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9.1 Shown above is focused peak intensity versus time. The so-called λ3

short-cut could grant access to the QED regime, and can be accessed by
high energy laser pulses compressed to the single-cycle regime through the
relativistic mirror mechanism. Image credit: [1] . . . . . . . . . . . . . . . 139
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ABSTRACT OF THE DISSERTATION

Thin film compression toward the single-cycle regime for the advancement of high field
science

By
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Recent developments in ultrashort (∼ 30-50 fs) laser technology such as chirped pulse

amplification (CPA) have made relativistic laser-plasma interactions accessible to research

institutions and universities across the globe and paved the way for research institutions

to increase laser pulse power beyond 1 petawatt. The high achievable intensities and

ultrashort pulse durations now available have reinvigorated the fields of nonlinear optics

and photonics as well as high intensity laser-plasma physics. Theoretical models which

could previously only be explored computationally such as laser wakefield acceleration are

now routinely realized experimentally and are being perfected at labs across the globe.

Though much progress has been made, there is a nearly accessible regime that could open

the door to a new class of laser-plasma interactions providing novel schemes for heavy

particle acceleration and secondary coherent source generation, the single-cycle regime.

High efficiency pulse compression schemes such as thin film compression (TFC) have made

possible the increase in optical power through a decrease in pulse duration. This technique

not only serves as a powerful shortcut to higher laser peak power, but also reduces the

laser pulse duration-consequently increasing the degree of coherence of the interactions of

compressed laser pulses with plasmas.
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The first half of this thesis is dedicated to demonstrating this pulse compression

at intensities comparable to petawatt facilities (∼ 1 TW/cm2). Pulse compression

experiments were carried out in the Dollar Lab at UCI, the LASERIX facility at the

Université Paris-Sud and the HERCULES laser at the University of Michigan. Pulse

compression of a factor of ∼ 2 has been demonstrated on multiple laser systems using

fused silica as the nonlinear medium, with slightly better compression using plastics.

Furthermore, laser mode quality is seen to be largely maintained in the process of

nonlinear spectral broadening (which is required for pulse compression) in the highest

power systems. Finally, a set of preliminary studies at near-infrared wavelengths (1140 -

1500 nm) investigate the high intensity spectral broadening in various dispersion regimes

motivated by the potential for self-compression.

In the second half of this thesis particle-in-cell simulations are carried out that utilize

x-ray laser pulses which could be generated by a combination of TFC and laser-plasma

interactions in the single-cycle regime to drive laser wakefields in nanotubes. The laser

wakefields generated in these nanotubes are shown to drive unprecedented acceleration

gradients of up to TeV/cm and also an increased laser pulse propagation and therefore

laser wakefield lifetime. At the other density extreme, another particle-in-cell study was

performed investigating the possibility of laser wakefields as a contributing acceleration

mechanism for ultra-high energy cosmic rays from blazar jets. In each case, the particle

acceleration and photon emission properties of the wakefield are analyzed and scaling

laws are developed for various parameters of interest, and are compared and contrasted

to typical laboratory cases.
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Chapter 1

Introduction

The first laser was made in 1960 [8] shortly after its invention in 1958 [9] as an optical

extension of the Microwave Amplification by Stimulated Emission of Radiation (MASER)

technique. In the case of optical frequencies this is called “Light Amplification by

Stimulated Emission of Radiation” (LASER). Acronyms like these are used today as

nouns to refer to the object performing the amplification of light.

Today there are a myriad of laser systems that use vastly different materials to act as the

lasing medium, but the mechanism of amplification is the same. Electrons in a medium

(gas, solid, dye) which we will call the active medium, are first brought into an excited

state by a process called pumping. As electrons in the medium leave the excited state, the

decay produces photons which carry away some of the energy from the excited electrons.

This is called spontaneous emission, and is emitted with no preferential direction.

Typically the medium is pumped to a short-lived state that very quickly decays to a long-

lived state. This long-lived state has a transition energy of the photons to be amplified. By

containing the active medium in an optical cavity, photons with energy of the long-lived
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electronic excitation of the active medium can also excite electrons in the active medium.

A condition called a population inversion is achieved when more of the electrons in the

active medium are in an excited state than not. In this case, photons entering the active

medium are more likely to encounter excited electrons than not. When impinging upon

these excited electrons, they can induce the electrons to transition to a lower energy state

and therefore produce “cloned” photons which have the same polarization, phase, and

direction as the impinging photons-this is the process called stimulated emission. These

newly generated photons are also more likely to encounter an electron in an excited state

than not, and therefore are likely to produce further simulated emission [10]. As you

can see, the number of photons produced from stimulated emission can grow large very

quickly thereby amplifying the light. The early demonstration of this light amplification

resulting in coherent radiation began the process of producing ever more intense light

sources that continues to this day.

1.1 Pulsed laser technology

Since the first demonstration of the laser [8], laser peak power has been dramatically

increased by inventing techniques which result in successively decreasing laser pulse

duration. In 1962, modulation of the laser-cavity quality factor allowed the same energy

to be released in a nanosecond time scale, to produce pulses in the megawatt range [11], a

thousand times shorter than the earlier laser durations. In 1964, locking the longitudinal

modes of the laser (mode-locking) allowed the laser pulse duration to be reduced by

another factor of a thousand, down to the picosecond regime, pushing the peak power to

the GW regime [12, 13].
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1.1.1 Chirped pulse amplification

At this point, the intensities associated with the ultrashort (ps) pulses were approaching

the levels at which the index of refraction becomes non-negligibly modified by the pulse

intensity (∼ GW/cm2) in a process known as the optical Kerr effect (n = n0 +n2I), which

will be explored in detail in Chap. 2 [14]. This nonlinear effect can lead to wave-front

errors [15] and small-scale self-focusing leading to beam filamentation [16] and ultimately

damage to optical components [17]. Further, laser amplifier materials with relatively low

saturation fluence (Fsat ∼ 10−3J/cm2 ) were used since for most efficient energy extraction

the laser fluence and saturation fluence should be matched [17]. Since the intensity could

not be increased, the only way to increase peak power seemed to be to increase the laser

system aperture, making these systems larger and more expensive [17].

This was the case until the invention of Chirped Pulse Amplification (CPA) in 1985 [18].

As shown in Fig. 1.1 a short pulse is first produced by an oscillator. The short pulse

is then stretched from femtoseconds to picoseconds or nanoseconds duration, which in

turn drastically reduces its intensity and enables the use of high energy storage solid state

amplification media with much higher saturation fluence (Fsat ∼ 1 J/cm2). Once the

intensity has been reduced, the stored energy in the amplifying medium can be extracted

without accruing damage induced by high intensity effects. Once the energy has been

efficiently extracted from the amplifier, the pulse is then re-compressed to near its initial

pulse duration, therefore drastically increasing the compressed peak power. The key

challenges overcome by CPA are enabling the use of the highest input fluence for efficient

energy extraction from high energy storage amplifiers, while maintaining low enough

intensity such that undesirable nonlinear effects in the beam and damage are avoided.

As shown in Fig. 1.2, in recent years CPA has enabled laser peak powers to reach the

petawatt level [19, 20]. However even with these advancements, next generation laser
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Figure 1.1: Shown above is the basic Chirped Pulse Amplification (CPA) scheme. An
ultrashort high intensity laser pulse is stretched to a longer duration allowing it to be
amplified without inducing nonlinearity or causing damage to the amplification medium.
Once the energy is efficiently extracted from the amplification medium, it is re-compressed
with a matched compressor to reach a dramatically increased peak power. Image credit:
https://cuos.engin.umich.edu/researchgroups/hfs/facilities/ chirped-pulse-amplification/

driven accelerators and high field science [21, 22, 23, 24] require laser technology with

even shorter pulse durations and higher peak power than is currently available.

To meet these challenges, facilities across the world are working to increase the peak

power of their laser systems by developing higher energy lasers in order to reach 10 PW

at the Extreme Light Infrastructure (ELI) [25] or even 100 PW at the Station of Extreme

Light (SEL) [26] in Shanghai. On the other hand, the pulse length-intensity conjecture

[27] suggests that the compression of laser pulses to an ultimate limit perhaps provides

an alternative path to high intensities.
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Figure 1.2: The evolution of focused peak intensity as a function of time. Image credit:
[1]

1.2 Compression of ultrashort laser pulses

Many short-pulse petawatt laser facilities have laser pulse durations in the 25-50 fs range

[28, 29, 30]. As mentioned in the previous section, facilities across the world are beginning

to build facilities that will push beyond 1 PW to 10 PW or even 100 PW. To do this,

these larger and more expensive facilities are planning to increase the energy of their laser

pulses. However, as has been the theme of much of the history of of developing ever more

intense laser pulses, decreasing the pulse duration of existing systems, may be key to a

dramatic shortcut to higher peak power.
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Ironically, if harnessed effectively the very same nonlinearities responsible for damaging

amplifiers and limiting laser pulse intensity before CPA, can be used to generate a

larger spectral bandwidth amenable to pulse compression. Further, with proper phase

compensation the process can lead to power amplification via pulse compression. The

relevant nonlinearity for optical pulse compression is called self-phase modulation (SPM)

and was first observed in the late 1960s [31, 32, 33, 34]. SPM is a nonlinear effect that

arises due to a change in the index of refraction through what is known as the Kerr

effect (n(t) = n0 + n2I(t)) and will be discussed in detail in Chap. 2. Specifically, the

index of refraction is modified locally within the pulse and is proportional to the local

intensity temporal profile. In this way, the center of the pulse experiences a larger index

of refraction than the tails during propagation. This self-modulation of phase leads to a

retardation of the center of the laser pulse with respect to the tails of the pulse leading

to a red-shift at the leading edge of the pulse and a blue-shift at the trailing edge [35].

This phase modulation (which does not change the duration of the pulse itself) necessarily

increases the bandwidth of the laser pulse. This increase in spectral bandwidth, combined

with a phase delay that is nearly quadratic (linearly chirped) within the full width at

half-maximum of the laser pulse allows the pulse to be compressed to a shorter duration

by compensating the quadratic phase accrued through SPM.

1.2.1 Fiber and bulk compression

Although the temporal effects of SPM turn out to be very beneficial for pulse compression,

the Kerr effect can also lead to spatial effects. Consider a Gaussian beam, as in the time

domain the Kerr nonlinearity can cause a beam to accrue a larger phase delay at the

peak of the intensity profile than the periphery known as a Kerr lens. This can lead to
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an on-axis whole beam self-focusing [36, 35], which will also be explored in more detail in

Chap. 2.

SPM spectral broadening was originally induced by transmission through single-mode

fibers, where only a the fundamental mode is guided [37]. This meant that any additional

confinement of the mode to the fiber due to self-focusing was negligible [38] The mode

was preserved during propagation, and the spectrally broadened pulse could then be

compressed to the Fourier limit by compensating the phase incurred [39]. This technique

became the primary way at the time to generate few-cycle laser pulses [40]. Early results

using this technique showed that 5.4 nJ pulses could be compressed from 5.4 ps to 450 fs

[39]. Pushing this method to its limit, laser pulses of up to 20 nJ were compressed from 40

fs to < 8 fs (fewer than 4 cycles) [41]. The fundamental energy limitation imposed by using

single-mode fibers for this process involved requirements on its core radius. In order to

guide only the fundamental LP01 mode in these step-index fibers, the so-called V number

has to be < 2.4, where V = aω(n2
core − n2

clad)
1/2/c [42]. Here a is the core radius, ω is the

frequency of light, c is the speed of light, and ncore and nclad are the indices of refraction

of the core and cladding respectively. Therefore these fused silica-core single-mode fibers

typically had a fiber radius on the order of ∼ O(1− 10µm).

Beyond this limit, the high intensities caused material damage and higher order

nonlinearities to become prevalent in these single-mode fibers [40]. To push forward to

higher energy pulse compression, a technique using fused silica hollow-core capillaries

filled with noble gases was investigated. This technique used a larger core radius

∼ O(50 − 100µm) and a medium with a higher damage threshold than the single-mode

fibers for SPM. Wave propagation in these guided structures occurred by grazing incidence

reflections at the inner surface of the capillary which strongly discriminated against higher

order modes. Therefore given a core radius, by choosing a sufficiently long capillary, only

the fundamental mode would propagate [43]. This technique was shown to be able to
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compress laser pulses on the order of 100 µJ [44]. Soon thereafter it was shown that

this technique could produce laser pulses of down to 5 fs (just under 2 optical cycles)

[45]. Ultimately, this compression method was was also limited to energies of ∼ O(1 mJ)

imposed by ionization and energy losses due to mode coupling with the capillary [46, 43].

In an attempt to achieve scalable pulse compression to energies beyond the limits of

hollow-core capillaries bulk material was investigated as a means to compress ultra-short

pulses [47]. This technique relaxed restrictions on mode size, allowing essentially any

energy pulse to be used, as long as the intensity was kept below the ionization threshold

for the SPM material. The short length of the material used in this technique proved to

minimize the negative effects due to self-focusing, but lost the benefits provided by good

mode quality in the single-mode fiber based techniques. The spectral broadening through

SPM itself also suffers when using a non-uniform spatial intensity profile. Therefore

only the central region of the beam profile, where the intensity-and therefore spectral

broadening was nearly constant was compressed. Nevertheless this technique showed a

20% efficient compression of the central portion of the Gaussian mode that could be

extended in principle to arbitrary energy.

1.2.2 Thin film compression

To scale pulse compression to petawatt laser systems a technique called “thin film

compression” (TFC) has been suggested by Mourou, et al. [48]. Like bulk compression,

this unguided technique is scalable to arbitrary energy with no requirements on aperture

size, but instead proposes using plastic thin films with a high nonlinear index n2, as the

nonlinear medium. By using a flat-top intense laser pulse ∼ O(1 TW/cm2) to induce

SPM in a thin film, the spectrum of the laser pulse could be uniformly broadened across

the entire beam profile allowing for uniform compressibility. Additionally due to the lack
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of large-scale spatial gradients, the beam profile would not induce a Kerr lens in the

same fashion as a Gaussian beam (flat-top beams with P > Pcr tend to be susceptible

to other types of collapse dynamics that will be explored in Chaps. 2 and 4, which can

be mitigated by minimizing small scale intensity fluctuations in the beam and keeping

optical components thin). Furthermore when fused silica wafers are used as the nonlinear

medium and the film is oriented at Brewster’s angle, the energy throughput can surpass

99% as will be shown in Chap. 4. As before, the linear chirp due to SPM can then

be compensated with proper phase compensation (ie. chirped mirrors), constructing a

shorter pulse. Using this technique to compress laser pulses at the petawatt level could

serve as a shortcut to the high power frontier on the world stage. Additionally, TFC could

be used to compress flat-top optical laser pulses towards the relativistic single-cycle limit.

Several applications of such relativistic single-cycle pulses will be explored briefly in the

following section.

1.3 Applications of compressed ultrashort laser pulses

Relativistic ultrashort laser pulses compressed to the single-cycle regime can induce unique

laser-matter interactions due their duration, and electric field structure. The next two

sections will very briefly review some promising applications of compressed laser pulses

to particle acceleration and secondary source generation.

1.3.1 Single-cycle ion acceleration

Through TFC of petawatt laser pulses, access is granted to a new ion acceleration regime

called the single-cycled laser acceleration (SCLA) regime [22, 2]. Pulse compression offers

at least two benefits for ion acceleration in this regime.(1) By decreasing the laser pulse

9



length at a fixed energy, the intensity of the laser pulse can be increased [2]. (2) By

decreasing the number of oscillations in the laser pulse, the efficiency, coherence, and

stability of the ponderomotive acceleration is enhanced. In the case of a single-cycle

pulse, upon interaction with a thin foil a more coherent electron acceleration takes place

due to the single oscillation of the electric field leading to a collective forward push by

v×B as there are no longer many cycles to average over. A sharp electron layer is formed

which results in a longitudinal electrostatic field that then uniformly accelerates ions in

the forward direction leading to acceleration of mono-energetic ultrashort proton bunches

to GeV energies.

Figure 1.3: Proton cut-off energy - (a) The resulting proton energies by scaling σ/a0,
where the red, blue, and black lines represent a0 = 50, 100 and 200 and corresponding
pulse durations τ = 16T , 4T , and 1T respectively. Image credit: [2]

2D particle-in-cell simulations from Ref. [49] investigated the effect of scaling the laser

pulse duration at a fixed energy to determine the resultant ion acceleration through

interaction with a thin foil. Laser pulses with a Gaussian temporal profile with λ = 1µm,

were focused to a 5λ focal spot on a 50 nm CH foil with a carbon to hydrogen ratio
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of 9:1 and a normalized electron density of ne = 480nc where nc = meε0ω
2
L/e

2. Laser

pulses with a0 = 50, 100, and 200 were explored with a corresponding pulse duration of

16T , 4T , and 1T representing compression at a fixed energy. Where a0 = eE/meωLc is

the normalized vector potential and T is the length of a single optical cycle. For each

pulse length condition, the normalized electron areal density σ = nel/ncλ is scanned to

retrieve the largest proton cut-off energy where l is the target thickness. Fig. 1.3 (a)

shows that as the pulse duration is decreased at a fixed energy, the proton cutoff energy

progressively increases. Furthermore it is seen that in the single-cycle limit, the optimal

areal density becomes more precisely defined at ∼ σ = 0.1a0. This thin optimal target

thickness allows for the more direct utilization of the photon energy instead of cascading

through multiple collisional processes as in other methods such as target normal sheath

acceleration (TNSA) [20, 50, 51]. To learn more about the subtle and interesting regime

presented in this chapter, the reader is encouraged to explore Refs. [52, 53, 54], and a

comprehensive review of the laser-driven ion acceleration literature can be found in Refs.

[55, 56, 57]

1.3.2 X-ray generation

Another potential application of TFC compressed laser pulses was originally explored by

Ref. [3] and demonstrated through particle-in-cell simulations. The generation of laser

pulses on the attosecond timescale was achieved through an interaction of a few-cycle

optical laser pulse with an overdense plasma. Due to the coherent nature of this technique,

its efficiency was shown to be very high (∼ 10%) when compared to other attosecond pulse

generation schemes [58, 59, 60]. Due to its high efficiency and scalability, It has since been

suggested as the second stage of a compression scheme to generate laser pulses beyond

the optical single-cycle limit to reach the single-cycle x-ray regime [24]. In this case it
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is critical to have well-corrected tightly focused fundamental frequency beam to enhance

the coherence of the reflected light.

Figure 1.4: (a) The reflected pulses of a 5 fs optical laser pulse with a0 = 3 after interacting
with a slightly over-critical density (ne = 1.5nc) plasma. Maintaining this ratio of a0/nc,
and scaling the laser vector potential yields shorter pulses with the scaling relationship
τ = 600/a0 as seen in (b). Image credit:[3, 4]

2D particle-in-cell simulations carried out in Ref. [3] studied the interaction of a λ = 0.8µm

laser with a Gaussian temporal shape with an over critical plasma (ne = 1.5nc). Laser

pulses with a full-width at half maximum pulse duration of τ = 5 fs (∼ 2 optical cycles)

were focused to a 1λ spot size and an intensity of 2 × 1019 W/cm2 (a0 = 3). The

plasma electrons were displaced into the plasma creating a strong electrostatic potential

and therefore rebounded toward their parent ions Doppler up-shifting the reflected pulse.

As seen in Fig 1.4 (a) an isolated 200 attosecond pulse with 10% of the initial energy

resulted from the interaction. Further simulations were carried out that showed continued

decreases in pulse duration as a0 was increased as shown in Fig. 1.4 (b). Combining TFC

with this relativistic compression at higher a0 holds promise to generate the laser pulses

necessary to drive laser wakefields at solid densities as will be further explored in Chap.

6.
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1.4 Structure of thesis

The overall structure of this thesis is as follows. Chapter 2 reviews the relevant theoretical

background for the ultrafast pulse compression experiments. It describes in detail the

linear and nonlinear response of isotropic matter to ultrashort laser pulses and how they

are used in pulse compression. Chapter 3 reviews the various capabilities and diagnostics

developed by the author to carry out the experimental studies. Chapter 4 details the

various pulse compression experiments carried out at various facilities. In addition to

temporal compression, the effect of SPM on the laser far-field with flat-top and Gaussian

mode types is investigated. Chapter 5 investigates SPM at longer wavelengths in the near

infrared in two different experiments where the nonlinear coefficients are less well-known.

Finally, since a potential application of thin film compression is the generation of short

pulse coherent x-rays, as discussed in the previous section, particle-in-cell simulations were

carried out investigating the utility of these types of x-ray pulses in driving wakefields

at solid densities in Chap. 6. The wakefield strength, electron acceleration, and photon

emission properties are contrasted between in cases with optical and x-ray laser drivers.

