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Targeting Cancer Stem Cells with Natural Killer Cell Immunotherapy
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Article Highlights:

 Cancer stem cells are an important source of resistance to standard anti-cancer therapies
and can seed relapse/metastasis.

 Natural killer cells are  innate lymphoid cells which can kill  tumor cells in an MHC-
unrestricted fashion.

 Unlike cytotoxic cancer treatments, natural killer cells are able to target and eliminate
quiescent/ non-proliferating cells such as cancer stem cells.

 Chemotherapy  and  radiation  therapy  eliminate  non-cancer  stem  cells,  leading  to
enrichment of cancer stem cells.

 Cancer stem cells upregulate natural killer cell ligands, such as MICA and MICB, after
treatment which has been observed to increase natural killer cell targeting of these cells.

 Cancer stem cells also are able to utilize immune evasion strategies such as shedding of
MICA and MICB to reduce natural killer cytotoxicity.

 Monoclonal antibodies specific for cancer stem cell epitopes can increase natural killer
killing through antibody-dependent cellular cytotoxicity mechanisms.
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ABSTRACT

Introduction: Standard cytoreductive cancer therapy, such as chemotherapy and radiotherapy, 

are frequently resisted by a small portion of cancer cells with “stem-cell” like properties 

including quiescence and repopulation. Immunotherapy represents a breakthrough modality for 

improving oncologic outcomes in cancer patients. Since the success of immunotherapy is not 

contingent on target cell proliferation, it may also be uniquely suited to address the problem of 

resistance and repopulation exerted by cancer stem cells (CSCs). 

Areas covered: Natural killer (NK) cells have long been known for their ability to reject 

allogeneic hematopoietic stem cells, and there are increasing data demonstrating that NK cells 

can selectively identify and lyse CSCs. In this report, we review the current knowledge of CSCs 

and NK cells and highlight recent studies that support the concept that NK cells are capable of 

targeting CSC in solid tumors, especially in the context of combination therapy simultaneously 

targeting non-CSCs and CSCs. 

Expert Opinion: Unlike cytotoxic cancer treatments, NK cells are able to target and eliminate 

quiescent/ non-proliferating cells such as CSCs, and these enigmatic cells are an important 

source of relapse and metastasis. NK targeting of CSCs represents a novel and potentially high 

impact method to capitalize on the intrinsic therapeutic potential of NK cells.
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Introduction

Although still somewhat controversial, cancer stem cells (CSCs) have been proposed as 

an important mechanism of tumor initiation and/or repopulation after tumor debulking by 

radiotherapy and/or chemotherapy. In addition, CSCs have been increasingly identified as a 

source of tumor relapse and metastasis, even in cases of apparent complete response to systemic 

therapy.(1-3) Consequently, targeting of CSCs in a combination strategy which eliminates non-

CSCs is hypothesized to translate to improved long term oncologic outcomes for cancer patients.

NK cells represent a subset of cytotoxic lymphocytes with the ability to respond to and eradicate 

tumor cells. NK cells have also demonstrated the ability to detect and eradicate “stem-like” cells 

as shown by their ability to reject allogeneic hematopoietic stem cells. Therefore, NK-mediated 

killing is a promising candidate for targeting of CSCs, especially in the context of combination 

therapy where non-CSCs are eliminated by standard anti-proliferative therapies. In this review, 

we summarize recent studies that suggest that NK cell-based immunotherapy aimed at targeting 

CSCs can provide important therapeutic benefits in the combined modality treatment of solid 

malignancies.

Body

Cancer Stem Cells 

CSCs are classically defined by their capacity to self-renew, differentiate into different

lineages, and maintain homeostasis within the tumor, in principle making CSCs analogous to

embryonic stem cells or pluripotent adult stem cells in their behavior (1, 4, 5). Key papers have

demonstrated that CSCs are able to undergo symmetric cell division giving rise to “daughter”

cells  as  a  result  of  clonogenic  expansion.  Additionally,  the  progenitor  CSC may divide  and

undergo  asymmetric  cell  division  generating  multiple  “daughter”  cells  having  distinct
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differentiation capacities in accordance with the anatomical site of origin and the hierarchical

“stemness” position of the “mother” cell  (6, 7). However, in contrast to these other stem cells,

CSCs generally display neoplastic behavior such as perturbed growth properties. For example,

unlike fully differentiated progeny cells derived from normal stem cells, differentiated or “bulk”

tumor cells derived from CSCs have the potential to proliferate indefinitely (8, 9). Yet, despite

the evidence in favor of the CSC model, it is important to note that a “stochastic” model has also

been proposed as an alternative mechanism to explain tumor heterogeneity, and skeptics of the

CSC hypothesis remain.(10, 11) The stochastic model asserts that all tumor cells are consider

equipotent and only a fraction of tumor cells have high clonogenic potential to generate tumor

growth and sub-clone formation.  Defining the mode of tumor growth and maintenance of tumor

heterogeneity represents a key hurdle to acquiring a better understanding of the involvement and

contribution of CSCs to tumor maintenance and progression.  

