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ABSTRACT OF THE DISSERTATION

Estimation techniques for large-scale turbulent fluid systems

by

Christopher Hughes Colburn

Doctor of Philosophy in Engineering Sciences with Specialization in
Computational Science

University of California, San Diego, 2011

Professor Thomas R Bewley, Chair

Estimation, in general, involves the determination of a probability distri-

bution. This probability distribution describes the likelihood that any particular

point in phase space accurately represents the truth state. That is, without know-

ing the actual state of a system, estimation strategies attempt to represent the

probability of any given state using only a time history of noisy observations and,

when available, an approximate dynamic model of the system of interest. For low-

dimensional linear systems with Gaussian uncertainty in the initial state, state

disturbances, and measurement noise the de facto solution to the estimation prob-

lem has been the Kalman Filter, which provides a method to propagate the mean

and covariance forward in time, making the appropriate updates to both upon the

xviii



receipt of each new measurement. Although ubiquitous within academia and in-

dustry, since many systems of interest are either of very high dimension or cannot

be described by linear dynamics with Gaussian uncertainty, the Kalman Filter is

inappropriately applied in many applications.

The present thesis first reviews extensions of estimation theory to high-

dimensional systems and demonstrates the first successful reconstruction of 3D

turbulent channel flow (Reτ = 100), using wall information only, via the Ensem-

ble Kalman Filter. Then a new hybrid method of estimation is described which

improves estimation results for such high-dimensional systems by employing re-

cent machine learning techniques (specifically, the Normal-Hedge algorithm) to

consistently combine multiple estimators.

Lastly, since the measurement operator critically determines the quality of

the estimate, a gradient-base sensor/actuator placement strategy for Linear Time

Invariant systems is presented. Using a test system (the Ginzburg-Landau equa-

tion) this sensor placement strategy is demonstrated by determining the optimal

location for sensors in such a way that minimizes scalar metrics of the covari-

ance matrix. With this theory clearly established, optimal sensor placements are

determined for dynamic sensors in a 2D environmental plume estimation problem.

xix



Chapter 1

State estimation in wall-bounded

flow systems. Part 3. The

Ensemble Kalman Filter

1.1 Abstract

State estimation of turbulent near-wall flows based on wall measurements is

one of the key pacing items in model-based flow control, with low-Re channel flow

providing the canonical testbed. Model-based control formulations in such settings

are often separated into two subproblems: estimation of the near-wall flow state via

skin friction and pressure measurements at the wall, and (based on this estimate)

control of the near-wall flowfield fluctuations via actuation of the fluid velocity

at the wall. In our experience, the turbulent state estimation subproblem has

consistently proven to be the more difficult of the two. Though many estimation

strategies have been tested on this problem (by our group and others), none have

accurately captured the turbulent flow state at the outer boundary of the buffer

layer (5 ≤ y+ ≤ 30), which is deemed to be an important milestone, as this

is the approximate range of the characteristic near-wall turbulent structures, the

accurate estimation of which is important for the control problem. Leveraging the

Ensemble Kalman Filter (an effective variant of the Kalman filter which scales

1
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well to high-dimensional systems), the present paper achieves at least an order of

magnitude improvement (in the near-wall region) over the best results available

in the published literature on the estimation of low-Reynolds number turbulent

channel flow based on wall information alone.

1.2 Introduction

In the past, estimation of chaotic fluid systems was motivated mostly by

the need for accurate weather forecasts. Today, the prospects of potential imple-

mentation of real-time feedback control in manufacturing systems, or perhaps even

aerodynamics systems, provide new motivation to study this fundamental prob-

lem. Bewley & Liu (1998), Bewley (2001) and Högberg et al. (2003) developed

optimal feedback kernels for the control of the linearized Navier-Stokes equation

in a channel. The dependence of these feedback control kernels on the near-wall

region, where the characteristic near-wall turbulent structures are located, empha-

sizes the importance of accurate state estimates in this region if effective feedback

control is the ultimate aim.

State estimation is a problem that has been considered at length by re-

searchers in many distinct communities. The “controls” and “dynamic systems”

communities have focused primarily, but not exclusively, on problems which (a)

have numerically tractable solutions to the corresponding Riccati equations (Zhou

et al., 1996), Linear Matrix Inequalities (Scherer et al., 2002; Boyd et al., 1994),

or dynamic programs (Bertsekas et al., 2001) [all three of these methods usually

requiring a sufficiently low state dimension, or problems that can effectively be re-

duced to such via standard model reduction techniques], and (b) are characterized

by uncertainties in the initial state, state disturbances, and measurement noise

that are well approximated as Gaussian. In most cases, these assumptions are not

valid in estimation problems related to turbulent flows.

The weather forecasting community, on the other hand, has focused on

estimation (a.k.a. “data assimilation”) strategies that are numerically tractable

for high-dimensional discretizations of PDE systems. The two primary classes of
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data assimilation strategies which have been developed in this community and are

available today for multiscale uncertain systems are the Ensemble Kalman Filter

[EnKF; see, Evensen (2003)], and space/time variational [4DVar; see, Bouttier &

Courtier (1999)] methods.

EnKF methods, which come in a few distinct variations, are particularly

well suited for nonlinear multiscale systems with substantial uncertainties. Even

for some low-dimensional problems, EnKF methods have been shown to provide

significantly improved state estimates in certain nonlinear problems for which the

more traditional Extended Kalman Filter breaks down. The statistics of the es-

timation error in the EnKF are not propagated via a covariance matrix, but are

instead implicitly represented via the distribution of several perturbed trajectories

(“ensemble members”), which themselves are propagated with the full nonlinear

system model. On many problems, in practice, the collection of these ensemble

members (itself called the “ensemble”) accurately captures the dominant directions

of uncertainty of the estimation error (in phase space) even when a relatively small

number of ensemble members is used. This is the key feature that lends the EnKF

method its remarkable numerical tractability in high-dimensional problems.

4DVar methods propagate state and sensitivity (“adjoint”) simulations back

and forth across an optimization window of interest. An optimization is performed

based on these iterative marches to minimize a cost function balancing: (a) a term

accounting for the misfit of the estimate with the measurements over the opti-

mization window, with (b) a “background” term accounting for the “old” estimate

(that is, based on the measurements and statistics obtained prior to the present

optimization window). Though such a retrospective analysis is certainly beneficial

in certain ways in the estimation of nonlinear systems, 4DVar methods are not as

natural as EnKF methods for representing the principal directions of uncertainty in

the estimate, which is a critical ingredient of any effective state estimation strategy.

1.2.1 Related background on state estimation

Estimation, in general, involves the determination of a probability distri-

bution. This probability distribution describes the likelihood that any particular
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point in phase space accurately represents the truth state. That is, without know-

ing the actual state of a system, estimation strategies attempt to represent the

probability of any given state using only a time history of noisy observations and

an approximate dynamic model of the system of interest. Given this statistical

distribution, estimates can be inferred about the “most likely” state of the system,

and how much confidence should be placed in that estimate. Unfortunately, in

this most general form, the estimation problem is intractable for most systems.

However, given certain justifiable assumptions about the nature of the model and

its associated disturbances and uncertainties, simplifications can be applied with

regards to how the probability distributions are modeled. In linear systems with

Gaussian uncertainty of the initial state, Gaussian state disturbances, and Gaus-

sian measurement noise, it can be shown that the probability distribution of the

optimal estimate is itself Gaussian [see, e.g., Anderson & Moore (1979)]. Mathe-

matically, for any linear system

x
k

= F
k−1

x
k−1

+ w
k−1

w ∼ N(0,Q) (1.1)

y
k

= Hx
k
+ v

k
v ∼ N(0,R), (1.2)

the entire distribution of the estimate in phase space can be represented exactly by

its mean x̄ = E[x] and its second moment about the mean (that is, its covariance)

Σ where

Σ = E
�
(x− x̄)(x− x̄)H

�
. (1.3)

In this paradigm, the notation x ∼ N(x̄,Σ) denotes explicitly that the random

variable x has a normal (Gaussian) distribution about its mean and covariance.

This is the essential piece of theory that leads to the traditional Kalman Filter

(KF), first introduced by Kalman (1960) and Kalman & Bucy (1961).

Sequential data assimilation methods (e.g., the KF) provide a method to

propagate x̂ and P (that is, estimates of x̄ and Σ, respectively) forward in time,

making the appropriate updates to both upon the receipt of each new measure-

ment. It is useful to think of these quantities, at any given time tk, as being
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conditioned on a subset of the available measurements. The notation x̂k|j rep-

resents the highest likelihood estimate at time tk given measurements up to and

including time tj. Similarly, P
k|j represents the covariance corresponding to this

estimate. In particular, x̂
k|k−1

and P
k|k−1

are often called the prediction estimate

and the prediction covariance, whereas x̂
k|k and P

k|k are often called the current

estimate and the current covariance. The linear, discrete-time evolution equations

for the Kalman Filter are

x̂
k|k−1

= F
k−1

x̂
k−1|k−1

(1.4)

P
k|k−1

= F
k−1

P
k−1|k−1

F
H
k−1

+ Q
k−1

(1.5)

x̂
k|k = x̂

k|k−1
+ P

k|k−1
H

H(HP
k|k−1

H
H + R)−1(yk −H x̂

k|k−1
) (1.6)

P
k|k = P

k|k−1
− P

k|k−1
H

H(HP
k|k−1

H
H + R)−1

HP
k|k−1

(1.7)

where (1.4) and (1.5) propagate the state, and covariance, respectively, between

measurement updates, and (1.6) and (1.7) update the state and covariance, respec-

tively, at measurement times. Note that x̂
k|k+K

, for some K > 0, is often called a

smoothed estimate, and may be obtained in the sequential setting by a Kalman

smoother [see, Rauch et al. (1965) and Anderson & Moore (1979)].

For nonlinear systems with relatively small uncertainties, a common varia-

tion on the KF known as the Extended Kalman Filter (EKF) has been developed

in which the mean and covariance are propagated about a linearized trajectory of

the full system. Essentially, if a Taylor-series expansion for the nonlinear evolution

of the covariance is considered and all terms higher than quadratic are dropped,

what is left is the differential Riccati equation associated with the EKF covari-

ance propagation. Though this approach gives acceptable estimation performance

for nonlinear systems when uncertainties are small as compared with the fluctua-

tions of the state itself, EKF estimators often diverge when uncertainties are more

substantial, and other techniques are needed.

At its core, the linear thinking associated with the uncertainty propaga-

tion in the KF and EKF breaks down in chaotic systems. Chaotic systems are

characterized by stable manifolds or “attractors” in n-dimensional phase space.
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Figure 1.1: Non-Gaussian uncertainty propagation in the Lorenz system [see,
Lorenz (1963)]. The black point in the center shows a typical point located in
a sensitive area of this chaotic system’s attractor in phase space, representing a
current estimate of the state. The thick black line represents the evolution in time
of the trajectory from this estimate. If the uncertainty of the estimate is modeled
as a very small cloud of points, centered at the original estimate with an initially
Gaussian distribution, then the additional gray lines show the evolution of each of
these perturbed points in time. A Gaussian model of the resulting distribution of
points is, clearly, completely invalid.

Such attractors are fractional-dimensional subsets (a.k.a. “fractal” subsets) of the

entire phase space. Trajectories of chaotic systems are stable with respect to the

attractor in the sense that initial conditions off the attractor converge exponen-

tially to the attractor, and trajectories on the attractor remain on the attractor.

On the attractor, however, trajectories of chaotic systems are characterized by an

exponential divergence of slightly perturbed trajectories. That is, two points in-

finitesimally close on the attractor at one time will diverge exponentially from one

another as the system evolves until they are effectively uncorrelated.

Just as individual trajectories diverge along the attractor, so does the un-

certainty associated with them. This uncertainty can diverge in a highly non-

Gaussian fashion when such uncertainties are not infinitesimal (see Figure 1.1).

Estimation techniques that attempt to propagate probability distributions under

linear, Gaussian assumptions fail to capture the true uncertainty of the estimate
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in such settings, and thus improved estimation techniques are required. In this

case, when estimating an ODE with n states, the probability density function

(PDF) of the estimate in phase space must be discretized and propagated for ac-

curate results. This converts the straightforward propagation of statistics in the

KF problem (with two coupled ODEs, of order n and n2) into a much more dif-

ficult PDE, of dimension n, governing the evolution of the PDF itself; this PDE

is known as the Fokker-Plank equation [see, e.g., Jazwinski (1970), p. 164]. This

PDE may be approximated and evolved with a Lagrangian method, referred to in

this setting as a Particle Filter [PF; see Arulampalam et al. (2002)], or with a grid-

based method, which may be made tractable by exploiting the sparsity of the PDF

in phase space [see, Bewley & Sharma (2010)]; both approaches are numerically

tractable only for extremely small values of n [i.e., n � 5].

1.2.2 Prior work on the estimation of turbulent channel

flow

In high-dimensional estimation problems [e.g., n � O(106)] Bayesian meth-

ods based on propagating the full Fokker-Plank PDE, such as the PF method,

are completely out of the question. KF and EKF approaches are also infeasible,

unless further decoupling or approximation is applied, due to their reliance on the

propagation of the covariance (of order n2) of the PDF of the estimate.

Exploiting a spectral decomposition to decouple the associated equations,

Högberg et al. (2003) solved the full Kalman filter problem for the state esti-

mation of near-wall flows. They did this by solving the (decoupled) estimation

Riccati equations for the individual Fourier modes of the linearized system, which

makes these equations tractable, then inverse-transforming the result back to phys-

ical space to obtain implementable feedback convolution kernels associated with

the estimation problem. Using an improved problem formulation, Hœpffner et al.

(2005) found effective kernels for the state estimation problem in transitional chan-

nel flow (that is, for small perturbations from the laminar state) that converged

properly upon grid refinement. Chevalier et al. (2006) then attempted to develop a

nonlinear extension of this work in order to apply it effectively to a fully-developed
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turbulent flow using an Extended Kalman Filter. This work meticulously calcu-

lated a numerical model of the statistics of the nonlinear terms of a fully-developed

channel flow, then used these statistics as the covariance of the state disturbances

when computing the estimator feedback gains via the (linear) Kalman formulation.

Alternative methods have attempted the use of a Wiener Filter (Martinelli,

2009) and 4DVar [Bewley & Protas (2004), a vector-based variant of the Kalman

Smoother reviewed] to estimate Reτ = 100 and Reτ = 180 flows, respectively. In

Bewley & Protas (2004) the authors also examined the direct extrapolation of wall

skin friction and pressure measurements of a turbulent flow into the flowfield via

Taylor series analysis; unfortunately, it was found that the domain of convergence

was much smaller than 20 viscous units. Chandrasekhar’s method has also be

proposed for reducing the dimension of the covariance propagation equations in

the KF/EKF [see, Kailath (1973)]. This approach involves the propagation of a

reduced-order factored form of the time derivative of the covariance matrix, as well

as the propagation of the feedback gain matrix itself, rather than the (numerically-

intractable) propagation of the full covariance matrix. This approach is promising

for problems of this class, and has yet to be tried for the estimation of near-wall

turbulence.

The groundwork described in the previous two paragraphs, upon which

the present paper is based, is reviewed further, and put into a broader context,

in Kim & Bewley (2007). The broad range of existing studies on this canonical

problem provides a benchmark against which new approaches may be compared.

The present paper applies the Ensemble Kalman Filter (EnKF) to estimate a Reτ =

100 turbulent flow based on wall skin friction and wall pressure measurements

alone. The remainder of this paper summarizes briefly the Ensemble Kalman

Filter and the principal heuristics, localization and covariance inflation, required

in its application to large-scale systems. The results, presented in §1.4, might be

considered the first “successful” estimation of this difficult benchmark problem.
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1.3 The Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF), first proposed by Evensen (1994), is

a modern stochastic alternative to Chandrasekhar’s method, described above, for

state estimation in high dimensional systems, and is reviewed in depth in Evensen

(2003, 2009a,b). Simply stated, in standard implementations of the EnKF, a

sample covariance matrix replaces the forecast of the covariance matrix in (1.6).

Even though only second-order statistics of the distribution are typically used at

each measurement update in the EnKF approach, the full nonlinear dynamics of

the system are used to propagate each candidate realization between measurement

updates.

We now review briefly the formulation of the standard EnKF, using a

continuous-time representation of the system state x(t) and measurements yk =

y(tk) available at discrete times tk:

∂x(t)

∂t
= f(x(t),u(t),w(t)), (1.8)

yk = h(xk) + vk. (1.9)

The system dynamics f(·) in this formulation may be nonlinear and forced by

some known function u(t), and are also assumed to be corrupted by random “state

disturbances” w(t) with known statistics. Similarly, the measurement operator h(·)
may be nonlinear, and is assumed to be corrupted by additive white “measurement

noise” vk with covariance Rk.

Recall from the introduction that the EKF propagates the full covariance

matrix and uses it to perform measurement updates according to Bayes’ rule,

assuming a Gaussian PDF. The EnKF is, in a sense, quite similar, but builds

an estimate P
e of the covariance matrix P based on an outer product matrix
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quantifying the deviation of the ensemble members from their mean:

P
e
k|k−1 =

(δX̂k|k−1)(δX̂k|k−1)H

N − 1
, (1.10a)

δX̂k|k−1 =
�
δx̂1

k|k−1 δx̂2
k|k−1 . . . δx̂N

k|k−1

�
, (1.10b)

δx̂j
k|k−1 = x̂j

k|k−1 − x̂k|k−1, (1.10c)

x̂k|k−1 =
1

N

�

j

x̂j
k|k−1. (1.10d)

Using this “sample” (that is, approximate) covariance matrix P
e, a standard KF

measurement update may be performed:

x̂j
k|k = x̂j

k|k−1 + P
e
k|k−1 H

H
�
HP

e
k|k−1 H

H + Rk

�−1
(yj

k −H x̂j
k|k−1), (1.11)

where x̂j
k|k−1 denotes the j’th ensemble member at timestep k based on measure-

ments up to yk−1, P
e
k|k−1 denotes the sample covariance matrix, as given in (1.10a),

based on the collection of ensemble members, yj
k denotes a discrete-time random

vector with statistical distribution N(yk,R), and H denotes a linearization of the

operator h(·) about the mean state estimate x̂k|k−1. For more information on the

standard EnKF measurement update and it’s properties, the reader is referred to

Evensen (2003).

It is important to differentiate between the PF and the EnKF, since they

are perhaps easily confused. Although both estimation methods use the govern-

ing equations to propagate sets of perturbed realizations through phase space, the

measurement update in each method is fundamentally different. The PF uses a

weighted linear combination of these perturbed candidate realizations to approxi-

mate the PDF of the estimate, with the weights being adjusted each time a mea-

surement is taken via Bayes’ rule. In contrast, the EnKF effectively uses identical

weights on each realization, instead shifting the realizations themselves, according

to a Kalman-like update formula, whenever measurements are taken.

In the computationally efficient implementation of the EnKF the outer

product formula for the sample covariance matrix (1.10a) is kept in its factored

form when calculating the update (1.11) [or the modified form of this update, given
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below] in order to retain the numerical tractability of the result. That is, P
e is

represented as the product of two matrices of order n ×N and N × n, bypassing

the full computation of the n × n matrix P
e, which is important because, in the

implementation, N � n. We thus rewrite (1.11) as

x̂j
k|k = x̂j

k|k−1 + α δX̂k|k−1 δŶH
k|k−1×

�
α δŶk|k−1 δŶH

k|k−1 + Rk

�−1
(yj

k −H x̂j
k|k−1) (1.12)

where δŶk|k−1 = H δX̂k|k−1 and α = 1/(N − 1).

Butala et al. (2008) established that the EnKF, when formulated correctly

for systems with linear dynamics, asymptotically converges to the Kalman result as

the number of ensemble members becomes sufficiently large. An abbreviated proof

is provided below for convenience. Note in particular that the yj
k are perturbed

in a statistically consistent fashion so that the covariance term KRK
H is properly

recovered below in (1.21).

Theorem 1.3.1 (Equivalence of the EnKF to KF) In the limit of an infinite

number of ensemble members (i.e., N → ∞), the estimated ensemble mean and

covariance converge to the equivalent Kalman filter equations (1.6) and (1.7), re-

spectively, when using the EnKF update equation (1.11).

