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Abstract

Human milk optimizes gut microbial richness and diversity, and is critical for proper immune 

development. Research has shown differing microbial composition based on geographic location, 

providing evidence that diverse biospecimen data is needed when studying human bacterial 

communities. Yet, limited research describes human milk and infant gut microbial communities 

in Africa. Our study uses breastmilk, stool, and meconium samples from a South African 

birth cohort to describe the microbial diversity, identify distinct taxonomic units, and determine 

correlations between bacterial abundance in breastmilk and stool samples. Mother-infant dyads 

(N=20) were identified from a longitudinal birth cohort in the Vhembe district of Limpopo 

Province, South Africa. Breastmilk, meconium, and stool samples were analyzed using 16S 

ribosomal RNA sequencing of the V4–V5 gene region using the MiSeq platform for identification 
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and relative quantification of bacterial taxa. A non-metric multidimensional scaling using Bray-

Curtis distances of sample Z-scores showed that meconium, stool, and breastmilk microbial 

communities are distinct with varying genus. Breastmilk was mostly comprised of Streptococcus, 
Staphylococcus, Veillonella, and Corynebacterium. Stool samples showed the highest levels of 

Bifidobacterium, Faecalibacterium, Bacteroides, and Streptococcus. Alpha diversity measures 

found that stool samples have the highest Shannon index score compared to breastmilk and 

meconium. The abundance of Bifidobacterium (r=0.57), Blautia (r=0.59) and Haemophilus 
(r=0.69) were correlated (p<0.1) between breastmilk and stool samples. Despite the importance 

of breastmilk in seeding the infant gut microbiome, we found evidence of distinct bacterial 

communities between breastmilk and stool samples from South African mother-infant dyads.
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Research adamantly supports that human milk saves lives [1], improves well-being [2, 3], 

and reduces societal costs [4] associated with illness and disability. Breastfeeding may 

also be a viable strategy for optimizing gut microbial richness and diversity [5]. In the 

immediate period following birth, the infant’s immune system is undeveloped due to the 

near-sterile environment of the mother’s womb [6–8]. The first stages of gut colonization 

and immune system maturation begin with exposure to vaginal and breastmilk microbial 

communities [9]. A lack of exposure to these microbial communities may disrupt infant gut 

microbial development, resulting in analtered immune function and increased risk of disease 

[10]. Deviations of bacterial communities from a healthy state (i.e. dysbiosis) of the infant 

gut microbiome is associated with necrotizing enterocolitis, inflammatory bowel diseases, 

malnutrition, metabolic conditions (e.g. obesity), and atopic diseases such as allergies and 

asthma [11].

Rehabilitating infant gut dysbiosis in early childhood is a potential strategy for 

promotinghealth and well-being; therefore, it is important to understand the microbial 

profile of breastmilk, and its link to infant gut microbiome. Yet, research on breastmilk 

microbiome is limited and little is known about the transfer of breastmilk microbes from 

mother to infant. Preliminary evidence suggests that breastmilk microbiota seeds the infant 

gut and strongly influences the lifelong gut microbiome trajectory [5, 12]. A twelve month 

prospective study of 107 infants reported that 25% of breastmilk bacteria were vertically 

transferred to the infant’s gut microbiome [5]. Another small study (n=7) provided evidence 

that breastfeeding transfers gut-associated anaerobes [13, 14]. To date, seven studies have 

provided consistent results for the impact of exclusive breastfeeding on infant gut microbiota 

[5, 15–20], but with varying degrees of association and different research questions [21]. For 

example, Azad et al. (2015) reported that breastfeeding exclusivity and duration modified 

infant gut dysbiosis caused by intrapartum antibiotics [16]. Wood et al. (2018) reported that 

exclusive breastfeeding results in lower infant gut microbial diversity and distinct microbial 

composition; however, this study only assessed gut microbiota at six and fourteen weeks 

postpartum before the gut microbiome reached the transition phase [18, 22].
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To date, studies on breastmilk and stool microbiome are predominately conducted in 

developed nations in North America — which does not address the significant variability in 

the microbiome found across racial groups and geographic locations [23]. Country-specific 

microbial data are vital for interpretation of large studies, such as the Human Microbiome 

Project, that attempt to characterize healthy microbial states and understand the link with 

human health. Our study uses breastmilk, stool, and meconium samples from a South 

African birth cohort to describe the microbial diversity, identify distinct taxonomic units, 

and determine correlations between bacterial abundance in breastmilk and stool samples 

from mother-infant dyads in a geographic region and population that is vastly understudied.