Cancer Stem Cell Markers

In  contrast  to  normal  stem  cells,  CSCs  generally  lack  a  standard  set  of

immunophenotypic markers that span across different types of tumors (9). Hence, in this review

we provide a short list of some of the markers that our group and others have reported to be

reproducibly associated with a tumor “stem-like” or CSC phenotype. As depicted in  Table 1,

CD133, CD44, and ALDH are some of the most widely used and characterized markers used in

“defining” cell subpopulations with stem cell-like activity in solid tumors (1, 8, 12-14) including:

prostate  cancer  (8,  12),  breast   cancer  (15,  16),  colorectal   cancer  (17),  pancreatic

adenocarcinomas  (18), soft tissue sarcomas  (19), and brain tumors/glioblastoma (20). Some of

the aforementioned markers have been used individually, or in combination, with other markers

associated with the particular tumor of interest and/or in accordance to the anatomical site of
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origin of the target tumor. In addition, key pluripotent stem cell markers and transcription factors

such as Notch and the wingless-related integration site (Wnt) gene family have been recognized

as important phenotypic and functional markers of CSCs (21-23).

Aldehyde dehydrogenase 1 (ALDH 1) is a detoxifying enzyme involved in oxidation of

intracellular aldehydes (24). It has been extensively reported that ALDH expression and activity

is closely associated with drug resistance, cell proliferation, and response to stress-related stimuli

such as the production of reactive oxygen species  (12, 25, 26). Moreover, ALDH activity has

become one of the most widely used phenotypic markers used to identify CSCs, especially in

solid tumors. However, despite this extensive characterization of ALDHbright cells with a CSC

phenotype, critics have highlighted the weaknesses of using ALDH as a CSC marker,  including

high intrinsic expression in non-neoplastic tissues (such as liver and pancreas) and subjective

definitions  of  ALDHbright and  ALDHdim  cells  when  using  immunohistochemical  and  flow

cytometry-based readouts where a broad spectrum of enzyme activity is present rather than all-

or-none expression (25, 27). As a result, critics contend that ALDH expression is not completely

representative  of  cellular  self-renewal  characteristics,  but  instead  also  reflects  other  diverse

cellular functions not completely associated with the CSC phenotype (26).

CD44 is a cell-surface glycoprotein involved with malignant tumor initiation  (28).  In

addition, CD44 interacts multivalently with hyaluronan resulting in signal pathway activation of

tyrosine kinases such as ErbB2, EGFR, and TGF-1(29). Consequently, targeting of CD44 has

received increasing attention as a novel target in anti-cancer and anti-CSC strategies. However,

similar to ALDH, CD44 has multiple paracrine and autocrine effects, including roles in multiple

signaling cascades,  so the  precise mechanism by which it  fosters the  CSC phenotype is  not

definitively established. Prominin-1 (CD 133) is a transmembrane glycoprotein which remains
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poorly characterized with respect to its precise biological functions and cognate interactions. Yet,

CD133 has been extensively evaluated in multiple CSC studies and in multiple types of cancers

(30-32). Numerous studies have validated the CSC phenotype in CD133+ cells, and an inverse

relationship between CD133 expression and median disease-free survival has been shown in

clinical-translational studies in colon cancer, among others (17). 

The Wnt signaling pathway is involved in several key developmental and regenerative

physiological processes. Importantly,  however, this diverse signaling pathway (including both

canonical  and  non-canonical  networks)  has  also  been  associated  with  tumor  oncogenesis

including  CSC  recruitment,  propagation,  and  cross-talk  (21-23). A  potential  mechanism

underlying  the  transition  of  Wnt  from regulating  homeostasis  to  driving  oncogenesis/  CSC

propagation  has  been explained by defects in  the  beta-catenin  degradation complex,  thereby

resulting  in  redirection  and  accumulation  of  beta-catenin  in  the  nucleus.  Consequently,  this

accumulation triggers transcription of Wnt target genes and expression of the CSC phenotype

(33).  

