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A Hybrid Adaptive Low-Mach-Number/Compressible Method.
Part I: Euler Equations.

Emmanuel Motheaua,∗, Max Duartea, Ann Almgrena, John B. Bella

aCenter for Computational Sciences and Engineering, Computational Research Division, Lawrence Berkeley National
Laboratory, Berkeley, CA 94720-8139, USA.

Abstract

Flows in which the primary features of interest do not rely on high-frequency acoustic effects,
but in which long-wavelength acoustics play a nontrivial role, present a computational chal-
lenge. Integrating the entire domain with low-Mach-number methods would remove all acoustic
wave propagation, while integrating the entire domain with the fully compressible equations can
in some cases be prohibitively expensive due to the CFL time step constraint. For example,
simulation of thermoacoustic instabilities might require fine resolution of the fluid/chemistry in-
teraction but not require fine resolution of acoustic effects, yet one does not want to neglect the
long-wavelength wave propagation and its interaction with the larger domain.

The present paper introduces a new multi-level hybrid algorithm to address these types of
phenomena. In this new approach, the fully compressible Euler equations are solved on the
entire domain, potentially with local refinement, while their low-Mach-number counterparts are
solved on subregions of the domain with higher spatial resolution. The finest of the compressible
levels communicates inhomogeneous divergence constraints to the coarsest of the low-Mach-
number levels, allowing the low-Mach-number levels to retain the long-wavelength acoustics.
The performance of the hybrid method is shown for a series of test cases, including results from
a simulation of the aeroacoustic propagation generated from a Kelvin-Helmholtz instability in
low-Mach-number mixing layers. It is demonstrated that compared to a purely compressible
approach, the hybrid method allows time-steps two orders of magnitude larger at the finest level,
leading to an overall reduction of the computational time by a factor of 8.

Keywords: Hybrid Methods, Low-Mach-number Flows, Compressible Flows, Projection
Methods, Adaptive Mesh Refinement, Acoustics
2010 MSC: 35Q35, 35J05, 35Q31, 65M50

1. Introduction1

Many interesting fluid phenomena occur in a regime in which the fluid velocity is much less2

than the speed of sound. Indeed, it is possible to make a distinction between scales of fluctuations,3

depending on how a hydrodynamic fluid element is sensitive to acoustic perturbations. Acous-4

tic waves that do not carry enough energy to perturb a flow are referred to short-wavelengths.5
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In contrary, long-wavelengths refer to large scale motions where acoustic and hydrodynamic6

fluctuations can interact. Low-Mach-number [1, 2, 3] schemes exploit the separation of scales7

between acoustic and advective motions; these methods calculate the convective flow field but do8

not allow explicit propagation of acoustic waves. Their computational efficiency relative to ex-9

plicit compressible schemes results from the fact that the time step depends on the fluid velocity10

rather than sound speed. However, there is a class of problems for which the small-scale motions11

can be adequately captured with a low-Mach-number approach, but which require in addition12

the representation of long wavelength acoustic waves. This paper introduces a computational13

methodology for accurately and efficiently calculating these flows.14

An important example of this type of flow is thermoacoustic instabilities in large scale gas15

turbine engines. In these engines the region where the burning takes place can be modeled us-16

ing a low-Mach-number approach, since the short-wavelength acoustic waves generated by the17

heat release do not carry sufficient information or energy to be of interest. Low-Mach-number18

modeling of turbulent combustion has been demonstrated to be an efficient way to generate ac-19

curate solutions [4, 5, 6, 7, 8, 9]. However, in large burners, under certain conditions the long-20

wavelength acoustic waves that emanate from the burning region can reflect from the walls of the21

burner and impinge on the burning region, generating thermoacoustic instabilities which can be22

violent enough to disrupt the flame, as well as lead to mechanical failures or excessive acoustic23

noise [10, 11, 12, 13, 14, 15]. There is currently a great deal of interest in the problem of how to24

control the instabilities through passive or active control mechanisms [16].25

This scenario could clearly be modeled using the fully compressible reacting flow equations,26

but the sound speed is high and the burners are large, and performing such a simulation at the27

resolution required for detailed characterization of the flame is computationally infeasible. Thus28

the goal of the work here is to construct a methodology in which the time scale at which the29

equations are evolved is that of the fluid velocity rather than the sound speed, but which can30

explicitly propagate the long-wavelength acoustic waves as they travel away from the flame and31

as they return and interact with the flame that created them.32

This paper is the first of a series of papers describing the development of this methodology.33

For the purposes of this paper, one of the simplest low-Mach-number equation sets is consid-34

ered, i.e. the variable density incompressible Euler equations. These equations allow different35

regions of the flow to have different densities, but do not allow any volumetric changes to oc-36

cur (i.e. the material derivative of the density is zero). A hybrid approach is constructed in37

which variants of both the low-Mach-number equations and the fully compressible equations are38

solved in each time step; the computational efficiency of this approach results from the fact that39

the compressible equations are solved at a coarser resolution than the low-Mach-number equa-40

tions. As a result, only long wavelength acoustic waves are resolved, yet the fine scale locally41

incompressible structure can still be resolved on the finer level(s).42

The method is similar to the Multiple Pressure Variables (MPV) first introduced in a set of43

papers by Munz et al [17, 18, 19, 20]. The essence of the MPV approach is to decompose the44

pressure into three terms: the thermodynamic pressure p0; the acoustic pressure p1; and the45

perturbational pressure p2. The acoustic signal is carried by p1, and p2 is used to satisfy the46

divergence constraint on the low-Mach-number levels and is defined as the solution to a Poisson47

equation. Different approaches for solving p1 were proposed in the aforementioned references,48

for example by solving a set of Linearized Euler Equations (LEEs) on a grid that is a factor of49

1/M coarser, where M is a measure of the Mach number of the flow. Differently, Peet and Lele50

[21] developed a hybrid method in which the exchange of information between the fully com-51

pressible and low-Mach-number regions occurs through the boundary conditions of overlapping52
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meshes. The novelty of the present paper is that the fully compressible equations are solved with-53

out any approximation, and that an adaptive mesh refinement (AMR) framework is employed to54

optimize the performance of the algorithm. Thus, while the fully compressible equations are55

solved in the entire domain, with possible additional local refinement, the hybrid strategy de-56

veloped in the present paper allows refined patches where the low-Mach-number equations are57

solved at finer resolution.58

Note that there have been a number of other approaches to bridging the gap between fully59

compressible and low-Mach-number approaches. One alternative to the MPV methodology are60

the so-called unified, all-speed, all-Mach or Mach-uniform approaches [22, 23, 24, 25], which61

consist of a single equation set that is valid from low to high Mach numbers. These methods62

retain the full compressible equation set, but numerically separate terms which represent con-63

vection at the fluid speed from acoustic effects traveling at the sound speed. Inherent in these64

approaches is that at least some part of the acoustic signal is solved for implicitly, which makes65

them inapplicable for our applications of interest in which explicit propagation of the long wave-66

length acoustic modes is preferred.67

Note also that all of the methods described above involve feedback from the compressible68

solution to the low-Mach-number solution, and the reverse, thus they fundamentally differ from69

many hybrid methods employed in the aeroacoustics community, in which the acoustic calcula-70

tion does not feed back into the low-Mach-number solution. Methods such as Expansion about71

Incompressible Flow (EIF) [26] can be used to calculate acoustic waves via Lighthill’s analogy72

approach given an existing incompressible solution. A review of aeroacoustic methods is be-73

yond the scope of this paper, but a comparison of EIF, MPV and LEEs is given in Roller et al.74

[27]. More recently, many groups [28, 29, 30, 31] have investigated the coupling between a75

low-Mach-number detailed simulation of noise sources from a small scale turbulent flow, and76

the aeroacoustic propagation within a larger domain with the LEEs. It will be shown in the re-77

sults section that the novel hybrid method developed in the present paper is able to tackle the78

same kind of problem while solving the purely compressible equations instead of the LEEs and79

allowing feedback of the acoustics into the low-Mach-number solution.80

The remainder of this paper is organized as follows. In Section 2 the hybrid hierarchical81

grid strategy and governing equations that are solved at each resolution are presented. Then, in82

Section 3 the time advancement algorithm is detailed, as well as the procedures for interpolation83

and exchange of the variables between the different sets of equations at different levels. Finally,84

Section 4 contains the numerical results of the canonical test cases employed to assess the spatial85

and temporal rates of convergence of the hybrid method, as well as the simulation of the prop-86

agation of aeroacoustic waves generated by the formation of a Kelvin-Helmholtz instability in87

mixing layers. Note that these numerical examples are computed in 2D, but it is emphasized that88

the algorithm presented in this paper can be easily extended to 3D.89

2. Hybrid hierarchical grid strategy and governing equations90

The key idea of the algorithm developed in the present paper is to separate the acoustic part91

of the flow from the hydrodynamics, and to retain acoustic effects only at wavelengths at longer92

length scales than the finest flow features. This is achieved by solving a modified form of the low-93