Proof 1.3.1 Consider the rewritten EnKF update (1.11) as the unique solution

for the random variable x̂j
k|k conditioned on the random variables x̂j

k|k−1 and yj
k

x̂j
k|k = x̂j

k|k−1 + K
e(yj

k −H x̂j
k|k−1) (1.13)

K
e = P

e
k|k−1H

H
�
HP

e
k|k−1H

H + Rk

�−1
. (1.14)

After recalling the definition of the covariance matrix

Pk|k−1 = lim
N→∞

1

N − 1

N�

j=1

(x̂j
k|k−1 − x̂k|k−1)(x̂

j
k|k−1 − x̂k|k−1)

H (1.15)

= lim
N→∞

P
e
k|k−1, (1.16)

as discussed in Butala et al., the EnKF gain matrix K
e converges to the Kalman
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gain matrix K as n → ∞ by Slutsky’s Theorem (Slutsky, 1925; for explanation,

see Gut, 2005, Theorem 11.4, p. 249). Thus, the expected value of (1.13) can be

rewritten

x̂k|k = lim
N→∞

1

N

N�

j=1

x̂j
k|k (1.17)

= lim
N→∞

1

N

N�

j=1

x̂j
k|k−1 + K

�
1

N

N�

j=1

yj
k −H

1

N

N�

j=1

x̂j
k|k−1

�
(1.18)

= x̂k|k−1 + K
�
yk −H x̂k|k−1

�
(1.19)

which is identical to the Kalman filter state update (1.6).

By performing an equivalent analysis for the covariance of the random vari-

able x̂j
k|k the covariance update equation is recovered similarly

Pk|k = lim
N→∞

1

N − 1

N�

j=1

(x̂j
k|k − x̂k|k)(x̂

j
k|k − x̂k|k)

H (1.20)

= (I−KH)Pk|k−1(I−KH)H + KRK
H + Φ + Φ

H (1.21)

where

Φ = lim
N→∞

1

N − 1

N�

j=1

�
(I−KH) (x̂j

k|k−1 − x̂k|k−1) (yj
k − yk)

H
K

H
�

= 0 (1.22)

which implies that (1.21) and (1.7) are equivalent, and the proof is complete.

Although this theoretical result justifies applying the EnKF to many prob-

lems, it does not provide practical guidelines for choosing ensemble size for more

general applications, which is necessary during implementation. For linear prob-

lems of very high dimension [n ≥ O(106)] Furrer & Bengtsson (2007) show that

convergence of the trace of the covariance matrix is possible when the number of

ensemble members scales like the square of the order of the state [i.e., N ∼ O(n2)].

Furrer & Bengtsson also show that there can sometimes be considerable bias in

the estimator even when the number of ensemble members is of the same order as

the order of the state dimension [i.e., N ∼ O(n), also discussed in Evensen (2003,
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2009a)], a much less strict requirement.

Based on this analysis alone, the requirements for convergence, which scale

as poorly as the storage requirements for the KF and EKF, restrict applications

of the EnKF to low-dimensional systems. As a result, two heuristics must be

implemented in practice to reduce the negative side effects associated with a re-

duced ensemble size: localization and covariance inflation. As mentioned in the

introduction, it is often found in practice that when these two heuristics are used

with an ensemble-based approach, the dominant directions of uncertainty of the

estimation error (in phase space) are captured accurately even when a relatively

small number of ensemble members is used.

1.3.1 Localization

Localization is an artificial distance-based suppression of the off-diagonal

components of the sample covariance matrix P
e
k|k−1 as represented by (1.10a). It

was first proposed by Houtekamer & Mitchell (2001), and is an essential ingredient

to the success of the EnKF in practice. It is introduced to eliminate spurious cor-

relations in the covariance matrix that arise from the fact that it is usually grossly

under-sampled (that is, N � n). Note in (1.10a) that the off-diagonal components

of the covariance matrix P
e
k|k−1 are obtained by averaging the product of a flowfield

perturbation at one point in the physical domain with a flowfield perturbation at

another point in the physical domain. If these two points are separated by a large

distance, it may be argued on physical grounds that this averaged product should

be small; localization thus imposes this decay of correlation with distance, even if

the system is so grossly under-sampled that (1.10a) does not capture this decay

(which is usually the case).

The sample covariance matrix P
e
k|k−1 in (1.11) may thus be replaced by

P
e
k|k−1 =

ρ • (δX̂k|k−1)(δX̂k|k−1)H

N − 1
(1.23)

where ρ is a distanced-based localization function, and • denotes the element-wise

product. Using this modified sample covariance formula, (1.12) may be rewritten
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as

x̂j
k|k = x̂j

k|k−1 + αρ1 • (δX̂k|k−1 δŶH
k|k−1)×

�
αρ2 • (δŶk|k−1 δŶH

k|k−1) + Rk

�−1
(yj

k −H x̂j
k|k−1) (1.24)

where, α = 1/(N − 1) is the constant defined in (1.12), ρi,m
1 is a distance-based

localization function relating the i-th state and the m-th measurement, and ρm1,m2
2

is a localization function relating m1-th measurement and m2-th measurement;

both functions approach unity as the distance between the corresponding flow

quantities approaches zero, and both approach zero as the distance between the

corresponding flow quantities becomes large.

1.3.2 Covariance Inflation

Another challenge when using under-sampled representations of probability

distributions in high-dimensional state-space systems is “covariance collapse.” This

occurs when the majority of ensemble members are distributed on a fraction of the

attractor, and thus the computed statistics do not capture all of the principal

directions of uncertainty. Anderson & Anderson (1999) review this phenomena

and the effect it has in weather forecasting applications, and discuss its simple

practical solution covariance inflation. Much earlier, Anderson & Moore (1979,

p. 131-134) demonstrated that, even in linear KF applications, insensitivity to

measurements (resulting from accounting improperly for model uncertainty) can

lead to filter divergence. Furrer & Bengtsson (2007) further argue that most sources

of error in ensemble filters result in underestimation of the ensemble variance; thus,

covariance inflation is a natural mechanism for correcting the unknown deficiencies

that lead to an underestimated prior variance. Covariance inflation, as proposed

by Anderson & Anderson (1999), simply pushes the ensemble members away from

the mean by some arbitrary growth factor β at each timestep.

x̂j = β ( x̂j − x̂ ) + x̂ (1.25)
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In weather forecasting applications, inflation parameters in the range of β ∈
[1.005, 1.05] demonstrate significantly improved estimator performance. Attempts

to develop adaptive methods for tuning β have been made in Anderson (2009, 2007)

and Wang & Bishop (2003), but unfortunately the results so far do not appear to

justify their complexity.

1.4 Numerical Results

We now characterize the ability of the EnKF, as described above, to esti-

mate a 3D incompressible turbulent channel flow, given measurements of the skin

friction and pressure on uniformly-spaced 16× 16 array on each wall. The numeri-

cal computations presented use the standard spectral-spectral-second-order-finite-

difference approach of Bewley et al. (2001) to simulate the uncontrolled, constant

mass-flux turbulent channel flow on a 643 grid with Lx = 2π, Lz = π, and Ly = 2.

[Note that this code-base uses Lx, Lz, and Ly to denote the streamwise, spanwise,

and wall-normal directions, respectively. The reader is referred to Bewley et al.

(2001) for more details.] For clarity, the (nonlinear) Navier-Stokes equation for the

present application is given by

�
∂ui

∂t
+

∂uiuj

∂xj
− ν

∂2ui

∂x2
j

+
∂p

∂xi

�
= f(x) (1.26)

where incompressibility, uniform density and viscosity is assumed. The flow is gov-

erned by the incompressible Navier-Stokes equation with uniform density and vis-

cosity. By defining the half-channel height δ, mean skin friction τ̄w = −ν ∂ū1/∂n,

and mean friction velocity uτ = (τ̄w/ρ)0.5, this equation can be conveniently non-

dimensionalized where time, space, and velocity are normalized by ν/u2
τ , ν/uτ ,

and uτ , respectively. As a result, the Reynolds number becomes simply a func-

tion of viscosity Reτ = 1/ν. By choosing ν = 0.01 the domain is re-expressed, in

non-dimensional form, with L+
x = 628, L+

z = 314, and L+
y = 200. Although the

domain size is not identical to our previous work in flow estimation, it is larger

than the minimal flow unit required for the onset of turbulence (Jimenez & Moin,
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1991). This, along with statistics generated for validation purposes, ensures that

the results are in fact representative of an estimator tracking a turbulent flow at

low Reynolds number. The “truth” model is calculated as an identical simulation

running in parallel with the EnKF-based estimator.

Since the simulation relies on Fourier transforms for computational effi-

ciency, all data is stored in frequency space as the simulation advances. This

conveniently allows for measurements to be extracted through high-order spectral

interpolation schemes. Wall shear stress in the streamwise and spanwise direc-

tions were calculated via spectral interpolation in the wall-parallel directions and

second-order interpolation in the wall-normal direction. When pressure measure-

ments were required, a Poisson equation was solved.

As mentioned in §1.3.1 and §1.3.2, localization and inflation are ad hoc yet

essential ingredients to the success of any large-scale EnKF implementation. The

distance-dependent localization functions ρ used in the present work were chosen

to be exponential in shape,

ρi,j = ρ(x(i),x(j)) = e|x
i−xj |2

Q , (1.27)

where Q = diag{ [q1, q2, q3] } > 0 is a diagonal weighting matrix related to three

length scales. The appropriate selection of each qi reflect the “trust” associated

with the ability of the sample covariance matrix to construct accurate correlations

in the streamwise, wall-normal, and spanwise directions. These diagonal elements

of Q correspond to the half-height of the exponential function decay, and are

generally selected to correspond to known flow statistics. These length scales

were determined from correlation studies of uncontrolled turbulence, analogous to

those reported in Kim et al. (1987) and Bewley et al. (2001), and are subjected

to a minor amount of additional variation. The inflation parameter β = 1.01

was selected based on reported results from the weather forecasting community

(Anderson & Anderson, 1999).

The simulation was performed using the Triton cluster at San Diego’s Super

Computing Center (SDSC), where each simulation required 70-hours of compute

time on 66 parallel cores (the details of the cluster can be found at the SDSC
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website1), with each core corresponding to an ensemble member. This algorithm

design choice was determined by two unrelated but important constraints: the

discretization of the domain and the size of the cluster on which the simulation

was performed. The computational expense of the EnKF simulation performed

and the desire to drive it all the way to statistical steady state (2200 ensemble

updates were performed during each simulation) prevented us from performing

more extensive parametric studies on these three length parameters at the present

time, or repeating the study at higher Reynolds numbers, both of which are left

for future work.

The quality of the reconstruction is determined by comparing the perturba-

tion component of the true velocity field with the same perturbation component of

the estimated velocity field. Normalized error and correlation measures, as defined

by Bewley & Protas (2004), are used for comparison with previous work.

Errn( q�est, q�tru ) =

� Lx

0

� Lz

0 ( q�est − q�tru )2dz dx
� Lx

0

� Lz

0 (q�tru)2dz dx
(1.28)

Corr( q�est, q�tru ) =

� Lx

0

� Lz

0 q�estq
�

trudz dx
�� Lx

0

� Lz

0 (q�est)2dz dx
�� Lx

0

� Lz

0 (q�tru)2dz dx
. (1.29)

Note that quantities are primed to emphasize that the perturbation component of

the velocity field (that is, the instantaneous velocity component minus its planar

average) is being used in the comparison. The subscripts ()est and ()tru corre-

spond to the “estimated” and “truth” values, respectively. These two normalized

measures account for the (x, z)-plane averaged statistics as a function of time and

distance from the wall. The long-time average of these measures provides a rig-

orous quantification of the quality of the state estimate as a function of distance

from the wall, approximating their corresponding expected values, E[Errn(y, t)]

and E[Corr(y, t)], at statistical steady state.

The error norm defined above is perhaps the more sensitive of the two

criteria. It is normalized by the planar-averaged mean-squared energy of the truth

simulation, which makes it a particularly sensitive measure near the wall, where

1http://tritonresource.sdsc.edu/cluster.php
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Figure 1.2: L2 energy of the error of the estimation, solid, and total wall drag,
dashed, as a function of t+. Time averaged results in Figures 1.3 and 1.4 are
averaged from time t+ = 1000 to t+ = 2200. The magnitude and variations in
total wall drag are consistent with those of an Reτ = 100 turbulent flow.

this quantity approaches zero. (Note that an error norm near unity indicates

that the estimate is completely decoupled from the truth, whereas an error norm

near zero indicates that the estimate is in perfect agreement with the truth.) When

significant error is present, the correlation is useful to quantify the planar-averaged

phase error, as distinct from the planar-averaged amplitude error; an error in the

amplitude of the estimate (but not its phase) will adversely affect the error norm,

but not the correlation. Note also that a correlation near unity indicates perfect

phase alignment of the estimate with the truth.

Figure 1.2 shows the L2 energy of the difference between the estimate and

the truth as a function of t+. Note that the error norm and correlation were

calculated, and averaged, from t+ = 1000 to t+ = 2200 (1200 viscous time units

after apparently converging to statistical steady state). Through observation of

the variations in averaged skin-friction (skin friction averaged over the top/bottom

walls) it is clear that temporal averages are taken over multiple flow-throughs with

substantial statistical averaging.

The most significant test of the estimator in this problem, of course, is to

quantify its convergence starting from arbitrary initial conditions. Figures 1.3 and
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Figure 1.3: Error norm in the estimation of an Reτ = 100 flow using the EnKF,
starting from bad initial conditions. The localization used is given in (1.27), with
localization length scales of Q = diag([50, 50, 25]) and localization constant β =
1.01. The − − − line represents the statistics of the error before estimation was
attempted (averaged over 2400 viscous time units), and the − � − line represents
the error norm of the EnKF at statistical steady state.
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Figure 1.4: As in Figure 1.3, but reporting the correlation.
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1.4 thus report such a test, using the most suitable values of the localization pa-

rameters identified thus far, Q = diag{[50, 50, 25]}. An initial condition for the

estimator was generated from a fully-developed turbulent flow simulation (inde-

pendent of the truth model) and snapshots of this flow were taken every ∆t+ = 200

viscous time units to initialize each ensemble member. Symmetry across the chan-

nel centerline in Figures 1.3–1.4 reflect the approximate statistical convergence in

the simulation. This symmetry would be perfect if statistical steady state were in

fact reached.

In this case, near perfect synchronization of the EnKF with the truth is

observed. The EnKF estimation was found to perform with at least an order of

magnitude less error at 20 viscous units from the wall than the previous best esti-

mation results reported in the literature on this problem (see, §1.2.2). In particular,

we observe error measurements of 0.001, 0.001, 0.001 and correlation measurements

of 0.99, 0.99, and 0.99 (in the u, v, and w velocity components, respectively). As

a point of comparison Chevalier et. al. (2006, when using the Extended Kalman

Filter) reported error measurements of 0.5, 0.88 and 0.9 and correlation measure-

ments of 0.87, 0.59, and 0.59 at the same location.

1.5 Conclusions and future work

The EnKF depends on the sample covariance matrix P
e, which is a low-rank

approximation of the estimated covariance matrix P. It is well known by those who

use the EnKF in weather forecasting applications that the finite size of the ensemble

in the EnKF causes spurious correlations and covariance collapse. In practice these

phenomena must be compensated for through a distance-dependent localization

function and covariance inflation in order to ensure adequate convergence of the

estimator.

This paper has presented the first near-perfect state estimation of an Reτ =

100 turbulent flow using wall information only; that is, we have demonstrated a

sustained synchronization of the state estimate with the truth when a random

initial condition is used in the estimator, and the localization function is tuned
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appropriately. When comparing with previous results in the published literature,

at least an order of magnitude less error was observed at 20 viscous units from the

wall.

Previous unreported results found that the ability to achieve such estima-

tor convergence is apparently fairly sensitive to the localization parameter used

in the wall-normal direction, and apparently fairly insensitive to the localization

parameters used in the streamwise and spanwise directions. To a certain extent,

these results reflect the law of the wall, the fundamental idea that any turbulence

near-wall flow varies in a predictable statistical fashion as a function of the dis-

tance from the wall. Exploring the estimator performance as a function of these

localization parameters may reveal inherent properties of the flow not yet known

and warrants further investigation.

Besides further tuning of these heuristics, one interesting possibility for im-

proving the present estimation strategy is to implement a “Rogallo transform”

(Rogallo, 1981; Rogallo & Moin, 1984) for the quantities being estimated. In his

pioneering work, Rogallo showed that, in regions of high shear (in this case, near

a wall), a convenient transformation on the domain may be defined that moves

something like a windshield wiper. Such a transformation on the domain might

in the present problem provide a slower evolution of the individual discretized

flow perturbation quantities being estimated, thus creating an easier problem for

the EnKF to estimate. Another promising idea is to explore recent hybrid meth-

ods for state estimation that consistently combine the strengths (and numerical

tractability) of the EnKF and 4DVar approaches (see, Cessna, 2010).

Once the best estimator possible for this problem has been developed, of

course, the problem of controlling a turbulent flow based on this estimate must be

revisited, as well as the extension of this approach to higher Reynolds numbers.

The present investigation, which represents the first reasonable high-fidelity esti-

mate of a turbulent flow based on wall information only, represents a significant

step in this direction.
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1.6 Appendix: Tracking for 3D Channel Flow

These results appeared in an early version of the paper submitted

to the Journal of Fluid Mechanics, and have since been superceeded

by the results presented above. Since they are an an intermediate

result, and were eventually replaced by the results presented in §1.4,

they have been moved to an appendix.

To characterize the dependence of the EnKF on the length scales parame-

terizing the localization (see §1.3.1), we first studied the problem of tracking. That

is, the estimation problem when the estimator is initialized with good (but not per-

fect) initial estimate of a fully-developed turbulent flow. An initial condition was

arbitrarily chosen for the truth simulation using a random, instantaneous flow-field

from a simulation performed off-line. Each ensemble member was then initialized

with a random, divergence-free perturbation to the initial condition of the truth

simulation. Thus the statistical properties of the resulting initial condition for the

estimator (used for all four tracking cases) were ideal: an ensemble mean equal to

the truth, and a Gaussian distribution of perturbed ensemble members.

The estimation results summarized in Figures 1.5 and 1.6 depict the error

norm and correlation, respectively, of four data assimilation cases, which differ

only in the choice of localization parameters. They indicate that, when the three

parameters are tuned appropriately, Q = diag{ [50, 50, 25] }, the EnKF synchro-

nizes with the turbelent flow indefinitely. This result is remarkable; nothing like

it has ever been achieved on this canonical problem.

The estimation results demonstrate a high sensitivity to the localization

parameter in the wall-normal direction, and a low sensitivity to localization pa-

rameters in the stream/span-wise directions. From an information perspective,

this suggests that knowledge of the relationship between measurements at the wall

and velocity field just outside the wall-induced turbulent structures is critical in

the estimation process. Even when the three parameters are tuned such that the

EnKF does not synchronize to the turbulent flow, we note that the error norm and

correlation of the estimate are still quite good, as discussed further below.



23

0 0.5 1
100

80

60

40

20

0

20

40

60

80

100
u error

w
al

l u
ni

ts

0 0.5 1
100

80

60

40

20

0

20

40

60

80

100
v error

0 0.5 1
100

80

60

40

20

0

20

40

60

80

100
w error

Figure 1.5: The effect of the localization parameters in (1.27) on the error norm,
in an attempt to track (that is, to estimate, starting from accurate but not perfect
initial conditions) the turbulent flowfield fluctuations with the EnKF. The − � −
lines are with localization length scales of Q = diag([75, 25, 37.5]) viscous units in
the streamwise, wall-normal, and spanwise directions, respectively; the −.− lines
are with localization length scales of Q = diag([50, 25, 25]), the − − − lines are
with localization length scales of Q = diag([25, 25, 12.5]), and the − • − lines are
with localization length scales of Q = diag([50, 50, 25]).
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Figure 1.6: As in Figure 1.5, but reporting the correlation.
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Chapter 2

Gradient-based optimization

methods for sensor & actuator

placement in LTI systems

2.1 Abstract

This paper develops efficient techniques for calculating gradient information

which may be used to optimize the placement of sensors & actuators of a given

precision for the effective estimation and control of high-dimensional discretiza-

tions of infinite-dimensional linear time-invariant (LTI) systems. The necessary

gradients are determined in this setting via adjoint analyses which quantify the

effects of small variations of the observation and control operators. The approach

can be modified appropriately to fit a variety of specific objectives within the Lin-

ear Quadratic Gaussian (LQG) estimation/control framework. Unlike other work

in this area, we work directly with the covariance of the estimation error P, rather

than working with the Fischer information matrix M, which is, in a sense, a best-

case estimate of P
−1 that neglects the impact of the state disturbances on the

evolution of the state estimation error. The method is tested by optimizing the

placement of two sensors and two actuators in a 1D complex Ginzburg-Landau

system.