For example, Vermeulen et al.  has shown that Wnt signaling activity is implicated in

colon  cancer  CSCs  and  is  regulated  mainly  by  myofibroblasts  surrounding  the  tumor

microenvironment (34). This report also describes how non-CSCs can be reprogramed to express

CSC markers  and  regain  tumorigenic  capacity  in  response  to  myofibroblast-derived  factors

which enhance Wnt signaling activity.  In  another important study,  Howe et al.  demonstrated

Twist  upregulation  in  murine  mammary tumors  in  response  to  Wnt1  expression  which  then

promoted epithelial-mesenchymal transition (EMT)-like processes in an autocrine and paracrine

manner  (35). EMT, the transitional process that allows polarized,  immotile epithelial  cells to

transform  to  motile  mesenchymal  cells,  has  been  linked  to  cancer  invasion  and  metastasis
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formation (36). In addition, important overlap has been established between EMT and the CSC

phenotype  (for  example,  overexpression  of  Twist  and  Snail  induces  EMT and  induces  the

expression  of  CSC  markers),  reinforcing  the  premise  that  CSC  targeting  is  anticipated  to

translate to meaningful clinical benefits in cancer patients  (22,  23,  36). Ultimately,  however,

advances in understanding the biology of CSCs and methods to target them will benefit from the

development  of  a  more  robust  and  clear-cut  immunophenotypic  characterization  and

classification of tumor subpopulations, especially those with CSC characteristics. 

Cancer Stem Cell Validation

Identifying potential  subsets of CSCs requires immunophenotyping of the bulk tumor

population using cell sorting by flow cytometric approaches or using alternative cell separation

techniques such as magnetic beads linked to antibodies or both. Once “CSC” subsets have been

separated from the bulk tumor, validation is commonly performed by injecting cells into the non-

obese  diabetic-severe  combined  immunodeficient  (NOD-SCID)  mice  lacking  a  functional

IL2RG chain (NSG or NOG) mice to confirm the ability of these cells  to initiate tumors  (7).

Further assessment of the CSC phenotype can be characterized by the ability of the isolated cell

population to closely mimic the tumorigenic characteristics of the tissue of origin.  Even though

in vivo models are the closest biological representation to elucidate tumor biology and function,

these models may also be flawed because injecting CSCs into a new tissue location may fail to

precisely recapitulate the environment of those tumor cells in the original tumor (37). 

Tumor sphere formation and 3-D culture techniques are other in vitro assays commonly

used in parallel with xenograft models to validate the tumorigenic capacity of CSCs (38). In both

in  vitro and  in  vivo models,  cells  are  sorted  from  the  overall  tumor  population  based  on

individual markers or a panel of them, and CSCs are either transplanted into animal models at
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different concentrations or allowed to aggregate as spheroids/organoids in low attachment culture

conditions. Although immortalized cell lines grown in adherent culture conditions represent a

useful tool to elucidate tumor formation either in  in vivo or  in vitro  culture systems, a major

disadvantage of using cell lines is the inherent use of long term culture conditions in which cells

lines are maintained. These artificial conditions lack key microenvironmental factors found in the

native tumor environment, thereby causing significant phenotypic differences in the cells in these

systems. However, there still can be valuable information obtained from interrogating cell lines

since  they  can  allow  for  rigorous  testing  of  possible  pharmacological  and/or  physiological

outcomes involved in  primary  tumors,  recognizing that  mechanistic  data  obtained from cell

culture assays may not accurately or completely recapitulate the heterogeneity and/or epigenetic

phenomenoma of other more complex tumor models. 

Primary tumor/ short term culture lines (PL) may represent an improved alternative to

using conventional cancer cell lines as PL are directly isolated from primary tumors and kept in

culture for a shorter period compared to cell lines. The shortcoming of using PL is the potential

for rapid phenotypic loss of epigenetic and microenvironmental expression patterns ascribed to

in vitro  culture conditions. Hence, maintaining PL in a congruent phenotype concomitant with

the parent tumor may be a challenge, but the biological responses observed with PL, including

the persistence of a CSC population, may be more relevant in these studies, especially when

trying to extrapolate therapeutic effects of novel therapies. Moreover, primary tumor/ patient-

derived xenografts (PDX) may help to further overcome the limitations associated with the use

of cell lines and PL, especially with respect to studies of CSC biology and immune targeting

(37). 

