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A Minimum Power Divergence Class of CDFs  
and Estimators for Binary Choice Models  
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ABSTRACT 

The Cressie-Read (CR) family of power divergence measures is used to identify a new 
class of statistical models and estimators for competing explanations of the data in binary 
choice models.  A large flexible class of cumulative distribution functions and associated 
probability density functions emerge that subsumes the conventional logit model, and 
forms the basis for a large set of estimation alternatives to traditional logit and probit 
methods.  Asymptotic properties of estimators are identified, and sampling experiments 
are used to provide a basis for gauging the finite sample performance of the estimators in 
this new class of statistical models.  
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1.  INTRODUCTION 

 Traditionally, the estimation and inference approaches used in empirical analyses 

of binary choice converts a fundamentally ill-posed inverse problem into a well-posed 

one that can be analyzed via conventional parametric statistical methods.  The typical 

distributional choice in empirical analyses of binary choice models (BCMs) has been 

either the probit or logit cumulative distribution function (CDF), followed by maximum 

likelihood estimation and inference applied to the specific parametric statistical model 

chosen.  The negative statistical consequences associated with following traditional 

parametric estimation and inference approaches when the assumed statistical model, such 

as the probit or logit, is suspect are well-known.  

 In attempts to mitigate model misspecification issues, a wide and varied collection 

of semiparametric models and estimators for the BCM have arisen in the literature (e.g., 

Ichimura (1993); Klein and Spady (1993); Gabler, Laisney, and Lechner (1993); Gozalo 

and Linton (1994); Manski (1975); Horowitz (1992); Han(1987); Cosslet (1983); Wang 

and Zhou (1993)). These semiparametric methods tend to be of either the “regression-

estimating equation” or “maximum likelihood” variety, each utilizing some form of 

nonparametric estimate of the probability that the binary choice variable takes the value 

1iy = , conditional on the outcome of explanatory or response variables. On the basis of 

asymptotic performance comparisons among those semiparametric estimators for which 

asymptotics are tractable and well-developed, it is found that many of the estimators do 

not achieve n  consistency. For those that do, the estimator of Klein and Spady is a 

dominating estimator in the sense of achieving the semiparametric efficiency bound. 

However, because 1) intricate regularity assumptions are often necessary to achieve 

semiparametric performance results, 2) unknown population distributions and/or 

distribution scores must be replaced with stochastic approximations when forming 

“optimal” estimating equations or likelihood functions underlying the definition of 

estimators, 3) one must often choose values of tuning, bandwidth, and/or trimming 

parameters in the specification of estimators, and 4) finite sample performance can be 

quite variable relative to what asymptotic results suggests about performance in infinite 

samples, it is generally not possible to definitively rule out many of the semiparametric 

alternatives when considering empirical analyses of data underlying BCMs. 
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 In this paper we investigate information-theoretic (IT) methods for addressing 

both model specification uncertainty and econometric estimation aspects of BCM 

analyses.1 The approach leads to a wide and flexible new class of CDFs whose members 

represent the full set of possible probability distributions that are both consistent with a 

nonparametric specification of the binary choice model and that are minimally power 

divergent from any reference distributions for the Bernoulli probabilities. The 

corresponding statistical models and associated estimators for the BCM represent a large 

set of alternatives to traditional logit and probit methods as well as existent 

semiparametric methods of analysis. While the class of statistical models is derived from 

one of the most general representations of the BCM possible, even with few assumptions 

relating to econometric model structure the regularity conditions required for establishing 

n  consistency as well as asymptotic normality are not stringent, and the estimators are 

tractable to calculate even for large sample sizes. Consistent estimates of the asymptotic 

covariance matrices of the estimators are straightforwardly determined, enabling the 

usual asymptotic chi-square tests of hypotheses vis-à-vis functions of model parameters. 

The new class of probability distributions is interesting in its own right, and has potential 

for use in a wide array of statistical models outside of the BCM context.   

 

1.1. The Parametric Model Base  

  Assume that, on trial 1, 2, , ,i n= …  one of two alternatives is observed to occur for 

each of the independent binary random variables , 1,2, , ,iY i n= …  with , 1,...,ip i n=  

representing the probabilities of observing successes ( 1iy = ) on each respective trial. The 

value of ip  is represented as  

  ( ) ( )1|i i i ip P y F= = =x x β  (1.1) 

                                                 
1 The recent intriguing work of Smith (2007) applies an information theoretic formulation to conditional 
moment-based models with specification and estimation objectives similar to those of the current paper. 
Smith’s formulation is related to the traditional context of empirical likelihood (EL) methodology in which 
sample observations are weighted differentially by what amounts to empirical probability or convexity 
weights.  Thus his work uses a locally-weighted form of the divergence criterion. In contrast the 
formulation in this paper is not of the typical EL variety, and rather applies divergence measures to 
probability distributions within, as opposed to across sample observations.   
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where ( )F i  is some cumulative probability distribution function (CDF), and ix , i = 1,..., 

n, are independent outcomes of  a ( )1 k×  random vector of explanatory variables2. When 

the parametric family of probability density functions underlying the binary choice model 

is assumed known (e.g., logit or probit), one can define the specific functional form of the 

log-likelihood and utilize traditional maximum likelihood (ML) approaches as a basis for 

estimation and inference relative to the unknown β  and the response probabilities 

( )iF x β .  If the particular choice of the parametric functional form for the distribution is 

also correct, then the usual ML properties of consistency, asymptotic normality, and 

efficiency hold (McFadden (1974, 1984), Train (2003)). See Green (2007) for a review of 

conventional binary choice models and a literature review.   

 In contrast to historical empirical practice, we assume that the CDF in (1.1) is 

neither based on, nor restricted to, the conventional logit and probit parametric families 

and suggest a new and flexible class of statistical models, CDFs, and associated 

estimators and inference procedures that can be used to recover estimates of the Bernoulli 

probabilities.  Sample information is represented in a very general and robust way 

through nonparametric conditional expectations or regression functions, and sample 

moments based on them.  The new class of CDFs that results is based on the minimum 

power divergence (MPD) principle for estimating the nonparametric regression functions. 

Estimation based on this new class of CDFs is implemented by either solving an 

extremum problem involving the Cressie-Read family of power divergence measures, or 

by applying familiar Maximum Likelihood or Nonlinear Least Squares methods.   