Mach-number equations at the resolution required by the fine scale features of the flow, while94

solving the fully compressible governing equations on a coarser level (or levels) underlying the95

low-Mach-number levels. Because the compressible equations are not solved at the finest level,96

the overall time step is reduced by a factor of the ratio of grid resolutions from what it would be in97
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a uniformly fine compressible simulation. It is important to note here that ΔtLM/ΔtComp ≈ 1/M,98

where ΔtComp and ΔtLM are the time-steps associated to the fully compressible and low-Mach-99

number equations. If a ratio of 2 in resolution is considered between the compressible and low-100

Mach-number levels, this means that the advancement of the fully compressible equations will101

be performed with a number of sub-steps scaling with 1/(2M). Consequently, ΔtComp and ΔtLM102

will be virtually the same for Mach numbers M > 0.5. In other terms, the numerical strategy103

developed in the present paper is not suitable to be applied in regions of flows featuring a Mach104

number above a value of 0.5. Moreover, for Mach numbers in the range of 0.25 < M < 0.5,105

one iteration performed over the low-Mach-number level would involve the time advancement106

of the compressible equations within two time-steps on the coarser level. As the present algo-107

rithm involves a projection method with successive solve of a Poisson equation, the additional108

computational cost may not be interesting compared to the advancement of the equations with a109

purely compressible method. Consequently, in practice, it is estimated that the present numerical110

strategy is valuable and represents a gain in computational time when applied in regions of flows111

that feature Mach numbers M < 0.2.112

In practice, the grid hierarchy can contain multiple levels for each of the two solution ap-113

proaches. This fits naturally within the paradigm of block-structured adaptive mesh refiment114

(AMR), although most published examples of AMR simulations solve the same set of equations115

at every level. The present algorithm forms the LAMBDA code and is developed within the116

BoxLib package [32, 33], a hybrid C++ /Fortran90 software framework that provides support117

for the development of parallel structured-grid AMR applications.118

The computational domain is discretized into one or more grids on a set of different levels of119

resolution. The levels are denoted by l = 1, · · · , L. The entire computational domain is covered120

by the coarsest level (l = 1); the finest level is denoted by l = L. The finer levels may or may not121

cover the entire domain; the grids at each level are properly nested in the sense that the union of122

grids at level l + 1 is contained in the union of grids at level l. The fully compressible equations123

are solved on the compressible levels, which are denoted as lComp =
�
1, · · · , lmax comp

�
, while124

on the low-Mach levels denoted as lLM =
�
lmax comp+1, · · · , L

�
, the modified low-Mach-number125

equations are solved. The index max comp is an integer that denotes here the total number of126

compressible layers involved in the computation. For ease of implementation of the interpolation127

procedures, the current algorithm assumes a ratio of 2 in resolution between adjacent levels and128

that the cell size on each level is independent of direction.129

2.1. Governing equations solved on compressible level130

The set of fully compressible Euler equations are solved on levels lComp =
�
1, · · · , lmax comp

�
.

The conservation equations for continuity, momentum and energy are expressed as:

∂ρ

∂t
= −∇ · (ρu) (1)

∂ (ρu)
∂t

= −∇ · (ρuu) − ∇pComp (2)

∂ (ρE)
∂t

= −∇ ·
�
ρuE + pCompu

�
(3)

Here, ρ, u and E are the mass density, the velocity vector and the total energy per unit mass,131

respectively. The total energy is expressed as E = e + u · u/2, where e is the specific internal132
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energy. The total pressure pComp is related to the energy through the following equation of state:133

pComp = (γ − 1) ρe (4)

where γ is the ratio of the specific heats. Note that Eq. (4) represents a very simplified assumption134

of the equation of state, and that it will be generalized in future work, for example to deal with135

reactive Navier-Stokes equations composed of multiple chemical species.136

2.2. Governing equations solved on low-Mach levels137

The set of governing equations are recast under the low-Mach-number assumption and solved138

on levels lLM =
�
lmax comp+1, · · · , L

�
. The description of the mathematical derivation of the equa-139

tions under this assumption is out of scope of the present paper, and can be found in the seminal140

works of Majda and Sethian [1] and Giovangigli [2]. However, from a numerical point of view,141

it should be noted that different ways to arrange the conservation equations are possible, but as142

recalled by Knikker [3] in his review paper, it is not possible to solve all of them in a conservative143

form unless an implicit approach is employed. As it will be detailed in §3.2.5, the present algo-144

rithm is based on the strategy initially proposed by Day and Bell [5], which aims to advance the145

mass and energy equations while enforcing the conservation of the equation of state through a146

modification of the constraint on the divergence. In summary, here in the present algorithm mass147

and energy are formally conserved, while the momentum is conserved up to O (2) accuracy. The148

conservation equations for continuity, momentum, and energy are, respectively:149

∂ρ

∂t
= −∇ · (ρu) (5)

∂u
∂t
= −u · ∇u − 1

ρ
∇ (p0 + p1 + p2) (6)

∂ (ρh)
∂t
= −∇ · (ρuh) +

Dp1

Dt
(7)

where h = e + p/ρ is the enthalpy. Eqs. (5)-(7) are accompanied by the following constraint on150

the velocity:151

∇ · u = ∇ · uComp (8)

where uComp is interpolated from the compressible level. As explained in the introduction, the152

pressure that appears in the low-Mach-number equations is not written as a single term like153

pComp in the fully compressible equations, but has been decomposed into three terms: the ther-154

modynamic pressure p0, the acoustic pressure p1, and the perturbational pressure p2. As will155

be explained below in the full description of the integration algorithm, p0 is constant through156

the whole simulation, while p1 is provided from the compressible solution and p2 is intrinsic to157

the projection method for the pressure. It should be noted that these pressure terms are derived158

quantities from the mass and the enthalpy, which are conserved quantities advanced in time with159

Eqs. (5) and (7). Thus, one should emphasize that the density is not decomposed during the pro-160

jection procedure. Following on, the pressure terms described above are derived quantities from161

the mass and the enthalpy. In the standard low-Mach-number approximation it is the background162

pressure p0 that satisfies the equation of state. In the current model in which the low-Mach-163

number equations incorporate long wavelength acoustics, it is the sum of the background p0 and164

hydrodynamic pressure p1 that satisfy the equation of state; see Eq. (14). The mathematical165

description of the algorithm for the time integration is presented below.166
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3. Integration procedure167

3.1. Overall presentation of the algorithm168

At the beginning of a time-step, both the compressible and the low-Mach-number equations169

share the same state variables on all levels. The procedure can be summarized as follows:170

1. The time-steps for the fully compressible equations as well as the low-Mach-number equa-171

tions have to be computed and synchronized first so as to define a global time-marching172

procedure.173

2. The fully compressible Eqs. (1-3) are advanced in time on the designated compressible174

levels through the whole time-step, from tn to tn+1. As explained at §3.2.1, this may in-175

volve several sub-steps depending on the flow and mesh configurations. At the end of the176

procedure, state variables are known on those levels at tn+1.177

3. The low-Mach-number Eqs. (5-7) are then advanced in time on the designated low-Mach178

levels from tn to tn+1. The terms involving the acoustic pressure p1 are provided by inter-179

polation from the compressible solution. As the momentum Eq. (6) is advanced through180

a fractional-step method, a variable-coefficient Poisson equation must be solved to correct181

the velocity fields. The constraint on the velocity that appears as a source term in the Pois-182

son equation is provided by construction with interpolated values from the compressible183

solution. At the end of the procedure, state variables on the low-Mach levels are spatially184

averaged down to the compressible levels and a new time-step can begin.185

The algorithm detailed below constitutes the new LAMBDA code, and uses routines from186

the existing codes CASTRO [34] and MAESTRO [35]. This ease of reuse and demonstrated187

accuracy of the existing discretizations motivated the choices of the numerical methods described188

in the present paper; however, the algorithm presented here could be adapted to use alternate189

discretizations.190

3.2. Temporal integration191

At the beginning of a simulation, the density ρinit, the velocity vector uinit and total pressure192

pinit
Comp are specified as the initial conditions. The pressure pinit

Comp is specified as the sum of a static193

reference pressure pinit
0 , which will remain constant through the whole simulation, and a possible194

acoustic fluctuation pinit
1 that depends on the initial solution.195

The variables on the compressible levels are initialized as

ρ = ρinit (9)

ρu = ρinituinit (10)

ρE =
pinit

0 + pinit
1

γ − 1
+

1
2
ρinituinit · uinit (11)

and those on the low-Mach-number levels are initialized as

ρ = ρinit (12)

u = uinit (13)

ρh =
�
pinit

0 + pinit
1

� �
1 +

1
γ − 1

�
(14)
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3.2.1. Step 1: Computation of time-steps196

The very first step of the time-integration loop is to compute the time-steps ΔtComp and ΔtLM197

associated to the fully compressible and low-Mach-number equations, respectively:198