CSC Biology in Solid Tumors
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The concept of the CSC niche in solid tumors has also been extensively modeled on

parallel studies of non-neoplastic embryonic and pluripotent stem cells. It has been extensively

documented  that  normal  stem  cells  are  contained  within  a  “niche”  that  provides  specific

signaling through cell-to-cell contact, extracellular matrix, and paracrine/autocrine signals that

maintain and protect stem cells. Similarly, it has been proposed that CSCs may be contained

within a similar niche that nurtures CSCs and may also be responsible for promoting metastasis

and tumor progression via cell-cell signaling and promotion of EMT (7). Importantly, there is

evidence that a CSC-specific “niche” is also involved in promoting CSC quiescence, fostering

immune evasion,  and providing signals  for therapeutic  resistance  (39).  The foremost  factors

contributing to  the tumor microenvironment as well  as the CSC “niche” include the stroma,

which is generally composed of a complex mixture of malignant and not malignant cells such as

blood endothelial cells (BEC), lymphatic endothelial cells, fibroblasts, mesenchymal cells and

other immune-associated cells (Figure 1). Other important factors having an effect on CSC and

non-CSC  behavior  include  biochemical  signaling  defined  by  hypoxic  conditions  and  pH

gradients within the tumor (40). These are all important issues to consider when evaluating novel

treatments to  target  CSCs,  such as  natural  killer  (NK) cell  immunotherapy,  since BECs,  for

example, have been implicated in creating a suppressive environment for T cells via secretion of

soluble CD137 (41) with resultant inhibitory effects on NK cells and macrophages (42).

Overview of Natural Killer cell biology

Natural  killer  (NK)  cells  are  classically  described as  innate  lymphoid  cells  with  the

ability to kill virally-infected or malignantly-transformed cells in an major histocompatibility

complex  (MHC)-I  unrestricted  manner.(43) However,  an  evolving  picture  of  NK  cells  is

emerging  highlighted  by  diverse  subsets  with  different  physiology  and  effector  functions
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including  cytotoxicity,  cytokine  production,  and  immune-editing(44).  Key  studies  have

demonstrated that NK cells are significantly more complex and more heterogeneous than the

classic  view of  NK cells  suggests  (45).  In  fact,  the  plasticity  and heterogeneity of  NK cell

biology likely  underlies  the  difficulty  to  date  of  successfully  translating the  promise  of  NK

immunotherapy to the clinic  (46,  47).  Moreover,  despite  the traditional  view of NK cells  as

innate  immune cells,  there is increasing evidence to  support  the concept that NK cells have

features of immunological memory, such as persistence, reactivation, and perhaps the ability to

respond to specific antigenic stimuli  (48). Similarly, Romee et al. have shown that short-term

cytokine stimulation of human NK cells with combinations of IL-12, IL-15, and IL-18 engender

“memory-like” NK cells with increased survival and effector functions, suggesting that this is a

promising approach for enhanced NK efficacy in cancer immunotherapy (49, 50). Additionally,

North and colleagues demonstrated that human NK cells can be “primed” by tumor cells rather

than  cytokines  (51).  Although  the  cytotoxicity  of  these  “primed”  NK  cells  was  critically

dependent on CD69 expression, their activity was propagated even in the presence of inhibitory

signals, such as KIRs.

NK  cells  share  important  homology  with  T  lymphocytes,  particularly  cytotoxic  T

lymphocytes. Morphologically, in an unactivated state, NK cells resemble other lymphocytes,

but when they are activated, they enlarge and manifest intra-cellular granules. Although NK cells

share a common hematopoietic precursor with T cells and share common features such as the

release of perforin/granzyme for cytotoxic function, NK cells mature in the bone marrow and

periphery rather than in the thymus. Importantly, NK cells also lack antigen specificity. Instead,

NK cells express of an array of germline-encoded cell surface receptors,  and these receptors
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enable NK cells to bind many ligands and co-receptors which differentially affect their function.

(52)

Human NK cells are typically characterized by the expression of CD56 (a glycoprotein

important for cell-cell adhesion) and an absence of T cell markers, such as CD3 or the T-cell

receptor.(53) NK subsets  can  be  further  classified  into  two  broad categories,  CD56bright and

CD56dim, based on the relative intensity/expression of this cell surface protein when analyzed by

flow cytometry. CD56dim cells comprise the majority (approximately 90%) of circulating NK

cells(54).  Although  these  cells  are  highly  cytotoxic  to  target  cells,  they  produce  negligible

amounts of cytokines when compared to CD56bright cells (predominantly IFN-γ, TNF-β, IL-10,

IL-13,  and  GM-CSF).  In  addition,  CD56dim NK  cells  characteristically  express  killer-cell

immunoglobulin-like receptors (KIR) as well as the Fcγ-receptor, CD16.  The CD56dim CD16+

subset  is  considered  a  more  cytotoxic  NK  subset,  in  part  because  of  lower  expression  of

inhibitory KIR receptors combined with sensitization by CD16 expression to cells bound with

antibody. Conversely, CD56bright NK cells comprise approximately 10% of circulating NK cells in

the blood, but are more abundant in lymph nodes and other solid tissues, such as the liver, spleen,

and intestine (54). Due to their localization in lymph nodes combined with their high cytokine

production, a growing consensus is emerging that CD56bright cells function as immune regulators,

for example by modulating dendritic cell antigen presentation and by priming T cells toward a