 

1.2 Organization of the Paper 

 In section two, a nonparametric regression representation of the binary choice 

model is formulated and used to define a generally applicable conditional moments 

representation of sample information. In section three, a minimum power divergence 

criterion is applied to identify a new class of CDFs whose members are consistent with 

the nonparametric specification of the binary choice model and are minimally power 

                                                 
2 We adopt the convention that capital letters denote random variables and lower case letters denote 
observed values or outcomes. An exception will be the use of ε to denote a random variable, and e to 
denote an outcome of the random variable, and the use of F and f to denote a CDF and PDF respectively. 
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divergent from reference distributions for the Bernoulli probabilities.  General properties 

of this class of CDFs are established. In section 4 the minimum power divergence 

principle is applied directly to estimate unknowns in the binary choice models, followed 

by the development of asymptotic sampling properties of the estimators together with 

hypothesis testing procedures. Maximum likelihood and nonlinear least squares methods 

are suggested in section 5 to internalize the choice of the optimal MPD-distribution with 

which to represent conditional Bernoulli probabilities in the binary choice model. Section 

6 provides Monte Carlo sampling results to illustrate the finite sampling performance of 

the estimators. Promising new directions for research and applications based on this new 

class of statistical models are delineated in the concluding section of the paper.     

 

2.  Nonparametric Regression Representation of Binary Choices  

 Seeking to minimize the use of model specification information that the applied 

econometrician generally does not possess, we begin by assuming that the 1n× vector of 

Bernoulli random variables, Y, can be modeled by the universally applicable stochastic 

representation 

  = +Y p ε , where ( )E = 0ε  and ( )
n

i=1
0,1∈ ×p  (2.1) 

The specification in (2.1) implies only that the expectation of the random vector Y is 

some mean vector of Bernoulli probabilities p , and that outcomes of Y are decomposed 

into their means and noise terms.  

 The Bernoulli probabilities in (2.1) are assumed to depend on the values of 

explanatory variables contained in the ( )n k× matrix X, whose ith row is iX , through 

some general conditional expectation or regression relationship 

( ) ( ) ( ) ( ) ( )1 1 2 2p | p | ... | pn n
′= ⎡ ⎤⎣ ⎦E Y | X = p X X X X , where the conditional orthogonality 

condition ( )( ) |E ⎡ ⎤′ − =⎣ ⎦X Y p X X 0  is implied.  It should be emphasized that the 

functional form of the relationship ( )p X  is not assumed known and is left unspecified at 

this point, underscoring the substantial generality and nonparametric nature of this model 

assumption. An application of the double expectation theorem leads to the unconditional 

orthogonality condition   
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  ( )( )E ⎡ ⎤′ − =⎣ ⎦X Y p X 0 . (2.2) 

The information employed to this point represents a minimum set of statistical model 

assumptions for representing the unknown Bernoulli probabilities in the binary choice 

model.  This formulation indicates that only some general regression relationship exists 

between regressor variables X and Y. 

 

3.  Minimum Power Divergence Class of CDFs for the Binary Choice Model 

 Given sampled binary outcomes from (2.1), representation of sample information 

in the form of the k n<  empirical moments, ( )1n− ′ =x y - p 0,  connects the data space to 

the parameter space.  At this stage only an infinite feasible set of probabilities are 

identified and in order to proceed an estimation criterion is needed to address the 

undetermined nature of ( )n k−  of the elements in p. In this context instead of restricting 

the feasible set by some ad hoc functional rule, we determine the Bernoulli probabilities 

by minimizing the generalized Cressie-Read (CR) power divergence measure (Cressie 

and Read (1984); Read and Cressie (1988); Mittelhammer, et al., (2000)). In particular, 

for given ( )and 0,1 , 1,...,iq i n∈ =γ , 

  

( )

( )1, 1,...,

11 1 1
1

min
1i

i i
i i

n i i

ip i n

p pp p
q q

=
=

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞−⎜ ⎟⎜ ⎟ ⎜ ⎟− + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
+∑

γ γ

γ γ
 (3.1) 

  s.t. ( )( )1n− ′ − =x y p 0  and  ( )0,1 , 1,...,ip i n∈ =  (3.2) 

The summand in the estimation objective function (3.1) refers to the CR power 

divergence of the Bernoulli probabilities { }1i ip , - p  from some given reference Bernoulli 

distribution{ }1i iq , - q . We address the specification of the reference distribution ahead.  

The constraints in (3.2) represent the empirical implementation of the moment 

condition ( )( )E ′ =X Y - p 0  as well as conditions for the 'ip s  to be interpretable as 

probabilities. There may be additional sample and/or nonsample information about the 

data sampling processes that is known and, if so, this type of information can be imposed 

in the constraint set of the MPD problem. The overall implication of the extremum 

formulation (3.1) – (3.2) is that the value of p is chosen from among the infinite number 
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of solutions, consistent with the sample moment equations ( )1n− ′ − =x y p 0 , so as to be 

minimally divergent from the reference distribution q.  Divergence is measured by the CR 

power divergence statistic. If q satisfies the moment conditions, so that ( )1n− ′ − =x y q 0 , 

then =p q . Otherwise, MPD is a shrinkage-type estimator, where the solution for p is as 

minimally divergent from q as the sample data, in the form of moment constraints, will 

allow (see Pardo (2006) for a recent discussion of the use of minimum divergence 

measures for estimation in some statistical model contexts). This estimation approach 

frees the analyst from the necessity of defining a particular fully-specified parametric 

distributional structure underlying the Bernoulli probabilities and thus reduces the likely 

possibility of statistical model misspecification.  Furthermore, this nonparametric 

formulation utilizes very general sample information along with reference probabilities 

that the Bernoulli probabilities will emulate as closely as the sample information permits. 

In the context of statistical model uncertainty the objective is to provide an estimation 

procedure that i) approximates the true underlying data sampling process well, ii) has 

good estimation and inference sampling performance and iii) improves upon traditional 

parametric approaches.   