25
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2.2 Introduction

Sensor and actuator placement techniques for state estimation and con-

trol problems have broad applications in environmental studies, finance, and engi-

neering. Significant applications include: actuator placement in vibration control

of flexible structures (Hiramoto et al., 2000), sensor placement in environmen-

tal applications (Majumdar et al., 2002a), explosion detection and contaminant

plume tracking (Zhang et al., 2011a), and estimation/control of chemical produc-

tion/mixing procedures (Alonso et al., 2004). Although it is clear that the fidelity

of the estimator in such problems is strongly dependent on the sensor locations cho-

sen in addition to the sensor precisions used, there has been surprisingly little work

on the development of rigorous, model-based, numerically-tractable algorithms for

optimizing sensor placement in such high-dimensional systems.

In low-dimensional systems, this class of problems may be addressed effec-

tively using the linear matrix inequality (LMI) formulation of Li et al. (2009). This

approach does not actually address the placement of sensors and actuators of fixed

precision, but rather assigns a cost associated with the precision of the sensors

and actuators used (in preassigned locations), then optimizes these precisions in

order to minimize this cost. By so doing, the problem is made convex. One can

thus formulate and solve a problem that begins with a large number of sensors and

actuators of undetermined precisions in candidate positions, then perform an LMI-

based optimization of the precisions of the sensors and actuators used to minimize

the cost. One can then, in an ad hoc fashion, eliminate those sensors and actuators

with the smallest impact on the problem at hand, and reoptimize the precisions

of the sensors and actuators that remain. The scaling of the complexity of this

formulation with dimension of the system under consideration is poor; the present

gradient-based formulation might thus prove to be superior for the optimization

of the placement of sensors & actuators of a given precision in high-dimensional

discretizations of infinite-dimensional systems.

The majority of existing model-based sensor placement approaches con-

sidered in the literature are based on minimizing various measures of the Fisher

information matrix, which is particularly convenient when considering problems of
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this sort (for an introduction, see, e.g., Cover & Thomas 2006, p. 392). In short, if

a random variable x depends on an unknown parameter θ, then the Fisher infor-

mation is a characterization of the “information” provided about θ via samples of

x. In particular, if the probability density function (PDF) of the random variable

x depends only weakly on θ, then the derivative of the conditional PDF p(x; θ)

with respect to θ will be relatively small over all possible values of x, whereas if

this dependence is strong, this derivative will, at least for some x, be large. Nor-

malizing this derivative by the value of the conditional PDF itself, we define the

score v(x, θ) as the sensitivity of the conditional PDF with respect to variation of

θ for given values of x and θ; that is,

v(x, θ) =
∂
∂θp(x; θ)

p(x; θ)
=

∂

∂θ
ln p(x; θ).

Note that the expected value of the score v(x, θ) over all possible values of x is

zero:

E{v(x, θ)} =

�
∞

−∞

v(x, θ) p(x; θ) dx =

�
∞

−∞

∂

∂θ
p(x; θ) dx =

∂

∂θ

�
∞

−∞

p(x; θ) dx

� �� �
=1

= 0.

It is thus the variance of the score v(x, θ) that is useful in characterizing the overall

magnitude of the sensitivity of the conditional PDF with respect to variation of θ;

the Fisher information M(θ) is thus defined in this (scalar) case as the variance of

the score:

M(θ) = E{[v(x, θ)]2} =

�
∞

−∞

[v(x, θ)]2 p(x; θ) dx.

Extension of this concept to vectors of random variables x and vectors of unknown

parameters θ is straightforward, and leads immediately to the Fisher information

matrix (FIM) M(θ) via the appropriate outer product:

M(θ) = E{[v(x, θ)]H [v(x, θ)]} =

�
[v(x, θ)]H [v(x, θ)] p(x; θ) dx,

where v(x, θ) = ∂
∂θ ln p(x; θ) is considered to be a row vector and [·]H denotes the

conjugate transpose.
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The inverse of the Fisher information matrix provides a lower bound of

the estimation error covariance matrix P of the Kalman filter via the Cramér-Rao

inequality

P ≥M
−1; (2.1)

derivation of this important bound is given in Goodwin & Payne 1977, Theorem

1.3.1.

As mentioned previously, scalar measures of the Fisher information matrix

are typically considered when optimizing sensor locations. Three common such

measures are

• A-optimality (trace):

JA(M) = trace(M−1), (2.2a)

• D-optimality (determinant):

JD(M) = − ln det(M), (2.2b)

• E-optimality (max eigenvalue):

JE(M) = λmax(M
−1). (2.2c)

Uciński (2005) reviews these cost functions and summarizes the impact of this

choice on the overall optimization problem: “A D-optimum design minimizes the

volume of the uncertainty ellipsoid for the estimates. An E-optimum design min-

imizes the length of the largest axis of the same ellipsoid. An A-optimum design

suppresses the average variance of the estimates.”

Work on the sensor placement problem has focused heavily on the three

cost functions listed above. For example, Faulds & King (2000) considered A-

optimality measures of the FIM to analyze (but not optimize) a model-free method

for placing sensors in the domain of the 2D heat equation using Centroidal Voronoi

Tesselations (CVT). Similarly, Mart́ınez & Bullo (2006) found methods for min-

imizing D-optimality measures of the FIM in target tracking problems. These



29

two formulations are particularly attractive because they can be solved in a dis-

tributed framework (Cortes et al., 2004; Bullo & Cortes, 2004; Kwok & Martinez,

2010). However attractive these distributed formulations are, computational exper-

iments in 2D Navier-Stokes systems (Zhang et al., 2011a) indicate that centralized

formulations which optimize sensor vehicle trajectories specifically targeting re-

gions of high estimation uncertainty in a model predictive control setting generally

provide superior estimator performance than CVT-based formulations. Porat &

Nehorai (1996) propose a source-seeking estimation/tracking algorithm based on

A-optimality measures of the FIM which seek to optimize sensor locations for esti-

mating a contaminant source location via a relatively inefficient global search over

feasible future measurement locations. Because this method scales poorly with

problem size, they augment the algorithm by calculating gradients of the FIM at

select locations within the feasible set for each sensor; the authors propose this

optimization in a receding horizon setting, where measurement locations eventu-

ally converge to stationary points in the domain. In the robust setting, Flaherty

et al. (2006) use E-optimality measures of the FIM to estimate parameter values

in models of biological systems.

Although optimization of sensor locations via consideration of the FIM is

convenient, it is somewhat unfortunate that Cramér-Rao only relates the FIM to

a lower bound on the quantity of interest (that is, the covariance of the estimation

error); though it is evident that the covariance of the estimation error and the

inverse of FIM are somehow related, optimizing the sensor locations based on the

FIM in fact provides no gaurantees (upper bounds) on the resulting covariance of

the estimation error. In fact, the covariance of the estimation error of the Kalman

Filter only approaches the lower bound provided by the FIM in the limit that the

state disturbances of the system model are made small. To illustrate this, Taylor

(1979) puts the Kalman Filter for continuous time systems with discrete time

measurements in context with the FIM and the Cramér-Rao bound. Assuming a

continuous-time state transition matrix satisfying the differential equation

dΦ(t, t0)

dt
= A(t)Φ(t, t0), (2.3a)
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defining Φk+1,k = Φ(tk+1, tk), and taking the initial condition Φ(t, t) = I, Taylor

(1979) showed that the FIM for the discrete-time Kalman Filter can be written in

the form

M(tk) = Φ
−H
k,k−1M(tk−1)Φ

−1
k,k−1 + H

H
V
−1

H. (2.4)

Comparing this result with the propagation of the discrete-time information filter1,

P
−1
k|k =

�
Φk,k−1Pk−1|k−1Φ

H
k,k−1 + W

�−1
+ H

H
V
−1

H, (2.5)

where W is the covariance of the state disturbances added to the state evolution

equation, it is clear that, in the limit in which the state evolution is deterministic

(W → 0), the covariance of the state estimation error approaches the lower bound

predicted by the Crámer-Rao inequality.

Adjoint-based variational methods provide a powerful and broadly exten-

sible framework for optimization problems of this sort, and scale well to high-

dimensional discretizations of infinite-dimensional systems. Via successive lin-

earization, they can also be used to optimize problems outside of the somewhat

restrictive linear/quadratic setting. Note that adjoint-based optimizations have

been applied broadly for shape design in aerodynamic systems (Jameson et al.,

1998; Giles & Pierce, 2000), adaptive grid refinement for error reduction in CFD

simulations (Giles, 1998), and a host of other practical applications. However, such

methods have not yet been extended to optimize sensor distributions in fluid sys-

tems; the present work seeks to fill this void. Furthermore, only a few investigations

have used adjoint methods to evaluate the sensitivity of solutions to Riccati equa-

tions. Specifically, De Farias et al. (2001, Appendix A) propose a strategy similar

to that used here for extracting gradients while performing optimizations of LMIs,

and Kenney & Hewer (1990) examined how solutions to Riccati equations change

as a result of modeling errors in the actuation/measurement covariance matrix.

The remainder of this paper develops various adjoint-based methods for

minimizing relavent scalar measures in the control and estimation problems: §2.3

1The information filter is not to be confused with the FIM. The information filter is the
propagation and update of the information matrix, which is defined as the inverse of the Kalman
Filter covariance P; see, Anderson & Moore (1979).
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presents this analysis for continuous-time systems, §2.4 performs the equivalent

discrete-time analysis, and §2.5 presents an application of the continuous-time

theory to the 1D complex Ginzburg-Landau equation.

2.3 Continuous-time Analyses

Consider a continuous-time Linear Time Invariant (LTI) system described

by

dx

dt
= Ax + B(qa)u + w, (2.6a)

y = C(qs)x + v, (2.6b)

where2 x(t) ∈ Cn is the state, u(t) ∈ C� is the control, y(t) ∈ Cm is the measure-

ment, w(t) ∈ Cn is the state disturbance, v(t) ∈ Cm is the measurement noise,

qa(t) parameterizes the actuator positions, and qs(t) parameterizes the sensor po-

sitions. For simplicity below, we make the standard modeling assumptions that

w(t) and v(t) are uncorrelated, zero-mean, white continuous-time random processes

with spectral densities W ≥ 0 and V > 0 respectively. The (bounded) functional

dependence of the operators B and C on the actuator and sensor positions qa and

qs is emphasized explicitly above, but is suppressed below for notational clarity. In

the discussion below, we first treat the optimization of the sensor positions qs, then

the optimization of the actuator positions qa; the development of the gradient in-

formation necessary to optimize both actuator and sensor positions simultaneously

follows similarly, and is discussed further in §2.3.3.

2For generality, our formulations are developed in §2.3 and §2.4 and tested in §2.5 on complex
systems; it is trivial to restrict these formulations to the (more typical) setting of real systems.



32

2.3.1 Computing a gradient with respect to the sensor po-

sitions

Via standard (continuous-time) Kalman-Bucy filter theory, the best linear

unbiased estimate x̂(t) of the system (2.6) is given by

dx̂(t)

dt
= (A− LC)x̂(t) + Bu(t) + L(t)y(t), L(t) = P(t)CH

V
−1, (2.7)

where the covariance P(t) = E{x̃(t)x̃H(t)} ≥ 0 of the estimation error x̃(t) =

x(t)− x̂(t) evolves forward in time from given initial conditions P(0) according to

the differential Riccati equation (DRE)

dP(t)

dt
= AP(t) + P(t)A

H + W − L(t)VL
H(t). (2.8)

This evolution equation for P(t) reveals that, as the estimator (2.7) evolves in

time, the estimation error covariance P(t) is driven larger by the unmodelled state

disturbances w(t) in the system (2.6), and is driven smaller by the feedback term

L(t)y(t) in the estimator (2.7). Given that the DRE (2.8) marches to a finite value

at t = T as T →∞ [that is, that the system (2.6) is detectable], the infinite-horizon

solution of the DRE (2.8) may be computed directly by setting dP/dt = 0, thus

transforming the DRE (2.8) into the continuous-time algebraic Riccati equation

(CARE)

0 = AP + PA
H + W − LVL

H , L = PC
H

V
−1. (2.9a)

Closed-form solutions to a CARE such as (2.9a) are generally unavailable, and

thus iterative methods based on the Schur decomposition of a 2n×2n Hamiltonian

matrix are typically used to solve them (Kailath, 1980).

The matrices A, W, and V in this LTI formulation are assumed to be

given. The remaining matrix which affects P in (2.9a) is C, which is, in turn, a

function of the sensor positions qs. Thus, an optimization problem may be posed

to minimize some measure of P in the infinite-horizon problem (2.9a) with respect

to the (stationary) sensor locations qs. In particular, we will seek the optimal qs



33

which minimizes the cost

J(qs) = trace(P); (2.9b)

alternative formulations based on different measures of P are considered in §2.3.3.

The gradient-based optimization problem we develop here focuses on the

selection of qs to minimize the cost J(qs) in (2.9b), where J is related to qs via

solution of the CARE (2.9a). We first select an initial qs essentially arbitrarily,

subject only to the technical condition that (2.6) be detectable. Local gradients

of the cost J with respect to the sensor positions qs are then iteratively optimized

via a standard gradient-based minimization algorithm. The algebraically difficult

step of this formulation is the efficient computation of the gradient �qsJ .

A simple approach to computing the necessary gradient in this problem

might be to apply a finite difference method or the (more accurate) complex-step

derivative method to each component of each of the m sensor locations individually,

solve a perturbation problem for each, then synthesize the results to assemble the

gradient (see, e.g., Chen & Rowley, 2010). An accurate and significantly more

computationally efficient approach to compute the gradient is to instead perform

a single adjoint computation, as discussed in detail below.

Starting from an initial set of sensor locations qs and the corresponding ob-

servation matrix C, associated CARE solution P, and cost J , consider the following

Taylor series expansion of (2.9b) about qs:

J(qs + q�s) = J(qs) + (�qsJ)H q�s + . . . = J(qs) + J �(qs,q
�) + . . . (2.10)

The constraint given in (2.9a) implies that a small perturbation of qs yields a small

perturbation of J ; this expansion can also be written explicitly as a function of P
�:

J(qs + q�s) = trace(P + P
�) = trace(P) + trace(P�) ⇒ J �(qs,q

�) = trace(P�).

(2.11)
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The corresponding equations for the perturbation matrix P
� are

AP
� + P

�
A

H − P
�
C

H
L

H − LCP
� = P(C�)H

L
H + LC

�
P (2.12a)

where

C
� =

�
dC

dqs

�H

q�s.

In general, the matrix C
� is a contraction of the rank-3 tensor dC/dqs with a vector

of sensor perturbations q�s. For notational convenience, (2.12a) is written as two

linear operations U(P�) and V(C�) such that

U(P�) = V(C�) (2.12b)

where

U(P�) = AP
� + P

�
A

H − P
�
C

H
L

H − LCP
�,

V(C�) = P(C�)H
L

H + LC
�
P.

Comparing the right-hand-sides of (2.10) and (2.11) reveals that

(�qsJ)H q�s = trace(P�). (2.13)

The relationship between P � and q�s can thus be used to compute the gradient. To

proceed, define an appropriate matrix inner-product3

�X,Z� = �[trace(XH
Z)] (2.14)

(where �[·] and �[·] denote the real and imaginary imaginary part, respectively)

along with a matrix adjoint variable S and an adjoint operator U∗(·) defined such

3Note that, if all matrices are real, (2.14) and (2.16) simplify, and the conjugate operation
may be dropped from (2.17a).
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that

� S, U(P�) � = � U∗(S),P� � (2.15)

⇒ U∗(S) = A
H
S + SA− SLC− C

H
L

H
S = (A− LC)H

S + S(A− LC).

Recognizing that the perturbation to the cost function (2.9b) may be expressed

using (2.14), it follows from (2.12b) and (2.15) that, if U∗(S) = I, then the first-

order perturbation to the cost is exactly

J �(qs,q
�) = trace(P�) = � I,P� � = � U∗(S),P� � = � S, U(P�) � = � S, V(C�) �

= �
�
trace

�
2PSL

dC

dqs
q�s

��

= trace

�
�

�
2PSL

dC

dqs

�
�[qs

�]

�
− trace

�
�

�
2PSL

dC

dqs

�
�[qs

�]

�
.

(2.16)

Thus, the gradient of the cost function (2.9b) with respect to the i’th element of

the sensor positions vector qi
s can be extracted:

�qi
s
J = trace

�
2PSL

dC

dqi
s

�
, (2.17a)

where the overbar denotes the complex conjugate, and where S satisfies the asso-

ciated continuous-time algebraic Lyapunov equation (CALE)

(A− LC)H
S + S(A− LC) = I. (2.17b)

2.3.2 Computing a gradient with respect to the actuator

positions

Following an analogous approach as that developed above for the sensor

placement problem, we now consider the corresponding actuator placement prob-

lem. Standard continuous-time optimal control theory applied to the linear system
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(2.6) establishes that the cost function

J =
1

2

� T

0

�
xH(t)Qx(t) + uH(t)Ru(t)

�
dt +

1

2
xH(T )QTx(T ) (2.18)

is minimized by the full-state feedback control policy

u(t) = −K(t)x(t), K(t) = R
−1

B
H
Y(t), (2.19)

where the “cost-to-go” matrix Y(t) ≥ 0 evolves backward in time from the terminal

condition Y(T ) = QT according to the DRE [cf. (2.8)]

−dY(t)

dt
= A

H
Y(t) + Y(t)A + Q−K

H(t)RK(t). (2.20)

We identify Y(t) as a “cost-to-go” matrix because it can be shown that

J(τ) =
1

2

� T

τ

�
xH(t)Qx(t) + uH(t)Ru(t)

�
dt +

1

2
xH(T )QTx(T )

=
1

2
xH(τ)Y(τ)x(τ). (2.21)

Given that the DRE (2.20) marches to a finite value at t = 0 as T → ∞ [that

is, that the system (2.6) is stabilizable], the infinite-horizon solution of the DRE

(2.20) may be computed directly by setting dY/dt = 0, thus transforming the

DRE (2.20) into the CARE [cf. (2.9a)]

0 = A
H

Y + Y A + Q−K
H
RK, K = R

−1
B

H
Y. (2.22a)

The matrices A, Q, and R in this LTI formulation are assumed to be given.

The remaining matrix which affects Y in (2.22a) is B, which is, in turn, a function

of the actuator positions qa. Note that (2.21) evalutated at τ = 0 in the infinite-

horizon limit T → ∞ implies that the original cost metric in (2.18) is minimized

when the eigenvalues of the symmetric matrix Y are minimized. Towards this end,
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the following cost function may be proposed [cf. (2.9b)]

min
qa

J = trace(Y). (2.22b)

The actuator positions qa can now be iteratively optimized following an

essentially identical analysis to that presented in §2.3.1. The resulting expression

for the gradient [cf. (2.17a)] is

�qi
a
J = trace

�
2KTY

dB

dqi
a

�
, (2.23a)

where the matrix adjoint T satisfies the associated CALE [cf. (2.17b)]

(A− BK)T + T(A− BK)H = I. (2.23b)

2.3.3 Discussion

As mentioned previously, the gradient-based optimizations discussed in

§2.3.1 and §2.3.2 first select initial sensor and actuator positions essentially ar-

bitrarily, subject only to the technical conditions that (2.6) be detectable and

stabilizable4. Local gradients of a relevant cost J with respect to the sensor and

actuator positions are then successively calculated and used to efficiently (but

locally) optimize the sensor and actuator locations via a standard minimization

algorithm such as steepest descent or the nonquadratic conjugate gradient method.