Th1 phenotype.(43)

Overall,  the activity of NK cells is governed by the expression of diverse cell surface

receptors which not only affect their effector functions but also their ability to migrate to sites of

infection/tumor  formation.  As  a  general  rule,  NK  cells  express  inhibitory  receptors  (KIRs)

capable of binding self-MHC in order to become fully responsive, while NK cells not expressing

11



these markers remain hyporesponsive.  However,  this  hyporesponsive state  can be overridden

upon activation, and as a result, unlicensed NK cells can contribute to anti-tumor effects under

the proper conditions (such as in  cancer  immunotherapy when cultured NK cells  are  highly

activated by pharmacologic doses of cytokines such as IL-2 and IL-15). KIR expression patterns

in donor NK cells have also proven to be critical for hematological reconstitution and anti-tumor

responses in the transplant setting.(55)

While current evidence suggests that the expression patterns of KIR inhibitory receptors

are stochastic, other NK inhibitory receptors such as CD94/NKG2A and CD300a are frequently

constitutively expressed (48). Similarly, activation receptors such as NKG2D, NKp30, NKp44,

and NKp46 tend to be ubiquitously expressed, especially on CD56dim NK cells. In addition, other

activation receptors including DNAM-1, NKG2C/CD94, and 2B4 have also been implicated in

the activation of NK cells. The ligands for key NK activation receptors (such as NKG2D) are

MHC-Ib molecules (e.g. MICA and MICB) which are upregulated during times of cellular stress,

including rapid proliferation,  viral  infection,  and cancer  (56).  For example,  NKp30 has been

shown to recognize the CMV pp65 protein, and both NKp44 and NKp46 have been observed to

bind the influenza protein, hemagglutinin (57). It is important to recognize that there are many

NK activating receptors whose ligands are not MHC-Ib molecules.

Perhaps the most potent stimulator of NK cells is the CD16 receptor, FcγRIIIA. Using

CD16,  NK cells  are  able  to  recognize  IgG  antibodies  bound  to  target  cells  and  lyse  these

antibody-coated  cells  through  a  process  known  as  antibody-dependent  cellular  cytotoxicity

(ADCC).  In this  way,  NK cells,  along with the  complement system, can cooperate  with the

humoral immune response to eliminate pathogenic or diseased cells, highlighting a potential role

for NK cells in cancer immunotherapy.
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NK immunotherapy as cancer treatment

Although the role of NK cells in cancer surveillance has been debated, increasing data

from both mouse  and human studies  suggest  a  significant  role  in  this  regard.  For  example,

C57BL/6 mice depleted of both NK and NKT cells by administration of the NK1.1 monoclonal

antibody are two to three times more susceptible to methylcholanthrene-induced tumor formation

than non-depleted controls.(58) In  addition,  beige  mice which are known to harbor  NK cell

deficiencies (among other immunological and biochemical lesions) demonstrate a significantly

increased  incidence  of  spontaneous and carcinogen-induced tumors  compared with  wildtype

mice.(59, 60) Conversely, ectopic expression of Rae1, a mouse NKG2D ligand, promotes NK-

cell-mediated rejection of tumors in other mouse tumor models.(61) 

In humans, patients with immunodeficiencies related to NK cells have been shown to

harbor an increased risk of malignancy, reinforcing the concept that NK cells contribute to the

prevention  and/or  early  phases  of  cancer  elimination.  For  example,  patients  with  Chediak-

Higashi  syndrome,  an  autosomal recessive disorder  characterized by abnormal NK cytotoxic

function similar to that in beige mice, have a 200-fold increased risk for developing cancer.(62)

Similarly, biallelic mutations of the perforin gene have been associated with the development of

lymphomas. In patients diagnosed with hepatitis C cirrhosis and end-stage liver disease, low NK

cell activity (as measured by IFN-γ production and ex vivo cytotoxicity against K-562 cells) has

been associated with an increased risk of developing hepatocellular carcinoma.(63) Moreover,

reduced NK cell function in patients with established malignancies, especially hematologic ones,

has been observed to correlate with an increased risk of recurrence after treatment and increased

cancer-related mortality.(64-68) Altogether, these studies underscore a clinically-relevant role for

NK cells in tumor immunosurveillance in human patients. 
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Despite their intrinsic ability to kill tumor cells, manipulating NK cells in therapeutic

settings has proved challenging (69). Adoptive transfer of lymphocyte activated killer cells, or