 

3.1 The Class of CDF’s Underlying p 

 The Lagrange form of the divergence minimization problem (3.1)-(3.2), for given 

( )and 0,1 , 1,...,iq i n∈ =γ ,  is 

 ( )
( )

( ) ( )
1

11 1 1
1

,
1

i i
i i

n i i

i

p pp p
q q

L
=

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞−⎜ ⎟⎜ ⎟ ⎜ ⎟− + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ′ ′= + −
+∑p x y pλ λ

γ γ

γ γ
 (3.3) 

  s.t.   ( )0,1 , 1,...,ip i n∈ =  (3.4) 

where the premultiplier 1n−  on the moment constraints is henceforth suppressed. The 

'ip s  can be expressed as functions of the explanatory variables and Lagrange multipliers 

by solving first order conditions with respect to p, that are adjusted by the 

complementary slackness conditions of Kuhn-Tucker (1951) theory in the event that 
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inequality constraints are binding. The first-order conditions with respect to the ip  values 

in the problem imply  

  
i

i

1
1 0

0 for
01ln ln

1

i i

i i

i
i i

i i

p p
q qL

p p p
q q

⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞−⎪ ⎪⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎜ ⎟−⎪ ⎪ ≠⎝ ⎠ ⎝ ⎠ ⎧ ⎫∂ ⎪ ⎪⎝ ⎠= ⇒ =⎨ ⎬ ⎨ ⎬=∂ ⎩ ⎭⎛ ⎞⎪ ⎪⎛ ⎞ ⎛ ⎞−
− −⎜ ⎟⎪ ⎪⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

x

0

x

λ

λ

γ γ

γ

γ    (3.5)  

When 0γ ≤ , the solutions are strictly interior to the inequality constraints so that 

the inequality constraints are nonbinding. Accounting for the inequality constraints in 

(3.5) when 0γ > , the first-order condition in (3.5) and the complementary slackness 

conditions allows ip  to be expressed as the following function of ix λ  

( )i i

i

i

1, arg for 0
1

1arg ln ln for 0 (3.6)
1

1

1arg
1

0

i

i

i

i i
i

i i

i i

i i

i i

i i

p

p

p

p pp q
q q

p p
q q

p p
q q

γ γ

γ γ

γ γ γ

γ

γ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞−⎢ ⎥⎜ ⎟= − = ≠⎜ ⎟ ⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞−

= − = =⎢ ⎥⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎣ ⎦
⎧ ⎫
⎪
⎛ ⎞⎡ ⎤⎛ ⎞⎪ ⎛ ⎞ ⎛ ⎞−⎪⎜ ⎟⎢ ⎥⎜ ⎟= − =⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎝ ⎠⎣ ⎦⎝ ⎠⎪

⎪⎩

x x

x

x

λ; λ

λ

λ ( )( )
( )

1

1 1
i

1

for 0 and 1 ,

1

i

i i

i

q

q q

q

γ

γ γ

γ

γ

γ γ γ

γ

− −

−− − −

−−

⎧ ⎫≥⎪ ⎪ ⎪⎪⎪ ⎪ ⎪> ∈ − −⎨ ⎬
⎪ ⎪ ⎪
⎪ ⎪ ⎪≤ − −⎩ ⎭⎪⎭

x λ

 

A unique solution for ( )i ,ip q γx λ;  necessarily exists by the continuity and strict 

monotonicity of either ( ) 1
1

i i
i

i i

p pp
q q

γ γ

η
⎛ ⎞⎛ ⎞ ⎛ ⎞−⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

 or  ( ) 1ln ln
1

i i
i

i i

p pp
q q

η
⎛ ⎞ ⎛ ⎞−

= −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
 in 

( )0,1ip ∈ , for 0γ ≠  or 0γ = , respectively. Because of this strict monotonicity, ip  is a 

monotonically increasing function of ix λ , and ip  is also bounded between 0 and 1. This 

implies that the ( )i ,ip q γx λ;  functions can be legitimately interpreted as cumulative 

probability distribution functions (CDFs) on the respective supports for ix λ . The class of 

distributions defined via (3.6) characterize the unique set of distributions that are 



NewClassOfModelsForBinaryChoice-6-27-08 9

consistent with the nonparametric representation of the conditional moments and that are 

minimally divergent from any choice of reference distributions,q .  

 The CDFs in (3.6) are defined only as implicit functions of ix λ , for almost all γ . 

However, numerical representations of the functional relationship between ip  and ix λ  

may be determined rather straightforwardly because of the strict monotonicity of ip  in 

ix λ .  Explicit closed form solutions for the CDFs exist for ( )i ,ip q γx λ; on a measure 

zero set of γ  values that includes the set of all integers.  For example 

  ( )
( ) ( )( )

.52
i i

i ii

4 2 1 1
.5

; , 1 if2

.5

i

i

q

p q

⎧ ⎫⎛ ⎞⎡ ⎤+ − + −⎪ ⎪⎜ ⎟⎣ ⎦+ ≠⎧ ⎫⎪ ⎪⎜ ⎟− = ⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎩ ⎭⎝ ⎠⎪ ⎪
⎪ ⎪⎩ ⎭

x x

x xx

λ λ
0

λ λλ
= 0

 (3.7) 

  ( ) ( )
( ) ( )

i
i

i

exp
; ,0

1 exp
i

i
i i

q
p q

q q
=

− +
x

x
x

λ
λ

λ
 (3.8) 

  ( ) ( )( ) ( )( )
( )

i i i

1
; ,1 1 for 1 ,

0 1

i

i i i i i i

i

q

p q q q q q q

q

γ

γ γ

γ

−

− −

−

⎧ ⎫≥⎧ ⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪= + − ∈ − −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎪ ⎪≤ − −⎩ ⎭

x x xλ λ λ . (3.9) 

The integer values -1, 0, and 1 correspond, respectively, to the so-called Empirical 

Likelihood, Exponential Empirical Likelihood, and Log Euclidean Likelihood choices for 

measuring divergence via the Cressie-Read statistic.  When 0γ =  and the reference 

distribution is such that .5iq = , the functional form for ip  in (3.8) coincides with the 

standard logistic binary choice model. When 1γ = , the CDF in (3.9) subsumes the linear 

probability model. We underscore for future reference that the entire class of inverse 

CDFs exist in closed form. 

 

3.2  Properties of the MPD-Class of Probability Distribution Functions  

 We use the notation ( ),MPD q γ to denote a specific member of the MPD-class of 

distributions identified by particular values of q and γ. A vast array of symmetric and 

skewed probability density functions are contained within the MPD-Class of PDFs. To 

illustrate the range of possibilities, graphs of some members of the Class are presented in 
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Figures 3.1 and 3.2. These graphs do much to suggest the widely varying distributional 

possibilities as γ  and q takes on different values. 