On the other hand, laser wakefields were also computationally investigated as a potential

source of high energy cosmic rays from blazars. Simulations were carried out using a

base case to tie the results to present day experimental findings and scale the parameters

in the direction of the conditions present in the astrophysical environment. Chapter

8 is dedicated to a pulse measurement technique developed by the author that sprung

from insights gained from experiments carried out in Chap. 4 and 5. Finally, Chap. 9

reviews the findings of this body of work and suggests a few promising future directions

for approaching the relativistic single-cycle limit.
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Chapter 2

Laser pulses in matter

2.1 Linear response

Our further discussions will hinge critically on the interaction of light with dielectrics,

therefore we will start with understanding how these non-conductive materials respond

to electric fields. We will start by modifying Maxwell’s equations with the induced

bound source terms in a dielectric. We will then derive a simplified model for the

index of refraction in dielectrics to guide our physical intuition. Finally, we will discuss

the practical implications of the model and connect the theory to our best physical

approximations for dispersion. Maxwell’s equations in SI units in the absence of free
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charge and current are

∇ · E = 0 (2.1a)

∇× E = −∂B

∂t
(2.1b)

∇ ·B = 0 (2.1c)

∇×B = µ0ε0
∂E

∂t
(2.1d)

However in a non-uniform dielectric, bound charge density can change locally (∆Qpol) in

a volume when exposed to an external field. The induced polarization through the surface

of the volume is due to the enclosed change in electric charge.

∆Qpol = −
∮
S

P · n̂ da (2.2)

Where we also know by definition, where ρpol is the bound charge density,

∆Qpol =

∫
ρpol dv (2.3)

and finally from divergence theorem.

∫
∇ ·P dv =

∮
S

P · n̂ da (2.4)

Therefore we can see that

∫
ρpol dv = −

∫
∇ ·P dv (2.5a)

=⇒ ρpol = −∇ ·P (2.5b)
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If the external electric field is time-varying, this leads to the motion of bound charges,

giving rise to a time-varying bound current density jpol = Nev. If we recall that P ≡ Nex,

we can see that jpol = d/dt(Nex) = dP/dt. Unlike the bound charge density, bound

currents can exist in perfectly isotropic materials, granted that there is a time-varying

field. The modified Maxwell’s equations in a dielectric in the absence of free charge and

current are the following.

∇ · E =
ρpol

ε0
=
−∇ ·P
ε0

(2.6a)

∇× E = −∂B

∂t
(2.6b)

∇ ·B = 0 (2.6c)

∇×B = µ0jpol + µ0ε0
∂E

∂t
= µ0

∂

∂t
(P + ε0E) (2.6d)

It is worth emphasizing here that in an isotropic medium (ie. fused silica) the the time

varying polarization enters Maxwell’s equation through driven bound currents in the

media as shown above. In the case of weak, slowly varying fields the polarization P

varies approximately linearly with the electric field E [61]. In this context it is often

convenient to define the electric displacement field (D) since it contains the electric fields

due to the material (P) as well as external fields (E) as seen in Eq. 2.7. [61].

D = ε0E + P = ε0E + ε0χ(ω)(1)E =
(

1 + χ(ω)(1)
)
ε0E = n2(ω)ε0E (2.7)

Here n(ω) is the index of refraction, and χ(ω)(1) is the linear susceptibility of the material.

In general the linear susceptibility is a second rank tensor and determines the polarization

in a medium in response to any general electric field. For the purposes of this chapter,

we will assume the electric field is linearly polarized, and that the medium is isotropic in

which case the susceptibility tensor may be treated as a constant. A surprising number of

physical phenomena can be described by modeling the polarization with a linear response.
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By using this notation for the susceptibility with the superscript (1), we are committing

to this approximation for now. The constant of proportionality of displacement field to

the total electric field (Eq. 2.8) is called the permittivity of the material. It is important

to emphasize here that this constant of proportionality is an approximation, and is only

true if the field E does not become too large.

ε(ω) =
(

1 + χ(ω)(1)
)
ε0 = n2(ω)ε0 (2.8)

Sometimes it is also useful to refer to the dimensionless quantity εr(ω), typically referred

to as the dielectric constant or relative permittivity.

εr(ω) =
ε(ω)

ε0
= 1 + χ(ω)(1) = n2(ω) (2.9)

As will become clear in Sec. 2.2, χ(ω)(1) represents an approximation of the material

response to an electric field.

2.1.1 The electric susceptibility χ(1)

Now that we have reviewed Maxwell’s equations in a dielectric, and claimed that under

certain conditions a decent approximation for the polarization is P = ε0χ(ω)(1)E, the

question that remains is what on earth is χ(ω)(1)? To get a better physical sense of this,

we will explore the Lorentz model [62] for χ(ω)(1) of which serves to guide our physical

intuition. In the presence of an external oscillating electric field, electrons bound by

electrostatic forces to their parent ions, and subject to velocity dependent damping was

modeled by Lorentz using the damped driven harmonic oscillator.

F = qE = m(ω2
0 + γ

d

dt
+
d2

dt2
)x (2.10)

17



Here ω0 is the natural frequency of the oscillator and γ represents the velocity dependent

damping. The Fourier transform can be employed to solve the differential equation for

the displacement of these oscillators.

E(ω) = −me

e
(ω2

0 − iγω − ω2)x(ω) (2.11)

This leads to an expression for the displacement of the electrons.

x(ω) = − e

me

E(ω)

(ω2
0 − ω2)− iγω

(2.12)

Recalling that P = −Nex, and that the first order polarization can be expressed as

P = ε0χ(ω)(1)E, (2.13)

it is readily identified by algebra that the first order dielectric susceptibility takes the

form shown below in Eq. 2.14

χ(1)(ω) =
Ne2

ε0me

1

(ω2
0 − ω2)− iγω

=
ω2
p

(ω2
0 − ω2)− iγω

(2.14)

or equivalently

n2(ω)− 1 =
ω2
p

(ω2
0 − ω2)− iγω

(2.15)

where we have made use of the substitution ω2
p = Ne2/ε0me, where ωp is the plasma

frequency. This equation represents the response of a system of oscillators with a single

resonance subject to damping. It is noted here that for a complete theory of the response
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inside a dielectric one needs to take into account the local field correction to the electric

field which can be found in Ref. [63]. Real materials have many resonances and make

this function difficult to determine analytically. If we agree to stay away from resonances

which are in the ultraviolet for most glasses including fused silica, the damping term can

be neglected and an approximation for the response can be made taking into account the

effect of a sum of resonances. This approximation is often formulated in wavelength as

opposed to frequency and is called the Sellmeier equation (Eq. 2.16)

n2(λ) = 1 +
∑
i

Biλ
2

λ2 − Ci
(2.16)

Here Bi and Ci are experimentally determined parameters that determine the strength

and location of the ith resonance respectively. As will be explored in the next section, the

shape of this function has strong implications on how ultrashort laser pulses are effected

through propagation in a dielectric. A large catalog of the index of refraction of many

materials is hosted on Ref. [64].

2.1.2 Dispersive effects

Ultrashort laser pulses are not monochromatic, and (restricting our attention to the time

domain) can be thought of as consisting of plane waves over a band of frequencies referred

to as a bandwidth. When the peaks of these plane waves are aligned in time they are said

to be at the Fourier transform limit. In this case each of the plane waves add constructively

in the region near the peak, and then begin to destructively interfere farther away. The

wider the bandwidth of the laser pulse, the shorter the duration of the pulse can be-and

the more important dispersive effects become. Next we will follow Ref. [65] and consider

the effect of a laser pulse Ein(t) with a spectrum Ẽin(ω) consisting of a bandwidth of
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frequencies propagating through a dispersive medium. After passing through the medium,

the laser pulse acquires a frequency dependent phase shift.

Eout(t) =
1

2π

∫
dω Ẽin(ω)eiωteiϕ(ω) (2.17)

The physical reason for this frequency dependent phase shift in dielectric materials (ie.

fused silica) is the following. As an oscillating electric field passes through a dielectric,

it polarizes the molecules setting them into oscillatory motion. The acceleration of the

of these charges radiates new fields. The superposition of the new field interfering with

the initial field produces a new overall combined field which is equivalent to a phase shift

of the initial field [63]. Frequency components that are closer to the material resonances

drive stronger oscillations and therefore produce stronger newly radiated fields resulting

in a larger phase shift for a given frequency. The magnitude of this phase shift is encoded

in the index of refraction. When passing through a medium of length L, the total phase

shift of a laser pulse as a function of frequency can be written

ϕ(ω) = β(ω)L = n(ω)
ω

c
L. (2.18)

Here n(ω) is the familiar index of refraction explored in the previous section, and β(ω) is

the propagation constant. The total phase shift as can be expanded around the carrier

frequency ω0 of the pulse in a Taylor series to approximate its functional form. Since the

first few terms are often dominant, this simplification can make the total phase shift more

manageable, and give physical insight into how the material dispersion will alter the pulse

by considering the effect of each term.

ϕ(ω) = ϕ0 +
∂ϕ

∂ω

∣∣∣∣
ω0

(ω − ω0) +
∂2ϕ

∂ω2

∣∣∣∣
ω0

(ω − ω0)2

2!
+ ... (2.19)
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The zeroth order phase ϕ0 corresponds to an absolute phase shift and describes the phase

shift of the carrier frequency within the envelope of the pulse without altering the pulse

shape. While the zeroth order phase is inconsequential when there are many oscillations of

the electric field within the pulse envelope, it can have a significant effect on the dynamics

of laser matter interactions in relativistic single-cycle limit [3], and is commonly referred

to as the carrier envelope phase or CEP. The first order phase coefficient ∂ϕ/∂ω|ω0 on the

other hand corresponds to the group delay which is a phase shift that effects the entire

pulse collectively, delaying the pulse envelope in time. The second order phase is the last

term that will be discussed in this section where ∂2ϕ/∂ω2|ω0 is called the group delay

dispersion or GDD. This is the first term that contributes a frequency dependent phase

delay and therefore results in pulse broadening in the time domain. The GDD expressed

in terms of the index of refraction and the carrier wavelength can be see below [65].

∂2ϕ

∂ω2

∣∣∣∣
ω0

≡ − λ3

2πc2

d2n

dλ2

∣∣∣∣
λ0

L (2.20)

It is worth noting here that if the L is omitted from the above expression, it instead

describes ∂2β/∂ω2|ω0 which is called the group velocity dispersion or GVD and describes

the phase shift per unit length often expressed in units of fs2/mm (ie. ∼ 36.16 fs2/mm

in fused silica for λ0 = 800 nm). This term can be the dominant term, but depending

on the functional form of the index of refraction near the carrier wavelength higher order

terms can become important. Furthermore, higher order phase components become more

important as the laser pulse bandwidth increases. The interested reader is directed to

Refs. [42, 65, 66] for a much more detailed account of these effects than can be included

here. This concludes our discussion of linear effects on pulse propagation, the next

section investigates one effect in the unbelievably rich topic of nonlinear effects on pulse

propagation.
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2.2 Nonlinear response

As explored in the previous section, materials respond linearly to oscillating electric fields

given that the fields are small. We may wonder what happens if the fields become large

enough that our linear term is not enough to describe the response of the material... This

is the realm of nonlinear optics. In this realm there are many different ways materials can

respond to the oscillating electric fields. To get the full picture, describing simultaneous

resonances (ie. two-photon, three photon etc.) one must resort to the quantum mechanical

description [67]. This however is beyond the scope of this thesis work, but the interested

reader is encouraged to explore Refs [68, 69]. In this chapter we will follow [70] and [67] to

extend the Lorentz model to take into account higher order effects which effect the index

of refraction, which will be critical for understanding the wave picture of the phenomenon

experimentally investigated in this thesis.

2.2.1 The nonlinear electric susceptibility χ(3)

The model in the last section that the electron clouds will oscillate linearly with the

driving field is only approximately true in the case where the fields are small, because no

atomic or molecular potential in nature is truly described by a parabolic restoring force.

One can model the nonlinear response by including new terms in the potential represented

by additional terms in the polarization as shown below.

P(ω) = ε0

[
χ(1)(ω) + χ(2)(ω)E(ω) + χ(3)(ω)|E|2 + ...

]
E(ω) (2.21)

The second term χ(2) in this equation represents contributions from a potential that has

an asymmetry (ie. odd power), such as those found in the ordered lattice of some crystals.
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If however, the material is composed of unordered or amorphous collections of molecules,

the response of the material can be better modeled by a centro-symmetric model. Since

in this thesis, we are interested in describing the nonlinear propagation in glass, we will

focus our attention on χ(3), which can be modeled by adding an anharmonic term to the

Lorentz model, where the odd powered restoring force is the result of a an even powered

anharmonic potential and has a strength parameter b [70, 67, 71].

F = qE = m(bx3 + ω2
0x + γ

dx

dt
+
d2x

dt2
) (2.22)

This equation is called the Duffing equation [72, 71, 62] and the third order response can

be solved by the method presented in Refs. [71, 67] to yield.

x(3)(ωq) =
∑

(mnp)

be3[E(ωm) · E(ωn)]E(ωp)

m3D(ωq)D(ωn)D(ωm)D(ωp)
(2.23)

Where the denominator function D(ωn) = ω2
0 − ω2

n − iγωn and ωq = ωn + ωm + ωp

have been introduced. The subscripts m, n, and p represent three distinct electric field

frequencies, since this is the most general case for third order interactions. Here again

P(3)(ωq) = −Nex(3)(ωq) and the definition of the third order polarization is [67]

P
(3)
i (ωq) = ε0

∑
jkl

∑
(mnp)

χ
(3)
ijkl(ωq, ωm, ωn, ωp)Ej(ωm)Ek(ωn)El(ωp) (2.24)

where i,j,k,l represent the spatial coordinates x, y or z. Again the third order

susceptibility can be identified as in the case of centro-symmetric media as

χ
(3)
ijkl(ωq, ωm, ωn, ωp) =

Nbe4[δijδkl + δikδjl + δilδjk]

3ε0m3D(ωq)D(ωn)D(ωm)D(ωp)
(2.25)
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Equation 2.25 represents the 81 element fourth rank tensor that is the third order

susceptibility with arbitrary driving frequencies [71]. If the third order nonlinear

polarization is induced by a linearly polarized monochromatic plane wave of frequency ω,

the induced nonlinear polarization reduces to two unique terms P
(3)
i (ω) and P

(3)
i (3ω) with

the corresponding susceptibilities χ
(3)
ijkl(ω,−ω, ω, ω) and χ

(3)
ijkl(3ω, ω, ω, ω) respectively.

Here the former corresponds to an increase in the refractive index, whereas the latter

corresponds to third-harmonic generation [67]. Considering the term corresponding to an

increase in the refractive index, the polarization can now be expressed as [73, 74]

P
(3)
i (ω) = 3ε0

∑
jkl

χ
(3)
ijkl(ω,−ω, ω, ω)Ej(ω)Ek(ω)El(−ω) (2.26)

where the 3 represents the degeneracy factor. There are three nonzero elements to this

sum, χ
(3)
1122, χ

(3)
1221 and χ

(3)
1212 which together sum to χ

(3)
1111 [67, 71]. Finally, the third order

nonlinear polarization resulting in nonlinear changes to the refractive index due to a

linearly polarized monochromatic plane wave is

P (ω) = 3ε0χ
(3)
1111(ω,−ω, ω, ω)|E(ω)|2E(ω) (2.27)

where

χ
(3)
1111(ω,−ω, ω, ω) =

Nbe4

ε0m3D(ω)3D(−ω)
(2.28)

This final expression for χ
(3)
1111(ω,−ω, ω, ω) serves to guide our physical intuition by

showing what determines its value through the anharmonic model presented by Ref. [70].

Under strongly non-resonant conditions Ref. [67] uses this formula to obtain an order

of magnitude estimation for χ
(3)
1111. If we claim that the restoring force due to the linear
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Mechanism n2 [cm2/W] χ
(3)
1111 [m2/V2] Resp. time [sec]

Electric polarization 10−16 10−22 10−15

Molecular orientation 10−14 10−20 10−12

Electrostriction 10−14 10−20 10−9

Saturated atomic absorption 10−16 10−8 10−8

Thermal effects 10−6 10−12 10−3

Table 2.1: Typical time scales for changes in the refractive index due to many different
effects

and nonlinear terms in Eq. 2.22 will become comparable as the displacement approaches

the lattice spacing d, (ie. mbd3 = mω2
0d) then we can obtain an estimate of b ≈ ω2

0/d
2.

Additionally, far from resonance we can approximate D(ω0) = ω2
0, and the number density

is N = 1/d3. Using these approximations with d = 0.3 nm and ω0 = 7× 1015 rad/sec one

obtains the following approximation for χ
(3)
1111.

χ
(3)
1111 ≈

e4

d5ε0m3ω6
0

= 3.5× 10−22[
m2

V2
] (2.29)

This approximation turns out to be of the same order of magnitude as many

experimentally determined values, for example in fused silica χ
(3)
1111 ≈ 1.86 × 10−22[m2

V2 ].

It turns out there are several other χ
(3)
1111 effects that can affect the index of refraction

other than the electronic polarization explored in this chapter. Each of these effects occur

on different characteristic timescales, as conveniently summarized in Table 2.1 from Ref.

[67].

For the purposes of this thesis work, we will focus our attention on changes in the index

of refraction by electronic polarization. This effect occurs on ultrashort (10−15 − 10−16

fs) timescales relevant to ultrashort pulse compression often referred to in the literature

as “instantaneously.” Critically, this means that the nonlinear index of refraction changes

on timescales shorter than our typical pulse durations (3− 5× 10−14 fs).
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The main insight from this chapter is that a decent approximation of χ
(3)
1111 can be made

by adding a simple anharmonic term to the potential of the Lorentz bound electron

model. It is also noted here that in the laboratory these approximations are almost never

used quantitatively, instead the χ(3) or n2 are measured under the relevant conditions

(timescale, materials, polarizations etc.).

This of course is not the whole story for χ(3) by any means, and there are entire fields

of study dedicated its unique effects on various timescales and in different materials. To

delve into much more detail than could be presented in this thesis, the interested reader is

encouraged to explore Refs. [71, 69, 68, 75] which should serve as a powerful jumping off

point to more specific inquiries. For the remainder of this thesis the χ
(3)
1111 corresponding to

contributions from electronic polarization relevant on ultrafast timescales will be referred

to as simply χ(3).

2.3 Intensity dependent refractive index

Now that we have a sense of where χ(3) comes from, we will explore one of its effects. It will

be shown that nonlinear changes in the index of refraction can prove to be very useful in

application to ultrashort pulse compression. On the other hand, nonlinear spatial effects

(transverse to the beam propagation direction) can lead to effects such as filamentation

and wave collapse. As explored in the previous section, centro-symmetric media exhibit

inversion symmetry and do not have odd anharmonic terms in their nonlinear potential.

As such, up to the first order of nonlinearity, the polarization can be expressed as Eq.

2.30 [74, 67]

P(ω) = ε0

[
χ(1)(ω) + 3χ(3)(ω)|E|2

]
E(ω) = ε0χeff (ω, |E|2)E(ω) (2.30)
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where

n2(ω, |E|2) = 1 + χeff (ω, |E|2) (2.31)

and

n2
0(ω) = 1 + χ(1)(ω) (2.32)

substituting Eq. 2.32 into Eq. 2.31 and solving for n(ω) yields

n(ω, |E|2) = n0(ω)

(
1 +

3χ(3)(ω)|E|2

n2
0(ω)

)1/2

(2.33)

However in the case that χ(3)(ω)|E|2/n2
0(ω) << 1 This expression can be approximated

by

n(ω, |E|2) ≈ n0(ω)

(
1 +

3χ(3)(ω)|E|2

2n2
0(ω)

)
(2.34)

Recalling that I = 2n0(ω)ε0c|E|2, Eq. 2.34 can be re-written in the following form,

n(ω, I) ≈ n0(ω) +
3χ(3)(ω)

4n2
0(ω)ε0c

I (2.35)

giving rise to the common form of the optical Kerr effect

n(ω, I) ≈ n0(ω) + n2(ω)I (2.36)

where [67]

n2(ω)
[m2

W

]
≡ 3

4n2
0(ω)ε0c

χ(3)(ω)
[m2

V2

]
. (2.37)
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As shown above, n2 is a function of ω and is generally only experimentally determined

at a few locations in frequency space for various materials due to the complexity in the

modeling of the nonlinear response of the dielectric. That being said, it should be noted

that empirical relationships have been determined that predict χ(3)(ω) reasonably well

and could serve as a guide to choosing materials with larger nonlinear response [74].