LAK  cells,  was  first  pioneered  by  Rosenberg  et  al.  in  the  1980s.(70,  71) In-depth

characterization revealed that NK cells were a dominant component of LAKs, laying important

groundwork for subsequent cell-based studies focusing more exclusively on NK cells. Important

work by Rosenberg and others, such as Miller et al., subsequently established key principles for

clinical studies of NK immunotherapy, including the need for in vivo cytokine support (such as

IL2 with risk of toxicity) to support function and the need for lymphodepleting chemotherapy in

order to allow for in vivo expansion of donor cells.(72, 73)

As NK cells are found primarily in the blood and rarely infiltrate solid tissue tumors, NK

immunotherapies  have  been most  successful  in  hematopoietic  malignancies.(74) Early  phase

clinical trials have evaluated the efficacy and response rates of allogeneic NK cells in diverse

solid tumors, including breast, ovarian, and bronchogenic carcinoma. Although these trials have

shown NK adoptive therapy to be relatively safe, the results in these trials have been overall

disappointing.(75) However, the dramatic responses observed using NK therapy in hematologic

malignancies, including complete remission in 26% of AML patients, underscores the potential

therapeutic benefit of NK transfer in solid malignancies.(73) 

Additionally, significant experimental evidence exists in support of a role for NK cells in

suppression of metastasis formation. In a landmark paper, Kim et al. evaluated the contribution

of NK cells to in vivo tumor formation in transgenic mice which could be selectively depleted of

NK cells but developed functionally normal B, T, and NK/T cells.(76) The authors observed

significantly greater liver and lung metastases in animals lacking NK cells, and this effect was

only partially  rescued by NK/T and T cells,  suggesting a  fundamental  role  for  NK cells  in
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prevention  of  metastasis.  More  recently,  Lopez-Soto  et  al.  demonstrated  a  provocative  link

between the acquisition of EMT characteristics in human colon cancer cell lines and archived

human colon cancer samples and the upregulation of activating NK ligands,  including MHC

class I chain-related molecules A and B (MICA/B), providing further evidence in support of NK-

mediated immune surveillance of pre-metastatic tumors with possible preferential targeting of

CSCs.(77) 

Furthermore, it is important to recognize that there are several key advantages to using

NK cells for cancer immunotherapy. First, NK cells do not require the expression of a specific

antigen expressed on a given HLA allotype. Cancer therapies which target a specific antigen,

such  as  monoclonal  antibodies  or  vaccines,  are  dependent  on  the  presence  of  that  antigen.

Paradoxically, while these therapies may be highly effective and achieve long-term responses

when that antigen is present, antigen-shedding and tumor escape variants may lead to eventual

resistance to therapy and tumor progression.(78) Second, NK cells can be easily isolated and

expanded ex vivo which allows for their use in adoptive or autologous cell therapies. Third, since

NK cells in the majority of cases have a shorter lifespan than clonally-expanded T cells, concerns

about over-activity, “off-tumor” effects, and need suicide vectors are minimized.(79)

 In addition, NK cells have been long known for their unique ability to reject allogeneic

hematopoietic stem cells, and this observation has proved fruitful in studies on both graft-versus-

leukemia and graft-versus-host disease in the setting of bone marrow transplantation.(80, 81)

Interestingly, recent data by Perez-Cunningham et al. have demonstrated that NK cells can also

reject  embryonic  stem  cells  in  an  NKG2D-dependent  manner.(82) Given  the  previously

mentioned similarities between embryonic stem cells and CSCs, data such as these have led our
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group and others to an underlying hypothesis that NK cells can selectively identify and lyse

CSCs (Figure 2).(83, 84)

NK targeting of CSCs

Although previous studies have suggested that CSCs are less immunogenic than non-

CSCs as evidenced by down-regulation of MHC class-I (MHC I) expression (85, 86), increasing 

reports have demonstrated that CSCs may be preferentially susceptible to NK cell targeting. 

Tallerico et al., for example, demonstrated that in models of colorectal cancer, CSCs showed 

increased susceptibility to NK killing (87). The vulnerability of CSCs to NK attack was 

associated with upregulation of the activating natural cytotoxicity receptors, particularly NKp30 

and NKp44. In addition, Tallerico and colleagues observed lower levels of MHC class I 

expression on CSCs compared to non-CSCs, indirectly suggesting that the differences observed 

in MHC class I expression were linked to effective targeting of CSCs by NK cells. 