ΔtComp = σ
CFL min

lComp

�
Δx
|u| + c

	
(15)

ΔtLM = σ
CFL min

lLM

�
Δx
|u|
	

(16)

where minlComp and minlLM are the minimum values taken over all computational grid cells that199

belong to the set of levels lComp =
�
1, · · · , lmax comp

�
and lLM =

�
lmax comp+1, · · · , L

�
, respectively.200

The CFL condition number 0 < σCFL < 1 is set by the user, and c =


γpComp/ρ is the sound201

speed computed with the pressure coming from the fully compressible equations. Note here202

that for the ease of implementation and presentation, the algorithm does not employ the specific203

AMR technique of sub-cycling in time between levels where the same equations are solved. It is204

emphasized that the hybrid strategy can be easily adapted to such technique.205

The particularity of the present hybrid algorithm is that the resolution of the low-Mach-206

number level(s) is always finer than the finest compressible level. However, the time-step for207

evolving the low-Mach-number equations depends on the flow velocity, while the compressible208

time-step depends on both the flow velocity and the sound speed. Thus, one has to guarantee that209

the low-Mach-number time-step is not smaller than the compressible time-step, viz. ΔtComp �210

ΔtLM. Consequently, depending on the local sound speed, the time-advancement of the fully211

compressible equations may involve several sub-steps K, and an effective hybrid time-step is212

defined as:213

Δthyb =
ΔtLM

K
(17)

with214

K =
�

ΔtLM

min
�
ΔtComp,ΔtLM

�
�

(18)

Note that in Eq. (18), �·� is the ceiling function.215

3.2.2. Step 2: Time advancement of the fully compressible equations216

Recall that the fully compressible conservative Eqs. (1-3) are advanced in time from tn to tn+1
217

through K sub-steps of Δthyb, and for all levels lComp =
�
1, · · · , lmax comp

�
. The integration pro-218

cedure during this step is complex and will only be summarized below. Note that as the present219

LAMBDA code is directly reusing routines from the CASTRO code [34] for the integration of220

the fully compressible equations, the algorithm is summarized below and the reader is referred221

to the CASTRO references for additional detail.222

Eqs. (1-3) are solved in their conservative form as follows:223

Uk+1 = Uk − Δthyb∇ · Fk+1/2 (19)

where k = 0, . . . ,K − 1. Here U is the conserved state vector (stored at cell-centers) and F is the224

flux vector (located at edges of a cell):225
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U =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ
ρu
ρE

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(20)

and226

F =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρu
ρuu − pComp
ρuE − pCompu

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(21)

Note that at the beginning of the first sub-step, Uk=0 = Un. Similarly, at the end of the last227

sub-step, Un+1 = UK .228

The edge-centered flux vector Fk+1/2 is constructed from time-centered edge states com-229

puted with a conservative, shock-capturing, unsplit Godunov method, which makes use of the230

Piecewise Parabolic Method (PPM), characteristic tracing and full corner coupling [36, 37, 34].231

Basically this particular procedure follows four major steps:232

1. The conservative Eqs. (1-3) are rewritten in terms of the primitive state vector, Q =233 �
ρ, u, pComp, ρe

�
:234

∂Q
∂t
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−u · ∇ρ − ρ∇ · u
−u · ∇u − 1

ρ
∇pComp

−u · ∇pComp − ρc2∇ · u
−u · ∇ (ρe) −

�
ρe + pComp

�
∇ · u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(22)

2. A piecewise quadratic parabolic profile approximation of Q is constructed within each cell235

with a modified version of the PPM algorithm [34]. These constructions are performed in236

each coordinate direction separately.237

3. Average values of Q are predicted on edges over the time step using characteristic ex-238

trapolation. A characteristic tracing operator with flattening is applied to the integrated239

quadratic profiles in order to obtain left and right edge states at k + 1/2240

4. An approximate Riemann problem solver is employed to compute the primitive variables241

centered in time at k + 1/2, and in space on the edges of a cell. This state is denoted as the242

Godunov state: Qgdnv =
�
ρgdnv,ugdnv, pgdnv

Comp, (ρe)gdnv
�
. The flux vector Fk+1/2 can now be243

constructed and synchronized over all the compressible levels involved in the computation.244

Then, Eq. (19) is updated to k + 1.245

3.2.3. Step 3: Computation of compressible elements on the finest compressible level246

As explained in §3.1, terms involving the pressure as well as the velocity and its divergence247

are provided to the low-Mach-number Eqs. (5-7) from the compressible solution so as to retain248

the acoustic effects. Consequently, several terms on level lmax comp have to be computed and249

interpolated to the low-Mach levels
�
lmax comp+1, · · · , L

�
.250

Recall that the evaluation of the velocity field is based on a projection method and requires251

solution of a variable-coefficient Poisson equation for the pressure. As it will be explained in252

detail in the following steps, two different velocity fields are involved in the algorithm: a normal253

velocity located at cell edges and centered in time, and a final state velocity located at cell centers254

and evaluated at the end of a time-step. Consequently, two different projections are also required255

right hand sides for these projections will be differently located in both space and time. Similarly,256

the acoustic pressure p1 and its gradient will be required at different position in space and time.257
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The velocity vector and the acoustic pressure p1 located at time tn+1 are obviously taken from258

the compressible solution computed at the end of the previous step §3.2.2. Note that the acoustic259

pressure p1 at time tn+1 is computed as follows:260

pn+1
1 = (ρe)n+1 (γ − 1) − p0 (23)

Following on, the velocity vector and the acoustic pressure p1 at time tn+1/2 are taken from
compressible variables at their Godunov state, i.e. ugdnv and pgdnv

Comp, respectively. As the time

advancement of the compressible solution may involve several K sub-steps, ugdnv and pgdnv
1 are

averaged in time as follows:

ugdnv =

⎛⎜⎜⎜⎜⎜⎝
K�

1

ugdnv

⎞⎟⎟⎟⎟⎟⎠ /K (24)

pgdnv
1 =

⎛⎜⎜⎜⎜⎜⎝
K�

1

�
pgdnv

Comp − p0

�⎞⎟⎟⎟⎟⎟⎠ /K (25)

The gradient terms ∇pgdnv
1 ,∇ugdnv,∇un+1 are computed on level lmax comp, and together with261

un+1 and pn+1
1 are interpolated to the low-Mach levels

�
lmax comp+1, · · · , L

�
. Note that except ∇un+1

262

which is nodal, all other terms are located at cell centers.263

3.2.4. Step 4: Computation of material derivative of the acoustic pressure p1264

The material derivative of the acoustic pressure p1, which appears in the RHS of Eq. (7), is265

now computed. This term is computed on all low-Mach levels
�
lmax comp+1, · · · , L

�
as follows:266

Dp1

Dt
=

pn+1
1 − pn

1

ΔtLM
+

un+1 + un

2
∇pgdnv

1 (26)

Here, pn+1
1 ,u

n+1 and ∇pgdnv
1 are already known because they were computed during the time267

advancement of the fully compressible Eqs. (1-3) through the previous steps described from268

§3.2.2 to §3.2.3. Of course, pn
1 and un are known from the previous time-step iteration.269

3.2.5. Step 5: Time advancement of the low-Mach-number equations: thermodynamic system270

The low-Mach-number Eqs. (5-7) are now advanced in time on all low-Mach levels, i.e. on271 �
lmax comp+1, · · · , L

�
. As explained at the beginning of this section, the set of equations is solved272

through a fractional step procedure. Consequently, the thermodynamic system composed of273

Eq. (5) and Eq. (7) is advanced first. Then the momentum Eq. (6) is advanced with a projection274

method. The whole procedure is described below.275

The very first step is to compute the normal velocity on the edges of a computational cell276

and at time tn+1/2, which is denoted uMAC for convenience. Here the superscript MAC refers to a277

MAC-type staggered grid [38] discretization of the equations. A provisional value of the normal278

velocity on edges, denoted u∗,MAC, is estimated from un with the PPM algorithm. Note that279

during this procedure, the cell-centered gradients of the pressure, which appear in the RHS of the280

momentum Eq. (6), are included as an explicit source term contribution for the 1D characteristic281

tracing (see [36]):282

S n =
1
ρn

�
∇pgdnv

1 + ∇pn−1/2
2

�
(27)
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Recall here that u∗,MAC is only a provisional value of the normal velocity on edges and a projec-283

tion operator is applied to ensure that the divergence constraint constructed with the interpolation284

of ∇ugdnv is discretely satisfied.285

In the numerical resolution of low-Mach-number systems, several different strategies have286

been developed to ensure the correctness of the solution (see the paper of Knikker [3] for a287

review). Here, the so-called volume discrepancy approach is employed. Mass and energy are288

advanced in a conservative form, however the constraint on the velocity field fails to ensure289

that the equation of state is satisfied. Thus, the constraint is locally modified by an additional290

term to maintain a thermodynamic consistency so as to control the drift in pressure from the291

purely compressible solution. The key observation in volume discrepancy approaches is that292

local corrections can be added to the constraint in order to specify how the local thermodynamic293

pressure is allowed to change over a time step to account for the numerical drift. After numerical294

integration over a time step, for a given cell if the thermodynamic pressure is too low, the net295

flux into the cell needs to be increased; if it is too high, the net flux needs to be decreased. This296

is a fundamental concept of volume discrepancy approaches, and a rigorous analysis derived in297

the context of reactive flows with complex chemistry is given in an upcoming work [39].298