Figure 2.1: graphical representation of the empirical relationship for predicting the
nonlinear index of refraction n2 in many materials. Note that n2 is given in ESU.

In [74] a detailed derivation of a predictive formula for n2 was developed in dielectrics

taking into account the local field correction. However, ultimately a simpler empirical

formula was found to better fit the data as shown in Fig. 2.1. The next section will

explore the effects of an increasing index of refraction in the time domain on ultrashort

laser pulses.
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2.3.1 Self-phase modulation

As explored in the previous section, when high intensity laser pulses interact with matter,

they can lead to changes in the refractive index of the material. This change in the

refractive index due to electronic polarization of the electrons occurs on the femtosecond

timescale as seen in Table 2.1. The full treatment of intense ultrashort pulse propagation

in matter requires simulations involving the nonlinear Schrödinger equation. Here we

restrict our attention however, to a simple case where loss terms and dispersion can be

neglected. Consider an intense ultrashort (30-50 fs) laser pulse with a gaussian temporal

profile traveling through a very thin (sub-millimeter) fused silica wafer at Brewster’s angle.

The linearly polarized electric field of such a pulse can be defined by

E(z, t) = E0e
−2 ln(2)t2/τ2eiφ (2.38)

Here φ = ω0t − kz, where k = 2πn(I)/λ0 and τ is the full width at half max of the

intensity profile. Now by substituting the modified index of refraction into the phase

term we obtain the following expression for the phase including the nonlinear term. I

have explicitly included the time dependence as a reminder that the phase shift is local

within the pulse envelope.

φ(t) = ω0t−
2π

λ0

(n0 + n2I(t))z (2.39)

The magnitude of the phase change arising from the nonlinear index of refraction can

be seen below in Eq. 2.41. Different parts of a gaussian pulse experience a different

index of refraction locally in time as the pulse passes through matter (ie. the center of

the pulse where the intensity is highest, will experience a higher index of refraction than

the wings of the pulse during propagation). In other words, the phase is modulated by
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the intensity envelope of the laser pulse itself, giving credence to the name self-phase

modulation (SPM).

∆φ(t) =
2π

λ0

n2I(t)z (2.40)

In this case since the temporal intensity profile is gaussian, this leads to a gaussian phase

shift. Further, since ωinst(t) ≡ dφ/dt,

ωinst(t) = ω0 −
2π

λ
n2
dI(t)

dt
z. (2.41)

The remarkable thing about this process is in the center of the pulse, the intensity envelope

and therefore the nonlinear phase shift acquired is roughly quadratic. This means that

a linear change in the instantaneous frequency has been added to the pulse (ie. a linear

chirp). An example of an extreme case of SPM spectral broadening (B ∼ 21) is shown

below in Fig. 2.2 so that the change in the instantaneous frequency is resolvable to the

eye. The electric field of the laser pulse after SPM can be seen with a clear frequency

chirp with lower frequencies at earlier times and higher frequencies at later times.

Changing the instantaneous frequency of a transform limited pulse without changing

its duration means more frequencies were added to the pulse as seen in Fig. 2.2. A

broader bandwidth implies that we have a narrower transform limited pulse duration

by the time-bandwidth product. Furthermore, since the frequencies constituting this

bandwidth have a linear chirp over most of the temporal duration, they can be re-arranged

using dispersive optics (ie. chirped mirrors), which can undo the linear frequency chirp.

This is the basic physics governing optical pulse compression in the time domain.
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Figure 2.2: The electric field of an ultrashort laser pulse before (a) and after (b) a nonlinear
phase shift from SPM. The Fourier transform of the initial (c) and spectrally broadened
(b) laser pulse can be seen below their respective laser pulses.

2.3.2 Self-focusing

Although the temporal effects of the nonlinear refractive index explored in the previous

section are extremely beneficial for pulse compression, the nonlinearity also has spatial

manifestations as mentioned in Chap. 1. As was the case in time, local differences in

the intensity profile as a function of space can give rise to a lensing effect due to local

changes in the index of refraction. Since the on-axis portion of the beam experiences a

larger index of refraction than its periphery, the phase velocity is lower on-axis. Further,

since optical rays propagate normal to the wavefront, they converge on axis therefore

producing a lensing effect. This process was first predicted in the early 1960s and observed

experimentally shortly after [36, 15]. It was shown that this lensing effect can lead to

so-called catastrophic beam collapse when the laser power exceeds a certain threshold

31



called the critical power Pcr [36, 76, 77, 78].

Pcr = π(0.61)2 λ2
0

8n0n2

(2.42)

For example in a long enough medium there is a critical power Pcr such that if P < Pcr

the laser pulse will always ultimately spread out due to diffraction, whereas if P > Pcr the

beam will always collapse catastrophically to a small point [79, 65]. The critical power

then defines the point at which the nonlinear self-focusing just compensates the beam

spreading due to diffraction [79, 67]. Above the critical power, gaussian beams collapse

to an on-axis filament after propagating a distance of

zf =
πw2

0

λ0

( P
Pcr
− 1
)−1/2

. (2.43)

It is interesting to note that regardless of the input beam, the beam has been shown to

collapse into a self-similar Townes profile [80]. On the other hand, if the material inducing

the nonlinearity is very thin (ie. the profile of the beam is not significantly modified), the

optic can instead be modeled as a geometric lens [79], as further discussed in Chap. 4.

It is also noted here that Kerr lensing still occurs below the critical power as is the case

with passive mode-locking schemes like Kerr lens mode-locking (KLM) [79, 65].

In addition to whole-beam self-focusing, high power laser pulses are also susceptible to

small-scale filament formation when propagating through a nonlinear medium. This type

of small-scale spatial nonlinearity (initiated by noise in the intensity profile) is typically

the dominant effect in flat-top beam profiles where the large scale intensity gradients tend

to be smaller making the collapse dynamics are slightly different [81]. A small region of

higher intensity (ie. noise) in the beam profile raises the index of refraction locally, which

focuses light toward it and raises the intensity even higher [79]. This process has been
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modeled as an instability by Ref. [82] where the growth rate of these modulations was

found to be gm = 2πn2I/λ0 [79, 83]. Integrating over the entire length of the nonlinear

medium yields the “B-integral.”

B =
2π

λ0

∫ L

0

n2I(z)dz (2.44)

The value of the B-integral specifies the total nonlinear phase shift over the length of the

nonlinear medium where the amplitude of the small-scale modulations grow according to

G = eB [79, 16]. Spatially filtering before and after the nonlinear interaction can ensure

that the input noise is minimized, and that the growth of the filaments can be mitigated

be removing the high frequency components with an appropriately sized pinhole after

the interaction [79]. In the context of ultrafast pulse compression, these techniques as

mentioned in Ref. [24] will likely be very important to obtain the highest quality pulse

compression and extend the compression to multiple stages as explored in Chap. 9.
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Chapter 3

Methods/laser diagnostics

This section briefly outlines the various diagnostic tools developed for the experimental

studies. It also includes several applications of these diagnostics to calibrating and

characterizing various pieces of equipment.

3.1 Second harmonic generation FROG

In pursuing pulse compression of ultrashort high intensity laser pulses, accurate

measurements of pulse length are of critical importance. This statement may seem obvious

but it makes the process no less trivial. Typically to record an event, you need to take

measurements at a faster rate. This becomes very difficult on the femtosecond timescale.

For a sense of scale, one femtosecond (∼ 10−15 s) is to a minute (∼ 101 s), as one minute

is to the age of the universe (∼ 1017 s). Typically to measure these events a method called

an intensity autocorrelation is used. A beam-splitting optic is utilized to create a clone

of the laser pulse. The laser pulse and its clone are then overlapped inside a nonlinear

crystal such as Beta-Barium Borate (BBO) and generate a new signal when the beams
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are overlapped in space and time. One can then delay the clone pulse by increasing the

path-length using a translation stage in very small increments O(1µm) thereby scanning

across (gating) the laser pulse. When the pulses no longer overlap, the second harmonic

signal due to their overlap will disappear. The distance the stage moves in this process

gives you an idea of the length of the laser pulse. This measurement is called an intensity

auto-correlation and can serve as a pulse measurement, assuming a pulse structure.

A similar but slightly more complicated technique is called Frequency Resolved Optical

Gating (FROG). In the case of the scanning second harmonic generation FROG, the

process is nearly identical except that instead of only recording the intensity of the second

harmonic signal you also record its spectrum. In other words - you frequency resolve the

optical gating. Figure 3.1 shows a schematic and photo of an example of such a diagnostic.

Many more details can be found in Ref. [66].

In Fig. 3.1, an input beam is aligned through irises and split into a reference line and a

delay line. The delay line has a variable path length by use of a retro-reflecting mirror

pair on a motorized delay stage. The reflective optics used to guide the beam are either

gold (Au) or silver (Ag). The set of laser pulses are then focused and overlapped inside

the nonlinear crystal to generate the second harmonic signal. BBO is manufactured to

phase match a certain input wavelength and needs to be oriented correctly to generate

efficient SHG (For Type I BBO at 800nm needs to be cut at 29.2 deg). This means that

mounting the BBO in a rotation mount is generally a good move. Sometimes the angle of

the cut may need to be determined for the vendor, using software such as SNLO can be

critical in these cases. The thickness of the crystal also determines how much spectrum

it can phase match. Using a thicker crystal will increase the second harmonic signal, but

it also limits the amount of bandwidth you can phase match - ultimately limiting the

duration of pulses you can measure with FROG. The crystal thickness generally needs to

be matched with the application, and one can determine the phase matching bandwidth
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Figure 3.1: Shown above is a schematic representation (top) and a photo (bottom) of the
SHG scanning FROG device

afforded by a certain crystal thickness with the following formula [66].

∆λFWHM =
0.44λ0

|n′(λ0)− 1
2
n′(λ0

2
)|

(3.1)

Here n′ refers to the first derivative of the Sellmeier equation, and λ0 refers to the carrier

wavelength of the laser pulse. In this case the laser wavelength is ∼ 800 nm which means

the second harmonic is blue at ∼ 400 nm. In this case the light exiting the BBO consists

of two blue beams that represent the SHG signal coming from each intense laser pulse.

Furthermore, when the focal spots of the laser pulses are overlapped in space and time in
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the nonlinear crystal a third blue beam will appear between the other two. CAUTION:

Care must be taken to ensure that the intensity of the focused beams is low enough so

that BBO does not burn - it typically costs ∼ $500-1000 and can take weeks of lead time

to grow and acquire. This central signal is then directed by an aluminium (Al) mirror

and focused onto the spectrometer slit using an A-coated lens to record its spectrum at

each delay position to build a two-dimensional dataset which is called a spectrogram. An

example of a spectrogram can be seen below in Fig. 3.2 (a) and (b). By making the

assumption that the pulse is finite in both frequency and time this two-dimensional data

set can uniquely determine the intensity and phase of the laser pulse through the process

of “2D phase retrieval” [84]. Herein lies the strength of the FROG technique over a simple

autocorrelation.

Figure 3.2: Shown above is a sample spectrogram of an 800 nm laser pulse using an
ultrafast fused silica beam splitter (a) and a pellicle beam splitter (b). The fused silica
beam splitter adds some dispersion to the reference line giving rise to the angled trace in
(a), whereas the pellicle does not

It is critical to note that all the optics in the FROG are reflective up until the nonlinear

crystal. This is because dispersion plays a large role in ultrashort laser pulse propagation

in dielectrics as explored in the previous sections, and can significantly alter the pulse

length before the pulse measurement. A striking example of this can be seen in Fig.

3.2. Figure 3.2 (a) is an example of a spectrogram taken while using a fused silica beam
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splitter. This spectrogram asymmetry is normally not possible in the SHG process [66] and

is indicative of a difference in Group Delay Dispersion (GDD) between the delay and the

reference pulse. This asymmetry can be corrected with post-processing, or alternatively

one can use a very thin beam splitter (pellicle beam splitter) in place of the fused silica

beam splitter, where the dispersion is negligible at the cost of some stability.

3.2 Compressor calibration

As mentioned in the previous section, SHG FROG determines the phase of the laser pulse.

This is very convenient in calibrating devices such as a compressor grating. Such a device

can be used to vary the amount of GDD in a laser pulse. As explored in Chap. 2 the GDD

concerns the second order term in the expansion of phase about the carrier frequency.

ϕ(ω) = ϕ0 +
∂ϕ

∂ω

∣∣∣∣
ω0

(ω − ω0) +
∂2ϕ

∂ω2

∣∣∣∣
ω0

(ω − ω0)2

2!
+ ... (3.2)

Recall GDD ≡ ∂2φ/∂ω2. One can then numerically fit to the measured phase (in the

region where the spectrum is non-zero) to determine the GDD of the laser pulse, where

the coefficient of the ω2 term is the relevant quantity.

φ(ω) = a+ bω + cω2 (3.3)

It can be seen upon inspection of Eqs 3.2 and 3.3 that c ≡ GDD/2. It is also worth

noting here that the sign of the measured quadratic phase is arbitrary in SHG FROG and

requires other processes to retrieve the arrow of time. For example, one could introduce

a fused silica window to the pulse and observe the change in the quadratic phase. If the

magnitude of the quadratic phase becomes larger this means that the beam was originally
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positively chirped, whereas if the magnitude of the quadratic phase becomes smaller this

means the pulse was initially negatively chirped. Alternatively higher order nonlinear

processes such as self-phase modulation also have unique spectral responses depending

on the sign of quadratic chirp-allowing one to determine the sign of quadratic chirp by

inspection of the modulated spectrum, which will be discussed in Chap. 8 A typical

chirped pulse can be seen in Fig. 3.3 where the spectrum (blue) and the spectral phase

(green) and a fit to the second order phase (red-dotted) are plotted.

Figure 3.3: Shown above is a sample spectrum and phase of a laser pulse by SHG FROG
with strong quadratic phase (a linearly chirped pulse) with ∼ 420 fs2 of GDD
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By varying the compressor grating separation and taking SHG FROG measurements at

each compressor position, one can retrieve the GDD per actuator position and ultimately

the location of the shortest pulse. The green curve in Fig. 3.4 (a) shows the fwhm of

the retrieved pulse duration from SHG FROG as a function of actuator position - where

the shortest pulse occurs ∼ 5295. The orange data series in Fig. 3.4 (b) shows the fitted

quadratic spectral phase as a function of actuator position - where the phase is determined

by the method shown in Fig. 3.3. By fitting a line to the retrieved quadratic phase versus

actuator position we acquire a compressor calibration of ∼ −7.91 fs2/actuator position.

Note that the fit to the quadratic phase crosses zero at the location of the shortest pulse.

This is what we expect since the pulse should be shortest when there is no chirp. This

particular scan was performed during a time when the compressor grating was slightly

unoptimized, leading to third order phase in the pulse. This is evident not only in the

slightly above spec (∼ 35 fs) minimum pulse duration of∼ 37 fs, but also in the asymmetry

in the orange data series in Fig. 3.4 (b). When near zero, the quadratic fit is picking

up on third order terms leading to a slight asymmetric wiggle in the linear trend. The

compressor has since been optimized for minimizing this third order contribution, but I

include it here in case others discover a similar thing.

In addition to calibrating the compressor itself, the phase compensation of the chirped

mirrors used in the UCI compression experiments were also characterized. While this

can in principle be done with a single FROG measurement, by taking a compressor

scan one can minimize the error in a single measurement. At a later date when the

compressor was optimized so as to minimize the third order phase, another scan was

done with the chirped mirrors in the beam. The blue curve in Figure 3.4 (a) again

shows the fwhm of the pulse duration as a function of compressor position, whereas the

blue data series in Fig. 3.4 (b) again refers the the quadratic phase as a function of

compressor position. The difference in quadratic chirp in the green dotted calibration
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curves at the actuator position 5250 is ∼ −251 − 332.5 = −583.5 fs2. This agrees

reasonably well with the HD58 ultrafast innovations datasheet (http://www.ultrafast-

innovations.com/product.php?name=HD58).
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Figure 3.4: Calibration of pulse duration (a) and phase (b) versus actuator position with
and without chirped mirrors in the beam. The blue line in (a) and blue data series in
(b) represent the autocorrelated pulse duration, and quadratic phase as a function of
compressor position with chirped mirrors in the beam. Whereas the green line in (a) and
orange data series in (b) represent the autocorrelated pulse duration and quadratic phase
of the laser system.
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Chapter 4

Demonstration of thin film

compression

4.1 Introduction

In the following sections the process of ultrashort laser pulse compression is investigated

experimentally on three separate laser systems with different mode types (ie. gaussian

and flat-top) and a range of energies (∼ 7mJ - 2J). The scheme for pulse compression

is TFC, as discussed in Chap. 1. Each laser system has a central wavelength of ∼ 800

nm and a pulse duration of ∼ 35-50 fs. Though these laser systems have a variety of

different energies and mode types, the spectral broadening observed is similar, due to

the similarity of the collimated intensity (∼ 1 TW/cm2). Proof-of-principle experiments

are carried out in bulk fused silica at UCI. These experiments demonstrate a power

amplification, and that spectral broadening and phase manipulation using chirped mirrors

can be achieved to compress pulses to nearly half the original pulse duration (to 20 fs).

Two other ultrafast pulse compression studies were carried out at the Center for Ultrafast
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Optical Science (CUOS) on the HERCULES laser, and the LASERIX facility at the

Université Paris-Sud. The HERCULES experiment was designed to investigate how the

laser far field changes under the influence of self-phase modulation of a flat-top beam

profile in a 0.5 mm fused silica wafer. The experiment at the LASERIX facility was a

longer campaign and investigated the effect of inducing SPM in different materials on

pulse compression as well as the effect of scaling the laser pulse energy, with primary

experimental attention on the temporal characterization.

4.2 Pulse compression in fused silica windows (UCI)

The initial compression experiment at UCI was set up according to Fig. 4.1. High

intensity laser pulses (∼ 0.3 TW/cm2) with a 1/e2 beam diameter (∼ 11.7 mm) were

spectrally broadened in two 4 mm fused silica windows installed on flipper mounts and

oriented at Brewster’s angle (nearly 10 mm of fused silica when accounting for refracted

path length) and re-compressed using 2x HD58 Ultrafast Innovations (-250fs2) chirped

mirrors. It is noted here that recent work has been done to adapt the TFC technique to

Gaussian laser systems by the use of concave optics [85, 86, 87]. This takes advantage

of the fact that spectral broadening through SPM is dependent on both intensity and

target thickness, but the focus of this initial study was to demonstrate high throughput

and compressibility of laser pulses with simple fused silica windows oriented at Brewster’s

angle. By measuring the power with a power meter with and without the the Brewster

windows, the power throughput is measured to be ∼ 99%, implying the process of spectral

broadening is remarkably efficient. The far field and temporal profile of the beam after

this interaction was measured by a CMOS camera and a SHG FROG (as described Chap.

3) respectively.
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Figure 4.1: Shown above is the schematic for the pulse compression in bulk fused silica
experiment. Laser pulses are spectrally broadened in fused silica, and the chirp due to
SPM and GVD is compensated with chirped mirrors. The focal spot and the temporal
duration are then characterized by a CMOS camera and an SHG FROG respectively. The
optics surrounded by dashed lines are installed on flipper mounts or kinematic bases and
were removed to take reference shots.

The beam is then split to each diagnostic with a wedge. The front reflection is directed

to the SHG FROG, and the back-reflection is directed to the far-field imaging setup. Due

to the gaussian intensity profile, the beam is irised before going into the FROG, therefore

the duration measurements pertain to the central part of the mode. Figure 4.2 shows the

measured spectrogram (FROG trace) of the initial (a) and compressed (b) laser pulses and

their associated autocorrelated pulse durations (c) and (d) respectively. The spectrogram

shows spectral broadening as well as a temporal narrowing, indicating that SPM in the

fused silica has generated new frequencies, and those frequencies have been brought into

phase with the chirped mirrors to construct a shorter pulse.

Figure 4.3 shows the laser spectrum before and after spectral broadening (a) measured

directly by a spectrometer, and the reconstructed pulse duration (b) before and after

compression by chirped mirrors.
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Figure 4.2: The measured spectrograms before (a) and after (b) pulse compression, and
the associated autocorrelated pulse durations (c) and (d).

Figure 4.3: Shown above is the spectrum (a) and the pulse duration (b) of the initial
(blue) and compressed (red) pulse. The residual phase after compression (b) red-dashed
shows a remaining quadratic component that could be further compressed toward the
analytical ftl.
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The pulse duration is compressed to 20.2 ± 0.27 fs (red) (originally 39 fs (blue) ) as

shown in Fig. 4.3 and the phase measurement of the compressed pulse indicates that the

residual phase is predominantly quadratic (Fig. 4.3 red - dotted). This means that with

more suitable chirped mirrors the pulse can be compressed further to the FTL, which

was calculated from the reconstructed spectrum to be ∼ 18 ± 0.1 fs. Uncertainty in the

pulse duration and FTL represent the standard deviation of four measurements. As will

be discussed in Chap. 9 a second stage could be utilized after spatial filtering to further

decrease pulse duration towards the single cycle regime [24].