Similarly, Castriconi et al. reported that glioblastoma-derived CSCs were susceptible to 

NK cell cytotoxicity.(88) The authors used fresh tumor specimens from glioblastoma patients to 

establish PL which displayed classical neural stem cell features. Interestingly, these neural-CSCs 

were resistant to unactivated NK cells, but were highly susceptible to both allogeneic and 

autologous NK killing in co-culture models after pre-treatment with IL-2 and IL-15. The authors 

also demonstrated low or absent expression of MHC class I molecules on their glioblastoma-

derived CSCs, further supporting downregulation of these NK-inhibitory ligands in the 

mechanism of NK targeting of CSCs. Additionally, increased expression levels of DNAM-1 

ligands poliovirus receptor (PVR/CD155) and Nectin-2 were observed on the tumor-derived 

CSCs grown in PL, although the lack of non-CSCs or mixed cell populations for comparison of 

the CSC-specific NK effects was a limitation of this study (88). 
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In another pre-clinical study, Pietra et al. reported that when melanoma cell lines were 

exposed to IL-2 activated allogeneic NK cells, both CD133- and CD133+ populations showed 

sensitivity to NK cell cytotoxicity possibly mediated by the DNAM-1 ligands Nestin-2 and PVR

(89). Yin et al. reported that breast cancer CSCs showed sensitivity to IL-2 and IL-15 activated 

NK cells, and these preferential effects were likely mediated by increased expression of the 

NKG2D ligands ULBP1, ULBP2 and MICA on CD44+CD24- human breast CSCs since blocking

assays inhibited these effects (90). 

Another important component of NK targeting of CSCs occurs following pre-treatment of

bulk tumor with cytotoxic therapies to eliminate non-CSCs. In our laboratory, we have observed 

an increased frequency of CSCs post radiation (RT) and targeted therapy in cell line and 

xenograft models, as well as with primary breast, pancreas, and sarcomas analyzed immediately 

after surgical resection.(19, 91, 92) The enrichment in CSCs following anti-proliferative 

therapies was mirrored by an increased expression of the NKG2D stress ligands MICA/B on 

surviving CSCs, suggesting that cytotoxic therapy (especially RT) also sensitizes CSCs to NK 

attack. In addition, we observed that pretreatment of tumor-bearing mice with local RT prior to 

NK transfer resulted in significantly longer survival (92). These reports support the hypothesis 

that NK cells could potentially be aimed to specifically target CSCs upon strategic combination 

with other cytoreductive therapies. However, it would be pivotal to take into consideration 

immunosuppressive factors found in the tumor microenvironment that are known hinder or 

neutralize the cytotoxicity effect of NK cells such as TGF-, IL-6, IL-8, or IFN-. 

Despite the CSC targeting capability of  NK cells, the complexity of the tumor 

microenvironment where CSCs reside is an important barrier to overcome in order to develop 

effective therapies targeting CSCs. Kozlowska et al., for example, demonstrated that increased 
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secretion of the proinflamatory cytokines IL-6 and IL-8 in the presence of decreased secretion of 

IFN- inhibited tumor growth and blocked NK cell mediated lysis of glioblastoma multiforme 

CSCs (93). Furthermore, Wang et al. observed evasion of immunosurveillance and reduction of 

NK killing of breast cancer CSCs through shedding of MICA and MICB by CSCs and apparent 

CSC recruitment of regulatory T cells to promote an immune privileged state.(94, 95) Kryczek et

al. observed that IL-22 promoted a CSC phenotype in both pre-clinical and patient-derived 

models and that higher IL-22 levels were associated with worse survival outcomes.(96) 

Importantly, IL-22 is produced by NK and T cells, suggesting that CSCs may have multiple 

mechanisms for inducing immune evasion. 

Another important strategy to improve the targeting capabilities of NK cells in cancer 

therapy, especially toward refractory CSCs, is antibody-dependent cellular cytotoxicity (ADCC).

Over the last 30 years, intensive research and development have resulted in the generation of 

several monoclonal antibodies that may be used to target CSCs. Some of these antibodies are 

being designed to target CSCs based on previously validated phenotypic markers including  

CD44, CD24, CD133, and ALDH-1 (97). Although NK immunotherapy represents an exciting 

approach to target CSCs, to date there are no clinical trials in human patients which are currently 

testing this hypothesis either alone or as part of a combination approach. At our institution, we 

are collaborating with the School of Veterinary Medicine to conduct a phase 2 canine clinical 

trial evaluating intratumoral injection of NK cells following palliative RT for dogs with 

appendicular osteosarcoma (Figure 3). Although canine NK cells have been incompletely 

characterized in the literature, and few studies have utilized adoptive NK transfer in canines, 

expanded canine NK-like populations have been isolated using immunomagnetic negative 
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selection with anti-CD5 antibody to isolate a CD5dim/CD3+/CD8+/TCRαβ/γδ population (98, 

99).