An iterative procedure is now performed to advance Eq. (5) and Eq. (7) so as to converge to-299

wards a value of uMAC that ensures the conservation of the equation of state. The provisional ve-300

locity u∗,MAC is corrected via a projection method that includes solution of a variable-coefficient301

Poisson equation. The new value of the velocity is then used to define the convective terms in302

Eq. (5) and Eq. (7) and to advance ρ and (ρh). At each iteration, the correction, ΔS , is added to303

the RHS of the Poisson equation so as to control the drift of the low-Mach-number solution from304

the equation of state given by the fully compressible solution.305

Starting from iteration m = 1,

∇
�

1
ρn∇φm

�
= ∇u∗,MAC −

�
∇ugdnv + ΔS m−1

�
(28)

uMAC
m = u∗,MAC − 1

ρn∇φm (29)

Dp1

Dt

�����
m
=

pn+1
1 − pn

1

ΔtLM
+ uMAC

m ∇pgdnv
1 (30)

ρm = ρ
n − ΔtLM∇

�
uMAC

m ρn+1/2
�

(31)

(ρh)m = (ρh)n − ΔtLM∇
�
uMAC

m (ρh)n+1/2
�
+ ΔtLM

Dp1

Dt

�����
m

(32)

Here ρn+1/2 and (ρh)n+1/2 are the edge states predicted with the PPM algorithm from ρn and306

(ρh)n, respectively. Note that similarly to the prediction of the velocity u∗,MAC on edges, the307

cell-centered term Dp1/Dt that appear in the RHS of Eq. (32) is taken into account during the308

computation of (ρh)n+1/2 as an explicit source term contribution. Note also that for m = 1,309

ΔS m−1 = 0.310

At the end of each iteration, after evaluation of Eq. (32), the drift in pressure is computed as

10



follows:

δpm = (ρh)m
γ − 1
γ
−
�
pn+1

1 + p0

�
(33)

ΔS m,i =
δpm�

pn+1
1 + p0

�
ΔtLM

(34)

ΔS m = ΔS m,i − 1
V

�

V
ΔS m,i dV (35)

�m =
max (|δpm|)
||pn+1

1 + p0||
(36)

Here, | · | and || · || are the absolute value and the infinity norm, respectively. Note that ΔS m,i311

denotes the point-wise computation of ΔS m for each cell i. The equation of state is considered312

satisfied at convergence for �m < �p, where �p is specified by the user. At convergence, ρn+1 = ρm,313

(ρh)n+1 = (ρh)m and uMAC = uMAC
m .314

During this whole procedure, once uMAC
m , (ρh)m, (ρh)m and ΔS m are evaluated with Eqs. (29),315

(31), (32) and (35), respectively, the variables are synchronized over the levels so as to take into316

account the contribution of finest levels to the coarser low-Mach-number level lmax comp+1.317

3.2.6. Step 6: Time advancement of the low-Mach-number equations: momentum equation318

The momentum Eq. (6) is now advanced in time with a fractional step, projection method.
First, a provisional velocity field is computed as follows:

u∗,n+1 = un − ΔtLM

�
uMAC · ∇un+1/2

�
− ΔtLM

�
1
ρn+1/2∇pgdnv

1 +
1
ρn+1/2∇pn−1/2

2

�
(37)

with ρn+1/2 =
�
ρn+1 + ρn

�
/2. Recall that uMAC lives on the edges of a computational cell, uMAC319

represents the spatial average to cell centers. Again, un+1/2 is the prediction of the time and space320

centered values of the velocity un via the PPM algorithm, and the terms
�

1
ρn∇pgdnv

1 + 1
ρn∇pn−1/2

2

�
321

are taken into account during the construction of un+1/2 as an explicit source term contribution.322

The following variable-coefficient Poisson equation for the pressure is solved to enforce the323

divergence constraint on the velocity field:324

∇ ·
�

1
ρn+1/2∇φ

�
= ∇ ·

�
u∗,n+1 +

ΔtLM

ρn+1/2∇pn−1/2
2

�
−
�
∇ · un+1

�����
Comp

(38)

Note that a subscript Comp has been added here to ∇un+1 in order to recall that it has been325

computed from the solution of the fully compressible equations and has been interpolated from326

the compressible level
�
lmax comp

�
to the low-Mach levels

�
lmax comp+1, · · · , L

�
.327

Finally, the provisional velocity field u∗,n+1 is corrected as follows:328

un+1 = u∗,n+1 − 1
ρn+1/2∇φ (39)

and the hydrodynamic pressure is also updated:

pn+1/2
2 =

1
ΔtLM

φ (40)

∇pn+1/2
2 =

1
ΔtLM

∇φ (41)
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Similarly to §3.2.5, once un+1, pn+1/2
2 and ∇pn+1/2

2 are evaluated with Eqs. (39), (40) and329

(41), respectively, the variables are synchronized over the levels so as to take into account the330

contribution of finest levels to the coarser low-Mach-number level lmax comp+1.331

3.2.7. Step 7: Synchronization between the low-Mach-number system and the fully compressible332

system.333

The variables ρn+1, (ρh)n+1 and un+1 computed on the low-Mach level lmax comp+1 are restricted334

back on the set of compressible levels
�
1, · · · , lmax comp

�
. This operation sets coarse cell-centered335

values equal to the average of the fine cells covering it. The conservative state variables in336

Eq. (20) are then updated to take into account the low-Mach-number contribution as follows:337

Un+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρn+1

ρn+1un+1

(ρe)n+1 + 1
2ρ

n+1un+1 · un+1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(42)

with (ρe)n+1 = (ρh)n+1 /γ. Of course, this update of the conservative variables is only performed338

in regions where compressible levels lie beneath low-Mach-number levels.339

Finally, the computation through the time-step is finished and the next iteration can begin at340

§3.2.1.341

4. Results342

The performance of the new hybrid compressible/low-Mach method proposed in the present343

paper is now assessed with several test cases. The first test case consists of the propagation of344

uni-dimensional acoustic waves. The goal of this canonical simulation is to assess the spatial345

and temporal rates of convergence of the hybrid method. The second test case consists of the346

simultaneous propagation of mixed acoustic, entropic and vorticity modes in a 2D square domain.347

Finally, a more practical problem similar to the ones encountered in the industry is investigated348

by simulating the propagation of aeroacoustic waves generated by the formation of a Kelvin-349

Helmholtz instability in mixing layers. A feature of this problem is that a very fine discretization350

of the mixing layer interface is required to accurately capture the vortex formation. It will be351

demonstrated that in the context of an AMR framework, the hybrid method proposed in the352

present paper leads to larger time-steps by solving the low-Mach-number equations instead of353

the purely compressible equations in the finest levels of discretization.354

4.1. 1D acoustic wave propagation355

The first test case consists of the simulation of uni-dimensional acoustic wave propagation
in a fluid at rest. The computational domain is a rectangle of length Lx = 1 m and height
Ly = 0.125 m, so that the velocity vector contains only two components ux and uy, and is periodic
in both directions. The initial conditions are given as

ρinit (x) = ρref + A exp

⎛⎜⎜⎜⎜⎜⎝−
�

x − Lx/2
σ

�2⎞⎟⎟⎟⎟⎟⎠ (43)

uinit
x (x) = 0, uinit

y (x) = 0 (44)

pinit
0 (x) = pref , pinit

1 (x) = ρinit (x) c2
0 (45)
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l 1 2 3 4 5 6

Nx 32 64 128 256 512 1024

Ny 4 8 16 32 64 128

Table 1: Summary of the configuration for simulations performed on the 1D acoustic waves propagation test case.

lComp
L 1 2 3 4 5 6

1 × × × × ×
2 × × × ×
3 × × ×
4 × ×
5 ×

Table 2: Summary of the choices of lComp and L for all simulations performed during spatial convergence test of the
hybrid method with the propagation of a uni-dimensional acoustic wave.

with A = 0.1 and σ = 0.1, a set of parameters designed to control the amplification and the356

width of the acoustic pulse, respectively, while ρref = 1.4 kg/m3, pref = 10000 Pa and c0 the357

sound speed defined as c0 =


γpref/ρref = 100 m/s. The heat capacity ratio is set to γ = 1.4,358

while the tolerance parameter �p in Eq. (36) is set to �p = 1 × 10−13 to ensure that no errors are359

introduced by the drift in pressure of the low-Mach-number solution within the hybrid algorithm.360