Since the UCI laser has a gaussian mode, it is expected that there will be some self-focusing

in the beam. As shown in Fig. 4.1, a focal spot is created with an achromatic doublet

and imaged onto the surface of the CMOS camera with 40x PLAN achromat microscope

objective and a duplicate achromatic doublet. Fig. 4.4 (a) shows the initial focal spot,

and Fig. 4.4 (b) shows the same focal plane after the fused silica windows are introduced

to the beam. The peak pixel count is seen to drop to ∼ 60% of its initial value, and the

focal spot seems to degrade. However, after translating the 40x PLAN achromat on axis,

a new focal plane was found to recover to ∼ 83% of the initial peak intensity. Therefore

it seems that in the case of slight gaussian self-focusing, the use of wavefront correcting

optics may be able to re-collimate much of the beam’s energy before sending it into an

OAP.

This section clearly demonstrates a power amplification of the central part of the beam

where the intensity is highest and roughly constant. The pulse duration is nearly halved

(from 39 fs to 20 fs), and the energy throughput of the fused silica windows was ∼ 99%. It

is noted here that the wings of the spatial mode are likely not as compressed in time since

the intensity is lower there and therefore less frequencies are generated through SPM.

It is also shown that in the focal spot of the achromatic doublets, ∼ 83% of the initial

maximum pixel counts were recovered when translating to the new focal plane accounting
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Figure 4.4: The focal spot of the laser pulses (a) created by an achromatic fused silica
lens imaged by PLAN achromat microscope objective. The same plane is imaged after
introducing 2x 4 mm compensating plates at Brewster’s angle as the nonlinear medium
(b). The new focus of the gaussian beam is found by translating the microscope objective
on-axis (c)

for the whole beam self-focusing effects. This suggests that a deformable mirror may

be useful in correcting for these wavefront errors and utilizing this pulse compression

technique for Gaussian beams.

4.3 Far-field effects of SPM in thin wafers

To reach the highest intensities for experiments high intensity laser pulses are focused

to focal spots with diameters on the order of the wavelength. It is therefore imperative

that the wavefront quality be maintained in the pulse compression technique used. The

unguided propagation of high intensity laser pulses in nonlinear materials can lead to

wavefront imperfections [36, 82] that may impair the ability to focus them. Recall that in

lower intensity pulse compression techniques it is common to use wave-guiding structures

to maintain wavefront quality.

As shown in the previous section, large scale intensity gradients in the beam (ie. as are

present in a Gaussian spatial mode) can lead to whole-beam self-focusing as evidenced by
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Table 4.1: Approximate laser pulse parameters at each facility.

Laser Parameters
Facilities pulse length [fs] 1/e2 diam. [mm] mode I0 [TW/cm2]

UCI 35 2.3 gaussian 1.3
HERCULES 30 [29] 100 [29] flat-top 0.75-1

the on-axis translated focal spot. This section presents a comparative study of the change

in the original focal plane of high intensity beams with both a Gaussian and flat-top

mode.

Specifically, the far field effects of spectrally broadened high intensity pulses (∼ 1TW/cm2)

after propagation in thin fused silica wafers for application in pulse compression are

investigated. The initial TFC proposal suggested the use of plastic films but here we

test fused silica wafers as the nonlinear medium for the SPM due to their high damage

threshold and high optical quality despite their lower Kerr response.

A focal spot created by an OAP is then imaged by a high numerical aperture microscope

objective onto a CMOS or CCD camera to monitor changes. The imaged f/22 and f/20

focal spots at UCI and HERCULES are made by gold OAPs. In each experiment, the

spectrum of the intense laser pulses is measured directly by a spectrometer with and

without spectral broadening through SPM in one or two 0.5 mm fused silica wafers.

The amount of spectral broadening is controlled by varying the compressor grating

separation with the fused silica wafers in the beam to find the broadest bimodal spectrum

arising from the steepest rising and falling edges (shortest pulse) characteristic of SPM

[38]. Experimental constraints at UCI and HERCULES required that the fused silica

target could be removed in situ, so the grating separation was decreased (adding positive

chirp to the pulse) to minimize spectral broadening in order to determine the unbroadened

laser spectrum. Negatively chirped pulses are not included here due the observed effect

of spectral narrowing through SPM in fused silica [88].
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4.3.1 Gaussian mode (UCI)

The experimental layout of the UCI experiment can be seen in Fig. 4.5. Leak-through

from an ultrafast 85%/15% beam-splitter with a transmitted pulse energy of 0.945 mJ

and pulse duration of 35 fs was down-collimated by a factor of 5x from a 1/e2 diameter

of 11.7 to ∼ 2.3 mm and an approximate peak intensity of ∼ 1.3 TW/cm2. The small

amount of dispersion introduced in transmission through the ultrafast beam splitter was

compensated with the compressor gratings such that the shortest pulse could be achieved.

The 5x telescope consisted of a -1000mm radius of curvature silver (Ag) mirror and a

positive +200mm radius of curvature dielectric mirror to handle the high intensities.

Figure 4.5: The experimental setup characterizing the changes in the focal plane and
spectrum of gaussian laser pulses in 2x 0.5 mm fused silica wafers at Brewster’s angle.
Pulses are down-collimated in a 5x Galilean telescope to reach high intensities for SPM
and then re-directed to pulse diagnostics after cutting power.
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After down-collimation in the reflective Galilean telescope, the beam passes through two

0.5 mm fused silica windows at Brewster’s angle at atmosphere. Immediately after the

nonlinear interaction, the P-polarized beam is reflected from fused silica wedges at ∼ 45

degrees to cut power to the diagnostics and prevent further nonlinearity in air. The beam

is then redirected with gold mirrors to a spectrometer and focal spot camera to monitor

the changes in focal spot.

Prior to taking focal spot measurements, the spectrum of the laser pulses was measured

after propagation through the fused silica wafers at Brewster’s angle. Since the spectral

broadening through SPM depends on both the input beam chirp and duration, a

compressor sweep was first performed to identify the location of shortest FTL (most

broadening). Figure 4.6 shows the FTL of the broadened laser pulses versus actuator

position. Recall that as measured in Chap. 3 the shortest pulse occurs near the actuator

position 5295. Since we expect that the shortest pulse will also induce the strongest

spectral broadening since it has the highest intensity, it makes sense the the shortest FTL

(most broadening) would occur very close to the actuator position corresponding to the

shortest pulse. Also, as determined in Chap. 3 actuator positions below 5295 correspond

to positive chirp, and higher actuator positions correspond to negative chirp.

The FTL of the laser pulse without any nonlinear interaction is ∼ 29 fs, which was

measured by removing the nonlinear samples from the beam path and recording its

spectrum. This value matches the value measured at low actuator positions (very

positive chirp) very well. Another interesting thing to note is that at slightly negatively

chirped input pulses that are still intense enough to induce a nonlinear interaction

with the glass, the FTL actually decreases. This is the expected behavior of spectral

narrowing as investigated by [88]. Although very interesting, in the next section we

omit the negatively chirped pulses, and compare focal spots at compressor position 5075
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Figure 4.6: The fourier transform limit of the broadened spectrum through SPM in two
0.5 mm fused silica wafers oriented at Brewster’s angle. By altering the actuator position
of the compressor, the location of the unbroadened pulse (very positively chirped) and
the maximally broadened (shortest FTL) are identified

and compressor position 5295 corresponding to cases with no nonlinear broadening and

maximum nonlinear broadening (corresponding to the shortest FTL).

At UCI the shape of the intensity distribution is seen to change significantly with respect

to the original focal plane, as expected due to whole-beam self-focusing. Each focal spot

measurement at UCI represents the average of 472 shots. The average fwhm along x of five

such measurements with and without spectral broadening increases from 218±5 to 268±13

pixels, and the energy contained within a circle of diameter equal to the fwhm along x,

centered at the peak signal decreases from 35% ± 1% to 24% ± 1% where uncertainty

represents the standard deviation of these measurements. This general spreading out

and decrease in contained energy can be seen in the line-out comparison in Fig. 4.7 (a).

It is also noted here that an analytical 2d gaussian profile was put through this same

52



200 400 600 800 1000
camera pixel

0

20

40

60

80

100

120
no

rm
al

ize
d 

co
un

ts
 [A

.U
.]

(a)initial
broadened (b)

without spectral broadening

ftl = 29 fs

(c)

with spectral broadening

ftl = 18 fs

Figure 4.7: The line-out of the intensity profile of the focal plane (a) at compressor
position 5075-unbroadened (blue) and 5295-broadened (red) respectively. Figure (b) and
(c) show an example focal spot and the associated line-out location together with the
amount of spectral broadening as indicated by the FTL of the spectrum. Shading in (a)
represents the standard deviation of multiple measurements

analysis and was determined to have ∼ 50% of the counts contained within the fwhm.

This expected behavior serves as a benchmark to ensure that the code is performing as

intended.

The full 2d distribution of intensity in the original focal plane of gaussian laser pulses

experiencing no nonlinear spectral broadening (b) and maximum spectral broadening (c)

are also shown in Fig. 4.7. This is the result of strong self-focusing resulting in an on-axis

translation of the focal spot as shown in the previous section. Here the small beam

diameter of 2.3 mm and high power of 0.027 TW (∼ 104Pcr) contribute to strong spatial

gradients across the beam profile leading to strong Kerr self-focusing.

The UCI focal spots were measured with gain on the camera set to the default value of “1.”

Each image was subject to the same image preparation for analysis. The outlier removal

routine in ImageJ was used with a radius of 3 and threshold of 10, and the De-speckle

routine was used afterwards.The Rolling background removal tool worked very poorly and

slowly due the very large focal spot with respect to the camera size. Since the background

was very uniform at the cameras edges, a background subtraction based on the intensity
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threshold was used instead through the contrast menu. After this procedure, each shot

was then scaled to have the same number of total integrated counts.

4.3.2 Flat-top mode (HERCULES)

The experimental layout of the HERCULES experiment can be seen in Fig. 4.8. As

opposed to having a gaussian beam as in the UCI laser, HERCULES has a flat-top mode.

The energy of the laser pulses at HERCULES was significantly higher at ∼ 1.8 − 2.4 J,

but since the beam size also must scale up to prevent damaging optics, the intensity is

comparable ∼ 1 TW/cm2. Nominally, the HERCULES beam has a beam diameter of

100 mm and a pulse duration of 30 fs. Using these parameters to predict the expected

intensity, the intensity is calculated to be ∼ 0.75 − 1 TW/cm2 corresponding to a pulse

power of ∼ 60 − 80 TW. However, at the time of the experiment the shortest FTL was

found to be 48 fs, leading to a calculated intensity of ∼ 0.47-0.63 TW/cm2 corresponding

to pulses having ∼ 40− 50 TW of power assuming a 100 mm beam diameter.

A single fused silica wafer with a larger diameter (150 mm) but the same thickness

(0.5 mm) (University wafer Part#: U01-W1-140620-1. JGS2) is utilized at near-normal

incidence for spectral broadening as seen in Fig. 4.8. Since the input beam to the optical

setup was known to have some high frequency modulations, the B-integral before the

OAP was minimized to prevent the likelihood of damaging the OAP. This concern would

be less of a problem if the input beam had very little noise, or was spatially filtered before

the interaction. Since these preparatory measures were not able to be implemented in

time, the effect of a single wafer was measured in this experiment.

After nonlinear interaction in the fused silica wafer the beam is redirected by high

reflectivity dielectric mirrors under vacuum to a f/20 OAP. After going through focus, the
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Figure 4.8: The experimental setup at HERCULES characterizing the changes in the
focal plane and spectrum of flat-top laser pulses in 1x 0.5 mm fused silica wafer. Pulses
wedged and re-collimated so as to exit the chamber without clipping and then re-directed
to pulse diagnostics after cutting power.

beam is re-collimated to a smaller diameter (so as to make it out of the vacuum chamber

window without clipping) by a fused silica lens after being reflected at near Brewster’s

angle to cut the power to below 1% of the initial power. The beam then exits the chamber

through 5mm of MgF2 and is wedged further before the image of the focal spot is imaged

by the microscope objective onto a CCD camera. The spectrum of the beam transmitted

through the wedge is also recorded by the spectrometer. Due to the nature of this setup,

the spectrum and focal spot for each shot was recorded simultaneously.

As with the UCI experiment, a compressor sweep was performed to find the location of

the largest spectral broadening by varying the grating separation. A similar shape was

found in the HERCULES compressor sweep as the UCI compressor sweep as shown in

Fig. 4.9. Analogously to the UCI data, at low grating separation values, the laser pulses

are found to have positive chirp. This is evident from the monotonically decreasing FTL

to a minima at the location of lowest FTL (broadest spectrum). Whereas as the grating
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separation increases beyond this minima, the FTL is seen to increase due to spectral

narrowing of negatively chirped pulses.

Figure 4.9: The fourier transform limit of the modulated spectrum from SPM in 1x0.5 mm
fused silica wafer at near normal incidence. Again here the location of most significant
spectral broadening (shortest FTL) and the regions of positive and negative chirp are
identified.

As in this case with the UCI data, the negatively chirped pulses are ignored in this analysis,

and the data collected at grating separation of -1.4 mm and -2.6 mm was analyzed in

depth. Similar to the previous section Fig. 4.10 (a) shows the line-out of the intensity

profile of the unbroadened (blue) and broadened (red) shots at these grating separation

locations. As will be discussed in more detail in the next section, high power laser facilities

like HERCULES tend to be susceptible to filamentation due to small scale intensity

fluctuations in their beam profiles as opposed to whole-beam self-focusing as in the case

of small Gaussian profile beams. This is because the spatial intensity gradients determine

the magnitude of the self-focusing effects.
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As seen in Fig. 4.10 the shape of the intensity distribution changes much less significantly

than in the case of the UCI experiment. The line-out of the intensity profile after spectral

broadening Fig. 4.10 (a-red) is nearly identical to the line-out of the profile without

nonlinear broadening Fig. 4.10 (a-blue). Here the line-out values correspond to the

average line-out at compressor positions -1.4 mm (red) and -2.6 mm (blue) of 4 and

3 shots respectively where the shading represents the standard deviation among these

shots. 4.10 (b) and (c) show example shots at these compressor locations along with the

corresponding FTL calculated from the spectral broadening seen to decrease from ∼ 48

fs to ∼ 42 fs.
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Figure 4.10: The line-out of the intensity profile of the focal plane (a) at compressor
separation -2.6 mm-unbroadened (blue) and -1.4 mm-broadened (red) respectively. Figure
(b) and (c) show an example focal spot and the associated line-out location together with
the amount of spectral broadening as indicated by the FTL of the spectrum. Shading in
(a) represents the standard deviation of multiple shots

In addition to the line-out comparison, a crude comparison of the energy contained in

each successive diffraction ring was measured from the data taken at these compressor

positions as well. As seen on Fig. 4.11 (a), regions were defined that roughly correspond

to each diffraction ring. If the pixel falls within a circle centered at the max pixel value

with a radius of 20 pixels it is considered to fall within the central spot (blue-dotted). If

a pixel falls between a radius of 20 pixels and 45 pixels (between the blue and red-dotted

lines), it is considered to fall in the first ring. The second ring contains pixels that fall
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between a radius of 45 and 70 pixels (between red and green-dotted lines). Finally, the

rest of the pixels are considered to exist “everywhere else.”

The counts that exist in each of these regions are summed, and the sum for each region is

averaged over the number of shots at each compressor position. The blue bars in Fig. 4.11

(b) show the average percent of total energy per shot in each region without nonlinear

broadening, where the error bars represent the standard deviation among shots (-2.6 mm

grating separation). Similarly the red bars in Fig. 4.11 (b) show the average percent

of total energy per shot in each region with maximized nonlinear broadening, where the

error bars represent the standard deviation among shots (-1.4 mm grating separation)

Figure 4.11: The regions roughly constituting the central spot and each subsequent
diffraction ring (a) and the relative distribution of energy (b) in the unbroadened (blue)
and broadened (red) shots. Error bars in (b) represent the standard deviation in the
percent of energy found in each region for each set of shots.

As shown in Fig. 4.11 the energy contained in the central spot is seen to change from

49%± 3% to 38%± 4%. The change in counts without a significant change in shape may

be due to filamentation, which is an expected challenge in high energy systems that will

be explored in more detail in the following section.
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It is noted here that although some counts are lost in the central spot, the pulse can

still be focused to high quality. This critical result suggests that with the help of

chirped mirrors to compress the pulse to the ftl, this technique could be employed to

compress high energy laser pulses toward the single cycle regime while maintaining focal

quality. It is further noted here that with the help of spatial filters before the nonlinear

interaction, even fewer counts would likely be lost than measured in this experiment after

SPM. Further investigation is needed to explore the maximum thickness of of material

(amount of nonlinear phase shift) permissible before the onset of catastrophic collapse

and filamentation.

Each of the HERCULES focal spots were subject to the same image preparation for

analysis. The out-lier removal routine in ImageJ was used with a radius of 2 and threshold

of 15. The rolling background removal tool was used with a rolling ball radius of 200. A

background subtraction based on the intensity threshold was used to remove signal that

was below 5 counts through the contrast menu. After this procedure, each shot was then

scaled to have the same number of total integrated counts.

4.3.3 Discussion

High power laser pulses such as those of HERCULES typically have flat-top modes due

to amplification in multi-pass amplifiers. In a multi-pass amplifier, gain saturation is

bypassed by taking different geometrical paths through the gain medium. This allows the

extraction of as much energy from the gain medium as possible [89]. On the other hand

in single stage regenerative amplifiers like that of UCI laser pulses are amplified in an

optical cavity and as a result have a near gaussian spatial mode.
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When the peak power of the pulse exceeds the critical power Pcr = π(0.61)2λ2
0/(8n0n2) [90]

(∼ 2.6 MW for fused silica at 800 nm), the laser mode and diameter play an important

role in how the focusability is affected through the nonlinear Kerr effect. The critical

power is the threshold at which whole-beam self-focusing of a Gaussian beam due to the

Kerr effect just compensates the beam spreading due to diffraction [79]. If the material is

thin enough so that the beam profile does not change significantly, the focal length of the

nonlinear lens can be approximated by f = w2
0/(4n2I0l) [79] where w0 is the beam radius,

I0 is the peak intensity and l is the material thickness. On the other hand the collapse

dynamics of intense laser pulses with super-gaussian modes are slightly different and tend

to be initiated by noise in the beam profile [91]. These pulses tend to be susceptible to

multi-filamentation through the modulational instability [82] where a beam with P � Pcr

is understood to break up into multiple filaments during propagation through a nonlinear

medium of sufficient length, each with power of order ∼ Pcr [92].

In the context of spectral broadening for pulse compression, mode effects such as those

seen in the UCI data are conventionally avoided by inducing SPM in gas-filled hollow-core

capillaries which only allow for the propagation of the fundamental mode at sufficient

length [44]. Unfortunately the energy of intense laser pulses spectrally broadened in this

guided process are limited to the order of ∼ 1 mJ (with recent techniques using density

ramps reaching as high as ∼ 5 mJ [46]) where self-focusing and ionization of the gas

near the entrance of the fiber degrades the coupling to the fiber and therefore broadening

due to SPM. Alternatively, by inducing SPM in a thin media, a gaussian beam can be

progressively spectrally broadened and self-focused by a sequence of thin plates by a

process called multiple plate continuum generation [93].

To go beyond the limits of conventional techniques by taking advantage of the flat-top

mode at high energy facilties, intense laser pulses can induce spectral broadening in a

very thin material. Spatially filtering the beam and using a thin nonlinear material for
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SPM of flat-top laser pulses allows for the minimization of filamentation, and removal of

noise before the modulational instability is allowed to grow [92, 94]. Combining the SPM

of cleaned flat-top beams in thin films with GDD compensation from chirped mirrors

constitutes the thin film compression technique (TFC), which has potential to extend

pulse compression techniques to the petawatt level.

The previous section has demonstrated that SPM can be induced while maintaining the

focal spot structure in high power flat-top beams, even without spatially filtering the

beam before the nonlinear interaction. Even though some counts are lost in the central

spot, this suggests that this technique could be utilized to compress laser pulses toward

the single cycle regime while maintaining the focusability. The next section demonstrates

TFC on a high energy (∼ 300 mJ) flat-top system in plastic and fused silica.