As an intermediate between murine studies and a human clinical trial, canines offer an 

excellent translational model for human clinical trials because their tumors closely resemble 

those in humans, they have intact immune systems, and they present many of the same 

challenges faced in “scaling up” a cell-based therapeutic system.  In addition, there are added 

benefits of reduced time, expense, and regulatory hurdles of performing novel immunotherapy 

trials in  humans., 

Comparable to NK cells, γδ T lymphocytes represent another MHC-independent 

immunotherapy approach which has demonstrated preferential CSC targeting activity in solid 

tumor models. Numerous parallels exist between NK cells and γδ T cells, including potent MHC-

unrestricted cytotoxicity and recognition of NKG2D- target ligands. For example, Todaro et al. 

demonstrated that the Vγ9Vδ2 subset of γδ T cells could be efficiently sensitized to CSC killing 

using zoledronate in ex vivo models of colon cancer, supporting further investigation of γδ T 

cells in novel combination immunotherapy protocols (100).

Expert Opinion

It is increasingly clear that tumor heterogeneity is a major barrier in the successful 

treatment of solid tumors, and subpopulations of cells are present which are genetically and 

epigenetically diverse. The cancer stem cell hypothesis postulates that CSCs are responsible for a

substantial component of this tumor heterogeneity, and CSCs has been identified in nearly all 

human and mouse malignancies. In addition, CSC sub-populations have been linked to 

metastasis and resistance to conventional cytoreductive therapies, especially after initial 

responses to treatment. 
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The ability of the immune system to recognize and eradicate transformed cells is the 

central rationale behind the application of immunotherapy for cancer. Although major recent 

advances have prominently established cancer immunotherapy as the “fourth arm” in cancer 

treatment, obstacles still remain, including both innate and acquired resistance to 

immunotherapy. Pre-clinical studies suggest that NK immunotherapy holds promise in attacking 

the heterogeneity of cancers, including CSCs. Decades of research has highlighted the potential 

of NK cells to eradicate transformed cells, but successful translation of this therapy to the clinic 

has been slow. Barriers to successful NK immunotherapy include limited NK 

persistence/longevity in vivo, inadequate homing to tumor sites, and 

hyporesponsiveness/dysfunction of NK cells, especially autologous NK cells, in the setting of 

malignancy.(69) Targeting of CSCs with NK immunotherapy represents a novel approach to 

circumvent many of these barriers.

Autologous and allogeneic cytokine-activated NK cells are capable of targeting stem-like 

tumor cells both in vitro and in vivo, but successful translation of these laboratory observations to

the clinic has yet to be realized. Future studies will need to evaluate the immunological impact of

NK cell killing of stem-like cells as well as the nature of these tumor-host interactions in 

immunocompetent models. Should targeting of CSCs by NK immunotherapy prove to be 

feasible for even a subset of solid malignancies patients, then this approach will have significant 

clinical impact. Therapeutic trials in immunocompetent large animal models, such as dogs, is an 

innovative platform to speed translation of novel NK immunotherapy approaches to the clinic.

Moreover, although unproven, it is reasonable to hypothesize that NK targeting of CSCs 

in a combination approach treating both CSCs and non-CSCs could lead to sustained therapeutic 

results. In fact, it may be possible to use NK targeting of CSCs to initiate and amplify adaptive T 
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cell-mediated responses. While the results of NK cell monotherapy in solid tumors to date has 

been modest, ongoing studies point to a novel application of NK cells in combination with other, 

more traditional therapies. As our understanding on the nature of the stem-like or CSC 

subpopulations continues to evolve, so too will our ability to apply immunotherapy more 

effectively.

Ultimately,  the  development  and use  of  NK cell  based treatments  aimed at  targeting

residual  disease,  and promoting anti-tumor immunity is advancing from preclinical  proof-in-

concept to clinical reality. While previous clinical trials have focused on the NK cell as a sole

effector, new trials are being designed to combine NK cell effector functions with traditional

treatments  in  order  to  combat  the  therapeutic  resistance  that  is  a  hallmark  of  CSCs.  These

studies, and others like it, will serve as key translational steps allowing clinicians and researchers

to gain valuable insights into how NK cells can be used to target CSCs in animal models which

more  closely  mirror  the  human  condition,  a  factor  which  is  critical  for  understanding  the

behavior of CSCs. Indeed, as our understanding of NK cell and CSC biology improves, so too

will our ability to identify vulnerabilities inherent to CSC biology which can be exploited by the

effector functions of NK and other cell-based immunotherapies.  
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