The simulations are performed over 1 × 10−2 s, so that 2 acoustic waves travels through the361

computational domain in the left and right direction from the initial pulse, and then merge at the362

end of the simulation to form the same shape as the initial pulse.363

Consider a simulation with 6 levels, and define Nl
x and Nl

y as the number of cells at level l364

in the x and y directions, respectively. The first level l = 1 is discretized with Nl=1
x = 32 and365

Nl=1
y = 4 points, while the other levels are progressively discretized with a mesh refinement ratio366

of a factor of 2. Note here that the whole domain is covered by all the levels. Table 1 summarizes367

the configuration.368

For all the simulations, the fully compressible Eqs. (1-3) are solved only on one selected level369

lComp = l. The procedures to perform convergence tests are as follows:370

• for the spatial accuracy, simulations are performed by first selecting, between l = 1 to371

l = 5, the level lComp where the fully compressible Eqs. (1-3) are solved, and then by372

selecting a successive addition of low-Mach-number levels of mesh refinement, the finest373

level chosen being designed by L. In total, 15 simulations are performed, and the choices374

of lComp and L for each simulation are summarized in Table 2. Furthermore, the low-Mach-375

number time-step ΔtLM is kept at 9.0×10−5 s, which corresponds to the minimum time-step376

for a CFL condition σCFL = 0.5 and for the finest level of refinement L = 6. Consequently,377

for all simulations ΔtHyb is equal to ΔtLM and K = 1.378

• for the temporal accuracy, the fully compressible Eqs. (1)-(3) are solved on lComp = 5,379

while the low-Mach-number Eqs. (5)-(7) are solved on the last and finest level of mesh380
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refinement L = 6 so as to minimize spatial discretization errors. Simulations are performed381

with successive time-steps of ΔtLM = 3.125, 6.25, 12.5, 25, 50, 100, 200, 400×10−6 s. Note382

that for all simulations, the compressible time-step ΔtComp is not imposed but computed383

with Eqs. (17) and (18).384

Convergence tests are evaluated with the L2-norm of the difference on the density between385

the computed and the initial solution defined by Eq. (43), which is expressed as follows:386

ερ = L2
ρ (S sol − S init) =

�
(ρsol − ρinit)2

NL
x

(46)

where subscripts sol and init identify the computed and initial solutions S . Note that the finest387

level L of mesh refinement is chosen to compare with the initial solution.388

Figures 1 and 2 present profiles of the density as well as the discretization error ερ, re-389

spectively, for L = 6 (NL
x = 1024) and lComp set at different levels l = 1 to 5 (NlComp

x = 32390

to NlComp
x = 512). In Figure 1 it is observed that under-resolution of the mesh leads to signif-391

icant dissipation and dispersion of the acoustic waves. Note that the solution computed with392

NlComp
x = 512 is virtually similar to the one computed with NlComp

x = 256, and thus is not displayed393

for clarity purpose. The discretization error ερ is reported in Figure 2, and it is observed that ερ394

follows a global convergence rate of second-order, which was expected because the algorithm395

employs a second-order Godunov procedure. Moreover, it can be seen that for NlComp
x > 128, the396

error starts to reach a plateau with a first-order behavior. This can be explained by the fact that397

from 32 < NlComp
x < 128 the error is dominated by the resolution on the compressible grids, hence398

a second order accuracy resulting from the second order Godunov method is seen. At higher399

resolutions the compressible solution is sufficiently accurate that the error measured is a combi-400

nation of that from the compressible and low-Mach-number grids, which results in the apparent401

reduction in order because in this study the low-Mach-number resolution does not change.402

The effect of solving the low-Mach-number equations on additional levels of mesh refine-403

ment, and for lComp set at different levels, is shown in Figure 3. Circle, diamond, square, cross404

and plus symbols represent lComp set at l = 1, l = 2, l = 3, l = 4 and l = 5, respectively.405

This corresponds to a discretization of NlComp
x = 32, 64, 128, 256 and 512 points, respectively. As406

reported above, the discretization error ερ is reduced as the compressible equations are solved407

on the finest level. In contrary, solving the low-Mach-number equations on finer levels of mesh408

refinement has no impact on the solution. This behavior was expected, because as the simulation409

involves only a purely acoustic phenomenon, it is emphasized that the contribution of the set of410

low-Mach-number equations should be negligible.411

Figure 4 presents the discretization error ερ for different values of ΔtLM. Recall that for these412

simulations lComp = 5 (NlComp
x = 512) and L = 6 (NL

x = 1024), the corresponding maximum413

critical compressible time-step for stability and for a CFL condition σCFL = 0.5 is approximately414

Δtcrit
Comp = 9.5 × 10−6 s and is represented in Figure 4 by the dashed vertical green line. It is415

interesting to notice that when ΔtLM is larger than the critical time-step, ΔtHyb is always set to416

Δtcrit
Comp and the convergence rate is very low. This makes sense, because as the test case features417

only purely acoustic phenomena, the set of compressible equations dominate the solution. Con-418

sequently, for ΔtLM > Δtcrit
Comp the compressible equations are always advanced with the same419

compressible time-step within one low-Mach time-step, and only the number of sub-iterations K420

will change. In contrary, when ΔtLM becomes smaller than Δtcrit
Comp, ΔtHyb = ΔtLM and a second-421

order convergence rate in time becomes observable.422
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Figure 1: Density profile along x−axis. Solid black line: initial acoustic pulse at 0 s. Computed solutions with N
lComp
x =

32 (black dotted line), N
lComp
x = 64 (black dashed line), N

lComp
x = 128 (blue dotted line) and N

lComp
x = 256 (red dashed

line) at 1 × 10−2 s after the merge of the two traveling acoustic waves.
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Figure 2: L2-norm of the discretization error ερ computed for the density, with L = 6 (NL
x = 1024) and lComp set at

different levels l = 1 to 5 (N
lComp
x = 32 to N

lComp
x = 512). The dashed black line represent a second order slope.
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Figure 3: L2-norm of the discretization error ερ computed for the density and for different maximum level of mesh re-
finement L where the low-Mach-number equations are solved. Circle, diamond, square, cross and plus symbols represent
the fully compressible equations solved on the level lComp set at l = 1, l = 2, l = 3, l = 4 and l = 5, respectively.
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Figure 4: L2-norm of the discretization error ερ computed for the density for different values of ΔtLM, and with lComp = 5

(N
lComp
x = 512) and L = 6 (NL

x = 1024). The dashed black line represent a second order slope.
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The convergence studies performed highlight that care must be taken with the hybrid method.423

It demonstrates that solving the low-Mach-number equations on additional level of mesh refine-424

ment is useless on purely acoustic phenomena, and that the proper resolution of the acoustics has425

a limiting effect on the accuracy of the solution and the performance of the method. In order to426

investigate more closely this numerical behavior, a more complex test case involving different427

mixed modes of fluctuations is now computed, with a solution being a combination of purely428

acoustics propagation, purely entropic and vorticity convection.429

4.2. 2D mixed waves propagation430

The present test case consists of the propagation and convection of mixed acoustic, entropic431

and vorticity modes in a 2D square domain [40]. A mean flow is imposed throughout the domain,432

and an acoustic pulse is placed in the center of the domain, while entropy and vorticity pulses433

are initialized downstream. These latter pulses are simply convected by the mean flow, while434

the acoustic pulse generates a circular acoustic wave which radiates throughout the domain in all435

directions. Furthermore, non-reflecting outflow boundary conditions are imposed in all directions436

of the domain using the Ghost Cells Navier Stokes Characteristic Boundary Conditions (GC-437

NSCBC) method [41].438

The initial conditions are imposed as follows:

ρinit (x, y) = ρref + ηae−αa((x−xa)2+(y−ya)2) + ηee−αe((x−xe)2+(y−ye)2) (47)

uinit (x, y) = Mcref + (y − yv) ηve−αv((x−xv)2+(y−yv)2) (48)

vinit (x, y) = − (x − xv) ηve−αv((x−xv)2+(y−yv)2) (49)

pinit
0 (x, y) =

c2
refρref

γ
, pinit

1 (x, y) = c2
refηae−αa((x−xa)2+(y−ya)2) (50)

Here the sound speed cref = 200 m/s and the Mach number M = 0.2, with γ = 1.1 and density
ρref = 1 kg/m3. The domain is a square with sides of length Lx = Ly = 256 m. In the above
expressions, αx is related to the semi-length of the Gaussian bx by the relation αx = ln 2/b2

x.
Finally, the strengths of the pulses are controlled by the following set of parameters:

ba = 15, ηa = 0.001, xa = Lx/2, ya = Lx/2 (51)
be = 5, ηe = 0.0001, xe = 3Lx/4, ye = Lx/2 (52)
bv = 5, ηv = 0.0004, xv = 3Lx/4, yv = Lx/2 (53)