4.4 Thin film compression (LASERIX)

In the previous section it was shown that the redistribution of intensity in the focal plane

arising from high intensity (∼ 1 TW/cm2) SPM in thin fused silica wafers (0.5 mm) is

mitigated when using flat top laser pulses. This is the motivation behind the technique

called thin film compression. Thin film compression (TFC) [24] suggests the use of very

thin material and high intensity flat-top laser pulses to generate compressible bandwidth

through SPM while side-stepping the complications caused by strong spatial intensity

gradients explored in the previous section. Ideally one would use a thin optical quality

material with as high n2 as possible (ie. plastic) combined with a flat top laser pulse to

acquire quadratically chirped bandwidth to re-compress using chirped mirrors.

This section describes TFC experiments carried out at the LASERIX facility. Laser pulses

with parameters described in Table 4.2 were spectrally broadened in thin films/wafers
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and re-compressed using the same model chirped mirrors as in the UCI pulse compression

experiment (HD58 Ultrafast innovations). 0.5 mm of fused silica and 0.4 mm of Zeonor

(cyclo-olefin polymer) were used as the SPM target. Pulse compression was carried out

at a range of energies (35 - 300 mJ) corresponding to the intensity range in Table 4.2

achieving pulse compression to progressively shorter durations. Phase compensation was

achieved through a combination of chirped mirrors and dispersion through fused silica

and MgF2 windows before the temporal diagnostics to demonstrate re-compression.

4.4.1 Fused silica wafer

Similar to the previous section, 0.5 mm of fused silica is used as the SPM target in the

first experiment. Though its n2 is lower than some materials, its optical quality and high

damage threshold make it an ideal first candidate to compare the performance of other

materials in this energy scaling. The fused silica wafer was the same model as used in the

previous section at UCI and HERCULES. The experimental setup and pulse diagnostics

were arranged according to Fig. 4.12. Laser pulses entered the vacuum chamber directly

from the compressor immediately encountering the 0.5mm of fused silica at full power at

near normal incidence. The S-polarized beam was then reflected at ∼ 45 degrees by two

glass windows with a frosted back (similar to the functioning of a wedge) to cut power by

10% each to minimize the nonlinearity in the vacuum chamber window. The laser pulses

were then re-directed out of the vacuum chamber by a di-electric mirror through an MgF2

window and transported to the phase compensating optics and temporal and spectral

Table 4.2: Approximate laser pulse parameters.

Laser Parameters
Facilities pulse length [fs] 1/e2 diam. [mm] mode I0 [TW/cm2]

LASERIX 50 18.75 flat-top 0.25-2.25
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diagnostics. The laser pulses were measured on a shot to shot basis with Self-referenced

spectral interferometry (SRSI) which provided a spectrum and phase measurement and

pulse duration reconstruction. An auto-correlator was also used as a secondary pulse

duration measurement. The leak-through of the primary 800nm spectrum was also

measured after the auto-correlator as a secondary spectral measurement. These secondary

measurements were taken at each experimental condition but were not correlated to

shot-to-shot measurements of the Wizzler.

Figure 4.12: A schematic of the thin film compression experiment using 0.5mm fused
silica wafers. Laser pulses are spectrally broadened in fused silica and transported out
of the chamber after power is dumped through fresnel reflections on glass. Pulse is
then re-compressed and measured by Self-referenced spectral interferometry (Wizzler),
autocorrelator, and spectrometer.

At ∼ 1 TW/cm2 the compressor grating was adjusted such that the broadest spectrum

could be achieved. Once the compressor was optimized, the phase was compensated and

the broadened spectrum and compressed pulse duration were measured by the diagnostics.

Laser pulses with intensities in the range 1 - 2.25 TW/cm2 were spectrally broadened and

compressed using thin film compression (due to the lower n2 of fused silica lower intensities

were not investigated). Figure 4.13 shows the measured pulse duration by SRSI (purple)
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where error bars represent the standard deviation of 5 shots and the Fourier transform

limit as calculated from the spectrometer (grey) as a function of increasing intensity.
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Figure 4.13: Compressed laser pulse duration as measured by SRSI (purple) and
analytical Fourier transform limit calculated from measured spectrum (grey) as a function
of increasing intensity. Error bars represent standard deviation of 5 measurements.

Shots with higher intensity produced more spectral broadening as expected, as shown

by the decreasing spectral ftl in Fig. 4.13 - grey. In addition to the increasing spectral

bandwidth, the pulses were also compressed close to the ftl by compensating the phase of

the generated bandwidth as measured by SRSI. The most significant pulse compression

in this range resulted in a pulse compression from ∼ 54.8 fs to ∼ 30.6 fs as shown in

Fig. 4.14 (b). This compressed pulse duration is very close to the calculated ftl from the
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broadened spectrum shown in Fig. 4.14 (a), as measured by the spectrometer of ∼ 28.3

fs.
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Figure 4.14: Spectral broadening (a) of 2.1 TW/cm2 laser pulses in 0.5 mm of fused silica
and pulse compression (b) with chirped mirrors. The spectrum and pulse duration of the
initial pulse (blue) and the laser pulse after thin film compression (red) can be seen in
each figure.

4.4.2 Thin films

As was mentioned in the previous section, in the initial TFC proposal thin films (ie.

sub-millimeter plastics) were suggested as the nonlinear medium due to their higher n2.

Though these thinner materials may be more susceptible to damage, they could be easily

replaced if they were to accumulate damage after several shots. In this spirit, a plastic

called Zeonor (cyclic olefin polymer - COP) was used as the thin film in this experiment.

A large roll of ∼ 0.1 mm thick Zeonor was installed on an electronically controlled roller

mechanism constructed by a colleague shown in Fig. 4.15. The roller assembly consisted

of two large spools that would rotate and cycle through the thin film material as it began

to accumulate damage, exposing fresh target when necessary. The film is wound around
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5 posts that are situated such that the angle made with an incoming laser pulse and each

successive film is Brewster’s angle to maximize transmission.

Figure 4.15: A schematic diagram (left) and the actual assembled roller mechanism with
Zeonor roll installed (right). Laser pulses passing through the mechanism are exposed to
4x 0.1 mm Zeonor films.

Laser pulses passing through the assembly encounter the film four times accounting for

a total transmitted path length of approximately 0.4 mm. The roller mechanism was

oriented vertically as shown in Fig. 4.16 such that the S-polarized laser pulses encounter

the films at Brewster’s angle. The roller mechanism was installed in place of the 0.5 mm

fused silica target shown in Fig. 4.12, but the setup was otherwise identical.

Due to the larger expected n2 the intensity scaling started much lower than with the fused

silica ranging from ∼ 0.25− 2.2 TW/cm2. The same compressor position as was used for

the 0.5 mm fused silica was used in this experiment (and was verified to be the optimized

for broadest spectrum). Again here as the laser shot intensity is increased, the spectral

broadening is increased as expected resulting in a shorter Fourier transform limit as shown

in Fig 4.17 (grey). Here again the Fourier transform limit is calculated analytically from

the spectrum measured by the spectrometer. Similarly, as in the previous section, Fig.

4.17 is the pulse duration measured by SRSI (purple) where the error bars represent the

standard deviation of 5 shot measurements.
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Figure 4.16: Vertically installed roller assembly with Zeonor film installed. The laser
pulses (red) pass through 4x 0.1 mm films in the assembly and follow the same optical
path as in the previous section.

As seen in Fig. 4.17, the Fourier transform limit is seen to decrease to ∼ 22.1 fs at near

2.25 TW/cm2. In comparison with the fused silica, there is slightly less material (0.4 vs

0.5 mm) and a lower (∼ 6 fs) Fourier transform limit achieved. This more significant

spectral broadening at roughly the same intensity and in less material verifies that the

n2 is larger in this material than in fused silica. Furthermore at the highest intensities,

compression of this bandwidth to very near the Fourier transform limit was measured

by SRSI. The most significant spectral broadening and thin film compression from this

experiment is shown in Fig. 4.18 where laser pulses are compressed from 54.8 fs ± 3.6 fs

to 23.1 ± 0.3 fs where here again the uncertainty represents the standard deviation in 5

shots.

It is also noted here that there was also a camera (not shown in the schematic) to measure

how the far field of the laser pulse changed before and after spectral broadening. The focal

spot in this experiment however, was created by a fused silica lens and therefore subject
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Figure 4.17: Compressed laser pulse duration as measured by SRSI (purple) and
analytical Fourier transform limit calculated from measured spectrum (grey) as a function
of increasing intensity. Error bars represent standard deviation of 5 measurements.

to chromatic effects especially when the spectral bandwidth was broadened. Generally

speaking, the far field of the pulses before and after spectral broadening in fused silica

maintained their far field as in the previous experiment, whereas the far field before and

after spectral broadening in the sequence of Zeonor films was much worse. The difference

in far field quality is likely due to the optical quality of the material since the focal spot

quality was bad before and after the nonlinear effect for the Zeonor. An additional factor

could be that since the Zeonor was installed on a roller assembly it was subject to tensions

associated with the roller mechanism. It is further noted here that local hot-spots in the

68



750 800 850
 [nm]

0.0

0.2

0.4

0.6

0.8

1.0
In

te
ns

ity
 [A

.U
.]

ftl
48.2 ± 0.2 fs
22.1 ± 1.1 fs

(a) initial
broadened

50 0 50
delay [fs]

0.0

0.2

0.4

0.6

0.8

1.0

In
te

ns
ity

 [A
.U

.]

fwhm
54.8 ± 3.6 fs
23.1 ± 0.3 fs

(b)

0.0

0.2

0.4

0.6

0.8

1.0
initial
compressed

Figure 4.18: Spectral broadening (a) of 2.25 TW/cm2 laser pulses in 0.4 mm of Zeonor
and pulse compression (b) with chirped mirrors. The spectrum and pulse duration of the
initial pulse (blue) and the laser pulse after thin film compression (red) can be seen in
each figure.

beam profile during an initial spectral broadening investigation with 1x 0.1mm Zeonor

film began to damage at ∼ 2− 2.6 TW/cm2 with clear damage visible at 2.6 TW/cm2 of

800 nm 50 fs laser pulses. This experiment has demonstrated thin film compression to less

than half of the original pulse duration and shown that Zeonor is a viable candidate for

use in thin film compression due to its strong nonlinear response. Should optical quality

Zeonor become available, it will likely be very useful for thin film compression at 800 nm.
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Chapter 5

λ-scaling of self-phase modulation

In this chapter we investigate the effect of using longer wavelength laser pulses to generate

SPM, ultimately for use in pulse compression towards the single-cycle regime. There are

several advantages of using longer wavelengths. First, given ultrashort laser pulses of ∼ 35

fs (∼ 45 fs at the time of this experiment) at longer wavelengths the laser pulses start

off with fewer oscillations, giving a head-start to compression to the single cycle regime.

Additionally, the laser vector potential is higher since a0 ∝ λ0, where λ0 is the carrier

wavelength of the laser, making the laser pulses more suitable for many high field science

applications (ie. ion acceleration) where higher a0 is ideal. Furthermore, although it can

be approximated as seen in Chap. 2, the χ(3) is not well-known at these wavelengths in

many materials.
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5.1 Self-phase modulation near the zero dispersion

point

The optical parametric amplifier (OPA) at UCI produces an “idler” and a“signal” beam

which are generated from a combination of nonlinear conversion processes from the input

beam. This process produces beams with photons of energies that sum to the same energy

as photons of the input beam (ie. hc/λinput = hc/λidler + hc/λsignal). In this case the

input wavelength is 800 nm and OPA peak efficiency occurs when λidler ≈ 2100 nm and

λsignal ≈ 1300 nm, but can be tuned to produce beams that have wavelengths in the range

∼ 1140 - 2680 nm.

The first long wavelength SPM experiment demonstrates self-phase modulation at 1260

nm. At approximately this wavelength, the index of refraction of fused silica versus

wavelength undergoes an inflection point, which means that the second order phase

accumulated by the beam passing through the glass is effectively zero where the second

order phase is defined as [83]

ϕ2 =
λ3

4πc2

d2n

dλ2
L (5.1)

In other words, a laser pulse with this carrier frequency does not become linearly chirped

in passage through fused silica. It should be emphasized that the pulse still accumulates

phase in passage through fused silica at this wavelength - even though the second order

phase coefficient is zero.

Though at the time of the experiment we did not have the ability to compress the

broadened bandwidth, the goal was to induce spectral broadening at roughly the same

ballpark of intensity as the previous pulse compression experiments, and then measure
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the resultant laser pulse in the SHG FROG and determine its Fourier transform limit.

Though our spectrometer is only sensitive in the range ∼ 200−1100 nm, the SHG FROG

trace will consist of the second harmonic bandwidth which falls squarely in the middle of

our detection range near ∼ 630 nm.

Figure 5.1: A schematic diagram of the long wavelength SPM experiment (a) and an
image of the table setup (b). Laser pulses are sent through a Keplerian telescope in a set
of vacuum chambers to increase the laser intensity at the location of the nonlinear sample.
Spectral broadening and resultant pulse duration is then resolved in the SHG FROG.
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The experimental setup is shown in Fig. 5.1. 0.983 mJ 1260 nm 45 fs (∼ 22 GW)

laser pulses are focused and re-collimated in a 1 to 1 Keplerian telescope. The Keplerian

design under high vacuum (≤ 10−4 Torr) allows higher intensities at the location of the

nonlinear SPM target without compromising the beam quality by avoiding breakdown

at the focus. The windows to the vacuum chamber are composed of C-coated fused

silica, and the concave focusing optics constituting the telescope are protected silver.

The SPM target (1mm soda lime glass) is then placed ∼ 268 mm from the surface of

the second concave mirror (∼ 232 mm from focus) after focus at near normal incidence.

After exiting the telescope, two fused silica wedges were used at ∼ 45 degrees to cut

power and transport the beam to the SHG FROG for measurement. Since at the time

of this experiment the 1260 nm signal beam was S-polarized the beam sent to the frog

was ∼ 22× (0.01) ≈ 0.22 GW. When using a focusing geometry to increase the intensity,

care should be taken in choosing the target thickness and orientation for the SPM target.

If the sample is oriented at Brewster’s angle, one side of the mode will encounter the

SPM target at a lower intensity than the other. Additionally, using a thin target will

make approximations of the nonlinear effects easier to approximate since a thin target

will occupy less longitudinal space in the focusing beam.

Since the sample was placed far outside the Rayleigh length, the approximate peak

intensity was calculated from geometry and found to be ∼ 0.52 TW/cm2 (assuming

7 mm 1/e2 initial beam diameter). Figure 5.2 shows a dramatic increase in spectrum

between the initial ( (a) and (b) ) and spectrally broadened ( (c) and (d) ) pulses. The

measured FROG traces in Fig. 5.2 of the initial pulse (b) and the pulse after SPM in the

1mm soda lime glass (d) show a significant increase in spectral bandwidth toward lower

wavelengths. The reconstructed spectrum and spectral phase can be seen in Fig. 5.2 of

the initial (a) and spectrally broadened pulses (c). The spectral phase is seen to decrease

in magnitude from ∼ |380| fs2 to ∼ |230| fs2. It is noted here that the spectral fit is
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Figure 5.2: The retrieved spectrum (blue) and spectral phase (green) (a) and (c) and
corresponding measured FROG traces (b) and (d) of the initial and spectrally broadened
pulses. The fitted quadratic phase is noted on the plot and corresponds to the red-dotted
line

currently not weighted by the value of the spectrum at a given frequency. The coefficient
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is determined by the fit to the spectral phase in the frequency range shown by the extent

of the red-dotted line.

Figure 5.3: The fwhm of the analytical fourier transform of the initial (a) and spectrally
broadened (b) pulse. This represents the theoretical limit to the pulse duration that can
be constructed by reconstructed spectrum.

5.2 λ-scaling of self-phase modulation (preliminary

study)

The second wavelength scaling experiment was meant to explore SPM over a range

of longer wavelengths to explore both spectral broadening and the potential for “self-

compression” at wavelengths above 1390 nm, where the dispersion becomes “anomalous”

in soda lime glass. In this context anomalous means that instead of acquiring positive

chirp as we expect in “normal” dispersion, laser pulses at these wavelengths in soda lime

glass acquire negative chirp. Further, soda lime glass has a positive n2 in this range which

means the bandwidth acquired through SPM is positively chirped. The combination of
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adding positively chirped bandwidth while simultaneously compensating that positive

chirp with negative chirp gained through dispersion can lead to self-compression [95].

Specifically, this study investigates wavelengths in the range 1140 - 1500 nm over the

tuning range of the signal beam from the OPA. The nonlinear index of refraction n2 is

well-known for 800 nm light in some materials (ie. fused silica), but we have the ability

to investigate n2 over a range of wavelengths and materials that it is currently unknown.

The more bandwidth generated, the shorter the Fourier transform limited pulse duration

will be. Unfortunately immediately preceding this experiment, a significant amount of

machining oil was discovered in the breadboards of the small chambers that was left

over from their initial manufacture. This meant that the focusing geometry used in the

previous section could not be used due to the fact that the turbo-molecular pumps (which

were needed for achieving high enough vacuum to avoid creating a plasma at focus) had

to be serviced and cleaned.

Therefore, a down-collimating design was used in a larger chamber under low vacuum

(∼ 2 × 10−3 Torr) to minimize the nonlinear effects during propagation. In order to

induce significant SPM at longer wavelengths where the OPA efficiency is lower, the

down-collimating reflective Galilean telescope had to be constructed to produce as small

of a beam as possible without burning the positive metal mirrors. A “burn-test” was

therefore executed at atmosphere to determine if the gold mirrors would burn with the

signal beam at a 1/e2 diameter of 1.16 mm (peak intensity ∼ 3.53 TW/cm2). (It is noted

here that at the time of the experiment there was more uncertainty about the initial signal

beam diameter, making estimates of the peak intensity more uncertain) After ∼ 5 min

(1.8 × 107 shots) the mirror was examined by eye, and did not have any visible marks.

Therefore it was decided that using a down-collimating telescope that exposed the positive

dielectric mirror to less than half of the peak intensity (∼ 1.55 TW/cm2) should be safe

(it wasn’t).
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Figure 5.4: The experimental setup of the down-collimating telescope. The signal beam
enters from the left and is down-collimated with a reflective Galilean telescope and
redirected to the spm target (1mm soda lime glass) and then wedged and redirected
out of the chamber to the FROG diagnostic

Figure 5.4 shows the experiment setup in the vacuum chamber. Laser pulses in the

wavelength range 1140 - 1500 nm were sent through a c-coated fused silica window and

down-collimated to a 1/e2 diameter of ∼ 1.75 mm. Self-phase modulation was induced in

a 1 mm soda lime glass slide at near normal incidence. The S-polarized beam was then

wedged to minimize further nonlinear interaction in the c-coated chamber exit window

and redirected to the FROG for measurement. FROG measurements were taken in 20 nm

wavelength increments with and without the soda lime glass in the beam. As shown in Fig.

5.5 (a), the FTL of the FROG reconstructed spectra were seen to decrease the most near

the peak power output of the OPA as expected. It is interesting to note however that at

shorter wavelengths the difference in FTL seems to be higher than at longer wavelengths

at the same measured power. This seems to suggest that lower wavelengths in this range

produce a more significant change in the nonlinear broadening, and therefore have a larger
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nonlinearity than longer wavelengths. It is noted here however that at the time of this

experiment the OPA signal was producing negatively chirped pulses, and since the zero

dispersion point of fused silica is ∼ 1270 nm, shorter wavelengths will experience slight

dispersion compensation (becoming more intense) and longer wavelengths will become

more even more negatively chirped (becoming less intense). Though this dispersive effect

is likely negligible (∼ +10fs2/mm at 1140 nm, and ∼ −20fs2/mm at 1500 nm), it is noted

here since it is not explicitly taken into account in the data analysis.

Figure 5.5: The Fourier transform limit of initial (blue) and spectrally broadened (red)
laser pulses in 1 mm of soda lime glass in the range 1140 - 1500 nm. the grey shaded
region represents the change in FTL.
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The dashed lines in Fig. 5.5 are third order polynomial fits to the series of measurements

and their functional form does not have any theoretical significance. The utility of these

dashed lines should be understood to simply guide the eye. Several data points in the

range 1320 - 1360 nm were omitted from the fit to the power and the initial FTL (empty

data points) because they appear to be outliers, but are shown here for completeness. It

is also noted here that the OPA was optimized not for highest power, but for the most

gaussian looking SHG spectrum centered at 0.5λ0 as measured by the spectrometer. It

should be noted that after several hours of operation (in the middle of the experimental

run) the gold mirrors and silver positive mirror began to accumulate damage. Images of

this damage on the gold mirror can be seen in Fig. 5.6.