 Figure 3.1. PDFs for q = .5 and γ = -3, -1.5, -1, -.5, 0, .5, 1, 1.5, and 3 
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-4 -3 -2 -1 0 1 2 3 4
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Figure 3.2. PDFs for q = .75 and γ  = -3, -1.5, -1, -.5, 0, .5, 1, 1.5, and 3 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-10 -8 -6 -4 -2 0 2 4 6

Support

f(x)

 
 The existence of moments in the MPD-Class of distributions and their values 

depend on the γ  parameter. Regarding the representation of moments and any 
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expectations taken with respect to a distribution in the MPD-Class, it is generally more 

straightforward, from a computational standpoint, to transform the integrals involved via  

the inverse probability integral transform. Except for a set of 'sγ  of measure zero, this 

follows because the CDFs and the probability density functions in the MPD-Class are 

only defined implicitly and not in closed form. Nevertheless, after transformation, 

probabilities and expectations are straightforward to represent and develop.  

 The case of 0γ =  is a limiting case that defines a family of logistic distributions, 

and can be handled explicitly. For other γ cases, consider the general definition of the 

expectation of ( )g W  with respect to ( ),MPD q γ . Treating the probabilities as implicit 

functions of w and then collecting probability derivative terms, the differentiation of 

(3.6) with respect to λiw = x  implies the following general representation of probability 

densities for nonzero γ , 

 ( )
( ) ( ) ( )( ) 11

1; ,
; , 1 1 ; ,

f w q
q F w q q F w q

γγ γγ
γ

γ γ
−− −−

=
+ − −

 for ,w q γ⎛ ⎞
⎜ ⎟
⎝ ⎠

∈ ϒ   (3.10) 

where ( ); ,F w q γ  denotes the cumulative distribution function, and ,q γ⎛ ⎞
⎜ ⎟
⎝ ⎠

ϒ  denotes the 

appropriate support of the density function.  As indicated in (3.6), this support depends 

on andq γ  if 0γ > , and ,q Rγ⎛ ⎞
⎜ ⎟
⎝ ⎠

ϒ =  otherwise. Expectations may be then defined as 

  ( )( ) ( )
( ) ( ) ( )( )( )

11
, ; , 1 1 ; ,w q

g w
E g W dw

q F w q q F w q
γγ γγ

γ γ γ
−− −−

∈ϒ
=

+ − −
∫  (3.11) 

 Making a change of variables via the transformation ( ); ,p F w q γ=  so that 

( )1 ; ,w F p q γ−=  and ( )1 ; ,F p qw
p p

γ−∂∂
=

∂ ∂
, where ( )1 ; ,F p q γ−  denotes the inverse 

function associated with the CDF, it follows that the expectation in (3.11) can be 

represented as 

  ( )( ) ( )( )
1

1

0

; ,E g W g F p q dpγ−= ∫  (3.12) 

Note that (3.12) involves the closed form inverse CDF function given by 
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  ( )1 1 1; ,
1

i i

i i

p pw F p q
q q

γ γ

γ γ− −
⎛ ⎞⎛ ⎞ ⎛ ⎞−⎜ ⎟= = −⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

 for ( )0,1p ∈  (3.13) 

When ( )g W  is such that its expectation exists, (3.12) can be represented in general as 

  ( )( )
1

1

0

1
1

i i

i i

p pE g W g dp
q q

γ γ

γ −
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞−⎜ ⎟⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

∫  (3.14) 

 Moments of all orders exist for densities in the MPD-Class when 0γ > . This 

follows immediately from the fact that the integrand in 

  ( )
1

1

0

1
1

p pE W dp
q q

γ γ δ

δ γ −
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞−⎜ ⎟⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

∫  (3.15) 

is bounded for each positive integer-valued δ , finite ( )0,1q ∈ , and each finite positive-

valued γ . The means of the probability densities are given by evaluating the integral 

(3.15) for 1δ = , resulting in 

  ( ) ( )
( )

1
1

q q
E W

γγ

γ γ

−− − −
=

+
 (3.16) 

 The second moment around the origin is obtained by solving (3.15) when 2δ = , 

resulting in  

  ( ) ( ) ( ) ( )
22

2 2 1
2 1 1, 1

1 2
q q

E W q q B
γγ

γγγ γ γ
γ

−−
−− −

⎡ ⎤+ −
= − − + +⎢ ⎥

+⎢ ⎥⎣ ⎦
 (3.17) 

where ( ) ( ) ( )
( )

,
a b

B a b
a b

Γ Γ
=

Γ +
 and ( ) 1

0

ww e dwαα
∞

− −Γ = ∫  are the well-known Beta and 

Gamma functions, respectively. The variance of the distribution then follows by 

subtracting the square of (3.16) from (3.17). 

 Distributions in the MPD-Class with 1γ ≤ − , do not have moments defined of any 

order because the integral in (3.15) is divergent for any choice of  1δ ≥ .  Moments do 

exist for values of ( )1,0γ ∈ − , but only a finite number of moments exist and how high 

an order of moment exists depends on the value of the parameter γ . If  1γ > −  the mean 

of the distribution exists, and its functional representation in terms of and qγ  is 
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precisely the same as in (3.16). If  1
2

> −γ , the second moment about the origin, and thus 

the variance, exist and the first two moments have exactly the same functional forms as in 

(3.16) and (3.17), respectively. In general, the moment of order δ  will exist provided 

that 1γ δ −> − , in which case it will be identical in functional form to the corresponding 

moment in the subclass of MPD-Class distributions for which 0γ > . 

 

4.  MPD Solutions as Estimators of Binary Choice Models 

 The expansive and flexible set of probability distributions in the MPD-Class 

provides a corresponding basis for estimation of the unknown binary choice probabilities 

and λ. In this section we examine the use of the MPD solutions for p and λ directly as a 

basis for estimating the true underlying binary choice probabilities, which we denote 

henceforth as n ( ),MPD q γ  estimators, indicating MPD solutions for given q and γ values. 

 Returning to the model of binary choice outlined in Section 2, consider the 

minimum power divergence extremum problem depicted by the Lagrange multiplier 

specification in (3.3)-(3.4). Solving the first order conditions with respect to p  results in 

Bernoulli probabilities that are expressed as functions of the sample data and the 

Lagrange multipliers λ . It is possible to generate MPD-estimates of the Lagrange 

multipliers, and then, in turn, produce MPD-estimates of the Bernoulli probabilities that 

are purely a function of the sample data for any statistical model based on an MPD 

distribution. The divergence-minimizing estimate of λ  can be determined by substituting 

the functional representation of ( )ip x λ  into the first order conditions with respect to λ , 

so that the optimal λ  solves the (scaled) sample moment equations  

  ( )( ){ }MPD ′ − == arg x y p x 0λλ λ  (4.1) 

The estimated value of p follows directly by substitution, as ( )MPD MPDp = p xλ .  