The test case is computed with 3 different approaches:439

• the new hybrid method developed in the present paper,440

• by solving only the purely low-Mach-number equations (see Sec. 2.2),441

• by solving only the purely compressible equations (see Sec. 2.1).442

Time evolution of the solution is presented in Figure 5. Figure 5(a)-(d) in the top row are443

the solutions computed with the purely low-Mach-number approach, whereas Figure 5(e)-(h)444

are solutions computed with the new hybrid method. The compressible solution gives results445

visually indistinguishable from the hybrid approach so those are not shown here. In both the446

hybrid and compressible solutions, the circular pressure wave generated from the center of the447
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domain propagates in all directions. As the sound speed is far higher than the mean flow velocity,448

the acoustic wave passes the entropy pulse and eventually leaves the domain at 0.4 s. When the449

purely low-Mach-number approach is employed, the pressure pulse in the center of the domain is450

considered as an entropy pulse, and is convected in the same way as the entropy pulse localized451

downstream. It is noted that the hybrid solution correctly captures the behavior of the waves452

generated from acoustic pulse despite the fact that the compressible grid under the acoustic pulse453

is at lower resolution than in the fully compressible solution, and has an overset fine low-Mach-454

number grid.455

(a) Time 0.1 s (b) Time 0.2 s (c) Time 0.3 s (d) Time 0.4 s

(e) Time 0.1 s (f) Time 0.2 s (g) Time 0.3 s (h) Time 0.4 s

Figure 5: Isocontour of density superimposed on field of vorticity for solutions at t = 0.1 s, 0.2 s, 0.3 s and 0.4 s. The
top row (figures (a)-(d)) are solutions computed with the purely low-Mach-number approach. The bottom row (figures
(e)-(h)) are solutions computed with the hybrid method detailed in the present paper.

In order to provide quantitative results, both the solution computed with the hybrid method456

and the purely compressible solution are compared to a reference exact analytical solution [40].457

The numerical error is assessed by computation of the L2-norm of the difference between the458

computed and the reference solutions, which is expressed as follows:459

εφ = L2
φ

�
S sol − S re f

�
=

 !" �
φsol − φre f

�2

NxNy
(54)

where subscripts sol and re f identify the computed and reference solutions, φ is the variable460

investigated, and Nx and Ny are the number of points in the x and y directions. Note that for461

simplicity, Nx = Ny.462

Similarly to Sec. 4.1, simulations are performed on a multi-levels grid set composed by a463

total of L = 5 levels. The first level l = 1 is discretized with Nl=1
x = 32 and Nl=1

y = 32 points,464

while the other levels are progressively discretized with a mesh refinement ratio of a factor of 2.465

Table 3 presents the configuration of the multi-levels grid set by providing a summary of Nx and466

Ny for each level l of mesh refinement.467
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l 1 2 3 4 5

Nx 32 64 128 256 512

Ny 32 64 128 256 512

Table 3: Summary of the configuration for simulations performed on the 2D mixed modes propagation test case.

lComp
L 1 2 3 4 5

1 × × × ×
2 × × ×
3 × ×
4 ×

Table 4: Summary of the choices of lComp and L for all simulations performed during spatial convergence test of the
hybrid method with the propagation of mixed acoustic, entropic and vorticity modes in a 2D square domain.

Simulations are performed by first selecting, from l = 1 to l = 4, the level lComp where the468

fully compressible Eqs. (1-3) are solved, and then by selecting a successive addition of low-469

Mach-number levels of mesh refinement, the finest level being designed by L. In total, 10 sim-470

ulations are performed, and the choices of lComp and L for each simulation are summarized in471

Table 4. Furthermore, the time-steps for both the compressible and low-Mach-number equa-472

tions are computed as described in Sec. 3.2.1 and εφ is computed for solutions taken at the time473

t = 0.3 s.474

Figures 6.(a) and 6.(b) present the L2 norm error computed for the density
�
ερ
�

and the475

velocity in the y-direction (εv), respectively. Circle, diamond, square and cross symbols represent476

lComp set at l = 1, l = 2, l = 3 and l = 4, respectively. This corresponds to a discretization of477

NlComp
x = 32, 64, 128 and 256 points, respectively. Moreover, the dashed lines represent ερ and εv478

evaluated from the solutions computed with the purely compressible equations, while the solid479

line is the second order slope.480

Note here that ερ and εv are not computed in the full 2D domain but only on the x−axis taken481

at y = Lx/2. This specific choice enable us to separate the contribution of acoustic, entropic and482

vorticity modes. Indeed, as the axis is taken along the propagation of the acoustic wave, no con-483

tribution from the acoustic and entropic modes should appear in the v component of the velocity,484

but only the ones from the vortex structure. In contrary, on this specific axis, only acoustic and485

entropic modes should contribute to the evaluation of the density, and not the vorticity mode.486

In Figure. 6.(a), the evaluation of ερ for the solutions computed with the purely compressible487

equations (dashed line) follows a second order rate of convergence, and starts to reach a plateau488

for levels l > 3 (viz. NL
x > 128). When the hybrid method is employed, the contribution of solv-489

ing the low-Mach-number equations on an additional level significantly reduces ερ to approxi-490

mately get the same error as if the additional layer was employed to solve the fully compressible491

equations. However, solving the low-Mach-number equations on additional finest levels does492

not help significantly to further reduces ερ, which also reach eventually a plateau. This suggest493

that solving the low-Mach-number equations on additional levels of mesh refinement strongly494
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(a) (b)

Figure 6: L2-norm of the discretization error for different maximum level L of mesh refinement for the low-Mach-number
equations: (a) ερ for the density, (b) εv for the velocity in the y-direction. Circle, diamond, square and cross symbols
represent the fully compressible equations solved on the level lComp set at l = 1, l = 2, l = 3 and l = 4, respectively.
The dashed black line represents the evaluation of ερ and εv for the purely compressible approach. The solid black line
represents a second order slope.

reduced the error made on the convection of the entropy spot, but that the numerical errors made495

because of the poor resolution of the acoustic wave on the coarser mesh still remain in the so-496

lution at the finest level. This statement is in accordance with the convergence rate behavior497

observed in Sec. 4.1 for the propagation of purely acoustic waves.498

Furthermore, the same observations can be made from Figure 6.(b). Recall that only con-499

tributions from the vorticity mode should appear in the solution, solving the low-Mach-number500

equations on additional finer levels should strongly reduce εv. However, a significant error re-501

mains on εv when lComp = 1 and 2, even at the finest level of refinement for the low-Mach-number502

equations. This suggests that numerical errors from the poor resolution of the acoustic wave ap-503

pear in the low-Mach-number solution. For lComp = 3, the acoustic wave is considered enough504

well resolved, so that numerical errors from the purely compressible equations become negligi-505

ble and the contribution of additional low-Mach-number levels is significant to reduce the overall506

error made on the velocity. This is consistent with the observation made in Figure 6.(a) that the507

error in the density has reached a plateau for lComp > 3.508

As a partial conclusion, this study exhibits the limitations of the hybrid method. Solving509

the low-Mach-number equations on additional level of mesh refinement only provides a better510

solution for phenomena that do not include contributions from the acoustics. This suggests that511

acoustic phenomena of interest must still be well enough resolved on the levels where the purely512

compressible equations are solved. This is obvious with the present test case. For example in513

Figure 6.(a), for lComp = 3 and 4, the hybrid method provides an error ερ that is similar to the514

error made with the purely compressible approach (dashed line).515

However, the interest of the hybrid method developed in the present paper is highlighted in516

Figures 7 and 8. Figure 7 presents the comparison of the average time-step employed during sim-517

ulations performed with the purely compressible approach (dashed line) and the hybrid method518

(symbols). For the hybrid method, similarly to Figures 6.(a) and 6.(b), the circle, diamond,519
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square and cross symbols represent lComp set at l = 1, l = 2, l = 3 and l = 4, respectively. They520

obviously collapse in the same curve because the finest level of mesh refinement L determines the521

low-Mach-number time-step ΔtLM. On the other hand, Figure 8 presents the overall wall-clock522

computational time corresponding to the simulations performed in the present section. Together523

with the results presented in Figure 7 and Figures 6.(a) and 6.(b), two major general observations524

can be made:525

• When lComp is too coarse, solving the low-Mach-number equations on additional levels526

of mesh refinement does not help to capture a good representation of the physics, or to527

provide a significant gain in the computational time.528

• once the physics specifically related to generation of the acoustics is well enough resolved529

by selecting the proper level of discretization lComp, solving the low-Mach-number equa-530

tions on a few additional levels provides a significant gain in the computational effort,531

while providing lower numerical errors in the solution. This is particularly true for the532

configuration lComp = 4 and L = 5: the hybrid method provides a discretization error in533

the density which is lower than the purely compressible approach, while at the same time534

exhibiting a computational cost about twice less expensive. Note that the reduction in nu-535

merical errors is strongly dependent of the problem simulated, as well as the procedure536

employed for adaptive discretization of the flow.537

Note that in Figure 7, the time-steps employed by the hybrid method are significantly larger538

than the ones computed by the fully compressible approach. However, in Figure 8, one can ob-539

serve that the gain in the computational time provided by the hybrid method becomes significant540

for lComp > 3. This can be explained by the fact that, as the tolerance parameter �p in Eq. (36)541

is set to �p = 1 × 10−12, many sub-iterations are required (approximately m = 20) when lComp is542

too coarse, because the fine low-Mach-number solution deviates significantly from the badly re-543

solved compressible solution. However when the acoustics is well resolved enough, for example544

for lComp = 3, it has been observed that the low-Mach-number solution converges very quickly545

to the compressible solution, in a few iterations (on average, approximately m = 2).546