Figure 5.6: Shown above is a magnified image of the surface of the gold mirror. The surface
damage to the protective coating accumulated through the course of the experiment.

A follow-up study examining the reflectivity of the mirrors in the seemingly burned regions

found that the reflectivity was negligibly effected where the damage appeared to be at 800

nm [96]. This suggests that the damage seems to have been mostly to the coating, leaving

the gold surface in tact. Though interesting, since the wavelength scaling of spectral

broadening observed in this study is quite modest, performing a wavelength scaling using

higher intensities with a focusing geometry under high vacuum akin to the previous section
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may give more insight into the wavelength scaling of the nonlinear properties of soda lime

glass and other materials.
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Chapter 6

Laser Wakefields at solid densities

The past few chapters have demonstrated experimental progress with respect to pulse

compression of multi-cycle laser pulses toward the single-cycle regime. In Chap. 1 a

method of generating x-rays through relativistic compression of optical pulses in the

single-cycle regime was presented. This chapter investigates the utility of such relativistic

ultrashort high intensity x-ray pulses for driving wakefields in nanomaterials. Using high

intensity short-pulse x-rays for driving wakefields gives access to these much higher density

materials enabling much higher acceleration gradients than conventional plasma based

wakefields.

As explored in several parts of this thesis, electrons can be accelerated to high energies

in a wakefield when a short laser pulse propagates through a plasma [21]. Experiments

have shown that GeV energies are obtainable over centimeter scale distances in gaseous

plasmas by riding the wakefield excited by optical lasers [97, 98, 99, 100, 101]. Laser

wakefield theory [21, 102, 103] shows that for a given laser, the energy gain and acceleration

length are both inversely proportional to plasma density. This means that the lower the

gas density, the longer the acceleration distance required to reach greater energies, an
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undesirable condition for achieving the goal of ultra-high energies. Motivated by such

considerations, utilization of metallic crystals was proposed in the 1980s [104, 105, 106,

107, 108, 109, 110], where TeV/cm acceleration gradient was anticipated. This includes

the cases of wakefield acceleration in metallic crystal channels. Another advantage of

solid-state guided acceleration is that such a system can naturally provide the mechanism

radiation damping. Here the accelerated particle beam emittance, i.e. the transverse

momentum, can be dramatically damped through channeling radiation to the ground state

of the channels [111]. Under such a scenario, one may even envision head-on collisions

of ultra-high energy particles inside these microscopic channels at their ground states,

where the classical concept of luminosity is in the so-called quantum luminosity regime,

which promises a much higher collision rate [112]. On the other hand, a disadvantage

of metallic channels is its high collision frequency with the metallic electrons [113]. This

may be alleviated by adopting nanoholes [108, 23, 114, 115].

One of the most important motivating factors of the present paper, in addition to

the above, however, is the recent advent of the breakthrough in the laser compression

technique that could open a door for an evolution any possibility of a coherent intense

X-ray laser pulses in attosecond regimes. The recently proposed scheme of ultrashort,

coherent X-ray pulse generation derived from the new optical laser compression [24] into

a single-cycled optical pulse, in combination with the relativistic surface compression [3] of

such an optical laser into an X-ray laser pulse, provides an attractive possibility to realize

such an ultra-high acceleration gradient, for a compact solid-state accelerator scheme to

accelerate particles to ultrahigh energies. Thin film compression [24] is a simple elegant

method for compression of an ultrafast intense optical laser into a single-cycled optical

laser pulse with high efficiency (such as ∼ 90%). In turn, such a single-cycled optical laser

pulse may be relativistically compressed by the well-known relativistic surface compression

[3] as shown in Chap. 1, into a single-cycled X-ray laser pulse, whose photon energies
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may be up to ∼ 10keV [3]. In principle the frequency of the driving X-rays can match the

much higher critical density nc, provided by the conductive solid material which depends

inversely to the square of the laser wavelength:

nc(λL) =
πmec

2

e2λ2
≈ (1.1× 1021[cm−3])/λ2

L[µm] (6.1)

Here c is the light speed in vacuum, me is the electron mass, e is the electron charge and

λL is the laser wavelength. This high critical density by the X-ray laser allows us the

additional advantage, i.e. the long dephasing length [21, 23]. One point to notice here

is the following. Unlike optical photons, X-ray photons can see even shallowly bound

electrons whose binding energy is less than the photon energy (such as 10keV). Thus,

even if the material is, for the usual purpose of condensed materials, not a plasma but

a bound-state condensed material, X-ray photons see these shallowly bound electrons

as if they are (effectively) free electrons. We, therefore, treat such electrons as free

electrons as in a plasma. In the following when we call plasma in the solid density

for X-rays, we mean such electrons in the condensed material. Additional comments as

to the use of the “collisionless model of the particle in cell (PIC) simulation are below

and done here. For one, the time scale of the intense X-ray driven electron dynamics

is on the order of attoseconds (or even zeptoseconds), so that collisional effects may be

ignored in these short time scales. Secondly, in terms of a longer time scale dynamics, we

introduce the nanotube materials so that accelerated electron dynamics in the nanotube

remain collisionless over an extended time scale of propagation dynamics. For these two

reasons of the first order importance is the collisionless dynamics of what we call the

plasma driven by intense X-ray. However, unlike in gaseous plasma driven by an optical

laser, it is anticipated that the quantum mechanical radiation processes could be far

more important. That is why we incorporate quantum radiative effects in our study.

Functional nano-materials such as carbon nanotubes have a large degree of dimensional
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flexibility and allow for a greater than 10 TV/m acceleration gradient. Accordingly,

compact structures to obtain ultrahigh energy gain can in principle be realized through

the state-of-the-art nanotube technology [23]. A plasma channel is useful for guiding the

laser [116, 117], especially for a small laser spot. For an X-ray beam with a spot size at the

nanometer level, stable propagation is important for the purpose of wakefield generation

and acceleration. Available nanometer structures [118, 119, 120, 5] such as porous alumina

as shown in Fig. 6.1 [119, 5] and carbon nanotubes provide an excellent prospect to guide

the X-ray pulse while additionally guiding and collimating the high energy beam being

accelerated, providing well-organized beam optics control. In such a material while the

nanohole provides a good collisionless particle propagation, the surrounding nanomaterial

supports the robust wakefield, where the X-ray laser aperture may cover a sufficient area.

Furthermore, the honey comb repeated structure allows us to easily raster the X-ray laser

pulses with repeated high repetition irradiations. Also importantly, the beam emittance

is damped through channeling, or betatron, radiation as mentioned above [112].

Figure 6.1: SEM image of the top surface of a porous alumina sample [5].

Motivated by these points, in this paper we explore an X-ray wakefield accelerator within

a nanotube. By comparing the two cases of a coherent, ultrafast X-ray pulse and 1eV

optical laser, the identical wake structure after normalization to the laser wavelength has

been confirmed in the limit of the collisionless PIC modeling. However, the radiation in
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these two cases are quite different when the effect of quantum electrodynamics (QED) is

considered. Photons with energy ∼ O(10MeV) have been generated in the X-ray laser case

for the much stronger wakefield and the emittance of energetic electrons becomes three

orders of magnitude lower. Based on the simulation results, we summarize the wakefield

scalings with laser intensity, nanotube radius, and nanotube density.

6.1 Nanotube versus uniform plasma

In the kind of intense irradiation of such an X-ray laser onto a solid material regardless

if it is a metal or dielectric, the high energy of photons (ε = hωL ∼ O(keV), where ωL is

the laser frequency) and the high intensity ( a0 = eEL/meωLc = O(1), where EL is the

laser field) both contribute to allow us to treat the material well approximated as plasma

at a metallic density as mentioned in the previous section [104, 105, 106, 23]. The high

energy of the photons makes a substantial amount of electrons (either the electrons in

the conduction band or in the shallowly (< 1keV) bound electrons) respond to the X-ray

fields directly. The high intensity of the X-ray pulse results the instantaneous ionization

of some of the bound electrons per atomic site, thereby contributing to free electrons.

Even some remaining bound electrons may be treated a solid plasma as shown in Ref.

[121], where additional optical phonon modes and Buchsbaum resonances are allowed.

Two dimensional (2D) PIC simulations have been performed by using the EPOCH code

written in SI units [122]. The simulation box is 60 nm(x) × 100 nm(y), which corresponds

to a moving window with 3000 × 500 cells and ten particles per cell. For the base case,

the laser and plasma parameters are listed in Table 6.1. The laser pulse of wavelength

λL = 1 nm (corresponding 1keV X-ray laser), the normalized peak amplitude used is

a0 = 4 which means the peak pulse intensity is 2.2× 1025/cm2. The tube wall density is

given in terms of the critical density by ntube = 4.55× 10−3nc. That is, for modeling the
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Laser
wavelength

λL

Peak
amplitude

a0

Laser width
radius σL

Laser
length

radius σx

Plasma
density ntube

tube radius
σtube

1 nm 4 5 nm 3 nm 5× 1024/cm−3 2.5 nm

1 µm 4 5 µm 3 µm 5× 1018/cm−3 2.5 µm

Table 6.1: Summary of the laser and plasma parameters for the base case

nanotube, a solid tube with wall density of 5 × 1024/cm3 is used. The tube location is

2λL < x < 8000λL and −5λL < y < 5λL . At t = 0, the laser pulse enters the simulation

box from the left boundary.

Figures 6.2 and 6.3 show the comparison between the nanotube case and uniform density

case driven by the X-ray pulse, in which a small spot size of over a short length of is chosen

according to the approach proposed in Ref. [48]. For the uniform density case, see Fig.

6.2 (b, d, f, h) and Fig. 6.3, the Rayleigh length is short due to the small spot size, so the

laser pulse quickly diverges as it propagates. Due to the defocusing laser field, the laser

field decreases rapidly with the propagation distance, and thus the strong longitudinal

wakefield only keeps a very short time and then goes weaker and gradually disappears.

In this case, the driving pulse dissipated after propagating a distance of 2000λLand the

wakefield is not stable during the whole process. However, in the nanotube case, as we see

in the Fig. 6.2 (a, c, e, g) and Fig. 6.3, the X-ray pulse maintains a small spot size that can

be well controlled and guided by the surrounding nanotube walls. The induced wakefield

stays stable and the short laser pulse continues propagating even after a distance of

4500λL, which is more than twice that of the uniform density case. By comparison, we see

the nanotube wakefield is akin to the nonlinear wakefield in the bubble regime, while the

uniform plasma wakefield seems to be rather quasi-linear wakefield. Both the longitudinal

wakefield contributing to the accelerating force and transverse wakefield contributing to

the focusing force on electrons are more stable and appropriate in the nanotube case. This

stability over a long distance is important for the acceleration to obtain a high energy
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beam. Thus we see superior wakefield quality in a nanotube in comparison with the case

in its comparable uniform medium.

To make a comparison, the simulations driven with an optical 1 eV laser pulse under

analogous conditions are carried out. In this case when the same a0 = 4 is used for

the laser wavelength of λL = 1µm, it corresponds to a laser peak intensity of 2.2 × 1019

W/cm2. It is expected that the wake structures are almost identical after all physical

parameters are normalized by the laser wavelength and the simulation results confirm

this. Considering the real physical parameters, it can be found the wakefield is higher

than 2 TV/cm when driven by the X-ray pulse, which is three orders higher than that

of the optical laser case. This means the energy gain gradient is 2 TeV/cm instead of

2 GeV/cm and opens the possibility to realize a very compact accelerator capable of

reaching ultrahigh energies. In addition, the wakefield for the uniform plasma case can be

estimated from E0 = a∼1−2
0 meωpc/e, which is about 2.2a∼1−2

0 TV/cm using the parameters

in above simulations, where ωp is the plasma frequency. This expected value agrees well

with the observed one in Fig. 6.2, which means in the narrow limit of the tube, the

wakefield scaling resembles that in the uniform plasma formulation.

6.2 Optical versus x-ray driven nanotube wakefields

Similar momenta (energy gains) are expected if the same ratio is kept between the laser

and plasma wavelengths over one dephasing length, irrespective of the laser wavelength

and background density. However, for the electron beam accelerated in the X-ray driven

wakefield, one important signature is that the emittance can be improved significantly

due to the much smaller size in the transverse dimension. As well known, beam

emittancerelated to both the transverse dimension and the electron momentumis an
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Laser
wavelength

λL

Peak
amplitude

a0

Laser width
radius σL

Laser
length

radius σx

Plasma
density ntube

tube radius
σtube

1 nm 10 5 nm 3 nm 5× 1024/cm−3 2.5 nm

1 µm 10 5 µm 3 µm 5× 1018/cm−3 2.5 µm

Table 6.2: Summary of the laser and plasma parameters for the electron acceleration
case

important parameter with many applications requiring it to remain low. Similar energy

gain is confirmed in Fig. 6.4, which shows the wakefield (a,b) and the relativistic

factor (c,d) of the accelerated electrons driven by an X-ray pulse and an optical

laser, respectively. The laser and plasma parameters are listed in Table 6.2 for the

electron acceleration case. Here a higher a0 = 10 is used to ensure the occurrence of

self-injection. Fig. 6.4 demonstrates the confinement of the top 30% of the highest

energy electrons locally within the nanometer-scale tube for the X-ray driven case. We

see the accelerated electrons is broken into two main parts. This is because electrons are

trapped non-consecutively because of the nonlinear evolution of the wakefield. Moreover,

electrons of energy below top 30% are excluded, so the cut phenomenon is much clearer.

The transverse radius of the electron beam is almost three orders of magnitude smaller

than that of the optical laser case, while the phase space remains nearly the same, which

is beneficial to the beam emittance. According to the expression [123] for the beam

emittance which is given by,

εNrms = 〈γβ〉
√
〈y2〉〈y′2〉 − 〈yy′〉2 (6.2)

where γβ is the momentum, y′ = py/px, and px, py are the longitudinal and transverse

momenta, the normalized emittance of the top 30% highest energy electrons for the X-ray

case is about 0.0187mm mrad, which is almost three orders of magnitude smaller than
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the 28.5mm mrad for the optical laser case. Such an electron beam with low emittance

and promising ultrahigh energy holds potential for the application for a future collider.

In addition to this, there are also other promising advantages by using the nanotube,

such as the better field structures for the significant improvement of the acceleration as

concluded in Ref. [124] in the optical laser case. These may be observed in Figs. 6.2 and

6.3. In addition, the linear density of top 30% and 80% highest energy electrons (that is,

electrons of energy higher than Ee1 = 604 MeV and Ee2 = 173 MeV are considered) is

3.2× 1014/m and 1.54× 1015/m for the case of optical laser, and the linear density of top

30% and 80% highest energy electrons (electrons of energy higher than Ee1 = 621MeV

and Ee2 = 177 MeV are considered) is 3.1 × 1014/m and 1.56 × 1015/m for the case of

X-ray laser. Here top 80% is chosen instead of 100% to exclude the immobile background

electrons. Assuming that the third dimension is proportional to the wavelength, the

number of accelerated electrons in the X-ray laser case is 103 times lower than that in

the optical laser case. Here one point that should be emphasized is that the total laser

energy εL ∼ a2
0σ

2
Lσx/λ

2
L which also scales with the laser wavelength, that is, the X-ray

laser energy is 103 times smaller than that of the optical laser. The energy transfer

efficiency from laser to accelerated electrons is nearly unchanged. The emittance of top

80% energetic electrons is 0.069 mm mrad for the X-ray laser, while the emittance of top

80% energetic electrons is 64 mm mrad for the optical laser, 103 times lower than that in

the X-ray laser case.

It is well known that electrons also undergo betatron oscillations due to the transverse

wakefield as they are gaining energy in the longitudinal wakefield and radiate X-ray or

gamma-ray photons [125, 126, 7]. As mentioned above, when the ratio between the laser

and the plasma wavelengths is constant, the energy gain is almost the same. However,

the betatron radiation is quite different and cannot be normalized by the laser wavelength

when QED effects are considered because the photon emission scales with the real electric
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field while the energy gain scales with the normalized laser amplitude a0. As shown in

Figs. 6.4 and 6.6, similar wakefield structure and energy gain, but quite different photon

energy distributions in the two different laser wavelength cases are shown. Hundreds of

keV to MeV photons are generated in the optical laser case, in which the high energy

may be resulted from the wide oscillating radius since the injection position in transverse

direction depends on the tube diameter. On the other hand, although the electron energy

gain is only several hundred MeV, which is almost the same as that of the optical laser

case, the photon radiation energy is high to hundreds of MeV when undergoing the much

stronger field in the X-ray laser case, which may be applied in astrophysics research, and

cosmic ray generation.

According to the classical radiation theory [127, 7], the photon critical energy due to

betatron radiation scales with γ2nerβ, where γ is the electron relativistic factor, ne is

the electron density and rβ is the betatron amplitude, which implies there should be an

increase by a factor of 1/λL in the photon energy for the X-ray case over that of the

optical laser case. However, the simulation including QED effects shows it to be smaller

than this, or about a factor of 200 as seen in Fig. 6.6. This results from the quantum

effects and can be partially explained by the replacement of ν → ν(1 + hν/E), which

shows the quantum mechanical correction, where ν is the photon frequency and E is the

electron energy [61, 128].

In addition, according to QED theory [129], if the QED parameter η = γE sin θ/Ecrit

is close to, or of order unity, the QED effects become important. Here θ is the angle

between the electric field E and the electron momentum, and Ecrit = 1.3× 1016 V/cm is

the Schwinger field. According to classical theory, electrons are expected to emit photons

with a most probable value of ~ωmp = 0.44ηγmec
2 . Using the maximum energy electrons

in the wakefield γ = 1700, which experiences a transverse wakefield of E ∼ 5×1012 V/cm

[of the order of longitudinal wakefield as shown in Fig. 6.4 (a)], the maximum QED
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parameter is found to be ηmax = 0.577. Therefore, the expected value of most probable

photon energy corresponding to the highest energy electrons is predicted to be ~ωmp = 221

MeV. This expected value agrees reasonably well with the observed photon cut-off value

Ep−cutoff = 300 MeV as shown in Fig. 6.6 (c). Here one point should be noted that there

is nearly no difference of the electron energy between Fig. 6.4 (c) and (d), which means

there is little radiation reaction effect in the X-ray laser case although the photon energy

is much higher than that in the optical laser case. By comparing with the case in which

the radiation reaction was turned off for the X-ray laser case, the results turn out that

little radiation reaction effect on electron beam dynamics, i.e., energy and emittance are

found. According to the Landau-Lifshitz prescription [129], the ratio of the damping force

(radiation reaction force) to the ordinary Lorentz force scales with γ2E . In the X-ray

laser case, E is about 103 times higher, which means the radiation reaction force becomes

much more important. However, the energy loss of electrons (radiation reaction effect)

depends on the acting time/distance, so radiation reaction effect in the X-ray laser case

is possible to be weak because of the much shorter (103 times) acting time/distance. In

addition, the ratio of the total energy of all photons to the total energy of all electrons

is 9.4 × 10−3 in the X-ray laser case. That means the radiation reaction effect is still

weak, although the value is much higher than that of 2.2× 10−5 in the optical laser case.

According to the above analysis, the effect of the laser frequency on the betatron radiation

is expected to be quite important under the condition of the same laser power. For the

current laser level in the near term, the triple frequency (3ωL) laser can be chosen to drive

a more intense wakefield and get higher energy photons. Simulations have confirmed that,

driven by the triple frequency laser, the obtained average photon energy is at least twice

of that from the fundamental one, which can be considered as an effective approach to

increase the radiation photon energy.
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6.3 Scalings in the x-ray regime and discussion

Here we survey the property of X-ray wakefield acceleration in nanotubes with respect

to several parametric scalings. Compared with the uniform density case, the laser pulse

can be well confined in the nanotube and propagate over a longer distance. Therefore,

the tube radius is critical to the wakefield and the acceleration in addition to the other

two common parameters, i.e., laser intensity and tube density. Fig. 6.7 (a) shows the

result when the tube radius varies while the other parameters are kept the same. The

wakefield is strong due to the nonlinear evolution when the tube radius is small. As the

radius ratio goes up, the effective density decreases. This results in a decrease in wakefield

strength since it is proportional to the density, and energy gain is expected to increase

if the ratio is not too large because the acceleration length is extended. In the present

case, the wakefield scales with the tube radius ratio as Ex ∝ (σtube/σL)−1.827. It should

be noted that when the tube radius is small or can be compared to the laser pulse width,

such as the present cases, the physics becomes closer to a uniform plasma case. On the

other hand, for much wider tube cases, the wakefield becomes less intense and deviates

away from the uniform plasma wakefield acceleration. For this case, the physics may more

closely resemble to the dielectric wakefield acceleration [123, 130, 131, 132]. However, the

driving unwanted higher order-mode (dipole, quadrupole, etc) in this case may be an

issue, which is different with the present plasma regime where only the plasma frequency

is important for acceleration. When the channel radius is fixed, for example as in Fig.