 As one basis for evaluating the estimation performance of n ( ),MPD q γ , we 

establish asymptotic properties of the solutions. In this discussion, it will be useful to 

represent the first order conditions of (3.3) with respect to the Lagrange multipliers, for 

random X, as 
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 ( ) ( ) ( )( ) ( )1 1
c

1 1

F
n n

n i i i i ni
i i

n p n− −

= =

′= − + = =∑ ∑G X X X G λλ β λ 0ε  (4.2) 

where ( )i cF i iY ≡ +X β ε . 

 

4.1. Consistency 

 For consistency of n ( ),MPD q γ  for β , we make the following basic assumptions: 

 

Assumption 1. The observations ( ), 1,...,i iy i n, =x , are iid random realizations of the 

random row vector (Y ),X .  

Assumption 2. ( )n →G 0β  with probability 1. 

 

Assumption 3.  All ( )nG λ  are continuously differentiable with probability 1 in a 

neighborhood N of β , and the associated Jacobians ( )n∂
∂

G λ
λ

 converge uniformly 

to a nonstochastic limit ( )∂
∂

G λ
λ

that is nonsingular at =λ β . 

  

 If iid random sampling is in fact the sampling mechanism utilized for generating 

sample data, then assumption 1 is satisfied by definition.  A sufficient condition for 

assumption 2 to be satisfied is that ( ),MPD q γ  be appropriately specified to represent the 

functional form of the true underlying CDF, ( )iF x β .  This condition is akin to correctly 

specifying the functional form of the probability distribution in a maximum likelihood 

(ML) estimation problem. In this event,  

  ( )( ) ( )ni i iE E ′≡ =G X 0β ε   and    ( ) , 1,...,ni i n=G β , are iid  (4.3) 

imply that  

  ( ) ( )
1

1

1

n wp

n ni
i

n−

=

= →∑G G 0β β   (4.4) 

by Kolmogorov’s strong law of large numbers (Serfling (1980, p. 27)), resulting in the 

applicability of assumption 2.  
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 Regarding assumption 3, note that the gradient of  ( )nG λ  is given by  

            ( ) ( ) ( )1 1

1 1

n n
n i

i i i i i
i ii

p
n n f− −

= =

∂ ∂
′ ′= − = −

∂ ∂∑ ∑
G X

X X X X X
X

λ λ
λ

λ λ
 (4.5) 

where ( )f i  denotes a probability density function in the MPD class of distributions. It is 

apparent that the continuous differentiability of ( )nG λ  depends on the continuity of 

( ) ( )p z
f z

z
∂

=
∂

. This follows from the functional definition of ( )f z  in (3.10) and the fact 

that, except on the boundaries of the supports of the distributions indicated in (3.6), 

( )p z
z

∂
∂

 is continuous everywhere when 0γ ≤  and continuous except on an event having 

probability 0 when 0γ > . Moreover, because ( ) [ ]; , 0,1F w q γ ∈ , MPD densities are all 

bounded, as ( )f z < ξ < ∞ .  Thus ( )i i i i if ′ ′<X X X X Xλ ξ , so 

( )( ) ( )sup , ,i ij ik ij ikE f E i jλ < ξ < ∞ ∀X X X X Xλ .  Therefore ( )n∂
∂

G λ
λ

converges uniformly 

to ( ) ( )( )1 1 1E f
∂

′≡
∂

G
X X X

λ
λ

λ
, which will be nonsingular at =λ β  if 

( )( )1 1 1 0E f′ >X X X λ  is nonsingular. 

 

Theorem 1. Under assumptions 1 – 3, the n ( ),MPD q γ estimator ( )ˆ arg n =⎡ ⎤⎣ ⎦G 0λλ = λ  is 

a consistent estimator of β . 

 

Proof: The assumptions imply the regularity conditions shown by Yuan and Jennrich 

(1998) to be sufficient for ( )
. .ˆ arg

a s

n = →⎡ ⎤⎣ ⎦G 0λλ = λ β , and thus for λ̂  to be a (strongly) 

consistent estimator of β .     

 Hence, if the data-generating process governing the data outcomes adheres to the 

regularity conditions specified and the model distribution is appropriately specified, the 

n ( ),MPD q γ  will consistently estimateβ . If the model distribution is not specified 

correctly, n ( ),MPD q γ  will generally be inconsistent. This result is similar to the case of a 
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misspecified ML estimation problem, where convergence occurs but to a value other than 

β . Consistency of ( )MPD MPDp = p xλ  follows immediately from the continuity of 

( )p xλ in λ . 

 

4.2. Asymptotic Normality 

 Given that n ( ),MPD q γ  is consistent, asymptotic normality of the estimator of β  

is attained under the following additional assumption: 

Assumption 4:   ( ) ( )1/ 2 ,
d

nn N→G 0 Vβ  

 

Theorem 2. Under assumptions 1 – 4, the n ( ),MPD q γ estimator ( )ˆ arg n =⎡ ⎤⎣ ⎦G 0λλ = λ  is 

asymptotically normally distributed, with limiting distribution 

( ) ( )1/ 2 -1 -1ˆ 0, A A
d

n N→ Vλ − β , where ( ) ( )( )1 1 1E f
∂

′= ≡
∂

G
A X X X

λ
β

λ
 and 

( ) ( )( )( )1 1 1 11E F F ′= −V X X X Xβ β . 

Proof: Upon establishing the appropriate definitions for A and V underlying the binary 

choice model specification, the assumptions 1-4 imply the regularity conditions shown by 

Yuan and Jennrich (1998) to be sufficient for the solution of the estimating equation to 

have the normal limiting distribution as defined.     

 

 Regarding the applicability of assumption 4 to the MPD-Estimation problem, note 

that   

  ( ) ( )1/ 2 1/ 2 1/ 2

1 1

n n

n ni i i
i i

n n n− −

= =

′= =∑ ∑G G Xβ β ε   (4.6) 

is a scaled sum of iid random vectors, each having a zero mean vector and a covariance 

matrix ( ) ( ) ( )( )( )1 1 1 1 1 11E F F′ ′= −Cov X X X X Xβ βε . Based on the multivariate version of 

the Lindberg-Levy Central Limit Theorem (Serfling, (1980, p. 28)), 

( ) ( )( )( )( )1/ 2
1 1 1 1

1
, 1

n d

i i
i

n N E F F−

=

′ ′→ −∑ X 0 X X X Xβ βε .  Consequently, as specified in 
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Theorem 2, the MPD-Estimator will follow the normal limiting distribution if ( )1 1′Cov X ε  

is nonsingular. 