The Venda Health Examination of Mothers, Babies and their Environment (VHEMBE) 

is a longitudinal birth cohort in the Vhembe district of Limpopo Province, South Africa. 

Between August 2012 and December 2013, pregnant women presenting to give birth at 

Tshilizidini Hospital were screened and recruited. To be eligible, women had to meet the 

following criteria: ≥18 years old, spoke TshiVenda at home, lived within 20 kilometers 

of the hospital and did not plan to move away, did not have a malaria diagnosis during 

pregnancy, and gave birth to a live singleton infant. VHEMBE staff identified 920 eligible 

participants; of whom 752 completed the baseline survey and 706 provided breastmilk 

samples at 1 week postpartum [24]. A detailed description of study participants, including 

variables that may influence the microbiome, can be found elsewhere [24]. This study 

was performed in line with the principles of the Declaration of Helsinki. The Institutional 

Review Boards at the University of California, Berkeley; McGill University; the University 

of Pretoria; the Limpopo Department of Health and Social Development; and the Ethics 

Committee of Tshilidzini Hospital approved the study.

We analyzed breastmilk samples collected when the child was 1y (n=10), meconium 

samples collected at birth (n=10) and stool samples collected at 1y (n=20), using 16S 

ribosomal RNA (rRNA) sequencing at the Vincent J. Coates Genomics Sequencing 

Laboratory, University of California, Berkeley. Meconium and stool samples were collected 

from diapers into sterile containers. Breastmilk samples were collected using hand 

expression into a sterile container. All mothers used soap and water to wash their hands 

and breast. All samples were temporarily stored on ice packs or in a refrigerator until 

transferred to a −20° C freezer for short-term storage and a −80° C freezer for long-term 

storage. Our study population consists of HIV negative mother-infant dyads, ranging from 

18–40 years old. Half of the mother-infant dyads in our study (n=10) had all three 

samples analyzed — maternal breastmilk, and infant stool and meconium. The other half 

of mother-infant dyads (n=10) had only stool samples analyzed. Prior to DNA isolation, 

the samples were subjected to mechanical bead-beating pretreatment using ZymoBiomics 

D4300 DNA miniprep kits (Zymo Research, Irvine, CA). DNA was then extracted using 

QIAamp Ultraclean Production Pathogen Mini Kits (Qiagen, Valencia, CA). We performed 

16S ribosomal RNA amplicon sequencing of the V4–V5 gene region using the MiSeq 

platform (Illumina, San Diego, CA) for identification and relative quantification of bacterial 

taxa [25]. An outline of the 16S Illumina Amplicon protocol we used can be found here 

[26].
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All raw sequence analysis, taxonomic identification, and visualization were processed using 

dbcAmplicons and R (packages ggplot2, vegan, phyloseq). A taxonomic threshold of 97% 

was used to bin reads into operational taxonomic units (OTUs) [27]. OTU abundance is 

described at the taxonomic units of genus levels. Alpha rarefaction was determined using the 

phylogenetic distance [28] and Shannon index [29]. A non-metric multidimensional scaling 

(NMDS) using Bray-Curtis distances of sample Z-scores was used to minimize variance. 

We calculated Spearman correlation coefficients for bacterial total and relative abundance 

between breastmilk and stool samples collected from the mother-child dyads. Bacterial total 

load was generated using dbcAmplicons for each sample. Analyses was performed in R and 

corrected for multiple comparisons using the Benjamini-Hochberg procedure to control for 

the false discovery rate (q<0.05) [30].