6.7 (b), σtube/σL = 1, at first the wakefield increases along with the tube density (ntube)

but tends to saturate because it is hard to excite a wakefield when the parameters of

the laser pulse and density are mismatched. More importantly, the significant feature is

that lower density results in higher energy gain. The wakefield scales with the tube wall

density as Ex ∝ n0.47
tube in the low density region. When the laser intensity (a0) goes up,

the effective density grows higher because of the increasing plasma wavelength. In the

92



present case, the wakefield scales with the laser field as Ex ∝ a1.875
0 when σtube/σL = 0.5

and Ex ∝ a1.763
0 when σtube/σL = 1, which shows a similar scaling for different radius ratios.

Compared with the linear wakefield theory Ex ∝ ωp ∝ n1/2, 1D nonlinear theory Ex ∝

(a2
0/2)(1 + a2

0/2)ωp [103] and 3D nonlinear (Bubble) theory Ex ∝ a
1/2
0 ωp, ωp ∝ n

1/2
e a

1/2
0

[102] in the uniform plasma, as well as the previous theoretical results on X-ray wakefield

accelerator in solid-density plasma channels Ex ∝ ωpP
1/2 ∼ n

1/2
e a0 [133, 134, 114], the

wakefield scaling with the wall density in our the nanotube case is in principle agrees with

the theory expected as Ex ∝ n1/2 in the uniform density case and the wakefield scaling

with the laser intensity is close to the 1D nonlinear theory.

For the parameters in the above discussion, there are several technological challenges to

be considered in the experiments, such as the X-ray intensity and wakefield strength,

the focus of such X-ray beam onto a nanometer size tube, and the compression of the

present state-of-the-art coherent X-ray pulse down to a few nanometers. In reality, in

the short term the parameters can be extended to the acceptable region since the results

scale with the laser wavelength. On the other hand, as we know, wakefields may be

created not only by lasers, but also by a beam of electrons or ions because the plasma

responses to these drivers are essentially the same [135, 136]. Beam driven acceleration in

ultra-dense plasma, including a hollow plasma channel with density of 1025−1028/m3 has

been explored [104, 105] and a high acceleration gradient of TeV/m has been obtained

[115]. Moreover, a hollow channel, as a more efficient structure in controlling beam

parameters in the dense plasma interaction, has been confirmed. In this beam driven

case, beam density is especially critical to increasing the acceleration gradient, just as

with the laser intensity. When the beam density is high enough to be compared with

that of the dense plasma, such as 1030/m3, and the beam size is small enough to be at

nanometer scale (however, these are tall orders in the current beam technology), similar

results with that driven by the X-ray are expected. In the short term, particle beams
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instead of X-ray lasers can be used as the driver in a nanotube. For current particle

beams, as they pass through a nano-material, a periodic pattern such as wakefield is

expected to be generated. Such patterns can serve as optical elements for the beam,

and, correspondingly, linear phenomena such as diffraction, beam bending or focusing,

are expected to be exhibited.

6.4 Conclusion

In conclusion, owing to the latest invention of the thin film compression technique, one

single-cycled optical laser pulse can in principle be converted into a coherent ultrashort

X-ray pulse via relativistic compression. A new and promising scheme employing such an

X-ray driven wakefield in a nanotube has been demonstrated by a computer simulation

for a compact accelerator to attain ultra-high acceleration gradient for charged particle

acceleration. In this case, an acceleration gradient of TeV/cm is generated and high energy

electrons with much lower emittance are obtained in such a wakefield. In a very narrow

limit of the tube, the energy scalings resemble those in the uniform medium formulation.

In addition to the aspect of acceleration, under the X-ray driven nanotube wakefield

scheme, hard photons with energies at ∼ O(100MeV) are emitted. Those may be invoked

as a tool to serve as a novel light source in very high energies in a compact fashion and

to explore more unknown physics, although there are several technological challenges in

the future in the realization of the experimental operation and parameters suggested in

our work. These include such an X-ray laser pulse generation and the manipulation of

such small size laser and target. In this regard the recent thrust in ultraintense laser

developments [25] leads us to a high hope that such projects can accelerate the progress

in this new exciting field with an added impetus.
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Figure 6.2: The base case wakefield excitation with X-ray laser in a tube, in comparison
with a wakefield in a uniform system. Distributions of (a) and (b) the laser field Ez(V/m),
(c) and (d) electron density ne(m

−3), (e) and (f) longitudinal wakefield Ex(V/m) including
the Ex lineout at y = 0 axis (the position of dot line), and (g) and (h) transverse wakefield
Ey(V/m) including the Ey lineout at x = 8.24× 10−7m axis (the position of dotted line)
in terms of (a),(c),(e) and (g) tube and (b),(d),(f) and (h) uniform density cases driven
by the X-ray pulse.
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Figure 6.3: Evolution of the maximum longitudinal wakefield Ex(V/m) and the laser field
Ez(V/m) as a function of propagation distance x(m) for both nanotube (red dotted line)
and uniform plasma (black dotted line) cases with the same conditions as Fig. 6.2.

Figure 6.4: Comparison and a certain scalability between the X-ray and optical regime.
Distributions of (a) and (b) the longitudinal wakefield Ex(V/m) and (c) and (d) electron
longitudinal momentum γvx induced by (a) and (c) the X-ray laser pulse and (b) and (d)
1eV optical laser pulse in a tube when a0 = 10.
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Figure 6.5: (a) The accelerated electron beam quality in the X-ray wakefield in a tube.
The space distribution (x, y) and (b) the transverse phase space (y, py/px) of the top
30% highest energy electrons in the case of X-ray laser. The parameters are same as in
Fig. 6.4.

Figure 6.6: The energy spectrum and spatial distribution of photons emitted from the
wakefield driven by an X-ray and optical laser. (a) and (b) Photon energy distributions
and (c) and (d) photon energy spectrum in the (a) and (c) X-ray driven case and (b) and
(d) 1eV optical laser driven case in a tube. The parameters are same as in Fig. 6.5.
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Figure 6.7: Wakefield scalings in the X-ray regime with (a) tube radius, (b) tube wall
density when the tube radius is fixed σtube/σL = 1, and (c) laser intensity when the tube
radius is fixed σtube/σL = 0.5
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Chapter 7

Wakefield astrophysical scaling

investigation

In addition to providing ultra compact particle acceleration and high energy photon

emission in laboratories on earth, laser wakefields also may be a contributing radiation

mechanism present in the jets of active galactic nuclei such as blazars. This chapter

considers this claim by investigating the electron acceleration and photon emission

characteristics of wakefields under typical laboratory conditions and scales them in the

direction of the astrophysical environment to motivate recent observational findings.

7.1 Introduction

The laser wakefield acceleration (LWFA) [21] method and its sister beam-driven wakefield

acceleration [135, 136] (let us call here wakefield acceleration (WFA) in general) have

found themselves in laboratories for future accelerators of various purposes. In LWFA, the
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robust intensity of the laser pulse is such that the ponderomotive potential (the photon

pressure force potential) of the laser in the plasma amounts to Φ = mc2
√

(1 + a2
0), so

that the excited plasma wave motion acquires the electron momentum of mca0. Here

the normalized vector potential of the laser is a0 = eE0/mωlc, where E0 and ωl are the

electric field and frequency of the laser, m and c are the mass of the electron and the

speed of light. The ponderomotive force arises from the nonlinear Lorentz force v ×B/c,

which causes the polarization of electrons in the plasma in the longitudinal direction,

even though the electric field of the laser is in the transverse direction. This polarization

Ep = mωpca0/e yields the electrostatic field in the longitudinal direction in turn in the

same magnitude. This is the origin of the excited wakefield. More details may be found

in reviews such as Refs. [137, 103, 138, 7].

Recently LWFA finds applicability in the regime of much higher frequency laser pulses

than the original optical regime, i.e. in the X-ray regime. This development occurred due

to the invention of a novel laser compression method [24], in which a single cycled optical

laser pulse may be created by a thin film technique. This development immediately

triggered the possibility to compress it further to create a single-cycled X-ray laser by

adopting the already known approach of relativistic compression of ultra-short laser pulses

(particularly effective if it is a single-cycled optical pulse) on the surface of solid metallic

target [3]. This opening of a (relatively) straightforward path toward ultra-high intensity

single-cycled X-ray laser pulses stimulated the thought of using such X-rays in driving

LWFA at solid densities [83, 23, 139].

In addition to the high frequency and density applications the LWFA mechanism may be

also present in nature. Ebisuzaki and Tajima have suggested [140] that LWFA underlines

the acceleration mechanism present in jets of an active galactic nucleus (AGN). This

mechanism not only allows for the possibility of extremely high energy ion acceleration,

but also seems to chime well with the accompanying phenomenology of gamma ray burst
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emission based on WFA electrons. The earlier work found in Refs. [141, 142, 143] laid the

foundation of this work [140]. Since the well-known astrophysical acceleration mechanism

of Fermi [144, 145] is inherently stochastic, the Fermi acceleration process tends to lose

rather than gain energy by synchrotron radiation even off protons at the highest energy

cosmic ray regime (> 1019 eV), while the LWFA mechanism sees no such limitation

[140]. In the AGN the electromagnetic pulse that drives the LWFA process is in very low

frequency radiowaves. Thus the original LWFA in the optical regime has, on one hand,

extended itself to much longer wavelengths of radiowaves in astrophysics and now, on

the other hand, to much shorter wavelengths of X-rays. These broad ranges of LWFA

applicabilities in density of plasma, frequency, and intensity of drivers prompt us to

investigate the radiative signatures involved in WFA, which otherwise may not matter in

the more ”traditional regime” of parameters.

For the above mentioned astrophysical processes and cosmic ray genesis the understanding

of the radiative processes is very important, as almost all observational information comes

from the radiation of various frequencies. In laboratory LWFA experiments studies

of radiation such as betatron radiation from LWFA have gained their importance in

recent years (see Refs. [125, 7]). In addition, as our interest rises in the X-ray driving

of LWFA, which implies much higher density operation of the wakefields and related

radiative processes, it is expected that some quantum mechanical radiative processes may

become important under such conditions. These prompt us to consider with increased

importance, the radiations from LWFA, particularly that from betatron radiation. We

thus put emphasis on this in our study. If the radiative processes in the X-ray regime are

distinct from those in the optical regime, we may have a unique opportunity and invent

devices related in the X-ray regime exploiting such an opportunity.

On one hand, the basic physics of LWFA applies regardless of its frequency domain, an

attractive attribute of its fundamental mechanism. On the other hand, it is of interest to
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explore if and how the disparately different scale-lengths may change some of the physics

and implications. In this work we first study scaling laws of the basic LWFA and its

self-injection of electrons and its associated betatron radiation processes so that we can

glance at the broad LWFA horizon. It is also noted [140, 146] that as the laser becomes

highly relativistic, the relative importance of the ponderomotive acceleration itself rather

than its induced wakefield acceleration becomes important, where the highly relativistic

regime is defined by a0 >> 1. For this reason we will investigate the scaling laws for both

LWFA and ponderomotive acceleration processes and their associated radiative processes

here.

In Sec. 3 we give a brief overview of the numerics used in the simulations, describe

the base case, and introduce the laser and plasma parameters. Further, we outline

our methodology for investigating LWFA electron acceleration and high energy photon

emission. Specifically, we examine the energy evolution, trajectory, and ultimately energy

saturation of injected electrons. The resulting maximum electron energy saturation

(εe,max) is utilized in predicting the expected high energy photon emission characteristics.

We then create a time-integrated photon spectrum of the emission data from the fraction

of the simulation window containing electrons undergoing betatron oscillations. This

spectrum is then fit with the asymptotic form of the classical synchrotron function [147]

to obtain an associated photon critical energy (~ωγ,crit) value. In the sections that

follow, we investigate how these electron acceleration, and associated photon emission

characteristics change, as several different laser and plasma parameters are scaled. Section

7.3 studies the effect of varying the parameter ωl/ωp. The effect of varying ωl and ωp

are considered separately. The scalings obtained are then compared to the expected

scalings from 1D wakefield theory for the electron acceleration, and synchrotron radiation

theory as presented in Ref. [7] for the photon emission. Section 7.4 studies the effect

of varying the laser intensity parameter (a0). In this section two different mechanisms
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for electron acceleration and subsequent radiation are studied. First, the betatron

mechanism is studied, and second, the ponderomotive mechanism. The betatron electron

acceleration and photon emission scaling investigations are carried out analogously to

Sec. 7.3. However, for the ponderomotive mechanism, since the electrons experiencing

acceleration are located in the region of the simulation window containing the laser field,

only electrons and photons from this region are analyzed. Electron acceleration is analyzed

in the exact same way as the case of the self-injected electrons by tracking εe,max. In

contrast to the analysis of high energy photon emission due to the betatron mechanism,

in the ponderomotive analysis the photon spectrum is fit to a power law to obtain a

cut-off value (~ωγ,cut−off ). Scaling of these values representing electron acceleration and

photon emission for the ponderomotive mechanism are then reported. Finally, in Sec. 7.5

we conclude and provide some possible implications in various applications.

7.2 Methods

7.2.1 Overview of PIC code with radiative processes

EPOCH is a code with the standard relativistic electromagnetic (1D-3D) Particle-in-Cell

(PIC) algorithm [148], which is also equipped with various options for radiative processes

that are well beyond a standard PIC code. These include both quantum and classical

radiative processes. Specifically, subroutines capable of simulating quantum-corrected

synchrotron radiation (in addition to radiation reaction and pair production) are included

in EPOCH [149, 150, 151, 122]. In this paper the synchrotron radiation functionality is

solely used, leaving the pair production and radiation reaction modules turned off, as these

appear to be of secondary importance, which will be discussed later. In our investigations

we find that radiation reaction effects remain minor compared to the main effects. We
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caution ourselves, however, that the finite difference field solver in space creates numerical

inaccuracies in extreme high energy regimes.

7.2.2 The base case of LWFA

In the current study we employ the use of EPOCH 2D with a second-order field solver

to investigate several different properties of LWFA of self-injected electrons and their

betatron radiation signature. In our base case the following parameters in Table 7.1 are

used to determine all physical properties of the system.

Laser Intensity a0 5
Frequency Ratio ωl/ωp 10
Density ne 1024m−3

Aspect Ratio w0/(λp
√
a0) 1/π

Table 7.1: Summary of the laser and plasma parameters for our base case.

The wakefield is driven in a fully ionized hydrogen plasma by a laser pulse with a

supergaussian profile (f(x) ∝ exp
[
− ((x − x0)/

√
2σ)8

]
) in length and width polarized

in ẑ dimension. The Full-Width at Half-Max (FWHM) length is chosen based on the

wakefield relativistic resonant condition of the background plasma (τl = λp
√
a0/(2c)) and

the FWHM width is chosen based on matching the waist of the laser pulse to the plasma

bubble radius (w0 = λp
√
a0/π).[7, 102] Here λp = 2πc/ωp is the plasma wavelength, where

ωp is the plasma frequency.

7.2.3 Electron acceleration

The wake is excited behind the laser pulse, forming a void of electrons (ie. bubble). The

extent to which these electrons are displaced is characterized by the bubble radius and is
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Figure 7.1: The laser wakefield structure in our base case. Plasma density structure is
shown (dark green ranging up to ∼ 9 × 1025m−3) behind the laser pulse (electric field
ranging to ∼ ±5 × 1012V/m) which is linearly polarized in ẑ. Electron acceleration and
photon emission data are collected from the region of the primary ion cavity containing
self-injected electrons in the betatron investigation and from the laser field and its leading
edge in the ponderomotive investigation.

a result of the balance of space charge of the background species and the ponderomotive

potential of the laser as discussed in more detail by Ref. [102]. Electrons can become

trapped in the rear of the bubble and experience a longitudinal accelerating field due to

the structure of the wakefield electric field. This acceleration continues until the electrons

overtake this accelerating region (dephase), or until the laser pulse weakens to the point

at which it can no longer support the bubble (pump depletion). The onset of either

of these phenomena is sufficient for longitudinal electron acceleration to cease. At this

point the trapped electrons are understood to have reached energy saturation, as seen in

Fig. 7.2 (c). The maximum electron energy saturation, εe,max is utilized as a diagnostic

to describe the accelerating potential of the wakefield created by the laser pulse. More

importantly, however, the snapshot at which maximum electron energy saturates is used
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to bound all runs. After this saturation occurs the photon radiation begins to become

weaker and nonlinear factors begin to dominate.

Figure 7.2: Electron energy increase as a function of propagation distance (x). (a) The
location and energy of the top 5% highest energy electrons within each snapshot. (b)
The trajectory and energy evolution of a subset of 50 particles which end the simulation
with the top 5% highest energy [6, 7]. (c) The energy evolution and subsequent energy
saturation of electrons randomly selected from the subset plotted in (b). Transverse
motion (y) is shown in (a) and (b) as they are related to the betatron radiation mechanism.
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Electron trapping in the current study is a result of the transverse self-focusing of initially

trapped off-axis electrons, which results in electrons being injected into the accelerating

region of the wakefield. As seen in Fig. 7.1, at high laser intensities (a0 & 4 − 5) these

off-axis electrons are injected with transverse momentum. These self-injected electrons in

the ion cavity execute transverse (betatron) oscillations (ŷ) induced by the structure of

the travelling wakefield’s transverse electric potential, as seen in Fig. 7.2 (a),(b).

7.2.4 Photon emission and betatron analysis

The betatron motion seen in Fig. 7.2, executed by self-injected electrons, produces

synchrotron emission in a narrow cone of ∆θ and sweeps out an angle of ψ with respect

to the x̂-direction [7]. All investigations are carried out in the wiggler regime, which is

defined as the regime in which the undulator strength parameter K > 1, where K is

defined [7] as

K = 1.33× 10−10
√

(γene[cm−3]) rβ[µm], (7.1)

where γe is the electron lorentz factor, ne is the background plasma density, and rβ is

the amplitude of the betatron oscillation. In this regime ψ > ∆θ the photon emission

spectrum (synchrotron spectrum) is characterized classically by a series of harmonics up

to a critical frequency ωγ,crit. It is important to note in the wakefield case the trapped

electrons are subject to a longitudinal acceleration, which means γe is not a constant but

a function of time. As mentioned in Ref. [7], for the purposes of obtaining scaling laws we

can sidestep this complication by fitting to the high energy tail of the photon spectrum.
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Figure 7.3: Induced radiation intensity as shown through the brightness of the emitted
Poynting vector (Sx in the x̂ direction) for electron beam driven ((a) and (b)), and laser
driven WFA (c). The gaussian electron beam, located from ∼ 1.35×10−3m to the leading
edge of the window, has Eb = 500MeV, and rx = ry = 25µm, with nb/np = 0.5 (a), and
nb/np = 1 (b). The laser (c) is ẑ-polarized with a supergaussian (exponent 8) profile with
a0 = 10, and a slightly larger spot size than (a), and (b). The laser field is omitted to
fully visualize the Poynting vector originating from the self-injection. r is the full-width
at half max, and the subscripts b and p denote beam and plasma respectively.

This then defines a critical photon energy characteristic of photon emission from electrons

at maximum energy saturation, as seen in Fig. 7.2 (c) given by the equation below [152, 7]

~ωγ,crit[eV] = 5.24× 10−21γ2
ene[cm−3]rβ[µm]. (7.2)
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The spatial structure of the intensity of the wakefield as measured by the Poynting vector

(1/µ0Ey ×Bz) driven by the electron bunch or by the laser pulse is shown in Fig. 7.3. In

the electron bunch driven wakefield we observe a coherent oscillatory structure (fish-bone

like structure) in the tail part of the wakefield bubble. These oscillations are reflective of

the injected electron betatron oscillations in each case of Fig. 7.3(a), (b), and (c). The

arrow-like structure that appears at the front of the wakefield coincides with the driver

electron bunch modulation (Fig. 7.3 (a), and (b)). Although the base case laser intensity

(a0 = 5) also has similar phenomenology, a laser intensity of a0 = 10 is used here to

highlight the structure of radiation in the primary ion cavity.

By time integrating photon counts in a small region of the simulation window containing

self-injected electrons executing betatron oscillations we are able to construct a spectral

profile of the photon emission, as seen in Fig. 7.4. (In Figs. 7.4-7.9 shown are all laser-

driven wakefield properties.) Though there is a high population of low energy photons

due to radiation from lower energy (background) electrons throughout the simulation, we

are able to fit the tail of the spectrum with the asymptotic classical synchrotron profile

(f(ξ) = 0.777
√
ξ exp

[
− ξ
]
) [147] to obtain the critical energy as a fit parameter.