 The asymptotic normality of ( )MPD MPDp = p xλ , including a representation of the 

asymptotic covariance matrix of the distribution, follows immediately from the fact that 

( )p xλ is continuously differentiable in λ, allowing for an application of the delta method 

to derive the asymptotic results.  

 

4.3. Asymptotic Inference 

 Based on the asymptotic results of the previous subsections, the usual hypotheses 

tests based on normal distribution theory hold in large samples. The principal issue in 

empirical application is how to define appropriate sample approximations to the 

covariance matrices associated with the asymptotic distributions. Given the definition of 

the covariance matrix in Theorem 2, a consistent estimator of the Jacobian matrix 

( ) ( )( )1 1 1E f
∂

′= ≡
∂

G
A X X X

λ
β

λ
 is defined by 

  ( )1

1

ˆ ˆ
n

i i i
i

n f−

=

′= ∑A X X Xλ  (4.7) 

and a consistent estimator of ( ) ( )( )( )1 1 1 11E F F ′= −V X X X Xβ β  is defined by 

  ( ) ( )( )1

1

ˆ ˆˆ 1
n

i i i i
i

n F F−

=

′= −∑V X X X Xλ λ . (4.8) 

It follows that a Wald-type statistic for testing the J linear restrictions oH :C rβ =  is 

given by 

  ( ) ( )-1 -1 2
o

1ˆ ˆA A under H
d

Jn
−′ ′⎡ ⎤ → χ⎣ ⎦C r C V C C rλ − λ − . (4.9) 

 Hypotheses relating to the value of ( )p zβ , where z is a row vector of response 

variate values, can be based on an application of the delta method.  This gives  

  ( ) ( ) ( )( )2
1 -1 -1ˆ ˆ~ , A A

a
p N p n f− ′z z z z V zλ β λ  (4.10) 

so that, given ( )oH : op p=zβ , 



NewClassOfModelsForBinaryChoice-6-27-08 18

  
( )( )

( )( )
( ) o1/ 22

-1 -1

ˆ
~ 0,1 under H

ˆ ˆ ˆˆA A

aon p p
N

f

−

′

z

z z V z

λ

λ
. (4.11) 

 

5.  ML and NLS Estimation of Binary Choice Based on the MPD Class of CDFs 

 The consistency and asymptotic normality of the MPD solutions given in the 

previous section rely on appropriate choices of q and γ in order to specify the appropriate 

MPD distribution that coincides with the underlying true data sampling distribution. The 

specification issue is fully analogous to the issues involved in considering a choice of 

either the normal or logistic distribution for probit or logit analysis, respectively.  While 

the vast MPD class of CDFs provides the analyst with a rich and flexible population of 

distributions from which to choose a characterization of Bernoulli binary response 

probabilities, knowledge of the true functional form of the data sampling distribution 

remains a daunting requirement in empirical applications.  

 In this section we suggest ML and NLS approaches to estimating the binary 

choice model in which the optimal distributional choice from among all of the members 

of the MPD class is embedded in the estimation process. The approach results in a highly 

flexible and distributionally-robust approach to estimating binary choice models that can 

be consistent, asymptotically normal, and efficient even in the absence of knowledge of 

the one true functional form of the underlying sampling distribution. 

  

5.1 ML-MPD Estimation 

 A maximum likelihood estimator of the binary choice model that is based on the 

flexible class of MPD-distributions can be defined through optimizing the following log-

likelihood function for the observed sample observations: 

 ( ) ( )( ) ( ) ( )( )
1

, , | , ln , 1 ln 1 ,
n

i i i i
i

q y p q y p q
=

⎡ ⎤γ = γ + − − γ⎣ ⎦∑y x x xβ β; β;A  (5.1) 

It is instructive to consider maximizing the likelihood in two steps, first defining the 

profile likelihood function of β  as 

 

  ( ) ( ){ }
,

| , sup , , | ,
q

p q
γ

≡ γy x y xβ βA A  (5.2) 
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and then deriving the maximum likelihood estimator of β  by maximizing the profile 

likelihood as  

  ( ){ } ( ){ }
,

ˆ arg sup | , arg sup sup , , | ,ml
q

p q
γ

⎧ ⎫⎧ ⎫
= ≡ γ⎨⎨ ⎬⎬

⎩ ⎭⎩ ⎭
y x y xβ ββ β βA A  (5.3) 

One can interpret the likelihood profiling step (5.2) as determining the optimal MPD 

distribution associated with any choice of the β  vector, and the second ML step (5.3) as 

determining the overall optimal estimate of the parameters of the linear index argument 

in the CDF that determines the binary response probabilities.  

 It is known (Patefield (1977, 1985), and Murphy and van der Vaart (2000)) that 

the profile likelihood ( )| ,p y xβA  can be utilized in effectively the same way as an 

ordinary likelihood for purposes of defining an appropriate score function ( )| ,p∂
∂

y xβ
β

A
 

and an information matrix representation of the asymptotic covariance matrix with 

respect to the ML estimator ˆ
mlβ ,  ( )2 1

| ,p
E

−
⎡ ⎤∂
−⎢ ⎥′∂ ∂⎣ ⎦

y xβ
β β
A

. The score and information 

matrix calculations are equivalent, with regard to the representation of the β  aspect of the 

score and information, to the appropriate submatrix of the information matrix calculated 

from the full likelihood, as ( )| ,∂
∂

y xθ
β

A
and ( ) 1

| ,
E

−
⎡ ⎤
−⎢ ⎥′∂ ∂⎣ ⎦

y xθ
θ θ

A
 respectively, where 

[ ],q ′≡ γθ β, .  The asymptotic covariance matrix for ˆ
mlβ  together with the asymptotic 

normality of the ML estimator, ( ) ( )2
1/ 2

1
| ,ˆ ,

L

ml

p
n N E

−⎛ ⎞⎡ ⎤∂⎜ ⎟− → −⎢ ⎥′⎜ ⎟∂ ∂⎣ ⎦⎝ ⎠

y x
0

β
β β

β β
A

,  can then be 

used for hypothesis testing and confidence region generation based on the asymptotic chi-

square distributions of the usual Wald, Lagrange Multiplier, or Likelihood Ratio test 

statistics, analogous to traditional probit or logit contexts but rooted in a substantially 
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more robust sampling distribution model3. In empirical applications, an estimate of the 

asymptotic covariance of β̂  would be defined by ( )2 1

ˆ

| ,

ml

p
−

⎡ ⎤∂
− ⎢ ⎥′∂ ∂⎣ ⎦

y x

β=β

β
β β
A

. 