Figure 1 shows results from the NMDS for meconium collected at birth, and stool and 

breastmilk samples from 1 year postpartum. Based on this dimensional reduction plot, 

meconium, stool, and breastmilk microbial communities are distinct with varying genus. 

Results from the permutational multivariate analysis of variance (PERMANOVA) analysis 

provides evidence of a significant difference in clustering between breastmilk and stool 

samples (p-value 0.001) (not shown). A Sheppard plot of the residuals (i.e. dissimilarities 

to the original data) showed minimal scatter, suggesting that original dissimilarities are well 

preserved in the reduced number of dimensions (not shown).

Figure 2 displays the abundance plot of breastmilk, stool, and meconium samples. 

Breastmilk was mostly comprised of Streptococcus, Staphylococcus, Veillonella, 
and Corynebacterium. Stool samples showed the highest levels of Bifidobacterium, 
Faecalibacterium, Bacteroides, and Streptococcus. Despite general perceptions that 

meconium is sterile, all 10 meconium samples were home to bacterial communities; albeit 

small counts. Meconium samples were mostly comprised of Staphylcoccus, Streptococus, 
Prevotella, and Bifidobacterium. Further, four out of ten samples had relatively high levels of 

Escherichia/Shigella.

Figure 3 displays three alpha diversity measures for breastmilk, stool, and meconium 

samples. On average, stool samples have the highest Shannon index score, indicating 

stool has the highest amount of richness and microbial community consistency, with most 

samples having an index score above 2. Breastmilk samples also have rich and consistent 

microbial communities, with an index score falling slightly below 2. As expected, meconium 

samples have low diversity, with Shannon index scores hovering around 0. The abundance 

of Bifidobacterium (r=0.57), Blautia (r=0.59) and Haemophilus (r=0.69) were correlated 

(p<0.1) between breastmilk and stool samples collected from mother-child dyads (data not 

shown).

Our study describes the distinct microbial communities in breastmilk, stool, and 

meconium samples in South African mother-infant dyads. The main limitation is lack of 

generalizability to other populations due to the South African cohort; however, research has 

demonstrated variability in the microbiome across geographic locations demonstrating the 

need for microbiome research across multiple countries and ethnic groups [23]. Previous 

studies in South Africa have independently studied breastmilk, stool, and meconium 
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microbial profiles [31, 32]. Breastmilk and stool samples from A multi-ethnic United States 

study that analyzed breastmilk and stool samples using 16S and similar bioinformatics were 

dominated with Proteobacteria, and Enterobacteriaceae and Bifidobacteriaceae, respectively 

[5]. However, our study reported mostly different bacterial species dominance in both 

breastmilk and stool samples. Due to the differences in geographic location and ethnic 

backgrounds, this comparison may lend to the argument of microbial variations between 

individuals from different geographic locations, and highlights the need of continued 

research. An additional limitation of our study is that extractions of meconium and 

breastmilk samples provided low DNA yield and samples could have been contaminated 

by contact with diapers or skin during collection.

The first years of life are critical for optimal gut microbial colonies [9]. A number of factors 

may impact the human gut microbiome including antibiotic use [16], mode of delivery [16], 

and geographic location [23]. Limited evidence also suggests that breastfeeding can modify 

gut dysbiosis [16] and breastmilk microbiome may impact immunologic programming [33–

36]. To our knowledge, our pilot study is among the first to document breastmilk and 

infant gut microbial communities in South Africa. We also provide an important description 

of microbial communities that can be directly compared to previous studies and suggests 

geographic variations in stool and breastmilk microbial communities. Future research on the 

impact of breastmilk microbial colonies on infant gut dysbiosis is needed, and investigations 

should examine the importance of geographic location, diet, and other lifestyle differences in 

microbial composition.
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Figure 1. 
Non-metric multidimensional scaling using Bray-Curtis distances of sample Z-scores for 

meconium at birth, and breastmilk and stool samples at one year postpartum
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Figure 2. 
Bacterial abundance plot for meconium at birth, and breastmilk and stool samples at one 

year postpartum.
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Figure 3. 
Alpha diversity indices for meconium at birth, and breastmilk and stool samples at one year 

postpartum.
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