n), (B.13)

R
(~n)
zz̄zi ∈

1

2

{
i
(
U

(~n)
i z̄

)
,zz̄

+ i
(
U

(~n)
i z

)
,zz
− T (~n)

,zi −
(
T (~n) z̄

z

)
,z̄i

}
+ [n+ 1/2](~n), (B.14)

R
(~n)
zz̄ij ∈ [n+ 1](~n), (B.15)

R
(~n)
aibj ∈ −

1

2
h

(~n)
ij,ab + [n+ 1](~n), (B.16)

R
(~n)
aijk ∈

1

2

(
h

(~n)
ij,a;k − h

(~n)
ik,a;j

)
+ [n+ 1/2](~n), (B.17)

R
(~n)
ijkl ∈ [n+ 1](~n), (B.18)

and the Ricci tensor components

R
(~n)
zz̄ ∈ 2T

(~n)
,zz̄ +

(
T (~n) z

z̄

)
,zz

+
(
T (~n) z̄

z

)
,z̄z̄
− 1

2
h(0)ijh

(~n)
ij,zz̄ + [n+ 1](~n) ⊂ [n+ 1](~n), (B.19)

R(~n)
zz ∈ −

1

2
h(0)ijh

(~n)
ij,zz + [n+ 1](~n) ⊂ [n+ 1](~n), (B.20)

R
(~n)
zi ∈ −i

(
U

(~n)
i z̄

)
,zz̄
− i
(
U

(~n)
i z

)
,zz

+ T
(~n)
,zi +

(
T (~n) z̄

z

)
,z̄i

+ iU (0)jzh
(~n)
ij,zz

− iU (0)j z̄h
(~n)
ij,zz̄ +

1

2
h(0)jk

(
h

(~n)
ij,z;k − h

(~n)
jk,z;i

)
+ [n+ 1/2](~n) ⊂ [n+ 1/2](~n),

(B.21)

R
(~n)
ij ∈ −2h

(~n)
ij,zz̄ + [n+ 1](~n) ⊂ [n+ 1](~n). (B.22)

Here covariant derivatives in the yk directions in terms such as h
(~n)
ij,a;k are defined using

the (d − 1)-dimensional metric h
(0)
ij at the zeroth order in higher-derivative coupling

constants.

One immediate consequence is that for any covariant scalar f built from a product

of an arbitrary number of the metric gµν , the inverse metric gµν , and the Riemann

tensor Rµνρσ with possible covariant derivatives, we have

f (~n) ∈ [n+D/2](~n) (B.23)

– 38 –



where D is the total number of derivatives in the expression f .

The equation of motion including higher-derivative interactions can be written in

the following (trace-reversed) form:

Eµν ≡ Rµν −
2Λ

d− 1
gµν +

∞∑
k=1

λkE(k)µν = 0, (B.24)

where E(k)µν is the contribution from the term with coefficient λk in the Lagrangian

(B.2), and is a sum of terms each with no more than Dk. Using the same strategy

as in appendix A, we find that the expansions (B.4)–(B.6) can consistently solve the

equation of motion at any perturbative order. We will not repeat all the details here,

but as an example we find from (B.24) that E
(~n)
ij is of type [n+ 1](~n), and upon setting

it to zero at order z
p
m z̄

q
m (zz̄)s−n−1 we get

E
(~n)
ij,pqs = −2

( p
m

+ s− n
)( q

m
+ s− n

)
h

(~n)
ij,pqs + [n+ 1](~n)

pqs = 0,

∀ p, q, s ≥ 0, either pq > 0 or s > n. (B.25)

Condition 2) of E
(~n)
ij being type [n+ 1](~n) requires that (B.25) be trivially satisfied in

cases of pq = 0 and s ≤ n, as can be seen directly from the vanishing of both terms in

(B.25). The vanishing of the first term is due to the vanishing of either its coefficient(
p
m

+ s− n
) (

q
m

+ s− n
)

for s = n or h
(~n)
ij,pqs for s < n as is clear from its definition

(B.6). In the remaining cases, we use (B.25) to solve for h
(~n)
ij,pqs with pq > 0 or s > n in

terms of T
(~n′)
p′q′s′ , U

(~n′)
i,p′q′s′ , and h

(~n′)
ij,p′q′s′ at lower orders.

The other components of the equation of motion can be solved similarly. Using

the same counting argument as in appendix A, we find that at any order in the higher-

derivative coupling constants, the solution constructed here is generically unique up to

residual gauge transformations once we impose suitable asymptotic boundary condi-

tions.

We now show (still for irrational m) that the higher-derivative action (B.1) again

leads to a well-defined variational principle for metric configurations of the form (A.3)

with a fixed opening angle 2πm on the conical defect, once we choose the counterterm

IεCT appropriately. This works at any order in the higher-derivative coupling constants,

and the metric configurations follow the expansions (B.4)–(B.6) at r = 0. For such

metric configurations, we find from (B.23) that the Lagrangian (B.2) generally has

singular behaviors at r = 0 characterized by

L(~n) ∈ [n+ 1](~n) (B.26)

whose integral is generally divergent at r = 0 for n > 0. However, condition 2) of being

type [n+ 1](~n) ensures that L(~n) does not have negative integer powers of z or z̄, at
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least in the generic case where m is irrational. Therefore, the integral in (B.1) has only

power-law (but not logarithmic) divergences. In particular, the divergences at the ~nth

perturbative order are of the form ε2(
p
m
−s) where s ≤ n, p are positive integers. We

may thus choose the counterterm IεCT so that it minimally subtracts these power-law

divergences, yielding a finite action (B.1).