 

5.2 NLS-MPD Estimation 

 A nonlinear least squares estimator of the binary choice model that is based on the 

flexible class of MPD-distributions can be defined through minimizing the following sum 

of squared errors (SSE) function: 

  ( ) ( )( ) 2

1

, , | , ,
n

i i
i

SSE q y p q
=

⎡ ⎤γ = − γ⎣ ⎦∑y x xβ β;  (5.4) 

Given the heteroskedastic nature of the Bernoulli random variables, whereby the variance 

of the ith  Bernoulli trial is given by ( )1i ip p− , one might consider pursuing a 

heteroskedasticity-adjusted SSE function to seek gains in  asymptotic efficiency as: 

  ( )
( )( )

( ) ( )

2

1

,
, , | ,

, 1 ,

n
i i

w
i i i

y p q
SSE q

p q p q=

⎡ ⎤− γ⎣ ⎦γ =
γ − γ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∑
x

y x
x x

β;
β

β; β;
 (5.5) 

However, it is well known (e.g., Pagan and Ullah, 1999) that the first order conditions for 

minimizing (5.5) are precisely the same as that of maximizing the likelihood in (5.1), and 

thus we proceed by focusing on the simpler consistent but potentially less efficient 

estimator defined by minimizing (5.4). 

 Given that the uncorrected SSE is used as the estimation objective, the nonlinear 

least squares estimator will then have an asymptotic distribution whose covariance matrix 

reflects this fact, as ( )1 1ˆ a
N

− −
′ ′ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤∇ ∇ ∇ ∇ ∇ ∇⎣ ⎦ ⎣ ⎦ ⎣ ⎦p p p p p pβ β β β β ββ ∼ β, Ψ  where  

                                                 
3 As in all applications of maximum likelihood, as well as the nonlinear least squares application in section 
5.2, issues of regularity conditions arise for the asymptotics to apply. Under appropriate boundedness 
assumptions relating to X, and given the boundedness and continuous differentiability of the MPD class of 
distributions, extremum estimator asymptotics apply along the lines of Hansen (1982), Newey (1991), and 
van der Vaart (1998).  



NewClassOfModelsForBinaryChoice-6-27-08 21

( )q,∂ γ⎡ ⎤
∇ ≡ ⎢ ⎥′∂⎣ ⎦

p x
pβ

β;
β

  and Ψ is a diagonal covariance matrix of the binary observations 

whose ith diagonal entry equals ( ) ( ), 1 ,i ip q p qγ − γ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦x xβ; β; , the Bernoulli variance 

for the ith observation. In applications, the unknown parameters would be replaced by 

their NLS estimates, and the resulting estimate of the covariance matrix could be used to 

define appropriate test and confidence region-generating statistics.  

 

6.  Sampling Performance 

 To investigate the finite sample estimation performance of the n ( ),MPD q γ , ML-

MPD, and NLS-MPD approaches, the results of Monte Carlo experiments are reported in 

this section.  The sampling experiments were designed so that the sampling distribution 

underlying observed ( )1i ip P y= =  values achieve targeted mean and variability levels, 

and map one-to-one with covariate values, representing a covariate population data 

sampling process (DSP).   

 

6.1 Sampling Design 

 Random samples of size n = 100, 250, and 500 of  ( )1iP y =  values were sampled 

from a Beta distribution ( ),B a b  that had b = 1 and a  set to achieve targeted 

unconditional mean ( )1iP y =  levels of .5 or .75, i.e., 
( ) ( )( )1

ba
E Y E Y

=
−

with 

( ) .5 .75iE Y or= . The resulting two distributions of ( )1iP y =  values are uniform, 

centered at .5, or right-skewed and centered at .75, respectively. Graphs of the two 

population distributions are presented in Figure 6.1 below. The two distribution 

alternatives represent a situation in which all values of P(y = 1) are equally likely to be 

observed, and a situation in which it is substantially more probable to observe values of 

P(y = 1) that are greater than .5 than less ( ( )
1

.5

;3,1 .875Beta w dw =∫ ). 
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Figure 6.1. Population Distributions for P(y = 1) 

 

 

 

 

 

 

 

 

 A linear index representation of the Bernoulli probabilities is formed as 

  ( ) ( )0 1 i1iP y F x= = +β β   for i = 1 ,..., n, (6.1)  

 where ( )F i  is the cumulative distribution or link function underlying the Bernoulli 

probabilities, and the 'six  are chosen so that ( )( )( )1
i 0 11 /ix F P y−= = − β β .  The values 

of the parameters are set to 0 11 and 2β = β = . Explicit functional forms for the binary 

model link function ( )F i  include two MPD distributions, given by MPD(q=.5, 1γ = − ) 

and  MPD(q=.75, 1.5γ = ), as well as a N(0,1) distribution. The former distribution is a 

symmetric distribution associated with the “empirical likelihood” choice of 1= −γ , has 

the real line for its support, and has substantially fatter tails then the N(0,1) distribution. 

The latter distribution has finite support, is heavily skewed to the left, and has a density 

value that increases at an increasing rate as the argument of the link function increases. 

The standard normal distribution is the link function that is optimal for the Probit model 

of binary choice. These three different link functions are illustrated in Figure 6.2. 

 The random outcomes of the binary choices are generated according to their 

respective Bernoulli probability distributions as  

  ( )( )0 1 i~ , 1,...,iY Bernoulli F x i nβ β =+ .  (6.2) 

This implies a regression-type relationship of the form 

  ( )0 1 i , 1,...,i iY F x i n= β β + ε =+  (6.3) 

and acts as the definition of the residual outcome of iε . 
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 The measure of estimation performance used is the expected squared prediction 

error defined by ( ) ( )( ) ( )2
0 1 0 1ˆ

X

p x F x dF x− β + β β + β∫ , where ( )p̂ x  denotes the 

probability prediction from an n ( ),MPD q γ , ML-MPD, NLS-MPD, or Probit estimator. 

Empirically, the measure is calculated as ( ) ( )( )21
0 1

1

ˆ
n

i i
i

n p x F x−

=

− β + β∑ .   