The algebraically difficult step is the efficient computation of the necessary gra-

dients, which has been shown in both cases to arise in a straightforward fashion

from the standard CARE for the estimation or control problem, together with an

associated CALE to compute an adjoint matrix upon which the required gradient

is based.
4Lauga & Bewley (2003) showed that detectability and stabilizability are lost gradually in

systems of this short when the sensors and actuators are moved outside of the physical domain
of interest (that is, where the significant dynamics of the open-loop PDE system take place),
which can lead to numerical problems when using finite-precision arithmetic. It is thus advisable
to chose reasonable initial placements of the sensors and actuators, well within the regions of
significant dynamics of the open-loop system.
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From the analyses performed in §2.3.1 and §2.3.2, it is clear that the RHS

forcing in (2.17b) and (2.23b) is determined solely by the definition of the cost

function. Alternative cost functions can also easily be considered, such as those ap-

pearing in (2.2a)-(2.2c) with the estimation error covariance P, which the quantitiy

of interest here, replacing the inverse of the FIM. Taking λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0

as the eigenvalues of P, a summary outlining the key results is sufficient to clarify5:

• A-optimality (trace):

JA = trace(P) = λ1 + . . . + λn

⇒ J �A = trace(P�) = �I,P��

⇒ U∗(S) = I. (2.24a)

• D-optimality (determinant):

JD = − ln det(P−1) = ln det(P)

⇒ J �D = trace(P−1
P
�) = �P−1,P��

⇒ U∗(S) = P
−1. (2.24b)

• E-optimality (max eigenvalue, λ1, with corresponding eigenvector r1)

JE = λ1(P)

⇒ J �E = trace(r1r
H
1 P

�) = �r1r
H
1 ,P��

⇒ U∗(S) = r1r
H
1 . (2.24c)

5Matrix identities from Petersen & Pedersen (2008) and Horn & Johnson (1990) are used in
the analyses leading to (2.24b) and (2.24c), respectively.
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Another metric of interest is the square of the Frobenius norm of P:

JF = �P�2
F = trace(PP) =

�

i

�

j

|pij|2 = λ2
1 + . . . + λ2

n

⇒ J �F = trace(2PP
�) = �2P,P��

⇒ U∗(S) = 2P. (2.24d)

It has been shown that the adjoint method of computing the gradient in this class of

problems is readily extensible to a broad range of different cost functions, with the

only difference between the various cases being the RHS forcing of the associated

adjoint.

The perhaps most notable extension to consider is the cost function asso-

ciated with the H2 control problem. This problem is well known and has been

studied extensively (see, e.g., Kwakernaak & Sivan (1972), Zhou & Doyle (1998),

and Hassibi et al. (1999)). We proceed by appending the state equation with an

additional output z identifying the states of interest in the control problem

dx

dt
= Ax + B(qa)u + B1w, (2.25a)

y = C(qs)x + v, (2.25b)

z = C1x. (2.25c)

Following the H2 approach, an estimate x̂ of the state x is first developed, based

on the measurements y, as discussed in §2.3.1, then a full state feedback controller

u = −Kx is developed, as discussed in §2.3.2. These two components are then

connected by making the control feedback depend on the state estimate, u = −Kx̂,

rather than the state itself. Consolidating the disturbance vector d = [w;v] for

the purpose of analysis, a new cost function can be written to characterize the

H2-norm of the closed-loop transfer function:

JH2 = ||Tzd||22 = trace(C1PC
H
1 ) + trace(V−1

CPYPC
H), (2.26a)

= trace(BH
1 YB1) + trace(R−1

B
H
YPYB), (2.26b)
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where P and Y are the solutions to the CAREs (2.9a) and (2.22a), respectively. [As

briefly mentioned above, this sensor/actuator placement problem was addressed by

Chen & Rowley (2010), but will be reconsidered here since the gradient calculation

is different.] By averaging (2.26a) and (2.26b) and then performing perturbation

analysis on the averaged equations, the perturbation of JH2 can be written

J �
H2

= trace
�
PYPC

H
V
−1

C
�
�

+ trace
�
R
−1

B
H
YPYB

�
�

+
1

2
trace

��
C

H
1 C1 + C

H
V
−1

CPY + YPC
H
V
−1

C + YBR
−1

B
H
Y

�
P
�
�

+
1

2
trace

��
B1B

H
1 + BR

−1
B

H
YP + PYBR

−1
B

H + PC
H
V
−1

CP
�
Y
�
�

=
��

PYPC
H
V
−1

�H
,C�

�
+

��
R
−1

B
H
YPY

�H
,B�

�

+
1

2

��
C

H
1 C1 + C

H
V
−1

CPY + YPC
H
V
−1

C + YBR
−1

B
H
Y

�H
,P�

�

+
1

2

��
B1B

H
1 + BR

−1
B

H
YP + PYBR

−1
B

H + PC
H
V
−1

CP
�H

,Y�

�
(2.27)

Thus, via a slight change of the RHS forcing of the adjoint CALEs (2.17b) and

(2.23b),

(A− LC)H
S + S(A− LC) = C

H
1 C1 + YBR

−1
B

H
Y

+ C
H
V
−1

CPY + YPC
H
V
−1

C, (2.28)

(A− BK)T + T(A− BK)H = B1B
H
1 + PC

H
V
−1

CP

+ BR
−1

B
H
YP + PYBR

−1
B

H , (2.29)

the gradient can be reëxpressed as a function of both the sensor and actuator

positions

�qi
s
J = trace

�
P(Y + S)L

dC

dqi
s

�
, (2.30)

�qi
a
J = trace

�
K(P + T)Y

dB

dqi
a

�
. (2.31)
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2.4 Discrete-Time Analyses

We now present the discrete-time analogs of the derivations given in §2.3 in

the continuous-time case, as there are some subtle differences. Consider a discrete-

time linear system described by

xk+1 = Fxk + G(qa)uk + wk, (2.32a)

yk = H(qs)xk + vk, (2.32b)

where xk ∈ Cn, uk ∈ C�, yk ∈ Cm, wk ∈ Cn, vk ∈ Cm are the discrete-time equiva-

lents of the corresponding quantities in (2.6). Similarly, qa and qs parametrize the

locations of sensors and actuators at each timestep k. We again make the stan-

dard modeling assumptions that wk and vk are uncorrelated, zero-mean, white

continuous-time random processes with covariance W ≥ 0 and V > 0 respectively.

The (bounded) functional dependence of the operators G and H on the actua-

tor and sensor positions qa and qs is again emphasized explicitly above, but is

suppressed below for notational clarity.

2.4.1 Computing a gradient with respect to the sensor po-

sitions

Via standard (discrete-time) Kalman filter theory, the best linear unbiased

estimate of the system (2.32) is given by a two-step update [cf. (2.7)]

time update: x̂k+1|k = Fx̂k|k + Guk, (2.33a)

measurement update: x̂k+1|k+1 = x̂k+1|k + Lk+1(yk+1 −Hx̂k+1|k), (2.33b)

where

Lk+1 = Pk+1|kH
H(HPk+1|kH

H + V)−1. (2.33c)
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The discrete-time estimation error covariance obeys a similar two-step update

known as the Riccati difference equation (RDE) [cf. (2.8)]

time update: Pk+1|k = FPk|kF
H + W, (2.34a)

measurement update: Pk+1|k+1 = (I− Lk+1H)Pk+1|k. (2.34b)

Using this standard notation for the discrete-time estimation setting, the notation

x̂k|j denotes the maximum likelihood estimate of x at time tk given all measure-

ments up to and including time tj, and P
k|j denotes the covariance corresponding

to this estimate. In particular, x̂
k|k−1

and P
k|k−1

are often called the prior estimate

and prior covariance, whereas x̂
k|k and P

k|k are often called the posterior estimate

and posterior covariance.

As in §2.3.1, we now consider the minimization of the trace of the infinite-

horizon covariance matrix. Because the discrete-time Kalman filter is characterized

as a two-step process, there are two possible choices to make as to whether the

covariance should be minimized before or after the measurement update, as shown

below. Both formulations are presented; which is more appropriate to use in

practice is application dependant.

The infinite-horizon prior covariance of (2.34) is computed by substituting

(2.34b) into (2.34a) and applying (2.33c), then defining P− = Pk+1|k = Pk|k−1,

thus transforming the RDE (2.34) into the prior form of the discrete-time algebraic

Riccati equation (DARE) [cf. (2.9a)]

P− = FP−F
H + W − FP−H

H(HP−H
H + V)−1

HP−F
H (2.35a)

Alternatively, the infinite-horizon posterior covariance of (2.34) is com-

puted by substituting (2.34a) into (2.34b) and (2.33c) and combining, then defining

P+ = Pk+1|k+1 = Pk|k and applying the Matrix-Inversion Lemma

(D− CA
−1

B)−1 = D
−1 + D

−1
C(A− BD

−1
C)−1

BD
−1,
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thus transforming the RDE (2.34) into the posterior form of the DARE

P
−1
+ = (FP+F

H + W)−1 + H
H
V
−1

H. (2.35b)

The matrices F, W, and V in this LTI formulation are assumed to be given.

The remaining matrix which affects P− in (2.35a), and P+ in (2.35b), is H, which

is a function of the sensor positions qs. Thus, an optimization problem may be

posed to minimize some measure of P−, or P+, with respect to the (stationary)

sensor locations qs.

Prior covariance optimization

We first seek the optimal qs which minimizes the cost [cf. (2.9b)]

J− = trace(P−), (2.36)

subject to (2.35a). The associated first-order perturbations are

J �
−

= trace(P�
−
) = �I,P�

−
�,

P
�

−
= F(I− LH)P�

−
(I− LH)H

F
H

+ FL(H�
P−H

H + HP−(H�)H)LH
F

H − FP−(H�)H
L

H
F

H − FLH
�
P−F

H

H
� =

�
dH

dqs

�H

qs
�.

The above relations are derived in a manner analogous to the continuous-time

case. Note that the perturbation of (HP−H
H + V)−1 is determined leveraging the

identity (Φ−1)� = −Φ
−1

Φ
�
Φ
−1 (see Petersen & Pedersen (2008)), thus leading to

�
(HP−H

H + V)−1
��

= (HP−H
H+V)−1(H�

P−H
H+HP

�

−
H

H+HP−(H�)H)(HP−H
H+V)−1.

Defining an adjoint matrix S− and the inner product (2.14) and performing the

necessary rearrangements in a manner analogous to the continuous-time case, one
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ultimately arrives at the gradient of J−,

�qi
s
J− = trace

�
2P−(I− LH)HFHS−FL

dH

dqi
s

�
, (2.37a)

where S− satisfies the associated discrete-time algebraic Lyapunov equation (DALE)

(I− LH)H
F

H
S−F(I− LH)− S− = I. (2.37b)

Posterior covariance optimization

We now seek the optimal qs which minimizes the cost [cf. (2.9b)]

J+ = trace(P+), (2.38)

subject to (2.35b). The associated first-order perturbations in this case are

−P
−1
+ P

�

+P
−1
+ = −(FP+F

H+W)−1
FP

�

+F
H(FP+F

H+W)−1+(HH)�V−1
H+H

H
V
−1

H
�.

Using a similar procedure as before, one ultimately arrives at the graident of J+,

�qi
s
J+ = trace

�
2S+HHV−1

dH

dqi
s

�
, (2.39a)

where S+ satisfies the DALE

P+F
H(FP+F

H + W)−1
S+(FP+F

H + W)−1
FP+ − S+ = P

2
+, (2.39b)

The gradients in (2.37a) and (2.39a) are slightly different, because the cost

functions they minimize are different. Noting (2.34a), it is evident that

J− = trace(P−) = trace(FP+F
H) + trace(W),

whereas J+ = trace(P+). The gradients and optimal solutions of these two formu-

lations thus coincide only if F
H
F = I.
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2.4.2 Computing a gradient with respect to the actuator

positions

In a final analysis analogous to those of the previous sections, we now

consider the corresponding discrete-time actuator placement problem. Standard

discrete-time optimal control theory applied to the linear system (2.32) establishes

that the cost function

J =
1

2

N−1�

k=1

�
xH

k Qxk + uH
k Ruk

�
+

1

2
xH

NQNxN . (2.40)

is minimized by the full-state feedback control policy

uk = −Kkxk, Kk =
�
R + G

H
Yk+1G

�−1
G

H
Yk+1F, (2.41)

where the matrix Yk ≥ 0 evolves backward in time from the terminal condition

YN = QN according to the RDE [cf. (2.8)]

Yk = F
H
Yk+1F− F

H
Yk+1G

�
R + G

H
Yk+1G

�−1
G

H
Yk+1F

H + Q. (2.42)

Similar to the continuous-time case, we identify Yk as the “cost-to-go” matrix

because it can be shown [cf. (2.21)] that

J(κ) =
1

2

N−1�

k=κ

�
xH

k Qxk + uH
k Ruk

�
+

1

2
xH

NQNxN (2.43)

=
1

2
xH

κ Yκxκ. (2.44)

Given that the RDE (2.42) marches to a finite value at k = 0 as N → ∞ [that

is, that the system (2.32) is stabilizable], the infinite-horizon solution may be com-

puted directly by setting Y = Yk = Yk+1, thus transforming the RDE (2.42) into

a DARE [cf. (2.9a)]

Y = F
H
YF− F

H
YG(R + G

H
YG)−1

G
H
YF + Q. (2.45a)
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As in §2.3.2, for κ = 0 in the infinite-horizon limit N →∞, the cost matrix (2.40)

is minimized when the eigenvalues of Y are minimized. With this in mind, the

following cost function may be considered [cf. (2.9b)]

min
qa

J = trace(Y). (2.45b)

The steps for gradient calculation via perturbation analysis are essentially

identical to those presented previously. The resulting expression for the gradient

[cf. 2.17a] is

�qi
a
J = trace

�
2KT(F− GK)HY

dG

dqi
a

�
(2.46a)

where the matrix adjoint T must satisfy the associated DALE [cf. 2.17b]

(F− GK)T(F− GK)H − T = I. (2.46b)

2.5 Application to the complex Ginzburg-Landau

equation

The 1D complex Ginzburg-Landau (CGL) system (Chomaz et al., 1987;

Roussopoulos & Monkewitz, 1996) shares some interesting dynamic features of 3D

Navier-Stokes (NS) systems. Notable similarities include transient energy growth

(due to non-normality of the system eigenvectors) and extensively-studied stability

characteristics (including well-identified thresholds between stability, convective

instability, and global instability). For this reason, and its relative computational

simplicity, CGL systems are a useful 1D PDE testbed for estimation and control

strategies being developed for ultimate application in 3D NS systems.

The linear CGL equation for a flow perturbation variable φ(ξ, t) may be

written
∂φ

∂t
=

�
− U

∂

∂ξ
+ µ(ξ) + γ

∂2

∂ξ2

�
φ (2.47)

where U , µ(ξ), γ are complex coefficients which parameterize the advection, am-

plification, and diffusion properties of the flow, respectively, and ξ denotes the
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streamwise coordinate of the system. This flexible parameterization has been

tuned to match a variety of physical phenomena; for example, Roussopoulos &

Monkewitz (1996) tuned the parameters to model vortex shedding behind a circu-

lar cylinder. A recent review of the CGL model by Bagheri et al. (2009) surveys

several such studies of this system.

In the results presented below, the parameters were selected to coincide

with the convectively unstable case mentioned by Bagheri et al. (2009), with U =

2 + 0.2i, µ(ξ) = 0.38− 0.01ξ2/2, γ = 1− i. The resulting variable-coefficient PDE

has a locally unstable domain with µ(ξ) > 0 for all ξ ∈ (−8.72, 8.72).

Bagheri et al. (2009) also provide a convenient codebase for discretization

and simulation of the CGL equation using a collocation approach based on a

Hermite polynomial expansion. Following this approach, the state φ(ξ, t) in (2.47)

is considered as a linear combination of n orthogonal polynomials6 defined on

ξ ∈ (−∞,∞),

φ(ξ, t) �
n�

j=1

φ̂j(t) Hj(ξ) where Hj(ξ) = (−1)j eξ2 dj(e−ξ2
)

dξj
.

The perturbation variable φ(ξ, t) may now be discretized on a set of n colloca-

tion points ξj, for j = 1, . . . , n, and assembled as a state vector x, where the n

collocation points are selected as roots of Hn(ξ). With this discretization, the

transformation given above, and the relationships between the derivatives of the

Hermite polynomials Hn(ξ), it is straightforward to write the discretized system

(2.47) in collocation form with the appropriate forcing and measurement variables

added:

∂x

∂t
= Ax + Bu + B̄w̄, (2.48)

y = Cx + v, (2.49)

where the matrix A approximates the spatially-varying linear operator on the

6Note that the Hermite polynomials are orthogonal on ξ ∈ (−∞,∞) using the weighting
function w(ξ) = e−ξ2

.
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RHS of (2.47), B models the effect of the control inputs u on the system near the

actuators located at ξ = qj
a for j = 1, . . . , na, and C models the measurements y of

the system taken from the sensors located at ξ = qj
s for j = 1, . . . , ns. The random

vectors w̄ and v are independent and normally distributed with covariances W̄

and V respectively. The matrix B̄ models the effect of the disturbance inputs w̄

applied to the system near ξ = qj
d for j = 1, . . . , nd; note that it is straightforward

to cast this system in the standard continuous-times state-space form given in (2.6)

by considering a new disturbance vector w with covariance W = B̄W̄B̄
H .

In the results presented below, we actuate the system with na = 1 or 2

actuators (at locations qj
a that we will optimize), we sense the system with ns = 1

or 2 sensors (at locations qj
s that we will optimize), and we disrupt the system with

nd = 1 disturbance (at q1
d = −11.0); the corresponding matrices are all chosen to

approximate narrow Gaussians in space:

[B]i,j = exp(−(qj
a − ξi)

2/2σ2),

[C]i,j = mi exp(−(qj
s − ξi)

2/2σ2),

[B̄]i,1 = exp(−(q1
d − ξi)

2/2σ2),

where the width of the Gaussians used in the simulations reported below is σ2 =

1/2, and where a trapezoidal integration weighting factor mi is used in the defini-

tion of C,

mi =






(ξ2 − ξ1)/2 i = 1,

(ξi+1 − ξi−1)/2 1 < i < n,

ξn − ξn−1 i = n,

so that the sum of the elements on any row of C approximates the integral of

the corresponding Gaussian, independent of the sensor locations qj
s. By selecting

a parameterization of this sort, the input and output operators represent sensors

and actuators of a given sensitivity, it is only their locations that change when qj
a

and qj
s are modified.

Before analyzing the influence of measurements and control on the statistics

of the estimation error and the statistics of the disturbed system, it is important
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Figure 2.1: The modulus of the covariance of the state itself in the disturbed CGL
system [that is, E{x(t)xH(t)}; see also Bagheri et al. (2009), Figure 16]. Note that
this coincides with the covariance P = E{x̃(t)x̃H(t)} of the state estimation error
when no measurement information is used. The red star indicates the location of
the disturbance forcing, q1

w = −11.0, and the dashed box indicates the region of
local instability, µ(ξ) > 0.

to consider first the statistics of the disturbed CGL system itself. Figure 2.1 thus

depicts the modulus of the covariance of the state itself, as given by the solution to

the infinite-horizon Lyapunov equation [that is, (2.8) with L = 0], when the CGL

system (2.47) is forced with the disturbances w, but no measurements are used

for state estimation. As expected, it is seen in these statistics that disruptions

of the state tend to grow as they convect through the locally unstable region of

the domain and then decay after that; thus, the peak in these statistics is on the

diagonal near ξ = 8.72.

2.5.1 Optimal sensor placement in the estimation problem

Finding the optimal placement of a single sensor q1
s ∈ (−∞,∞) is a rela-

tively straightforward task that may be achieved with a simple line search. The

problem becomes more interesting when considering the simultaneous placement

of two or more sensors with qi
s ∈ (−∞,∞), as the dimension of the optimization
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space is increased and thus a gradient-based optimization approach is motivated.

We thus consider now the optimization of the placement of two sensors in this

system.

Figure 2.2 depicts the modulus of the covariance of the state estimation error

for two different configurations of a pair of sensors. The sensor configuration in Fig.

2.2(a) was chosen heuristically, first placing one sensor at the location of maximum

covariance in Figure 2.1, then placing the other sensor at the location of maximum

state estimation error in the estimator that results. The sensor configuration in Fig.

2.2(b), on the other hand, was optimized using the algorithm described in §2.3.1.