With this choice of the counterterm, we find a well-defined variational principle

under the boundary condition that fixes m to any irrational value. To see this, note

that under a general, infinitesimal variation δgµν of the metric, the action (B.1) changes

by a boundary term at r = ε:

δĨ[g] = lim
ε→0+

[∫
∂

ddX
√
γnµVµ

∣∣∣∣
r=ε

+ δIεCT

]
, (B.27)

up to a bulk term that vanishes if the equation of motion is satisfied. The notation

here is similar to what was used in (A.6), and Vµ is a vector built from gµν , g
µν , δgµν ,

Rµνρσ, and their covariant derivatives. At least in the generic case of irrational m,

terms with negative integer powers of z or z̄ cannot appear in metric variations δgµν
that fix m; hence they also cannot appear in Vµ. At any perturbative order, any ε→ 0

divergences in the first term on the right hand side of (B.27) are thus power laws which

must be precisely cancelled by δIεCT; after all, δĨ[g] cannot be infinite if Ĩ[g] is finite.

The important point is that the integral in (B.27) cannot have a finite, nonzero term

as ε → 0. To see this, note that
√
γ is r times an expression that is built from T , Ui,

and hij and therefore has no negative integer powers of z or z̄ according to condition

2), Vµ similarly has no negative integer powers of z or z̄, and the unit normal vector

is specified by (nz, nz̄, ni) = (z, z̄, 0)/r. Therefore, the boundary term (B.27) vanishes,

leading to a well-defined variational principle for fixed irrational m.

As before, we note that varying the on-shell action with respect to m must give

some geometric invariant integrated on the conical defect. For any (irrational) value

of m this invariant is a higher-derivative generalization of the area. This arises from

the boundary term (B.27), but is different from the fixed-m variations discussed above

because changing m in (A.1) introduces a nonzero T000, leading to a z̄/z term in the

zz component of the metric (as well as its complex conjugate). It also introduces

log z, log z̄ terms, but since Ĩ[g] is finite at each m these must either cancel in (B.27)

or vanish as ε → 0. For our purposes we do not need to work out the explicit form of

this boundary term. Instead, we simply define it to be −σδm, leading to

dĨm
dm

= −σ, (B.28)

where Ĩm again denotes the on-shell action with the boundary condition set by m. Note

also that the form of (B.27) requires (B.28) to be given by a boundary term at the
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defect independent of both z and z̄, so that (if desired) σ may be computed by taking

the limit ε→ 0 from any fixed direction in the bulk spacetime.

We expect the zz and z̄z̄ components of the equation of motion to lead to higher-

derivative generalizations of the vanishing trace of the extrinsic curvature tensor in

(A.66). In particular, taking the limit m→ 1 we expect to find that the HRT surface

extremizes σ. Instead of working out these details by brute force, we note that we

can use the above variational principle to solidify the argument outlined in [28] and

in footnote 4. To do so, we first consider a metric variation δgµν that for m = 1

corresponds to an infinitesimal but arbitrary change of the location of the HRT surface.

Note that, consistent with (A.1), we will not change coordinates but will instead change

the induced metric hij as well as Ui and T in the manner defined by a diffeomorphism

that acts non-trivially on the HRT surface. Note that this change in (hij, Ui, T ) also

defines a valid variation δgµν for m = 1, though the latter need not always be equivalent

to acting with a diffeomorphism. We can then apply a second infinitesimal variation

that changes m from 1 to 1 + dm. But the two variations d and δ commute. And

according to (B.28), when acting on Ĩm the former variation gives −σ. We thus find

dδĨm
dm

= δ
dĨm
dm

= −δσ. (B.29)

Furthermore, the left-most expression must vanish as for any m the quantity δĨm van-

ishes under all variations δgµν that fix m. From this we find δσ = 0 under an arbitrary

shift of the HRT surface, so σ is extremized on-shell at m = 1. A similar argument

shows that in limits m→ 1/n for integer n, in which case the limit has a smooth n-fold

cover, the geometric entropy σ is extremized in the covering space.

In parallel with the discussion in the two paragraphs below (A.66), one might also

ask whether the conical singularity in our solutions also sits on a surface that double-

locally minimizes σ (i.e., it minimizes σ with respect to variations that are localized

in directions along the surface as well as transverse to the surface). At a very formal

level the results would seem to be the same as for our previous discussion of the area in

conical spacetimes (and for the case of n = 1/m, doubly-local minimality again follows

directly by symmetry as in footnote 14). But to give a precise argument for general

m, one would need to think carefully about how to define σ for smooth surfaces that

intersect the conical singularity. We leave this issue for future investigation.

Finally, let us comment on the special case where m is a rational number. As

before, we take a limit where m approaches a rational number from a sequence of irra-

tional numbers. However, the limit here is not necessarily well-behaved, because when

solving various components of the equation of motion such as (B.25), the coefficients

of the terms for which we solve involve expressions like
(
p
m

+ s− n
) (

q
m

+ s− n
)

which
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may vanish as m approaches a rational number. In Einstein gravity we solved a similar

problem by requiring the rest of the equation to vanish, but here we do not generally

have that freedom because the rest of the equation is sometimes determined completely

by solutions at lower orders in the higher-derivative coupling constants. This means

that at rational values of m, the perturbative expansion in the higher-derivative cou-

pling constants may develop a pole in m at some order ~n. However, this breakdown

of perturbation theory never happens when m is the inverse of a positive integer –

since the solution in that case can be constructed as the Z1/m quotient of a smooth

geometry. Moreover, at any given perturbative order – for example the ~nth order –

this breakdown occurs on at most a nowhere dense set of rational values of m, with a

minimal distance set by 1/n.
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