The present test case highlights the capacity of the hybrid method to retain acoustic phenom-547

ena within the context of a low-Mach-number solver. The major trend highlighted in this section548

is that acoustic phenomena must be well enough resolved where the fully compressible equations549

are solved. It is however emphasized that this test case is very canonical because the acoustics550

and the rest of the dynamic of the flow are, in the same time, well defined and decoupled from551

each other. For practical applications, the goal is to solve the low-Mach-number equations only552

in regions of the domain where the Mach number is small – hence the computational savings due553

to the larger low-Mach-number time step are greatest – and where the flow features have very554

fine structure that must be resolved. This practical application is now investigated in the follow-555

ing section by the computation of the aeroacoustic sound generated by the vortex formation from556

a Kelvin-Helmholtz instability in low-Mach-number mixing layers.557

4.3. Aeroacoustic propagation from a low-Mach-number Kelvin-Helmholtz instability558

The present test case aims to evaluate the performance of the hybrid method developed in this559

paper for a realistic physical phenomenon that can appear in practical flow applications similar560

to the ones encountered in the industry. A Kelvin-Helmholtz instability in low-Mach-number561

mixing layers is simulated. Basically, the interface between two flows in opposite directions is562
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Figure 7: Average time-step employed during simulations performed with the purely compressible approach (dashed
line) and the hybrid method (symbols), and for different maximum level L of mesh refinement for the low-Mach-number
equations. For the hybrid method, circle, diamond, square and cross symbols represent lComp set at l = 1, l = 2, l = 3 and
l = 4, respectively.

excited on the most unstable mode of fluctuations. A series of small vorticity structures pro-563

gressively appear, before eventually merging into a single rotating vortex. As vortex breaking is564

a source of aeroacoustic sound, pressure waves are generated and propagate inside the domain.565

The key particularity of the present configuration is that the acoustic wavelength is large, with a566

typical size of the order of half of a meter. In contrary, the mixing layer interface is very small,567

or the order of a millimeter. Consequently, there is a large disparity between the spatial scales of568

the vorticity structures and the aeroacoustic waves propagated in the domain.569

While being a canonical test case with a well-controlled physics of the flow, this test case is570

representative of the phenomena that appear in the context of noise generated by jets in practical571

industrial applications. Therefore, this test case has been widely computed in the aeroacoustic572

community to understand the sources of vortex sound generation, as well as to evaluate the573

performances of computational aeroacoustic techniques as mentioned in the introduction part574

of the present paper (see [28, 29, 30, 31], among others). Indeed, the main issue here is that575

the mixing interface must be well enough resolved in order to capture accurately the vortex576

formation, which is critical to capture as well the proper aeroacoustic phenomena, especially in577

terms of frequency and pressure amplitudes. Consequently, this test case is a good candidate to578

assess the performance of the hybrid method developed in the present paper.579

The configuration of the test case is inspired by the temporal representation of the instability580

as proposed by Golanski et al.[30], which features a controlled excitation to generate several581

pairs of vortices that eventually merge together and generate noise. The computational domain582

is a rectangle of dimension Lx × Ly, with Lx = 2λa and Ly = 64λa. Here, according to the583

linear stability theory [42, 43] , λa =
2π
ka
δω is the wavelength of the most unstable mode in the584
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Figure 8: Wall-clock computational time spent to perform simulations with the purely compressible approach (dashed
line) and the hybrid method (symbols), and for different maximum level L of mesh refinement for the low-Mach-number
equations. For the hybrid method, circle, diamond, square and cross symbols represent lComp set at l = 1, l = 2, l = 3 and
l = 4, respectively.

mixing interface, where ka = 0.4446 is the wavenumber of maximum amplification and δω is the585

thickness of the mixing layers interface. The initial flow conditions are given as follows:586

ρinit (x, y) = ρref (55)

uinit
x (x, y) =

U1 + U2

2
+

U1 − U2

2
tanh
�

2 (y − yref)
δω

�
(56)

uinit
y (x, y) = Ae−σ

� y−yref
δω

�2
×
#
cos
�

8π
Lx

x
�
+

1
8

cos
�

4π
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x
�
+

1
16

cos
�

2π
Lx

x
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(57)

pinit
0 (x, y) = pref , pinit

1 (x, y) = 0 (58)

Here, ρref = 1.1 kg/m3 and pref = 9 × 105 Pa, while γ = 1.1 so that the speed of sound is cref =587

300 m/s. The mean velocity of the lower and upper flows are set to U1 = 20 m/s and U2 = −U1,588

respectively. The thickness of the mixing layers interface is defined by δω = 1 × 10−3 m. The589

parameters A = 0.025 (U1 − U2) and σ = 0.05 control the amplitude and the thickness of the590

perturbation imposed to the mean flow field. Finally, yref = Ly/2 is set so as to center the mixing591

layers interface in the middle of the domain. Overall, the mean Mach number in the simulation592

is approximately M ≈ 0.06. Note that in order to impose a divergence-free initial condition, a593

projection in pressure is initially performed. Basically this operation is similar to solving Eq. (38)594

and (39), but with ∇un+1 = 0 and u∗ being the initial flow provided by Eqs. (55)-(58). Finally,595

the tolerance parameter �p in Eq. (36) is set to �p = 1 × 10−10, which corresponds to an average596

number of sub-iterations m = 5.597
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lmax comp Δx in [m] Ninterface

1 1.765 × 10−3 2

2 8.825 × 10−4 3

3 4.412 × 10−4 5

4 2.206 × 10−4 10

5 1.103 × 10−4 20

6 5.516 × 10−4 40

7 2.758 × 10−5 80

8 1.380 × 10−5 160

Table 5: Summary, for each lmax comp, of the corresponding minimum Δx and an approximation of the associated numbers
Ninterface of grid points in the mixing layers interface.

In order to demonstrate the performances of the hybrid method developed in the present pa-598

per, the low-Mach-number Kelvin-Helmholtz instability case is simulated first with the purely599

compressible approach. As explained before, the mixing layers interface must be well enough600

resolved to accurately capture the vortex formation, but the acoustic waves exhibit a long wave-601

length that does not require such a fine discretization. In order to save computational resources,602

the Adaptive Mesh Refinement (AMR) framework is adopted. Note that here, for simplicity, the603

additional mesh levels of refinement are imposed manually in the simulation, but they could have604

been specified by a criterion based on the vorticity for example. Let us define lmax comp the total605

number of levels of mesh refinement. The whole domain is covered by a first level lmax comp = 1606

consisting of very coarse grid, defined as Nl=1
x = 16 and Nl=1

y = 512. This corresponds to a607

spatial grid size of Δx = 1.76 × 10−3 m. Recall that δω = 1.0 × 10−3 m, the mixing layers608

interface is then represented by barely 2 points, which is obviously too coarse to capture the609

vortex formation. Additional levels with a refinement factor of 2 are successively superimposed610

on top of each other in the area of the computational domain comprised between Ly = 28λa and611

Ly = 36λa. This area is selected so as to cover the full vortex evolution. As shown later, a total612

of 7 additional levels of mesh refinement are required to capture accurately the formation of the613

vortex and to provide converged results in term of pressure evolution. The multi-levels grid set614

is depicted in Figure 9. Note that for each level of mesh refinement, a buffer zone of 4 cells is615

imposed so as to let the solution to adapt between each level. Moreover, Table 5 summarizes, for616

each lmax comp, the corresponding minimum Δx and an approximation of the associated numbers617

Ninterface of grid points in the mixing layers interface.618

Simulations are performed over a time of 4 × 10−3 s. Contours of the vorticity are depicted619

in Figure. 10 for a selection of temporal snapshots. At t = 0.5 × 10−3 s (see Figure. 10.(a)),620

the interface is still clearly visible but is distorted to form 4 vortex structures. Very quickly,621

at t = 1.0 × 10−3 s (see Figure. 10.(b)), the vortex structures are merging together two by two622

(see Figure. 10.(c)), and these two structures then merge in a final unique rotating vortex (see623

Figure. 10.(d)). During this process, acoustic pressure is generated and propagates in the domain.624

Figure 11 presents the signal of pressure fluctuations p1 at t = 4 × 10−3 s taken on the625
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Figure 9: Representation of the multi-levels grid set around Ly = 28λa.