Figure 2.3 depicts of the full optimization surface as a function of the locations of

the two sensors, indicating the path taken during the optimization process from the

initial configuration at {q1
s , q

2
s} = {12.60,−0.46} [see Fig. 2.2(a)] to the optimized

configuration at {q1
s , q

2
s} = {2.10,−10.65} [see Fig. 2.2(b)]. Note at each step that

the path taken is downhill (normal to the isocontours), which is consistent with the

fact that a steepest descent method was used in the optimization. Also, Figure 2.3

is symmetric about the diagonal q2
s = q1

s , as the sensors in this case are identical;

had sensors of different precision been used (i.e., V = diag{[v1, v2]} with v1 �= v2),

the symmetry in Figure 2.3 would be broken, and the gradient-based optimization

algorithm would converge to a local minimum.

2.5.2 Optimal actuator placement in the full information

control problem

The two-actuator placement problem is analogous to the two-sensor place-

ment problem discussed in the previous section. Figure 2.4 depicts the full opti-

mization surface as a function of the configuration of the two actuators, indicating

the path taken during the optimization process to minimize the cost (2.9b). The

initial configuration of the actuators in this case was taken simply as the optimized

sensor configuration found in the previous section. As in the estimation problem, at

each step the path taken is downhill (normal to the isocontours). Also, Figure 2.4

is symmetric about the diagonal q2
a = q1

a, as the actuators in this case are identical.

In this full-information setting, the optimized solution at {q1
a, q

2
a} = {−4.66, 2.36}
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(a) (b)

Figure 2.2: The modulus of the covariance of the state estimation error, P =
E{x̃(t)x̃H(t)}, for two different placements of a pair of sensors (blue dots). Fig-
ure 2.2(a) uses a heuristic sequential method of placing the sensors (see text),
thereby reducing the covariance depicted in Fig. 2.1 by nearly 4 orders of mag-
nitude. Figure 2.2(b) uses a gradient-based method of optimizing the placement
of both sensors simultaneously, as described in §2.3, thereby further reducing the
covariance depicted in Fig. 2.2(a) by another order of magnitude.
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Figure 2.3: A log10 plot of the optimization surface for the two-sensor placement
problem in the CGL system with the optimization path superposed, with the axes
representing the positions of the two sensors. The optimization was initialized as
depicted in Fig. 2.2(a), and converged to the solution depicted in Fig. 2.2(b).
Since the two sensors are identical, the plot is symmetric across the diagonal.
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Figure 2.4: A log10 plot of the optimization surface for the full-information two-
actuator placement problem in the CGL system with the optimization path super-
posed, with the axes representing the positions of the two actuators.

places both actuators inside the locally unstable region, thus effectively leverag-

ing the positive local amplification term of the CGL; this is in contrast with the

optimized sensor configuration presented previously, in which the upstream sen-

sor is actually placed outside the unstable domain, relatively close to where the

disturbance is introduced into the system.

Further understanding of this result is given by Fig. 2.5, which depicts

the diagonal of the “cost-to-go” matrix Y of the controlled CGL system. It is

reasonable that the area of the three lobes of the optimized configuration are

approximately equal, indicating essentially that contributions to the cost function

are, effectively, evenly distributed over the physical domain when the actuator

positions are properly optimized.
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Figure 2.5: The diagonal of Y (the “cost-to-go” matrix) as a function of stream-
wise coordinate ξ in the CGL system. The integral of each line is the total cost (the
trace of of the covariance matrix). The two lines represent solutions for different
actuator configurations: the dashed line corresponds to the initial configuration of
the optimization, {q1

a, q
2
a} = {2.10,−10.65}, and the solid line corresponds to the

solution of the optimization, {q1
a, q

2
a} = {2.36,−4.66}. For clarity, below the plot,

the disturbance location is denoted by ∗ and the actuator positions are denoted
by × in the initial (dashed) and final (solid) configurations.
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2.5.3 H2 optimal actuator/sensor placement

Though many control-oriented studies of the CGL system have appeared

in the literature, only recently has the question of optimizing sensor and actua-

tor placements in such problems been considered. In particular, Chen & Rowley

(2010) found acuator/sensor configurations that minimize the H2 norm in such

problems by simultaneously optimizing both sensor and actuator positions. As

intuition suggests, optimizing the sensor and actuators positions separately leads

to reasonable but not optimal performance in the full H2 problem.

As established in §2.3.3, the gradient-based procedure outlined in §2.3.1 and

§2.3.2 may easily be extended to optimize sensor and actuator locations simulta-

neously in the full H2 setting; results are depicted in Fig. 2.6. The optimization

surface is depicted in Fig. 2.6(a) for the one-actuator, one-sensor H2 problem,

and superposed is the path taken by the full optimization algorithm. Note again

at each step that the path taken is downhill (normal to the isocontours), thus

indicating the correctness of the gradient computation. The initial configuration,

{qs, qa} = {−2.47,−1.94}, was generated by solving separately the optimal sen-

sor placement problem for one sensor and the (full-information) optimal actua-

tor placement problem for one actuator. The gradient-based method discussed in

§2.3.3 was then used to find the optimized configuration {qs, qa} = {−3.08,−4.66},
as depicted in Fig. 2.6(b).

A similar procedure was performed for the two-actuator, two-sensor case,

as depicted in Fig. 2.6(c), where the initial configuration (based on solving the ac-

tuator and sensor placement problems separately) and the optimized configuration

{q1
s , q

2
s , q

1
a, q

2
a} = {1.09,−10.57,−10.32, 0.49} are compared side-by-side. Though

this problem is four-dimensional and thus difficult to visualize, optimizations from

the various random initial conditions tested all appear to converge to the same

optimized configuration in this case.

The present gradient-based formulation appears to extend naturally to high-

dimensional discretizations of various 2D and 3D Navier-Stokes systems, which is

left for future studies.
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(a) The optimization surface for the one-sensor, one-actuator H2 problem.
Also shown is the path taken during the optimization process. The initial
condition, •, was generated by performing independent optimizations of the
sensor and actuator placements. The combined gradient-based optimization
formulation converges from this (suboptimal) inital guess to a (significantly
improved) optimal solution, x, of the combined problem.

(b) Initial condition (dashed) and optimal solution (solid) for the one-sensor,
one-actuator H2 optimization problem depicted in Fig. 2.6(a). Note that,
through the optimization, the sensor and actuator actually swap their relative
positions

(c) As in Fig. 2.6(b), but for the two-sensor, two-actuator H2 problem.

Figure 2.6: Optimized sensor/actuator placements for the combined H2 estima-
tion/control problem. The disturbance (indicated with ∗) is located at qw = −11.0
in all instances. Actuators and sensors are denoted with the symbols x, and •,
respectively.
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Chapter 3

GEnKF: The Game-theoretic,

Ensemble-Kalman Filter. A new

class of Gaussian Sum Filters

3.1 Abstract

This paper explores Decision Theoretic Online-Learning (DTOL) and how

it can be used in concert with standard probabilistic estimation methods (most

notably, the Kalman Filter). Specifically, estimates of chaotic, high-dimensional

systems (equivalent to the best available) are achieved with fewer communication

and computational requirements. Estimation and forecasting of high-dimensional

systems requires special attention because of the computational requirements. This

paper contains a new algorithm which seeks computationally efficient methods for

estimating such systems, while maintaining a high confidence in the solution.

3.2 Introduction

It is well known that the Kalman Filter (KF; see, Kalman, 1960) is the

optimal filter for linear systems with Gaussian uncertainty in the initial state and

process/measurement noise. Besides being relatively simple to implement, the KF

58
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is attractive because it provides an exact posterior probability distribution (in fact,

it should be interpreted as a common Bayesian update) for linear estimators. No

equivalent solution exists for nonlinear filtering.1

As a result, many reasonable heuristics have been proposed to “close the

gap” between linear and nonlinear filter theory. For example, the Extended Kalman

Filter (EKF) uses the linearized governing equations to evolve the first and second

moments of the distribution, and then performs KF updates when measurements

are available. The Unscented (UKF) and Ensemble (EnKF) Kalman Filters use

Monte-Carlo approximations for these propagation steps, and then build sample

statistics for the KF update. And, while there may not be an immediate resolution

to this void in estimation theory, there is clearly the need for improved heuristics

as systems of interest become large (e.g., weather forecasting models track O(106)

variables). In these situations memory or communication, or both, often effectively

limit the implementable approximations to the Kalman solution.

This work is specifically interested in improving these heuristics for estimat-

ing high-dimensional system by reducing the communication required by the En-

semble Kalman Filter. Specifically, we consider the Gaussian Sum Filter (GSF; see,

Sorenson & Alspach, 1971; Alspach & Sorenson, 1972) where the Bayesian weight

assignment is replaced with the weight assignment determined by the Normal-

Hedge algorithm (Chaudhuri et al., 2009). The communication requirements in

this setting are substantially reduced and an improvement from the EnKF to

GEnKF is numerically demonstrated. Before being able to completely describe

the Game-theoretic Ensemble Kalman Filter (GEnKF) we first briefly review the

relevant components of sequential games and the Gaussian Sum Filter (GSF).

In existing literature only Prudêncio & Ludermir (2005) have used machine

learning to combine explicit forecasts in dynamic systems. There the authors

used a Multi-Layer Perceptron (MLP) network in combination with a “feature

extractor” (a heuristic tool which uses linear trends, correlations, and turning

points to forecast system dynamics) to improve forecast quality.

1The only exception is the use of the Fokker-Plank equation (see, e.g., Jazwinski, 1970, p. 164)
in systems with only a few parameters to evolve the probability distribution in phase space
(making Bayesian updates as measurement become available).
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3.3 Decision Theoretic On-line Learning (DTOL)

The theory of sequential games provides a mechanism for selecting indi-

viduals who perform well with respect to their peers. It is the basic framework

used for the prediction of sequences in computer science. Although game-theory

is traditionally attributed to Von Neumann et al. (1953), in their seminal work

on economic games, modern applications of multi-player sequential games to ma-

chine learning have been largely shaped by Blackwell & Girshick (1954), Blackwell

(1956), Hannan (1957), and later substantially by Littlestone & Warmuth (1989),

Vovk (1990), Freund & Schapire (1995) and Cesa-Bianchi et al. (1997). An at-

tractive strength of the game theoretic formulation is the lack of assumptions

regarding linearity and noise. That is to say, the bound determined for many se-

quential games are robust to non-Gaussian disturbances provided the observations

contain sufficient information. A wonderful review of the DTOL framework and

the associated contributions can be found in Cesa-Bianchi & Lugosi (2006).2

3.3.1 Review of DTOL framework

As mention above, DTOL is the framework for using “expert advice” in

the prediction of sequences. In most problems, this framework can be broken into

three parallel sub-processes: First, the environment is responsible for sequentially

revealing an unknown sequence y1, y2, · · · yt of elements from a known, and convex,

outcome space Y which represent the “true outcomes” of a sequential process. Be-

fore each element in the sequence is revealed experts make a predictions3 ŷe
t at each

round based on some unique apriori “knowledge” they have about the sequence

and the sequence history y1, y2, · · · yt−1. After each expert makes a prediction the

forecaster/algorithm looks at each experts past performance (which will be de-

fined formally) and based on that performance determines how to use each experts

2Actually, Cesa-Bianchi & Lugosi (2006) review the more general field of “prediction with
expert advice.” The difference between this and the DTOL framework is subtle and briefly
discussed in Vovk (2009).

3Incidentally, the most general DTOL formulation allows for the outcome space of the un-
known sequential process and the experts to be different from each other (meaning that each
expert might not have knowledge of all possible elements in the unknown sequence) but for the
results presented below this more general formulation is not necessary.
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advice.

At each time time-step, the performance is determined by a non-negative

loss function �(ŷt, yt ) : Y × Y → R+, where large expert loss �e
t = �(ŷe

t , yt )

characterizes poor performance. It is essential to emphasize the assumption that

this loss function is convex in it’s first argument. By comparing each experts’

loss with the algorithm’s loss �A
t = �(ŷA

t , yt ) a relative performance metric can

be defined which will allow the algorithm to assign weights to each expert. This

relative performance metric is traditionally called the instantaneous regret re
t =

�A
t − �e

t . (The term “regret” originates from the idea that a positive regret implies

that the loss suffered by the algorithm was greater than the loss of a particular

expert [mathematically speaking, �A
t > �e

t ], thus, the algorithm feels “regret” for

not following that experts advice.) By looking at the cumulative regret of each

expert

Re
t =

t�

s=1

re
s =

t�

s=1

�
�(ŷA

s , ys )− �(ŷe
s, ys )

�
= LA

t − Le
t , (3.1)

where Lt =
�t

s=1 �(ŷA
s , ys ) is used to denote the algorithm’s cumulative loss and

Le
t =

�t
s=1 �(t̂et , yt ) is used to denote the cumulative loss of expert e, the algorithm

can monitor integral measures of an expert’s performance. The ultimate goal of the

algorithm is to use the cumulative regret to determine how weight (trust) should

be allocated between the experts.

By keeping the cumulative regret small the algorithm ensures good perfor-

mance with respect to the defined loss function. Various performance bounds may

be achieved; for example, the algorithm may achieve a vanishing per-round regret,

that is,

lim
s→∞

1

s

�
LA

s − min
i=1,··· ,N

Li
s

�
→ 0, (3.2)

which is to say that the algorithm places majority weighting on the expert who

performs the best. By definition the instantaneous regret for this situation is zero,

and if summed indefinitely would result in the average cumulative regret converging

to zero.

After the algorithm has assigned weight to a particular expert the logical

approach for combining predictions is to take a weighted average of the experts.



62

Littlestone & Warmuth (1989) first proposed “The Weighted Majority Algorithm”

as a strategy for consolidating advice for binary decision making.4 In this paradigm

the forecaster/algorithm uses the weights assigned at time t− 1 to predict events

at time t; that is,

ŷA
t =

�N
e=1 we

t−1ŷ
e
t�N

e=1 we
t−1

(3.3)

where w1
t−1, w

2
t−1, · · · , wN

t−1 ≥ 0 are the weights assigned to the experts. Since cu-

mulative regret is representative of some integral measure of historical performance,

it makes sense to determine expert weighting at time t based on the cumulative

regret at time t−1. To do this Cesa-Bianchi & Lugosi (2003) introduce a potential

function which scales the effect of the cumulative regret. This potential function

should assign substantial weight to an expert when the cumulative regret is large,

and little weight to an expert with little cumulative regret. In their notation, this

scaling is written as the derivative of a nonnegative, convex, and increasing func-

tion φ : R → R. The algorithm uses φ� to determine the weight we
t−1 = φ�(Re

t−1)

assigned to each expert. Therefore, the prediction ŷA
t can be rewritten as

ŷA
t =

�N
e=1 φ�(Re

t−1)ŷ
e
t�N

e=1 φ�(Re
t−1)

. (3.4)

As mentioned above, since the loss function is convex with respect to it’s

first argument, an important mathematical trick can be performed using Jensen’s

inequality (Jensen, 1906), so that the algorithm can appropriately choose it’s ac-

tion.

�( ŷA
t , yt) = �

� �N
e=1 φ�(Re

t−1) ŷe
t�N

e=1 φ�(Re
t−1)

, yt

�
≤

�N
e=1 φ�(Re

t−1) �( ŷe
t , yt)�N

e=1 φ�(Re
t−1)

(3.5)

N�

e=1

φ�(Re
t−1) �( ŷA

t , yt)−
N�

e=1

φ�(Re
t−1) �( ŷe

t , yt) ≤ 0 (3.6)

N�

e=1

φ�(Re
t−1) re

t ≤ 0 (3.7)

4Since their pioneering work it has been extended to more general applications.
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Equation (3.7) satisfies Blackwell’s condition for asymptotic stability, and is an

essential when using potential function to prove the convergence of game-theoretic

predictors. A rigorous discussion of Blackwell’s condition is well outside the scope

of this work, but for more information on it’s application to the convergence of

sequences and machine learning in general, the reader is referred to Blackwell

(1956), Hart & Mas-Colell (2000, 2001), and Cesa-Bianchi & Lugosi (2003).

Cesa-Bianchi & Lugosi (2003) contains the analysis for some of the most

widely used machine-learning algorithms. The main result of that papers bounds

the cumulative regret at round t of the forecaster/algorithm with respect to the

cumulative regret at round t−1 and the instantaneous regret at round t. For conve-

nience, an alternative version of this theorem is summarized from Cesa-Bianchi &

Lugosi (2006) before reviewing the bounds for an exponentially weighted forecaster

using potential functions.5

Theorem 3.3.1 Assume that a forecaster satisfies the Blackwell condition for a

potential function Φ(u) = ψ
� �N

i=1 φ(ui)
�
, where ψ : R+ → R+ is an increasing,

concave, and twice differentiable auxiliary function. Then, for all t = 1, 2, · · ·

Φ(Rt) ≤ Φ(0) +
1

2

t�

s=1

C(rs) (3.8)

where

C(rs) = sup
u∈Rn

ψ�
� N�

i=1

φ(ui)
� N�

i=1

φ��(ui) (ri
t)

2. (3.9)

The reader is referred to Cesa-Bianchi & Lugosi (2006, p. 11) or Cesa-Bianchi &

Lugosi (2003, p. 242) for a proof of this theorem. It should be briefly mentioned

that, the auxiliary function in this theorem allows for tighter performance bounds

to be achieved.
5For examples of how polynomial functions can be analyzed using this theorem the reader is

referred to Cesa-Bianchi & Lugosi (2003, 2006).
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3.3.2 Exponentially Weighted Forecasters

The class of exponential functions fits naturally into the framework de-

scribed above. An exponentially weighted forecaster is one whose potential func-

tion takes the form

φ (Re
t ) = exp(ηRe

t ). (3.10)

The parameter η describes the “learning rate” of the forecaster, and conditions the

speed that the algorithm converges to the bound. In fact, it is quite easy to show

that an exponentially weighted forecaster with the potential function

Φ(Rt) =
N�

e=1

1

η
ln |exp(ηRe

t )| (3.11)

can be bounded above by

Φ(Rt) ≤ Φ(R0) +
1

2

t�

s=1

η max
e

(re
t )

2. (3.12)

Further, if maxe(re
t )

2 < c, where c is constant, then

re
t ≤ re

0 +
ηtc

2
. (3.13)

(This requires that Φ−1 and ψ−1 exist.) This is a vanishing-per-round regret as

described in (3.2).

Actually, lower bounds have been proved for the exponentially weighted

forecaster which require a time-varying learning-rate η. Specifically, one can show

that if ηt =
�

8 ln(N)/t the tightest possible lower bound is Re
T ≤

�
T ln(N)/2.

Logically, it makes sense that the learning-rate would be time-varying; the fore-

caster should be as aggressive as possible early in the sequence, when little infor-

mation is known, and less aggressive as it converges, when much information is

known. Since, with the proper auxiliary function and choice of η, the learning rate

effects only the transient behavior (and not the upper bound), there have been

efforts to completely eliminate this parameter from the analysis. One such method

is call “Normal-Hedge.”
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3.3.3 Normal-Hedge

Normal-Hedge (NH) is a self-balancing, exponentially weighted online-learning

algorithm proposed by Chaudhuri et al. (2009). As mentioned above, DTOL algo-

rithms are conditioned by a handful of parameters, the most important of which, for

the exponentially weighted class of forecasters, characterizes the “learning-rate” of

the algorithm. Normal-Hedge differentiates itself from other DTOL algorithms in

that the learning rate parameter is eliminated through a normalization step which

effectively balances the information gained at each iteration. Given a bounded loss

function �e
t ∈ {0, 1}, Chaudhuri et al. prove an upper bound on the regret to be

O

��
T ln

1

�
+ ln2 N

�

where N is the number of experts, and � is the “top �-quantile for the distribution.”

If we are interested in bounding the algorithm’s performance with respect to the

best expert (� = 1/N) the bound can be rewritten O(
√

T ln N + ln2 N ), which

compares quite nicely with the optimal bound presented at the end of §3.3.2.

Normal-hedge belongs to a special class of exponentially weighted hedging

algorithms, and is discussed at depth in Chaudhuri et al. (2009). The algorithm is

initialized with a uniform probability distribution over the model class, pi,0 = 1/N ,

and a regret of zero, Ri,0 = 0. Given the loss function let (ŷ
e
t , yt) which can be

evaluated for each expert e at time t, as measurements become available, the

following steps are taken:

1. The loss function let is evaluated for each expert.

2. The algorithm incurs a loss lAt =
�N

e=1 pe
t l

e
t where pe

t is the probability at

time t, that the e-th expert is the best performer.