 All sampling results are based on 1,000 repetitions, and calculations were 

performed using Aptech Systems’ GAUSS 8.0 software.  At this number of repetitions, 

all empirically-calculated expectations of the performance measures are very accurate, 

with standard errors of mean calculations typically .0001 or less in magnitude.  We note 

that sampling results for the n ( ).5,0MPD estimator necessarily produces results identical 

to those of the standard ML logit estimator.   

 

6.2. Sampling Results 

 The probability prediction MSE results for the ML-MPD and NLS-MPD 

estimators, the Probit estimator, and the two MPD estimators n ( ).5, 1MPD − and 

n ( ).5,0MPD  are displayed in Figure 6.3 for the MPD(q=.5, 1γ = − ) DSP and in Figure 6.4 

for the MPD(q=.75, 1.5=γ ) DSP . Given these sampling distribution specifications for 

Figure 6.2. Link Function Distributions: N(0,1), MPD(q=.5,gam= -1), 
MPD(q=.75,gam=1.5)
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the link functions, the n ( ).5, 1MPD − estimator is specified correctly for the former DSP, 

and neithern ( ),MPD q γ  estimator is specified correctly in the case of the latter DSP. In 

implementing the ML-MPD and NLS-MPD estimators, the feasible set of distributions 

examined was defined by [ ]2, 2∈ −γ  and [ ].1, .9q ∈ . 

 It is apparent that the Probit estimator, a Quasi-ML in this application, is strongly 

dominated by all of the alternative estimators when the DSP is ( ).5, 1MPD q = γ = − . 

Figure 6.3. MSE for P(y = 1) Predictions, n = 100, 250, 500,  DSP = MPD(.5,-1)
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Figure 6.4. MSE for P(y = 1) Predictions, n = 100, 250, 500,  DSP = MPD(.75, 1.5)
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The correctly specified n ( ).5, 1MPD −  estimator performs very well in MSE, but the ML-

MPD estimator effectively equals or is superior to the n ( ).5, 1MPD −  estimator across all 

scenarios. The NLS-MPD estimator also performs very well, nearly equaling the 

precision of the ML-MPD estimator except for the smallest sample size.  

 When the DSP is ( ).75, 1.5MPD q = γ = the ML-MPD continues to be the clear 

estimator of choice, with the NLS-MPD estimator again being almost as precise 

especially for the larger sample sizes. The Probit estimator, a Quasi-ML estimator in this 

application, is again dominated, as are the n ( ).5, 1MPD −  and n ( ).5,0MPD  estimators. In 

both this and the preceding sampling experiments the consistency of the ML-MPD and 

NLS-MPD estimators is illustrated in the figures as n increases. 

 Finally, in the case where the DSP is ( )0,1N , and supposing the analyst is 

omniscient and chooses (the correct) probit model, it is not surprising that the probit-ML 

estimator would be the superior choice in MSE performance, as indicated in Figure 6.5. 
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Figure 6.5. MSE for P(y = 1) Predictions, n = 100, 250, 500, DSP = N(0,1) 
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The superiority of the Probit estimator diminishes relative to both the ML-MPD and 

NLS-MPD estimators as the sample size increases. Supposing that the analyst chose to  

model the binary choice probabilities by utilizing only symmetric distributions contained 

in the MPD-class (i.e., restricting q = .5), the relative superiority of the correctly specified 

Probit estimator is significantly diminished even for the smallest sample size, as indicated 

by the ML-MPD(q=.5) and NLS-MPD(q=.5) results in Figure 6.5. Overall, the 

comparisons in Figure 6.5 indicate both the precision gains that would occur by having 

correct prior information about distributional functional form, and also indicate the 

unavoidable cost of flexibility when, as is almost always the case in practice, one does 

not possess omniscience in the choice of the statistical model. 

 Overall, the sampling results illustrate the robustness attainable from utilizing the 

large and flexible class of MPD distributions for modeling binary choice coupled with a 

ML or NLS approach for choosing optimally among the member distributions within the 

class. The method mitigates imprecision due to lack of knowledge-misspecification of the 

true data sampling process underlying binary choices and competes well with generally 

unknown and unattainable correct choices of the data sampling process.   
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7.  Summary and Extensions 

 Representing sample information underlying binary choice outcomes through 

moment conditions ( )E ′ − =⎡ ⎤⎣ ⎦X Y p 0  based on generally applicable nonparametric 

conditional expectation or regression representations of the data sampling process, the 

Cressie-Read (CR) family of power divergence measures was used to identify a new class 

of statistical models and an associated large and varied class of associated CDFs for 

characterizing observations on binary choice outcomes. The unknown Bernoulli 

probabilities, p, expressed as functions of response variates, x, were solved for by 

implementing the minimum power divergence principle and represent the unique class of 

distributions that are both consistent with the moment conditions, and that are minimally 

divergent from any conceivable reference distribution for the Bernoulli probabilities.  

Estimation implications of this formulation were assessed analytically and by sampling 

experiments.  

 It is straight forward to extend the univariate distribution formulations of this 

paper to their multivariate counterparts. For example, one such extension, which 

subsumes the multivariate logistic distribution as a special case, begins with a 

multinomial specification of the minimum power divergence estimation problem in 

Lagrange form as 

   ( ) ( ) ( )
1 1 1 1 1 1

1, 1 1
1= = = = = =

⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞⎜ ⎟⎢ ⎥ ′ ′= − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟+ ⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦⎝ ⎠
∑∑ ∑ ∑ ∑ ∑j j jp x y pλ λ

n n m m n m
ij

ij i ij
i i j j i jij

p
L p p

q

γ

η
γ γ

. (8.1) 

Solving first order conditions with respect to the 'ijp s leads to the standard multivariate 

logistic distribution when the reference distributions are uniform. 

 The analytical and sampling results for the new minimum power divergence class 

of statistical models and estimators represents a base for considering a range of important 

new problems relating to binary estimation and inference. One question concerns how to 

make use of the reference distribution, q, to take into account known or estimable 

characteristics of the Bernoulli probabilities in any particular applied problem, and 

through the minimum power divergence principle, incorporate that information into the 

estimation of probabilities and marginal effects. The recent work of Smith (2007) is 

suggestive of one method, based on a kernel density approach, for specifying values of 



NewClassOfModelsForBinaryChoice-6-27-08 28

the reference distribution probabilities.  Consideration of alternative nonparametric 

conditional moment formulations and their effect on efficiency of the resultant estimators 

provides another set of interesting research problems. These and other issues are the 

subject of ongoing research.  
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