y-axis in the upper part of the domain, namely between Ly = 36λa and Ly = 64λa, and for626

different levels of mesh refinement. The solid magenta line in Figure 11 represents the pressure627

for lmax comp = 2. As reported in Table 5, this correspond to a spatial grid size in the mixing628

layers interface is Δx = 8.825 × 10−4 m, i.e approximatively 3 points in the mixing layer. The629

green solid line represents the pressure for lmax comp = 4, while the black dotted and dashed630

lines corresponds to lmax comp = 6 and lmax comp = 7, respectively. Finally, the solid black line631

corresponds to lmax comp = 8 and is considered as a converged solution. This corresponds to632

distribution of 160 points in the initial mixing layers interface thickness. It is quite obvious here633

that a coarse discretization of the interface leads to a very poor representation of the acoustic634

wave, especially in terms of the associated frequency and phase relationship with the vortex.635

The present configuration is now simulated with the hybrid method described in this paper.636

Again, the signal of pressure fluctuations p1 at t = 4 × 10−3 s is taken on the y−axis in the upper637

part of the domain. Results are gathered in Figure 12. The colors and shapes of the lines are638

the same as in Figure 11 and corresponds to the results with the purely compressible approach.639

The symbols correspond to the results computed with the hybrid method. For all simulations640

performed with the hybrid method, lmax comp = 4. The square and circle symbols correspond641

to the results when the low-Mach-number equations are solved on 1 and 2 additional layers of642

mesh refinement, respectively. Quantitative results are presented in Table 6. The left column643

the L2-norm of the error εp computed at t = 4 × 10−3 s for the pressure p1 between simulations644

performed either with the hybrid method or the fully compressible approach at different levels645

lmax comp = 1, . . . , 7, and the reference solution at lmax comp = 8. Note that the numerical errors are646

estimated from the acoustic signal that propagates mostly on the very coarse baseline mesh, the647

impact of the mesh refinement taking only effect inside the vortex structures where the acoustic648

waves are generated. Consequently, it is difficult to estimate a convergence rate from the overall649
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(a) Time 0.5 ms (b) Time 1.0 ms

(c) Time 2.0 ms (d) Time 4.0 ms

Figure 10: Fields of vorticity at different time of the simulation, computed with the purely compressible approach with 8
levels of mesh refinement. Contours of vorticity are also depicted to visually identify the evolution of the mixing layers
interface.

solution and this explain why εp in Table 6 does not follow a second order rate of convergence650

as in the previous canonical test cases.651

Recall that L is the total number of levels of the multi-levels grid set when the hybrid method652

is employed. As shown in Figure 12, solving the fully compressible equations with lmax comp = 4653

provides an inaccurate solution for the acoustic pressure. The contribution of 1 additional layer654

where the low-Mach-number equations are solved helps to get a pressure field similar to the655

purely compressible solution computed with lmax comp = 6. As reported in Table 6, simulations656

with the hybrid method on L = 5 total levels provide a similar error than the purely compressible657

approach with lmax comp = 6. Furthermore, when the low-Mach-number equations are solved on658

2 additional layers of mesh refinement, i.e. L = 6 total levels, the hybrid method recovers the659

purely compressible solution computed with lmax comp = 7.660

An interesting result here is that the hybrid method is able to recover the purely compress-661

ible solution with fewer total levels. This represents a gain in terms of computational burden.662
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Figure 11: Signal of pressure fluctuations p1 at t = 4 × 10−3 s taken on the y−axis in the upper part of the domain
between Ly = 36λa and Ly = 64λa. Solutions computed with the purely compressible approach with lmax comp = 2
(magenta solid line), lmax comp = 4 (green solid line), lmax comp = 6 (dashed black line), lmax comp = 7 (dotted black line)
and lmax comp = 8 (solid black line).

Moreover, as lmax comp < L with the hybrid method, there is also a gain in the time-step. The663

central columns in Table 6 present the averaged time-steps ΔtLM and ΔtComp for each simulation664

performed. Note that when the hybrid method is employed, ΔtHyb is reported. The wall-clock665

CPU time spent for each simulation to reach t = 4 × 10−3 s is also reported in the right column.666

It is interesting to notice that the hybrid method with lmax comp = 4 and 1 additional low-Mach-667

number level (i.e. L = 5), the computational time is fairly the same as a purely compressible668

simulation with lmax comp = 5. However the error εp corresponds to a purely compressible sim-669

ulation with lmax comp = 6, which means that for a similar solution the hybrid method is about670

8.4 times faster than the purely compressible approach. More interesting, when the simulation is671

computed with the hybrid method with lmax comp = 4 and 2 additional low-Mach-number levels672

(i.e. L = 6), the computational time is about 2.75 times faster than a purely compressible simula-673

tion with lmax comp = 6, but as the error εp corresponds to a purely compressible simulation with674

lmax comp = 7, the hybrid method is about 7.5 times faster than the purely compressible approach,675

which represent a significant gain in the computational time.676

5. Conclusions677

A novel hybrid strategy has been presented in this paper to simulate flows in which the678

primary features of interest do not rely on high-frequency acoustic effects, but in which long-679

wavelength acoustics play a nontrivial role and present a computational challenge. Instead of in-680

tegrating the whole computational domain with the purely compressible equations, which can be681

prohibitively expensive due to the CFL time step constraint, or with only the low-Mach-number682
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Figure 12: Signal of pressure fluctuations p1 at t = 4×10−3 s taken on the y−axis in the upper part of the domain between
Ly = 36λa and Ly = 64λa. Solutions computed with the purely compressible approach with lmax comp = 4 (green solid
line), lmax comp = 6 (dashed black line), lmax comp = 7 (dotted black line) and lmax comp = 8 (solid black line). Solutions
computed with the hybrid method with lmax comp = 4 and L = 5 (square symbols) and L = 6 (circle symbols).

equations, which would remove all acoustic wave propagation, an algorithm has been developed683

to couple the purely compressible and low-Mach-number equations. In this new approach, the684

fully compressible Euler equations are solved on the entire domain, eventually with local refine-685

ment, while their low-Mach-number counterparts are solved on specific sub-regions of the do-686

main with higher spatial resolution. The coarser acoustic solution communicates inhomogeneous687

divergence constraints to the finer low-Mach-number grid, so that the low-Mach-number method688

retains the long-wavelength acoustics. This strategy fits naturally within the paradigm of block-689

structured adaptive mesh refinement (AMR) and the present algorithm is developed within the690

BoxLib framework that provides support for the development of parallel structured-grid AMR691

applications.692

The performance of the hybrid algorithm has been demonstrated on a series of test cases. The693

temporal and spatial rates of convergence have been investigated with two test cases: first, the694

propagation of acoustic waves in a uni-dimensional domain; second, the combination of mixed695

modes composed of the propagation of a circular acoustic wave together with the convection of696

an entropy spot superimposed to a circular vortex. It has been shown that the acoustic phenomena697

must be well enough resolved and that solving the low-Mach-number equations on additional698

levels of mesh refinement helps to get a better solution on other flow phenomena not directly699

related to the acoustics.700

The third test case consists of the simulation of a Kelvin-Helmholtz instability in low-Mach-701

number mixing layers, which is representative of realistic physical phenomena that can appear702

in practical flow applications. The initial flow is low-Mach-number and is perturbed so as to703

generate the formation of vortices that eventually merge together, generating sources of pressure704
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lmax comp L εp ΔtLM [s] ΔtComp [s] or ΔtHyb [s] Computational time [s]

1 × × × 2.75 × 10−6 13.6

2 × 9.50 × 10−1 × 1.37 × 10−6 54.4

3 × 4.53 × 10−1 × 6.88 × 10−7 240

4 × 3.52 × 10−1 × 3.44 × 10−7 1112

5 × 2.45 × 10−1 × 1.72 × 10−7 4880

6 × 1.35 × 10−1 × 8.60 × 10−8 41080

7 × 0.57 × 10−1 × 4.30 × 10−8 303016

4 5 1.41 × 10−1 2.7 × 10−6 3.37 × 10−7 4936

4 6 0.69 × 10−1 1.35 × 10−6 3.37 × 10−7 14880

Table 6: Results for the L2-norm error in the pressure fluctuations p1 (εp), wall-clock computational time and different
time-steps involved in simulations performed with the purely compressible approach and the hybrid method, and for
different levels of refinement.

that propagate in the domain. As demonstrated in the present paper, the mixing layer interface705

requires fine resolution to accurately capture the acoustics, whose long wavelength does not re-706

quire such a fine resolution. The hybrid method is applied to this problem, and it is demonstrated707

that the hybrid method is able to provide a very similar solution compared to a fully compressible708

approach, but with fewer levels of refinement and with a significant gain of about two orders of709

magnitude in time on the global time-step, leading globally to gain of approximately 8 on the710

computational time.711

Finally, the hybrid method presented in this paper is a first step in the development of a712

new kind of algorithm to solve problems that feature a large discrepancy in spatial and temporal713

scales within the same domain. This opens the way to efficient simulations of complex and714

multi-physics problems such as combustion instabilities in industrial configurations.715
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