3. The cumulative regret is updated Re
t = Re

t−1 + (lAt − let ) for each e.

4. The normalization constant ct is updated so that 1
N

�N
e=1 exp( ([Re

t ]+)2

2ct
) = e is

satisfied.
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5. The updated distribution for round t + 1 is prescribed pe
t+1 ∝

[Re
t ]+
ct

exp( ([Re
t ]+)2

2ct
)

for each e.

The operator [·]+ is defined as [·]+ = max(·, 0).

Although the weights are determined in a manner very similar to those of

the exponentially weighted class, a potential function similar to (3.11) cannot be

written explicitly for Normal-Hedge which means that the analysis discussed in

§3.3.1 cannot be directly applied to determine its performance. Instead Chaudhuri

et al. (2009) have established a handful of theorems, which allow for the bounding

of the algorithm’s regret. At the very least, though, one should observe that the

estimation policy generated by Normal-Hedge is distributed according to (3.4),

which implies that Blackwell’s condition is satisfied.

3.4 Mixed-model Kalman Filters

It is well known that any probability distribution can be decomposed arbi-

trarily accurately6 as a sum of Gaussian distributions. The following lemma, taken

directly from Anderson & Moore (1979), summarizes the expansion.

Lemma 3.4.1 Any probability density p(x) can be approximated as closely as de-

sired in the space L1(Rn) by a density of the form

pA(x) ≈
m�

e=1

we N(me,Σe) (3.14)

for some number of modes m, positive scalars we, n-vectors me, and covariance

matrices Σ
e.

For proofs the reader is referred to Lo (1972) and Feller (1968). Intuitively speak-

ing, as the eigenvalues of Σ
e approach zero, the Gaussian bump begins to approxi-

mate the Dirac delta δ(x−me). As the number of modes (m in the analysis above)

is increased, the sum of an arbitrarily large number of Dirac deltas with arbitrarily

small positive weighting should be able to approximate any positive function.

6The approximation is such that L1(Rn) =
�
Rn |p(x) − pA(x)|dx can be made arbitrarily

small.
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Because of this, the natural development in filtering theory is to approxi-

mate estimators of a nonlinear process with a sum of Gaussian probability distri-

butions evolving in time, and being updated as measurements become available.

This is known as the Gaussian Sum Filter (GSF; see, Sorenson & Alspach, 1971;

Alspach & Sorenson, 1972) and is often implemented as a collection of Extended

Kalman Filters. The moments of this convex combination of filters describes the

best estimate, and the uncertainty associate with that estimation. The mean and

covariance for the combined estimate are written (see, Bar-Shalom et al., 2001)

x̂m
t|t �

N�

e=1

we
t x̂e

t|t (3.15a)

P
m
t|t �

N�

e=1

we
t

�
P

e
t|t+

�
x̂e

t|t − x̂m
t|t )( x̂e

t|t − x̂m
t|t

�
H

�
(3.15b)

where w1
t , w

1
t , · · · , wN

t ≥ 0 and
�N

e=1 we
t = 1 are the weights assigned in Lemma

3.4.1.

Not surprisingly, the evolution equations for this mean and covariance can

also be described explicitly as matrix operations on a collection of Gaussian dis-

tributions. For clarity we reintroduce the nonlinear governing equations of §1.3

xt+1 = f(xt) + wt wt ∼ N(0,W) (3.16a)

yt = h(xt) + vt vt ∼ N(0,V) (3.16b)

with an approximate probability distribution

pA(xt|t) ≈
m�

e=1

we
t N(x̄e

t|t,Σ
e
t|t). (3.17)

For this system, the probability distribution for the one-step-ahead prediction can

be described by

pA(xt+1|t) ≈
m�

e=1

we
t N(x̄e

t+1|t,Σ
e
t+1|t) (3.18)
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where

x̄e
t+1|t = f(x̄e

t|t) (3.19a)

Σ
e
t+1|t = FtΣ

e
t|tF

H
t + W Ft � ∂f(xt|t)

∂xt|t
(3.19b)

which, incidentally, are also the equations for the Extended Kalman Filter.

Similarly, the update to the mean, covariance, and weights can be deter-

mined analytically for these first two moments. That is, the posterior probability

distribution for the estimator is approximated by

pA(xt+1|t+1|yt+1) ≈
m�

e=1

we
t+1 N(x̄e

t+1|t+1,Σ
e
t+1|t+1) (3.20)

where

x̄e
t+1|t+1 = x̄e

t+1|t + Σ
e
t+1|tH

H
t+1|tΘ

−1
t+1|t

�
yt+1 − h(x̄e

t+1|t)
�

(3.21a)

Σ
e
t+1|t+1 = Σ

e
t+1|t −Σ

e
t+1|tH

H
t+1|tΘ

−1
t+1|tHt+1|tΣ

e
t+1|t (3.21b)

we
t+1 ∼ we

t p(yt+1 | x̄e
t+1|t,Σ

e
t+1|t) (3.21c)

and

Ht+1|t � ∂h(xt+1|t)

∂xt+1|t
(3.21d)

Θt+1|t � Ht+1|tΣt+1|tH
H
t+1|t + V. (3.21e)

Effectively, the GSF can be considered an exponentially weighted forecaster

(discussed in §3.3.2) where each expert is an Extended Kalman Filter and the loss

function is

�e
t+1(h(xe

t+1|t),yt+1) =
1

2

�
yt+1 − h(xe

t+1|t)
�H

Θ
−1
t+1|t

�
yt+1 − h(xe

t+1|t)
�
. (3.22)

In the limit that the number of modes considered is infinite it becomes obvious that

this is a good strategy for estimating nonlinear systems. But since this limit is not
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achievable in practice alternatives must be considered. Also, as mentioned in the

introduction, this method still relies on a sufficiently small number of states such

that the EKF can be implemented; this is not the case for this paper. In the fol-

lowing section we present the Game-theoretic Ensemble Kalman Filter (GEnKF),

a method which seeks to improve upon these two potential weaknesses.

3.4.1 Game-theoretic Ensemble Kalman Filtering

The Game-theoretic Ensemble Kalman Filter improves upon standard GSF

through two simple, but subtle, changes. First, the Extended Kalman Filter is

replaced with the Ensemble Kalman Filter (as discussed in §1.3). This effectively

replaces the unattractive restriction to low-dimensional systems required by the

EKF with the efficient scalability of the EnKF. Given the improved performance

in high-dimensional (nonlinear) systems reported in Colburn et al. (2011a) and

the relatively simple implementation required by the EnKF this is a reasonable

substitution.7

A second change replaces the Bayesian update in (3.21c) with the weight

update provided by the Normal-Hedge algorithm. In a typical implementation

of NH, the experts themselves need not be filters, and could instead be single

simulations of the system (which is something considered in the results below),

but the idea of allowing estimators to compete with each other in a game-theoretic

setting is quite attractive since estimators will perform better in the long-term

than other near-by particles.

To summarize, the novel idea presented is an implementation of Normal-

Hedge, where each expert is itself an Ensemble Kalman Filter. Recalling from the

introduction, that although an estimation algorithm should be consistent with the

optimal solution (the Kalman filter) under standard linear assumptions, the ulti-

7Incidentally, for linear systems with Gaussian uncertainty in the initial state and pro-
cess/measurement noise the EnKF is known to converge to the KF solution as the number
of ensemble members become arbitrarily large. Thus, it’s important to emphasize that this for-
mulation is equivalent to the Kalman Solution under the appropriate assumptions. In fact, it can
be seen clearly that the KF statistics are recovered perfectly for the GEnKF if each estimator in
(3.15) is considered an EnKF and the number of ensemble members is taken to infinity. This is
independent of how weights are selected.
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mate goal is to develop a strategy which scales well to high-dimensional systems

and performs well with respect to the best alternative (an idea that fits naturally

into the decision-theoretic online learning framework). The GEnKF conveniently

hybridizes these two algorithms and is validated in the numerical examples pre-

sented below.

3.5 Results and Numerical Analysis

The Lorenz equation (Lorenz, 1963) is used here as a simple model of a

nonlinear system with self-sustained chaotic unsteadiness8 in order to perform this

comparison. Solutions of these equations approach a well-defined manifold or at-

tractor of dimension slightly higher than two. Perturbed trajectories converge

exponentially back onto the attractor, while adjacent trajectories diverge expo-

nentially within the attractor, creating the familiar chaotic motion in the Lorenz

system (see, Fig. 1.1). Note that, for convenience, the system equations of (3.23)

are transformed slightly from the traditional form such that the attractor is ap-

proximately centered at the origin. Lorenz (1963) developed the model to mimic

the advective state of water in a closed, circular tube heated on the bottom and

cooled on the top. The Lorenz equation is a system of three coupled, nonlinear

ordinary differential equations given by

dx(t)

dt
=





σ (x2 − x1)

−x2 − x1x3

−βx3 + x1x2 − βr



 , (3.23)

where σ, β, and r are tunable parameters.

This 3-state ODE is ideal for validating nonlinear estimators because of the

chaotic nature of the equations; specifically, the presence of an energy conserving,

2nd-order nonlinearity, similar to that of the Kuramoto-Sivashinsky and Navier-

Stokes equation, make it a particularly attractive testbed. Appealing to the ergodic

8That is, the system considered maintains its nonperiodic, finite, bounded unsteady motion
with no externally-applied stochastic forcing.
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nature of the Lorenz system, estimates can be performed sequentially and historical

errors can be averaged without having to re-initialize the system at each iteration.

This dramatically reduces the computational burden required when calculating

infinite-time statistics.

The parameters were selected to align with classic studies of the equations

(σ = 10, β = 4, r = 48) and are consistent with results published elsewhere.

Generally speaking, they were selected so that the governing equations will exhibit

a sufficiently chaotic nature for the simulations considered. When measurements

were used in the measurement update process, only for first state x1 was measured

with additive, zero-mean, white noise corrupting the signal. For all numerical

experiments the variance of this additive noise was V = 4.0.

When applying game-theoretic methods to dynamic system the sampling of

phase space must be constantly re-adjusted so that the regions of high-probability

retain sufficient precision. This process of “resampling” moves the majority of

particles near the best estimate, and is reviewed coherently in Arulampalam et al.

(2002). Resampling is the necessary heuristic introduced in particle filters to keep

the probability distribution from resolving to the stationary distribution which

best describes the attractor (that is the probability distribution associated with

the infinite-time statistics of the attractor). This is achieved most simply by “copy-

ing” experts which are performing well and slightly perturbing them so that each

particle evolves uniquely in time. This requires selecting a parameter (or a hand-

ful of parameters) which determine how re-sampled particles will be perturbed.

Resampling becomes even less clear in the PDE setting.

In the results below the performance of the Normal-Hedge algorithm was

characterized extensively as a function of measurement period and repopulation

covariance. Then, after finding the best parameter settings, these results were

compared with the Ensemble Kalman Filter and Game-theoretic Ensemble Kalman

Filter. Typically, the results are characterized by the trajectories in Fig. 3.1, which

are generated by averaging update periods until at least 4 decimal places precision

is achieved with a minimum iteration count of 1.5 million updates. The “saw-

tooth” behavior in these images characterizes two phenomena: (i) the exponential
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divergence of the Lorenz attractor and (ii) the average effect of the update. In

Fig. 3.1, where the effect of measurement period is quantified for the Normal-

Hedge algorithm, notice that the exponential behavior is evident for cases were

the measurement period is long, and less obvious for shorter measurement periods.

This is consistent with a chaotic system. Similarly, the effect of the update is much

more substantial in simulations with long measurement periods. Figures 3.2 and

3.3 represent the average error of the estimator (that is, the integral measure of the

“saw-tooth” plots). These averages more clearly capture the trends in parameter

changes.

Figure 3.1 compares plots of the update performed over a window t = 0.2

time-units. To guarantee that the algorithm has been implemented properly results

for the shortest measurement update period ∆t = 0.01 have been checked, and are

consistent with those published in Freund (2011). Although an important check,

since the ultimate goal in estimation is to increase the predictive capabilities of

each algorithm, we are mostly interested evaluating performance as the measure-

ment period increases. Figure 3.2 shows the mean L2-error of the state estimate as

a function of measurement update period. Each entry in this image is an integral

average of the error from Figure 3.1. As expected, the mean error increases as the

measurement frequency decreases. This is consistent with an “information-based”

interpretation of this data: estimation error should decrease as update frequency

increases since each measurement provides more information about the “truth.”

The only exception of this is at the shortest time-scales; the error is larger for a

smallest measurement update period. At this time-scale and repopulation covari-

ance, the dynamics do not have sufficient time to remove (that is smooth) noise

introduced through expert repopulation process. Figuratively speaking, the repop-

ulation procedure dominates the estimation process and is pulling the estimate off

the attractor.

By comparing Fig. 3.3(a) and Fig. 3.3(b) the effect of repopulation covari-

ance can understood. Although the measurement period in Fig. 3.3(b) is 1/10-th

of that in Fig. 3.3(a) the error is only halved. One might expect that the error

would be reduce further by choosing a better repopulation strategy, and it is likely
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Figure 3.1: Plots of the update performed over a window t = 0.2 time-units.
Results for the shortest measurement update period ∆t = 0.01 are consistent with
those published in Freund (2011). The ultimate goal in estimation is to increase
the predictive capabilities of the algorithms. Thus, we are interested evaluating
performance as a function of measurement period.

that the repopulation variance is arbitrarily inflating the results for ∆t = 0.01.

3.5.1 Results: GEnKF

The Ensemble Kalman Filter is strongly dependent on the resolution of the

sample covariance matrix, Fig. 3.4 demonstrates the convergence properties of the

EnKF performance as a function of number of ensemble members. As the number

of ensemble members increase the sample covariance more faithfully approximates

the true covariance. As a result the cloud of particles is more accurately shifted

in phase space to improve the estimate. It is also clear that the reduction of error

approaches some fundamental performance limit asymptotically.

The results in Fig. 3.5 examine the relationship between effects of ensemble

size, number of EnKF experts competing in parallel, and fundamental estimation

limitations. First, the results demonstrate the advantage of using Normal-Hedge in

the setting. Clearly, a convex combination of EnKFs performs better than a single

EnKF of the same size. Unfortunately, they do not perform as well as the case
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Figure 3.2: Mean L2-error of the state estimate as a function of measurement
update period. Each entry in this image is an integral average of the error from
Figure 3.1. As expected, the mean error increases as the measurement frequency
decreases. This is consistent with an “information-based” interpretation of this
data: estimation error should decrease as update frequency increases since each
measurement provides more information about the “truth.” The only exception of
this is at the shortest time-scales; the error is larger for a smallest measurement
update period. At this time-scale and repopulation covariance, Normal-Hedge does
not have sufficient time to compensate (that is remove) noise introduced through
expert repopulation.
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(a) Mean L2-error of the state estimate ver-
sus magnitude of the repopulation covariance
for a measurement period ∆t = 0.1.
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(b) Mean L2-error of the state estimate ver-
sus magnitude of the repopulation covariance
for a measurement period ∆t = 0.01. Note
that for all resampling “volumes” the error is
about half the magnitude of that in Figure
3.3(a).

Figure 3.3: The mean L2-norm of the error of the state estimation when using
Normal-Hedge at two measurement periods [Figures 3.3(a) and 3.3(b) use a mea-
surement update period of ∆t = 0.1 and ∆t = 0.01, respectively.] for various
resampling distributions. The results converged after being averaged over at least
1.6 million iterations.
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when all resources are allocated to the EnKF alone. The diminished performance

is offset, though, by the decrease communication requirements (not visualized) for

the GEnKF. Computationally speaking, the GEnKF in this example requires the

same computational effort as the 720 member EnKF in the forecast step, but has

the same communication requirements as the 15 member EnKF in the update

step. Practically speaking, this results parallelism which allows for more than 48X

speedup in execution time.

Perhaps the most important trend captured requires holding constant the

total computation resources and measuring estimation error as a function of re-

sources allocated to each EnKF. The x-axis in Fig. 3.6 determines the number

of ensemble members in each EnKF, and correspondingly the number of EnKF

experts used in the learning algorithm. For example, a point along this line, to-

talPercentage = 5, represents 20 experts, where each expert is an EnKF with 36

ensemble members. The far left end (totalPercentage = 0) quantifies the estimate

using Normal-Hedge only, and the far right end (totalPercentage = 100) quantifies

the estimate using only the Ensemble Kalman Filter. Not surprisingly, the best

performance is achieved when all resources are allocated to the EnKF and all infor-

mation is shared uniformly between ensemble members. But, there is also a local

minimum at totalPercentage = 5.55 percent (corresponding to 18 EnKFs with 40

ensemble members each). Surprisingly, there is a situation where information is

not shared uniformly across all simulations, and the L2-norm of the error is better

than when that information is shared.

3.6 Conclusion, Future Work

This work presents a novel estimation algorithm, the Game-theoretic En-

semble Kalman Filter (GEnKF), which intelligently switches between estimators

competing in a game to provide the ”best” estimate. The proposed algorithm

reduces communication (a limiting factor as the state size becomes large) because

although each filter requires full state information locally to update estimates, the

competing filters are only required to broadcast one double precision value to the
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Figure 3.4: A demonstration of the increased fidelity as a result of an increased
number of ensemble members. These “saw-tooth” plots are EnKF updates av-
eraged over 2,000,000 sequential updates. As the number of ensemble members
increases the fidelity of the estimate increases.
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Figure 3.5: This numerical experiment examines the balance between the num-
ber of experts (EnKFs) and the number of ensemble members in each EnKF. In
practical problems only a finite amount of computational resources are available.
Determining how to best use those resources is a problem of paramount impor-
tance. This balance is probably problem specific.
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Figure 3.6: A comparison of the mean L2-norm of the error of the state estima-
tion when using different implementations of the hybrid Game-theoretic Ensem-
ble Kalman Filter proposed in §3.4.1. By holding constant the total number of
resources (that is the total number of CPUs, which directly determines the fea-
sible number of total experts and ensemble members) the best allocation can be
found. In this example the maximum number of ensemble members permitted
was N = 720. The x-axis (Percent of resources allocated to EnKF) determines
the number of ensemble members (and thus the number of experts) used in the
learning algorithm. The far left end (totalPercentage = 0) quantifies the estimate
using Normal-Hedge only, and the far right end (totalPercentage = 100) quanti-
fies the estimate using only the Ensemble Kalman Filter. A point along this line,
totalPercentage = 10, represents 10 experts, where each expert is an EnKF with
72 ensemble members.
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Normal-Hedge algorithm – which determines the best combination of estimates.

As a follow-up paper, and in light of the results presented in Colburn et al.

(2011a), we propose applying this algorithm to a problem of interest, namely near-

wall turbulent channel flow estimation. This problem requires that communication

be as efficient as possible while providing sufficient information to track a complex

flow-field.

Lastly, although the DTOL framework provides an attractive method for

combining estimators, it does not allow for the individual expert’s EnKF to be

improved by the global algorithm. Developing a framework to feedback information

to experts which are performing poorly, so that they might “fix” themselves, is an

open research topic.
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Chapter 4

Estimation and Adaptive

Observation of Environmental

Plumes

4.1 Abstract

Here we present our new Adaptive Observation (AO) method, dubbed Dy-

namic Adaptive Observation (DAO). Unlike current AO methods, DAO rigorously

incorporate vehicle dynamics to compute optimal feasible trajectories (waypoints)

of a swarm of sensor vehicles in order to minimize the forecast uncertainty. A

numerical experiment is performed, motivated by the recent Gulf coast oil and the

Icelandic ash problems, where the well-known Ensemble Kalman Filter (EnKF)

is combined with DAO for the estimation of a convection-driven environmental

plume problem.

4.2 Introduction

The task of adaptive observation (AO) is to determine the future sensor

positions for systems where uncertainty is distributed (non-trivially) in a region of

interest. This class of problems is considered a hybrid of problems from control and

81
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estimation theory, which, generally speaking, are either distributed or centralized

in nature.

In a typical distributed AO strategy (see Mart́ınez et al. (2007), Laventall

& Cortés (2009), Stanković & Stipanović (2009), and Zhang & Leonard (2010))

each sensor vehicle has little knowledge of the sensed system, and deployment is

planned locally. Provided that the system dynamics are sufficiently smooth, and

that communication is sufficiently efficient, the collective simple behaviors lead to

global actions that improve estimation. This also guarantees that the solutions are

easily deployable, scale nicely, and inherently satisfy vehicle dynamic constraints.

The majority of existing distributed AO methods reduce to an optimal coverage,

extremum seeking, or level-set tracking problem. While these approaches work ade-

quately for certain applications, their performance is degraded in convection-driven

(that is, wind-dominated rather than diffusion dominated) problems with compli-

cated level sets and state couplings, such as those encountered in atmospheric

and oceanographic applications. Furthermore, the distribution of measurements

is quite sparse in these applications, and it is not clear how distributed methods

perform as the density of measurements becomes very small.

In such problems, it is beneficial to plan the sensor distributions more delib-

erately with a centralized AO strategy, where the sensed system model is leveraged

to optimize the sensor positions. As a consequence, the centralized AO strategy

is computationally intensive, and thus cannot be computed locally on the individ-

ual vehicles. Rather, the bulk of necessary computations must be off-loaded to a

centralized supercomputer cluster, where optimized vehicle trajectories (or way-

points selected along these trajectories) are periodically broadcasted back to the

sensor vehicles. As we are interested in applying AO to large-scale systems found

in atmospheric and oceanographic applications, we focus the present work on the

centralized AO strategy.

The centralized AO strategy may be further divided into “sensitivity-based”

and “uncertainty-based” approaches. In sensitivity-based AO (see Langland &

Rohaly (1996) and Buizza & Montani (1999)), a system adjoint is used to re-

veal “sensitive regions” of the domain that contribute significantly to the estima-
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tion/forecast uncertainty. The strength of these approaches centers on the relative

speed and computational efficiency required for the calculation of the adjoint, as

the sensitivity computation cost is on the same order as the forward system prop-

agation computational cost. However, most methods following such an approach

do not address how such “sensitive regions” should be optimally probed by sensing

vehicles (this issue is partially addressed in Bishop (2000 (submitted) and Baker &

Daley (2000)). Furthermore, these adjoint methods base their sensitivity calcula-

tions on a single forecast, which is prone to exponential divergence and bifurcation

in chaotic systems prevalent in atmospheric and oceanographic science. As a con-

sequence, the sensitive regions computed may be incorrect due to a wrong forecast.

Uncertainty-based AO methods (see Bishop et al. (2001) and Yilmaz et al.

(2008)) take a different approach. Rather than computing the sensitivity of the

forecast, they seek a measurement location sequence that minimizes the estima-

tion/forecast uncertainty. This is usually achieved by considering a set of all possi-

ble sensor location sequences, and computing the anticipated forecast uncertainty

associated with each. Although this strategy scales poorly with large domain size

and/or number of sensors, Bishop et al. (2001) recognizes that each anticipated

forecast is computed independently, making the approach embarrassingly parallel

(the total computation time is inversely proportional to the computational re-

sources available). Furthermore, with sub-optimality, Bishop et al. (2001) noted

the set can be significantly reduced by searching for each measurement location

one at a time. In Yilmaz et al. (2008), because vehicle motion constraints are part

of the formulation, the resulting feasible set is much smaller.

As far as we know, existing centralized AO methods do not fully incor-

porate vehicle dynamics. This is perhaps because the various atmospheric and

oceanographic models to which centralized AO has traditionally been applied are

essentially static when compared with the motion time scales of the sensor vehi-

cles. In order to overcome this problem, for example when implementing EnKF on

a practical system, Majumdar et al. (2002b) simply considered approximately 40

pre-approved feasible flight paths and select among them. Vehicle dynamics are

partially incorporated in Yilmaz et al. (2008) as linear constraints, but because
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linear constraints cannot model complex vehicle dynamics, overly conservative lin-

ear constraints are imposed to ensure a dynamically feasible solution, resulting in

unnecessarily sluggish optimized vehicle trajectories.

We appreciate the steps toward computational efficiency that have been

achieved by both sensitivity-based and uncertainty-based AO approaches but seek

a method which rigorously accounts for vehicle dynamics. To this end, we propose

a new centralized AO method, dubbed Dynamic Adaptive Observation (DAO),

that fills this void by combining various features from existing centralized AO

approaches and incorporates full vehicle dynamics. DAO uses the Kalman Filter

to predict the future estimation/forecast error covariance and to compute the best

control, subjected to the vehicle dynamic constraints, to minimize this covariance.

This is achieved by minimizing a relevant cost function balancing a metric of the

estimation/forecast quality with another metric measuring the cost of the control

applied to the vehicles. Because explicit formulation of the optimal control with

respect to the cost function is difficult to derive analytically, we use adjoint analysis

to calculate the local gradient, and compute the optimal control iteratively. Once

the optimal solution is found, either the control trajectories, vehicle trajectories, or

waypoints extracted from the vehicle trajectories can be transmitted to the sensor

vehicles.

The rest of the paper is as follows: in §4.3 we formulate the AO problem,

where our objective is to minimize a cost balancing a measure of the estima-

tion/forecast quality with vehicle-related penalties. Adjoint analysis is perform

on the cost to reveal local gradient information in §4.4. Various generalizations

to DAO and extensions to discrete- and continuous-time are discussed in §4.5. A

numerical experiment is shown in §4.6 which combines DAO with an Ensemble

Kalman Filter (EnKF) to estimate a convection-driven environmental plume.
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4.3 AO problem formulation

Suppose an uncontrolled, linear, spatially discretized PDE, x, on a physical

domain of interest, written in the continuous-time ODE form

dx(t)

dt
= Ax(t) + Bw(t), w(t) ∼ N(0,W), (4.1)

where w(t) has zero mean and covariance W. Within the physical domain of

interest, there are M sensor vehicles. The i’th vehicle’s (linearized) continuous-

time dynamics, with state qi(t) and control ui(t), may be written

dqi(t)

dt
= Fqi(t) + Gui(t). (4.2)

Note A, B, F, and G in (4.1) and (4.2) can be time-varying. For simplicity we shall

restrict them to this simpler linear, time-invariant case in the following analysis.

The extension to the nonlinear and time-varying case is discussed in §4.5.1.

The vehicles move about the domain continuously, while taking measure-

ments discretely at times tk. Vehicle states such as position, heading, and velocity

affect both the measurements and the noise, and thus both the (linearized) mea-

surement matrix H(qi(tk)) and the noise covariance matrix R(qi(tk)) depend on

the vehicle state. For convenience, the notation H
i
k and R

i
k is adopted, with the un-

derstanding that the dependence of these matrices on the vehicle states is implied.

The i’th vehicle measurement vector at time tk is thus written

yi
k = H

i
kxk + vi

k, vi
k ∼ N(0,Ri

k), (4.3)

and the collection of all measurement is as follows:

yk =





y1
k
...

yM
k



, Hk =





H
1
k
...

H
M
k



, Rk =





R
1
k 0

. . .

0 R
M
k



 .

The state estimate x̂ is updated at each measurement with estimation error
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covariance P. We adopt a mixed continuous/discrete-time scheme for the evolution

of P, where the error covariance propagates between measurements in continuous-

time according to
dP(t)

dt
= AP(t) + P(t)AT + BWB

T , (4.4)

and updated at the measurements according to the discrete-time formula

P
+
k = (I− LkHk)P

−

k ,

Lk = P
−

k H
T
k (HkP

−

k H
T
k + Rk)

−1, (4.5)

where ()+ and ()− denote the estimate a posteriori and a priori, respectively.

The DAO problem statement is framed as follows: At time t0, the vehicle

states qi
0 and estimation error covariance P0 are specified. Design a set of control

trajectories ui(t) for all sensor vehicles over the time window [0, t−K ] that balance

the control effort and a metric quantifying the forecast quality at the final time tF ,

where tF ≥ tK, conditioned on the measurements taken by the vehicles at times

{t1, t2, · · · , tK}. For simplicity, here we choose a quadratic measure for the control

effort, and a weighted sum of the variances to quantify the forecast accuracy (both

choices could certainly be generalized, as demonstrated in §4.5.1):

min
ui(t)

J = trace(TPF ) +
1

2

M�

i=1

� t−K

0

ui(t)T
Quu

i(t) dt, (4.6)

where T is a diagonal matrix that targets specific regions of the domain, and

Qu > 0. The cartoon in Fig. 4.1 illustrates this mixed continuous/discrete-time

formulation, and the relationships between the several quantities involved. Note

that, as P(t) is updated discretely at each measurement time, the trajectory P(t)

is piecewise smooth. Also note that, as the effect of ui(t) is nonlinear, the cost

function J is, in general, nonconvex; thus the global optimization of this cost

function can not be guaranteed with a computationally tractable algorithm.
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t0 t1 t2 tK-1 tK tF

...
ui(t) ui(t)  

qi0 
 P0 

J 
  ui(t)

qi1 qi2 qiK-1 qiK
  PF PK

-

 

P1

+
P1

-

 P2

+
P2

-

 

PK-1

+
PK-1 
- +

PK 

Figure 4.1: Cartoon illustrating the problem formulation. The controls ui(t) af-
fect the (continuous-time) evolution of sensor vehicle trajectories qi(t). The sensor
vehicle positions at the measurement times, qi

k, in turn, affect the (discrete-time)
updates to the covariance of the estimation error Pk; this covariance otherwise
evolves continuously between the measurements, and between tK and tF . The cost
J depends on PF and the ui(t) for t ∈ [0, t−K ]; a set of controls ui(t) is sought
to minimize this cost. Dashed arrows denote continuous-time propagation; solid
arrows denote discrete-time updates.

4.4 Computing the optimal control

Given the complex dependence of J on ui(t), the minimizing solution is

sought via an iterative approach, where a nominal control trajectory for each ve-

hicle is assumed initially, then a local gradient �ui(t)J is computed using adjoint

analysis. Applying a perturbation to the assumed nominal control trajectories

causes a chain reaction that perturbs other variables; the first-order perturbations

of the relevant variables may be written:

dP(t)�

dt
= AP(t)� + P(t)�AT , P

�

0 = 0, W
� = 0 (4.7a)

dqi(t)�

dt
= Fqi(t)� + Gui(t)�, qi

0
� = 0, (4.7b)

P
+
k
�= P

−

k
�−(P−k

�
H

T
k+P

−

k (H�

k)
T )LT

k−Lk(HkP
−

k
�+H

�

kP
−

k )

+Lk(H
�

kP
−

k H
T
k+HkP

−

k
�
H

T
k+HkP

−

k (H�

k)
T+R

�

k)L
T
k , (4.7c)

J � = trace(TP
�

F ) +
M�

i=1

� t−K

0

ui(t)T
Quu

i(t)� dt, (4.7d)

R
�

k =





R
1
k
� 0

. . .

0 R
M
k
�



 , H
�

k =





H
1
k
�

...

H
M
k
�



 , (4.7e)

R
i
k
� =

�
dRi

k

dqi
k

�
qi

k
�, H

i
k
� =

�
dHi

k

dqi
k

�
qi

k
�, (4.7f)
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where qi
0
�, P

�

0, and W
� are zero because they are not affected by ui(t). Note that

dR
i
k

dqi
k

and
dH

i
k

dqi
k

are rank-3 tensors that contract by the inner product with qi
k
� to yield

the matrices R
i
k
� and H

i
k
�. The first-order term in the Taylor series expansion of

J about ui(t) is written

J � =
M�

i=1

� t−K

0

�
�ui(t)J

�T
ui(t)� dt, (4.8)

which is very similar to (4.7d) except for the trace(TP
�

F ) term. The rest of the

derivation focuses on rewriting trace(TP
�

F ) in a same form as (4.8).

We now simplify the description of (4.7b) and (4.7a) by introducing the

linear operators L(P�), M(q�)i, and B(u�)i:

L(P�) � dP(t)�

dt
− AP(t)� − P(t)�AT , (4.9a)

M(q�)i � dqi(t)�

dt
− Fqi(t)�, (4.9b)

B(u�)i � Gui(t)�, (4.9c)

so that L(P�) = 0 by (4.7a) and M(q�)i = B(u�)i by (4.7b).

An adjoint variable S(t) and adjoint operator L∗(·) is now defined over the

window [t+K , tF ] and considered within an adjoint identity based on a relevant inner

product:

�S,L(P�)�t+K ,tF
= �L∗(S),P��t+K ,tF

+ a, (4.10a)

�X,Y�t+K ,tF
�

� tF

t+K

trace(X(t)T
Y(t)) dt. (4.10b)

Using integration by parts, it can be shown that

L∗(S) = −dS(t)

dt
− A

T
S(t)− S(t)A, (4.11a)

a = trace(ST
FP

�

F )− trace((S+
K)T

P
+
K
�). (4.11b)

Taking L∗(S) = 0 and S
T
F = T, (4.7d) is manipulated using the relationships
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established in (4.10) and (4.11) into

J � = trace((S+
K)T

P
+
K
�) +

M�

i=1

� t−K

0

ui(t)T
Quu

i(t)� dt. (4.12)

Note that setting L∗(S) = 0 and S
T
F = T is equivalent to defining a backward-

in-time evolution equation for S such that dS(t)
dt = −A

T
S(t)− S(t)A with starting

condition S
T
F = T. By the special structure of the evolution equation for S and

the symmetric definition of SF , it is clear that S
+
K is also symmetric in (4.12); and

it will become apparent later in the formulation, that in fact the entire trajectory

S(t) is symmetric.

Substituting (4.7c), (4.7e), and (4.7f) into P
+
K
� in (4.12) and leveraging the

trace identity trace(AB) = trace(BA) = trace(AT
B

T ), the P
−

K
� and qi

K
� terms are

gathered to the right. Leveraging the structure of H
�

K and R
�

K , (4.12) becomes

J � = trace((I−H
T
KL

T
K)S+

K(I− LKHK)P−K
�)

+ trace(2P−K(HT
KL

T
K − I)S+

KLKH
�

K)

+ trace(LT
KS

+
KLKR

�

K) +
M�

i=1

� t−K

0

ui(t)T
Quu

i(t)� dt,

= trace((I−H
T
KL

T
K)S+

K(I− LKHK)P−K
�)

+
M�

i=1

trace

�
(2P−K(HT

KL
T
K−I)S+

KLK)i

�
dHi

K

dqi
K

��T

qi
K
�

+
M�

i=1

trace

�
(LT

KS
+
KLK)ii

�
dRi

K

dqi
K

��T

qi
K
�

+
M�

i=1

� t−K

0

ui(t)T
Quu

i(t)� dt, (4.13)

where (LT
k S

T
k Lk)ii denotes the (i, i) block of the M × M block matrix L

T
k S

T
k Lk

and (2APkA
T(HT

k L
T
k −I)SkLk)i denotes the i’th column block of the 1 ×M block

matrix 2APkA
T(HT

k L
T
k − I)SkLk. The ()− superscript on qi

K
� is dropped because

the trajectory qi(t) is smooth.

Now, if the same inner product and adjoint identity as in (4.10) are defined,
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but over the time window [t+K−1, t
−

K ], and if in addition M adjoint vectors ri(t) are

defined over the same time window with the new adjoint identity

��ri,M(q�)i��t+K−1,t−K
= ��M∗(r)i,qi ���t+K−1,t−K

+ bi, (4.14a)

��x,y��t+K−1,t−K
�

� t−K

t+K−1

x(t)Ty(t) dt, (4.14b)

M∗(r)i = −dri(t)

dt
− F

T ri(t), (4.14c)

bi = (ri−
K )Tqi

K
� − (ri+

K−1)
Tqi

K−1
�, (4.14d)

then by taking

L∗(S) = 0, M∗(r)i = 0, (4.15a)

(S−K)T = (I−H
T
KL

T
K)S+

K(I− LKHK), (4.15b)

ri−
K = trace

�
(2P−K(HT

KL
T
K − I)S+

KLK)i

�
dHi

K

dqi
K

��

+trace

�
(LT

KS
+
KLK)ii

�
dRi

K

dqi
K

��
, (4.15c)

and applying (4.10), (4.11), and (4.14), (4.13) is transformed to:

J � = trace((S+
K−1)

T
P

+
K−1

�) +
M�

i=1

� t−K

0

ui(t)T
Quu

i(t)� dt

+
M�

i=1

� � t−K

t+K−1

ri(t)TB(u�)i dt + (ri+
K−1)

Tqi
K−1

�

�
. (4.16)

Equation (4.16) bears a strong resemblance to (4.12), the only differences

being the shifted time indices on the first term and the additional third and fourth

terms in (4.16). Thus, the procedures between (4.12) and (4.16) can be repeated

sequentially, backward in time, to repeatedly transform J �. In general for a given
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measurement interval [t+k−1, t
+
k ],

S
−

k = (I−H
T
k L

T
k )S+

k (I− LkHk), (4.17a)

ri−
k = ri+

k + trace

�
(2P−k (HT

k L
T
k − I)S+

k Lk)i

�
dHi

k

dqi
k

��

+ trace

�
(LT

k S
+
k Lk)ii

�
dRi

k

dqi
k

��
, (4.17b)

S
+
k−1 ← S

−

k via
dS(t)

dt
= −A

T
S(t)− S(t)A, (4.17c)

ri+
k−1 ← ri−

k via
dri(t)

dt
= −F

T ri(t), (4.17d)

and the transformed J � is

J � = trace((S+
k−1)

T
P

+
k−1

�) +
M�

i=1

� t−K

0

ui(t)T
Quu

i(t)� dt

+
M�

i=1

� � t−K

t+k−1

ri(t)TB(u�)i dt + (ri+
k−1)

Tqi
k−1

�

�
. (4.18)

Eventually, the J � transformation reaches time t = 0, where P
�

0 = 0 and qi
0
� = 0.

The final J � equation is

J � =
M�

i=1

� t−K

0

ri(t)T B(u�)i

� �� �
Gui(t)�

+ui(t)T
Quu

i(t) � dt

=
M�

i=1

� t−K

0

(GT ri(t) + Quu
i(t)� �� �

�ui(t)J

)Tui(t) � dt, (4.19)

which is in the necessary form to obtain the local gradient information. This

gradient information is then used by an iterative optimization method such as

steepest decent, conjugate gradient, or limited memory BFGS to update the initial

nominal control trajectories.

After the optimal solution is found, either the optimal control trajectories

or the resulting optimal vehicle trajectories can be sent to the sensor vehicles.

However typically it is more practical to broadcast the waypoints taken along the
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optimal vehicle trajectories, and let the sensor vehicle’s on-board auto-pilot decides

the control. Since the waypoints are taken from feasible vehicle trajectories, the

control calculated by the auto-pilot would also be feasible.

To recap, we started with (4.7d), which was not in the correct form as

in (4.8) to obtain the gradient information. Through defining the proper adjoint

identities (4.10), (4.11), and (4.14), leveraging (4.7c), (4.7e), and (4.7f), trace

identities, and through the correct setting of L∗(S), S
−

k , M∗(r)i, and ri−
k in (4.17),

the J � equation is transformed a piece at a time until the final form in (4.19) is

achieved, allowing the necessary gradient extraction.

Note that P(t) is updated at each measurement time in the forward march;

it is thus natural that the adjoint variables S(t) and ri(t) are similarly updated at

each measurement time in the backward march. Also note that even though the

initial ui(t) and qi(t) are continuous, because the update to ui(t) is derived from

ri(t), which is now piece-wise continuous like P(t), the newly updated ui(t) in the

second iteration of the optimization will also be piece-wise continuous, and so will

dqi(t)/dt. Nevertheless, qi(t) is still continuous, and the continuity assumption on

qi(t) in the formulation still holds.

4.5 DAO extensions

4.5.1 Generalization

For clarity sake, we restricted the DAO formulation in §4.4 to a specific cost

function, linear dynamics, and identical dynamics and sensors in all vehicles. The

generalizations of the these restrictions are discussed here.

Generalize Cost Function

The vehicle penalty portion in (4.6) is not restricted to be quadratic and

penalizes only ui(t), other types of penalties can be incorporated. In general,

J = trace(TPF ) +
M�

i=1

� � t−K

0

gi(qi(t),ui(t)) dt + hi(qi
K)

�
. (4.20)
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Note if gi(·, ·) and hi(·) are quadratic, one would have the standard Linear Quadratic

Regulator familiar in the controls community, where gi(·, ·) is the state and control

trajectory penalties and hi(·) the terminal state penalty. Also this formulation

allows the possibility to penalize each vehicle differently. Without re-deriving, the

modifications to DAO are described in the following.

Suppose the perturbation of gi(qi(t),ui(t)) and hi(qi
K) can be written as

gi(qi(t),ui(t))� =

�
∂gi(qi(t),ui(t))

∂qi(t)

�T

qi(t)�

+

�
∂gi(qi(t),ui(t))

∂u(t)i

�T

ui(t)�,

hi(qi
K)� =

�
dhi(qi

K)

dqi
K

�T

qi
K
�.

The local cost function gradient is now expressed as

�ui(t)J = G
T ri(t) +

∂gi(qi(t),ui(t))

∂ui(t)
. (4.21)

The terminal state penalty simply changes the starting condition of ri−
K , and the

state trajectory penalty introduces an additional forcing to the ri evolution equa-

tion. The evolution equation for ri(t) now changed into

dri(t)

dt
= −F

T ri(t)− ∂gi(qi(t),ui(t))

∂ui(t)
(4.22a)

ri−
K =

dhi(qi
K)

dqi
K

+ trace

�
(LT

KS
+
KLK)ii

�
dRi

K

dqi
K

��

+ trace

�
(2P−K(HT

KL
T
K − I)S+

KLK)i

�
dHi

K

dqi
K

��
. (4.22b)

Nonlinearities

So far we assumed linear time-invariant models and used the Kalman Filter

for the covariance update. However DAO can be easily extended to work with

nonlinear time-varying models.

Dealing with nonlinear vehicle model is simple, one needs to propagate and

store the trajectory of each qi(t). During the vehicle adjoint propagation and cost
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function gradient evaluation, the linearized F(qi(t),ui(t)) and G(qi(t),ui(t)) are

evaluated along the trajectory of qi(t) and ui(t).

However having a nonlinear system model introduces additional complexi-

ties. Namely, this requires linearized A(x̂(t)) and B(x̂(t)) during the time-update

phase and the linearized measurement operator H(x̂−k ) during the measurement-

update phase. Since the best estimate at current time is x̂+
0 , naturally a forecast

made from x̂+
0 would be used as x̂(t). Furthermore, the best guess on the future

measurements y at time k = 1 is obtained from the x̂(t) forecast at t1, x̂−1 , and

apply the output operator H1 to predict y1. Using this predicted measurement in

state update equation would yield x̂+
1 = x̂−1 , since the innovation would be zero.

In general if x̂+
k is given, one would follow similar logics to forecast x̂+

k and update

with yk+1 = Hk+1x̂
−

k+1, and show that x̂+
k+1 = x̂−k+1. Thus by induction it is clear

to see a forecast of x̂+
0 is sufficient to produces x̂+

k and x̂−k needed for linearizing

A, B, and H. Therefore with nonlinear models, one also needs to know x̂0 in order

to propagate and store Pk qi(t), and x̂(t).

Multiple Vehicle and Sensor Types

In some instances, vehicles with different dynamical properties carrying

different instruments are deployed. For example, in weather forecasting one aircraft

may carry a Doppler Radar to give a global view of the weather system while

several UAVs are carrying barometers, temperature sensors, and humility sensors

to provide pin-point measurements. By replacing F and G with F
i and G

i, allowing

H
i and R

i to be different for each vehicle, and adjust the size of block matrices of

(LT
k S

T
k Lk)ii and (2APkA

T(HT
k L

T
k−I)SkLk)i appropriately based on the size of R

i and

H
i, DAO is capable in handling multiple vehicles with different vehicle dynamics

and sensor types.

Routine Measurements

In some situations supplemental routine measurements are also available in

the future. These measurements typically come from existing stationary sensor

networks that makes routine measurements (e.g. sensor buoys), while some other
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times these measurements come from non-controllable sources (i.e. wind data from

boats). Routine measurements should be incorporated into the AO formulation to

avoid redundant measurements. This is done by augmenting Hk and Rk such that

Hk �
�
H

r
k 0

0 H
AO
k

�
, Rk �

�
R

r
k 0

0 R
AO
k

�
. (4.23)

Note when performing perturbation analysis, the perturbation of H
r
k and R

r
k to qi

k

are zero since we cannot control the routine measurement placements.

4.5.2 Extension to discrete- and continuous-time

The mixed continuous/discrete time DAO formulation can be extended to

pure discrete or continuous time. In both cases, the generalizations in §4.5.1 equally

applied with appropriate modifications.

Discrete time

If the continuous propagation of P(t) in (4.4) and qi(t) in (4.2) from time

tk to tk+1 are allowed to be propagated discretely in one time-step, then the prop-

agation and update can be combined into a discrete evolution equation for the

posterior estimation covariance and vehicle states. The conversion to discrete time

propagation is done through an explicit Euler approximation of the continuous

time propagation. Similarly, this can be done for adjoint propagations. Using

the same explicit Euler approximation and bearing in mind the propagations are

backward in time, the combined adjoint propagation and update equations are

Sk−1 = A
T
D(I−H

T
k L

T
k )Sk(I− LkHk)AD, (4.24a)

ri
k−1 = F

T
Dri

k + trace

�
(LT

k SkLk)ii

�
dRi

k

dqi
k

��

+ trace

�
(2ADPkA

T
D(HT

k L
T
k − I)SkLk)i

�
dHi

k

dqi
k

��
, (4.24b)
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where ()D denotes the discretized version of the continuous-time counterpart. The

cost function gradient is also appropriately redefined as

J � =
M�

i=1

K−1�

k=0

(�ui
k
J)Tui

k
� (4.25a)

�ui
k
J = G

T
Dri

k + QuDui
k, (4.25b)

where final time index is K − 1 because the zero-order-hold assumption for the

control ui
k. These results are consistent with our earlier work in Zhang & Bewley

(2011).

Equation (4.24) only holds within the time interval [t0, tK ], where measure-

ment updates are performed. It is necessary to propagate SF to SK using the

discretized version of (4.17c)

Sk−1 = A
T
SkA (4.26)

and set SK−1 = SK before using (4.24). The starting conditions are SF = T,

and ri
K−1 = 0. Note the starting conditions for SK−1 and ri

K−1 are one time-step

off. This is due to a theoretical gap that exists when converting a continuous-time

adjoint equation to discrete-time. This inconsistency vanishes as the time-step

becomes small, as SK−1 and ri
K−1 approach SK and ri

K .

Continuous time

The continuous-time Kalman Filter is rarely used in practice for practical

reasons. Nevertheless, for theoretical completeness a DAO formulation also exists

for a continuous-time KF. There are two approaches to this problem. The first

approach is to perform the entire DAO formulation presented before with the

continuous-time KF propagation of P(t). A perhaps simpler second approach,

inspired by the work in Smith & Robers (1978) which reconciles the discrete and

continuous-time KF, is by substituting

AD → I + ∆tA, FD → I + ∆tF,

Hk → H(tk), Rk → R(tk)/∆t,
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into (4.24). After pulling the Sk − Sk−1 and ri
k − ri

k−1 term to the L.H.S. and

dividing by ∆t, the limit ∆t → 0 is taken to yield the continuous-time equivalent

of DAO:

dS

dt
= −A

T
S− SA + SPH

T
R
−1

H + H
T
R
−1

HPS, (4.27a)

dri

dt
= −F

T ri + trace

�
(2PSPH

T
R
−1)i

�
dHi

dqi

��

− trace

�
(R−1

HPSPH
T
R
−1)ii

�
dRi

dqi

��
. (4.27b)

Again (4.27) only holds within the time interval [t0, tK ]. It is necessary

to propagate SF to SK using (4.17c). The starting conditions remain unchanged,

SF = T, and ri
K = 0.

4.6 Experimental Results for an Environmental

Plume

We shall demonstrate the capabilities of DAO through a numerical experi-

ment, an environmental plume problem, where DAO is used to plan sensor vehicle

waypoints for estimating a convection driven contaminant plume.

Estimating and forecasting the evolution of environmental flows is one of

today’s most visible grand challenge problems. Such algorithms must grapple with

a myriad of challenges involved in extending these concepts to high-dimensional

discretizations of infinite-dimensional systems.

In problems of this scale, classical estimation solutions like the Kalman Fil-

ter (KF; see Kalman (1960) and Anderson & Moore (1979)) and the Extended

Kalman Filter (EKF) simply do not work, due both to their poor scaling with

problem size [they require the propagation of an n× n covariance matrix] as well

as their inability to represent non-Gaussian statistics. Ensemble methods, specifi-

cally the Ensemble Kalman Filter (EnKF), are standard–though (apparently) not

well known–algorithms for addressing these challenges in an efficient stochastic
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manner: by propagating several perturbed candidate system trajectories and in-

ferring the principle directions of the state uncertainties from the distribution of

these ensemble members in phase space. In practice, a remarkably small ensemble

sample [O(100)] is typically sufficient for capturing the principle directions of the

state estimate uncertainties even in high-dimensional problems [with n � O(106)].

A brief EnKF overview is presented in §1.3.

Motivated by the recent Gulf coast oil spill and the Icelandic ash cloud,

the EnKF and DAO are combined in this experiment to test the estimation of

a convection-driven environmental plume problem: the 2D Navier-Stokes Equa-

tion (NSE) couple with a passive scalar equation. By exciting the fluid system

with additive low-frequency forcing, this passive scalar equation exhibits the same

characteristic motion as an environmental plume. The governing equations are

written

∂v

∂t
= −v · �v + ν�2v +

1

ρ
�p + wv (4.28a)

∂φ

∂t
= −v · �φ + κ�2φ + wφ, (4.28b)

with velocity vector field v, passive scalar field φ, density ρ, kinematic viscosity ν,

scalar pressure field p, and diffusion constant κ. wv and wφ are external forcing.

The measurement operator (linear with respect to the flow state) is a function of

the sensor positions, in the point-mass vehicle states qi
k:

h(q1
k, · · · ,qM

k ,vk) = H(q1
k, · · · ,qM

k )Tvk. (4.29)

The pseudo-spectral code developed in Bewley et al. (2001) is used for numerical

simulation on a 64× 64 uniform square grid. The EnKF assimilates the measure-

ments and provide an estimate, while DAO determines where the measurements

should be taken in the future. In all numerical experiments the “truth” simula-

tion uses an identical model (with different initial conditions and random forcing)

running in parallel with the EnKF, enabling us to gage the estimator performance.

Although simulations are done using periodic domains, the estimation al-
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gorithm is isolated to an “region of interest,”; which is effectively defined through

the weighting matrix T. The square, periodic domain is nondimensionalized with

width Lx = Ly = 2, and a estimation subregion of interest of width Rx = Ry =

1.35. In DAO, the targeting matrix T is chosen to focus on the same subregion. To

maintain numerical computation stability in the flow calculation, a relatively small

time-step (∆t = 0.005) is used, whereas measurements are taken every τmeas = 0.15

time units. Given the large difference between ∆t and τmeas, the mixed continu-

ous/discrete time version of DAO is used.

In this application DAO is structured in a receding-horizon framework: ev-

ery three measurements DAO receives a new ensemble approximation of P from

the estimator. Using the current vehicle states and assumed initial control trajec-

tories (both prescribed during initialization), DAO optimizes the vehicle waypoints

over the next six measurement times (because τmeas = 0.15, the event horizon is

TF = TK = 0.9); however, only the waypoints for the first three measurement

times are used before DAO is called again to compute new waypoints. Because

of the complex dynamics of this system, a few additional computation approxi-

mations are introduced to make this problem feasible. Since the propagation of P

using the full system dynamics in (4.28) would be too computationally intensive,

we approximate full covariance propagation with the simplified continuous-time

differential equation
dP(t)

dt
= 0.2P(t). (4.30)

This, with an additional assumption that P is diagonally dominant (effectively,

that the spatial cross-correlations are negligible), dramatically reduces the com-

putational and storage requirements for P, resulting in a feasible implementation

of DAO. These approximations are perhaps physically justified by the small event

horizon considered in the present simulations.

To quantify the quality of the estimate, we consider the steady-state, infinite-

time averaged statistics of the absolute error, defined by Bewley & Protas (2004)

as follows:

Errn(d̂, dtru) =

�

Rx

�

Ry

( d̂− dtru )2dy dx, (4.31)
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where ()tru corresponding the “truth” values. Long-time averages of this mea-

sure (applied to both the velocity field and the scalar) are used to approximate

the expected value, E [Errn(d̂(t), dtru(t))] � 1/T
� T

0 Errn(d̂(t), d(t)) dt, at statistical

steady state.

Fig. 4.2 and 4.3 compare the error statistics using three different adaptive

observation strategies: sensors following a random walk (dot-dashed), a decentral-

ized AO strategy in which sensors gravitate to the centroid of their voronoi cells

(dashed), and the present DAO strategy (solid). Fig. 4.4 provides typical examples

of the estimate, determined by the EnKF, and the waypoints optimized by DAO.

The results demonstrate that a significant improvement in the estimate

can be accomplished via path planning: 42% in the flow [a reduction of the error

norm defined in (4.31) from 0.388 to 0.206] and 47% in the scalar [a reduction

from 0.449 to 0.259]. Furthermore, this improvement is not just a consequence of

the movement, as the case with randomly walking sensor vehicles (with the same

mean velocity) significantly underperforms as compared with the optimized DAO

solution.

4.7 Conclusions and Future Work

This paper presents DAO, a new Adaptive Observation method that rig-

orously incorporates vehicle dynamics in the formulation. The DAO formulation

is based on mixed continuous/discrete-time scheme, where the system propaga-

tions are continuous, but measurement updates are discrete. By minimizing a cost

containing both a measure of the forecast quality and vehicle control effort penal-

ties iteratively using adjoint analysis, DAO is able to balance control effort with

uncertainty reduction. Various DAO generalization including generalized cost,

nonlinear time-varying systems, and taking extraneous routine measurements into

account are discussed. Also for theoretical completeness, the mixed DAO continu-

ous/discrete time scheme is extended to pure discrete- and continuous time. The

results for a randomly forced 2D environmental plume demonstrate a significant

reduction in the error of the forecast over less deliberate sensor routing strategies.
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A promising new Hybrid (variational/Kalman) Ensemble Smoother (HEnS)

algorithm for state estimation in large-scale systems has recently been proposed

by our group (see Cessna & Bewley (2010)). As DAO effectively combines an

ensemble representation with variational sweeps to perform optimizations over the

near future to solve the adaptive optimization problem, HEnS similarly combines

an ensemble representation with variational sweeps to perform optimizations over

the recent past to solve the data assimilation problem. Preliminary tests have show

that this new algorithm for data assimilation outperforms the more traditional

EnKF in the presence of substantial non-Gaussian uncertainties. Both HEnS and

DAO will thus be applied in concert to the present representative test problem in

the near future.

The ultimate goal of this work is to use DAO in conjunction with a data

assimilation scheme such as HEnS, or the EnKF, in real-time, to estimate and

forecast large complex system. It is our vision that one day small, deployable

sensor vehicles would be deployed in an environmental contaminant disaster as

first-responders to adaptively take environmental readings and facilitate the fore-

cast of the contaminant movement.
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Figure 4.2: The norm of the relative error of the flow velocities, as a function
of time, following three AO strategies: (1) sensors following a random walk (dot-
dashed) (2) stationary sensors uniformly distributed over the domain (dashed),
and (3) sensor trajectories provided by DAO (solid). The error increases between
measurements, and decreases at the EnKF measurement updates, thus creating
the “saw-tooth” shape in the error plot.
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Figure 4.3: The norm of the relative error of the scalar component, as a function
of time, with the sensor motion as described in Fig. 4.2. The evolution of the scalar
is primarily “convective” (that is, it is primarily driven by the flow velocities); note
that the error of the scalar component thus dips slightly after each measurement
update, due apparently to the improved velocity estimate.
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Figure 4.4: A typical example of the truth simulation (top), reconstruction (bot-
tom, provided by EnKF), and sensor trajectories generated by DAO. The contam-
inant source (an empty square) is located near the center of the domain. Note
that, by eye, the velocities and the scalar distributions of the estimate and truth
are indeed quite similar. Future waypoints for sensors are all well distributed over
the domain following the present approach, and are designed in particular to fill
in valuable pieces of information in areas of concentrated uncertainty.



Appendix A

Relevant Theorems from

Probability

A.1 Slutsky’s Theorem

Theorem A.1.1 (Slutsky, 1925; Gut, 2005, Theorem 11.4, p. 249 ) Let X1, X2,

. . . and Y1, Y2, . . . be sequences of random variables. Suppose that

Xn → X and Yn → a as n →∞, (A.1)

where a is some constant. Then

Xn + Yn → X + a, (A.2)

Xn − Yn → X − a, (A.3)

Xn • Yn → X • a, (A.4)
Xn

Yn
→ X

a
for a �= 0, (A.5)

as n →∞.

105



106

A.2 Cramér-Rao Lower Bound

The appropriate interpretation of equation (2.1) is critical to understanding

the differences in cost functions (2.2a) and (2.24a). The following theorem clarifies

the interpretation and is reprinted here for convenience.

Theorem A.2.1 [Goodwin & Payne 1977, Theorem 1.3.1] (The Cramér-

Rao Inequality) Let {Pθ : θ ∈ Θ} be a family of distributions on a sample space Ω,

Θ ⊂ Cp, and suppose that, for each Θ, Pθ is defined by a density p
Y |Θ(·|θ). Then

subject to certain regularity conditions, the covariance of any unbiased estimator

g(Y ) of Θ satisfies the inequality

cov(g) ≥ I
−1
F (A.6)

where

cov(g) = E
Y |Θ{(g(Y )− θ)(g(Y )− θ)H} (A.7)

and where IF , known as Fisher’s Information Matrix (FIM), is defined by

IF = E
Y |Θ

��
∂ ln p(Y |θ)

∂θ

�H�
∂ ln p(Y |θ)

∂θ

��
. (A.8)

Proof A.2.1 Since g(Y ) is an unbiased estimator of θ, we have

E
Y |Θ{g(Y )} = θ, (A.9)

i.e., �

Ω

g(y)p(y|θ) dy = θ, so
∂

∂θ

�

Ω

g(y)p(y|θ) dy = I (A.10)

Assuming sufficient regularity to allow differentiation under the integral sign,

�

Ω

g(y)
∂p(y|θ)

∂θ
dy = I, so

�

Ω

g(y)
∂ ln p(y|θ)

∂θ
p(y|θ) dy = I, (A.11)

i.e.,

E
Y |Θ

�
g(Y )

∂ ln p(Y |θ)
∂θ

�
= I. (A.12)
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Also

E
Y |Θ

�
∂ ln p(Y |θ)

∂θ

�
=

�

Ω

∂ ln p(y|θ)
∂θ

p(y|θ) dy =

�

Ω

∂p(y|θ)
∂θ

dy

=
∂

∂θ

�

Ω

p(y|θ) dy =
∂

∂θ
(1) = 0. (A.13)

Thus, using equations (A.7), (A.8), (A.9), (A.12), and (A.13), the covariance of

g(Y ) and ∂ ln p(y|θ)/∂θ can be written as

E
Y |Θ

�


(g(Y )− θ)

�
∂ ln p(Y |θ)

∂θ

�H




�
(g(Y )− θ)H

�
∂ ln p(Y |θ)

∂θ

�� �
=

�
cov(g) I

I IF

�
.

(A.14)

By the definition of covariance matrices, (A.14) is positive semi-definite; hence

�
I : −I

−1
F

� �
cov(g) I

I IF

� �
I

−I
−1
F

�
≥ 0

cov(g)− I
−1
F ≥ 0. (A.15)
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Högberg, M., Bewley, T.R. & Henningson, D.S. 2003 Linear feedback
control and estimation of transition in plane channel flow. Journal of Fluid Me-
chanics 481, 149–175.

Horn, R.A. & Johnson, C.R. 1990 Matrix Analysis . Cambridge University
Press.

Houtekamer, P.L. & Mitchell, H.L. 2001 A sequential ensemble Kalman
filter for atmospheric data assimilation. Monthly Weather Review 129 (1), 123–
137.

Jameson, A., Martinelli, L. & Pierce, N.A. 1998 Optimum aerodynamic
design using the Navier–Stokes equations. Theoretical and Computational Fluid
Dynamics 10 (1), 213–237.

Jazwinski, A.H. 1970 Stochastic Processes and Filtering Theory . Academic
Press.



113

Jensen, J.L.W.V. 1906 Sur les fonctions convexes et les inégalités entre les
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