In the following sections we investigate how electron maximum energy saturation and

photon critical energy change as the base case parameters are scaled. These scaling

investigations will give us insight, on one hand, in the direction of astrophysical regimes,

where a0 is very large and ωl/ωp increases as a wakefield structure would propagate

along the jet, and on the other hand in the direction of the high density (solid) regimes

appropriate for X-ray wakefields.
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Figure 7.4: Normalized number of photons (nγ/ntot) emitted from the wakefield as a
function of photon energy (photon spectrum), shown in log-log (a) and semi-log (b) plots.
The spectrum was taken from the region containing self-injected electrons, integrated
over time, and normalized by the total number of photons. The high energy tail of the
spectrum was fit to the asymptotic synchrotron function with a least squares algorithm.
Bold lines and filled data points represent the region where the fitting took place, whereas
dotted lines and empty data points represent regions omitted from the fitting algorithhm.
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7.3 Frequency scaling of electron and photon energies

7.3.1 Betatron investigation

Electron maximum energy saturation εe,max and photon critical energy ~ωγ,crit values

are obtained by the methods described in Sec. 3 at several values of the frequency ratio

(ωl/ωp) to observe scalings. The frequency ratio is investigated in two different ways. First

by changing the plasma frequency (ωl0/ωp) and second by changing the laser frequency

(ωl/ωp0). As seen in Fig. 7.5 (a), the electron maximum energy saturation scales less than

quadratic (as expected from 1D theory) at εe,max ∝ (ωl0/ωp)
1.73.

Using this electron maximum energy scaling together with the photon critical energy

scaling relationship from Eq. (7.2) and the fact that εe ∝ γe, the scaling of the photon

critical energy from these electrons at maximum energy saturation can be estimated as

~ωγ,crit ∝ ε2
e,maxnerβ, as suggested in Ref. [7]. Further, assuming rβ scales the same as

the bubble radius (rb = 2
√
a0/kp ∝ ω−1

p )[102, 7], the expected plasma frequency scaling

is ~ωγ,crit ∝ (ωl0/ωp)
2.46. As shown above in Fig. 7.5 (b), the photon critical energy scales

as ~ωγ,crit ∝ (ωl0/ωp)
2.05. The difference between the simulation observed value and this

simple estimate may arise from inherent limitations on accuracy associated with the fitting

method, and more significantly, from the fact that the plasma frequency scaling of rβ is

not precisely known.

When examining the laser frequency scaling, it is shown in Fig. 7.6 (a) that the electron

maximum energy saturation again scales slightly less than expected from 1D theory

εe,max ∝ (ωl/ωp0)1.74. This nearly identical result is expected from wakefield theory, since

the electron maximum energy saturation is known to depend on the ratio ωl/ωp. The
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Figure 7.5: Scaling relationship of the self-injected electron energy and emitted photon
energy as a function of ωl0/ωp. (a) shows the electron maximum energy saturation scaling,
and (b) shows the photon critical energy scaling.

photon critical energy, however, scales differently depending on how the ratio is altered.

Shown in Fig. 7.6 (b), the photon critical energy scales as ~ωγ,crit ∝ (ωl0/ωp)
2.69.
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Assuming again rβ ∝ rb, the betatron amplitude rβ should be constant when scanning

the laser frequency, since the plasma frequency and laser intensity are held constant. This

logic leads to an expected scaling of ~ωγ,crit ∝ (ωl/ωp0)3.48. This overestimate is expected

noting two important considerations. As laser frequency is increased, so is the dephasing

time, and as electrons execute betatron oscillations, rβ becomes smaller (See Fig. 7.2

(a),(b)). Therefore, as (ωl/ωp0) increases, rβ of electrons at the latest times (highest

energies) decreases. It is again noted here that the scaling relationships are defined by

the high-energy tail of the spectra, which are achieved near the dephasing time. This

means that as (ωl/ωp0) increases, rβ decreases, leading to a potential for the overestimate.

It is interesting to note that betatron photon energy scales more strongly with laser

frequency than the inverse of plasma frequency. This means that the usage of the new

frequency upconversion technique (such as in Ref. [23]) should be able to take advantage

of this scaling by increasing the ratio ωl/ωp through an increase in ωl, an alternative path

to the decrease of ωp.

7.4 Intensity scaling of electron and photon energies

7.4.1 Betatron investigation

Laser intensity (a0) scalings of electron maximum energy saturation (εe,max) and photon

critical energy (~ωγ,crit) by the methods described in Sec. 3 are investigated and plotted

below in Fig. 7.7. The photon critical energy is found to scale as ~ωγ,crit ∝ a3.81
0 . The

scaling relationship taken from Eq. (7.2) (~ωγ,crit ∝ ε2
e,maxnerβ) taken together again with

simulation results from electron maximum energy saturation are used to motivate an

expected photon critical energy scaling. The maximum electron energy saturation scaling
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seen in Fig. 7.7 (a) is found to be εe,max ∝ a1.54
0 . With this result, and assuming that

rβ scales as bubble radius (rb = 2
√
a0/kp ∝ a0.5

0 )[102, 7], the predicted photon critical

energy scaling is ~ωγ,crit ∝ a3.58
0 , which is slightly below the result obtained through the

photon spectrum analysis. This deviation again likely originates from inherent limitations

on accuracy associated with the fitting method, and more significantly, from the fact that

the laser intensity scaling of rβ is not precisely known. It is also noted here that at a0 = 5

in Fig. 7.7 (a) and (b) the electron maximum energy saturation and photon critical energy

deviate from a linear scaling, which may indicate a regime change.

7.4.2 Ponderomotive investigation

In addition to inducing the wakefield, the ponderomotive force is itself responsible for

electron acceleration and subsequent radiation [140, 146]. The ponderomotive potential of

the laser driver longitudinally accelerates electrons to energy saturation, while interactions

with the laser field itself cause said electrons to radiate longitudinally. The electrons and

photons located from the leading edge of the simulation window including the extent of

the laser field are examined in order to determine scaling laws. The maximum energy of

electrons in this simulation window are recorded until saturation occurs. This saturation

is then recorded for each run as in the previous sections and plotted below in Fig. 7.8

(a). The relationship between electron maximum energy saturation and laser intensity is

found to be εe,max ∝ a1.42
0 . This 2D result is lower than the nearly quadratic 1D result

from Ref. [146], as expected due to higher dimensional effects.

Contrary to the photon spectrum analysis methods motivated by betatron radiation and

outlined in Sec. 3, the ponderomotive analysis involved fitting the high energy tail of the

photon spectrum with a power law to obtain a cut-off value. Seen in Fig. 7.8 (b), the
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relationship between photon cut-off energy and laser intensity is found to be ~ωγ,cut−off ∝

a2.26
0 .

It is interesting to note that photon energy from the wakefield scales more strongly with

laser intensity than photon emission from the laser region itself. This means that next

generation laser facilities utilizing solid density plasma with x-rays may be in a unique

position to explore such scaling of betatron photon emission from wakefields. It is also

noted here, however, that there are expected to be QED effects such as radiation reaction

and pair production that must be accounted for in order to motivate realistic expectations.

7.5 Discussion

In the current study we investigate scaling laws of LWFA processes and their associated

high energy photon emission from wakefields. This investigation is carried out by

simulating acceleration and emission of self-injected electrons trapped in the primary

ion cavity of the wakefield as well as electrons accelerated by the field of the laser driver.

Specifically we study the maximum electron energy saturation (εe,max) and the critical

photon energy (~ωγ,crit) as a function of the laser frequency (ωl), plasma frequency (ωp)

(or equivalently the plasma density) as well as the normalized vector potential (a0). The

electron maximum energy saturation εe,max is found by recording the maximum energy

of electrons over time until that energy saturates. The photon critical energy ~ωγ,crit

is found by integrating photon counts over time from the self-injected electrons and the

tail of the resultant spectrum is fit with the asymptotic classical synchrotron function to

return ~ωγ,crit as a fit parameter. The scaling of a series of these parameters are then

compared to expected scaling based on theory from Ref. [152, 7] shown in Eq. (7.2).

In addition to examining the scaling of electron acceleration and photon emission of
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self-injected wakefield electrons, we also investigate the scaling of these processes due to

the laser driver itself through the ponderomotive mechanism.

The studies are carried out using a 2D electromagnetic PIC code (EPOCH) that

includes radiative processes such as quantum corrected synchrotron radiation. This

QED (quantum corrected) synchrotron module is used to generate all photon emission.

The degree to which quantum effects intervene is determined by the parameter η =

e~
m3

ec
4 |Fµνpν | = ERF/ES, where ERF is the electric field in the relativistic electron’s rest

frame and ES = 1.3 × 1018V/m is the Schwinger field [151, 122, 129]. At η � 1

the quantum synchrotron function reduces to the classical synchrotron function, but

as η → 1, the classical synchrotron function begins to deviate significantly from the

quantum-corrected form, where QED effects begin to become important near η & 0.1

[153, 122, 151]. Figure 7.9 shows the number of photons emitted with varied values

of a0 and η associated with the spectra of some of our highest energy runs. The η

parameter is calculated using the critical photon energy fit parameter together with

an approximation of the transverse wakefield strength. At each respective η value the

quantum mechanical synchrotron function (F[η, χ])[153, 151], the classical synchrotron

function (fsynch[4χ/3η2])[153], and its asymptotic form are shown.

All simulations in this study have photon spectra with η < 0.01 and are, therefore, fit

with the asymptotic form of the classical synchrotron function to obtain an approximation

of the photon critical energy. EPOCH also has the ability to simulate radiation reaction

and pair production. The radiation reaction functionality is tested on several different

simulations with laser intensity in the range a0 = 5− 20. The effect of enabling radiation

reaction proves to be inconsequential to the current study as expected, as there is no

noticeable effect on the photon spectrum. Similarly the parameter χ = e~2
2m3

ec
4 |F µνkν |

determines the cross-section for pair production. It is noted in Ref. [153] that pair

production becomes important for η > 0.1, where the most probable parametrized photon

116



energy from synchrotron theory would be greater than χmp ≈ 0.22η2 = 2.2×10−3.[154] In

the a0 = 50 case (η = 0.0062) χmp ≈ 8.5× 10−6 and even in the sparsely populated high

energy tail (~ω ∼ 600MeV) χtail ∼ 5.9 × 10−4. Pair production is, therefore, disabled in

our scaling investigations.

Through our study we find in general that the higher the density regime is, the more

important the quantum mechanical radiative processes are. It has been seen that in

high density plasmas when the ambient fields are strong [149] QED effects become

non-negligible. Thus in X-ray LWFA, radiation characterized by quantum mechanical

processes becomes dominant. In such cases, radiative effects[155, 156] may become

important. Thus we find that radiation sources based on this X-ray LWFA may become

an important topic of future investigations. On the other hand, the quantum mechanical

radiative processes become nearly negligible in the lower density cases and in particular

to our astrophysical acceleration processes [140]. In the diffuse astrophysical environment

where the ambient fields are weak, we suspect that QED effects in the structures studied

here in this particular sense to be negligible. We understand that if the electron energies

become very high, quantum effects become important again.

As mentioned in Sec. 7.3 and Sec. 7.4, the scaling results may be reasonably interpretable

from our understanding. Due to numerical limitations we stop short of extreme highly

relativistic regimes, which may be of interest in the future laboratory experiments and in

various astrophysical applications. We regard that although these scalings are useful

guidance to see how plasma and laser parameters scale to determine the energies of

electrons and resultant photons, these scalings are only a glimpse into regimes of far

more nonlinear extreme parameters.

By investigating the electron acceleration and the resultant photon emission associated

with an increase in various laser and plasma parameters, we have gained some insight
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into astrophysical regimes where these parameters such as a0 and ωl/ωp are much too

large to directly simulate with conventional PIC codes. We have investigated the scalings

of these parameters arising from two processes of electron acceleration and subsequent

radiation that could be present in astrophysical jets, namely LWFA and the ponderomotive

acceleration (PA). PA is particularly relevant to astrophysical cases [140, 146] and is

additionally of much import in the case of the radiation pressure acceleration (RPA)

[157].

Natural generation of these radiating structures could be driven by episodic eruptions

of accretion disks of Active Galactic Nuclei (AGN) and Blazars due to the Magneto-

Rotational-Instability (MRI). Specifically, there are phenomena associated with episodic

eruptions of the disk plasma due to the MRI (see Refs. [158, 159, 160]) that seem to be

closely related to the episodic nature of gamma ray burst emissions [161, 162]. Such

emissions may be related to those from AGN. These eruptions can give rise to the

excitation of intense Alfvén waves which can then mode convert into electromagnetic

pulses, which, we surmise, are related to the emission of bursts of gamma rays and extreme

high energy cosmic ray (EHECR) genesis [140]. Therefore, if the scaling laws investigated

here hold for higher parameter spaces, it could be interpreted that episodic high energy

gamma ray photons received from blazars are in part due to radiation from the driver

pulse and/or betatron radiation of electrons trapped in a plasma wakefield in Blazar jets.

The frequency ratio (ωl/ωp) scaling results are applicable to the astrophysical case, where

the radio wave accelerating structure would be exposed to increasingly lower plasma

densities as it propagates along the AGN jet. This makes the extremely powerful

electromagnetic pulse (converted from the Alfvén wave) fit to make wakes behind it.

The laser intensity (a0) scaling results are again relevant to the astrophysical case, where

the radio wave accelerating structure’s a0 is very large due to its long wavelength. It is

noted here that when a0 � 1 the ponderomotive mechanism for electron acceleration and
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subsequent radiation is understood to be the dominant mechanism due to the similarity

of the electron and ion response to the driver[146].

Additionally a recent realization that X-ray (or γ-ray) radiation signatures are crucial

elements in discerning the γ-ray signal from a possible heavy dark matter candidate from

the core of our galaxy [163] makes it important to consider the wakefield mechanism in

the surviving plasma in the core. As our galaxy is old compared to Blazars considered

in Ref. [164] and Microquasars in Ref. [164] and thus the disk is largely stable, the main

possible actions are confined to the core. It is still important to study the characteristics

of the plasma instabilities present in the core of our galaxy, particularly near the central

black hole (∼ 106M�). We should also investigate if and what processes can excite

strong waves whose phase velocities exceed sufficiently that of the bulk motion such as

its thermal velocity so that these motions are amenable for inducing wakefields [165]. If

so, these wakefields may constitute additional sources of X-rays and γ-rays coming out of

the galactic core. Finally, when one tries to compare the γ-ray spectrum observed from

astrophysical objects with the theoretical model for the electron energies based on LWFA,

as commented in Refs. [141, 135], and [140], the wakefield needs to be allowed to dephase,

which introduces the phase stochasticity. In the present work we have not touched on

this subject. If we include this effect as shown in Refs. [141, 135, 140, 164], the spectrum

of electrons (and thus impacting the γ-ray spectrum), gets a general power spectrum of

negative 2 (in an ideal 1D geometry and greater than 2 in higher dimensional cases). Such

a comparison work should be interesting and is left for a future investigation.
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Figure 7.6: Scaling relationship of the self-injected electron energy and emitted photon
energy as a function of ωl/ωp0. (a) shows the electron maximum energy saturation scaling,
and (b) shows the photon critical energy scaling.

120



7

8

9

10

11

lo
g 1

0
(ε

e,
m
a
x
)

(a)

0.6 0.8 1.0 1.2 1.4 1.6 1.8

log10(a0 )

3

4

5

6

7

8

lo
g
10
(ħ
ω
γ
,c
ri
t)

(b)

Figure 7.7: Scaling relationship of the self-injected electron energy and emitted photon
energy as a function of a0. (a) shows the electron maximum energy saturation scaling,
and (b) shows the photon critical energy scaling.
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Figure 7.8: Scaling relationship of electron energy and emitted photon energy of electrons
in the simulation window as a function of a0. (a) shows the electron maximum energy
saturation scaling, and (b) shows the photon cut-off energy scaling.
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Figure 7.9: Normalized number of photons emitted from the wakefield (nγ/ntot) as a
function of photon energy (photon spectrum) driven by lasers with a0 = 10 (a), a0 = 20
(b), and a0 = 50 (c). The theoretical quantum mechanical (F[η, χ] - solid), classical
(fsynch[4χ/3η2] - short dashed) and the classical asymptotic (long dashed) synchrotron
radiation intensity (dI/dE), normalized to the photon emission as a function of photon
energy is shown in (d), (e), and (f) respectively. The η value associated with each
asymptotic fit can be seen directly below each respective simulated spectrum. The critical
photon energy in conjunction with the approximate transverse wakefield strength for each
case was used to calculate η.
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Chapter 8

TW/cm2 Pulse measurement by

fused silica wafers

This section presents a novel pulse measurement technique for measuring high intensity

(∼ 1 TW/cm2) laser pulses on a shot to shot basis through self-phase modulation in thin

(∼ 1 mm) fused silica wafers. After briefly reviewing some theoretical background, a

short explanation of the technique will be presented and an example pulse measurement

will be shown and verified by a pulse duration measurement retrieved by scanning SHG

FROG. Finally, it will be shown that at least quadratic phase information is contained

in the SPM spectrum and therefore in addition to a pulse measurement, SPM can also

provide insight in to the chirp present in an ultrashort laser pulse.
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8.1 Background

The nonlinear Schrödinger equation was developed in the context of fiber optics to model

pulse propagation [42] in optical fibers.

i
∂A

∂z
= −iα

2
A+

β2

2

∂2A

∂t2
− γ|A|2A (8.1)

Here A is the slowly varying amplitude of the pulse envelope. The first three terms on

the right correspond to power loss (absorption), dispersion, and the nonlinear phase shift

due to the change in nonlinear index respectively. In transparent dielectrics like fused

silica the absorption coefficient of near optical wavelengths is very low as evidenced by

its transparent nature. Transmitted power measurements of 0.945mJ 35 fs 800 nm (∼ 1.3

TW/cm2) laser pulses confirm a transmission of ∼ 99% energy throughput when the wafer

is oriented at Brewster’s angle, therefore this term is neglected in Eq. 8.4. Furthermore,

the effect of dispersion on ultrashort laser pulses of ∼ 35 fs duration in 1mm of fused silica

is negligible. For example, the change in pulse duration of a transform limited 35 fs laser

pulse due to dispersion after transmission through 1 mm of fused silica is ∼ 0.1 fs. This

means that its peak intensity is very nearly constant during propagation. Though the

technique can be performed with less intense pulses, the pulse must experience a significant

nonlinear phase shift (B ∼ 2) without experiencing significant dispersion. Where B in

practical units for fused silica can be seen below in Eq. 8.2

B = 1.57×
I0[TW

cm2 ]z[mm]

λ0[µm]
(8.2)

Here I0 is the peak intensity, z is the thickness of the fused silica wafer, and λ0 is the

central wavelength of the pulse. If these conditions are met, the only relevant term in Eq.

8.4 is the term pertaining to the nonlinear phase shift. In this case the pulse envelope
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does not change at all (∼ 0.1 fs in this particular case), but the propagation of the pulse

through the wafer satisfies

∂A

∂z
= iγ|A|2A (8.3)

which has the solution

A(z, t) = A(0, t)eiγ|A(t)|2z (8.4)

Therefore after passing through a material with a length L the pulse acquires a nonlinear

phase shift ∆φ(t)NL = γ|A(t)|2L, where γ = 2πn2/λ0Aeff . Here Aeff is the effective

mode area of a fiber and λ0 and n2 are the central wavelength and nonlinear index of

refraction respectively. Or equivalently as described in Chap. 2, ∆φ(t)NL = 2π
λ0
n2I(t)z.

This nonlinear phase shift results in a change in the instantaneous frequency of the laser

pulse since ω(t)inst ≡ dφ(t)/dt, where

∆ω(t)inst =
2π

λ0

n2
dI(t)

dt
z. (8.5)

Therefore the maximum change in instantaneous frequency (and therefore spectral

broadening) will be proportional to the actual pulse duration by

∆ωmax ∝
2π

λ0

n2
F0

τ 2
0

L, (8.6)

where F0 is the peak fluence, and τ0 is the fwhm pulse duration. Since λ0, n2, F0, and

L are easily obtained experimentally, if one could obtain a measurement of ∆ωmax, the

determination of the actual pulse duration τ0 would collapse into simple algebra. However
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since ∆ωmax does not seem to line up nicely with any obvious spectral features that I have

been able to identify yet (ie. bimodal peaks, 1/e, fwhm, 1/e2 etc.), in the next section

I investigate the spectral broadening associated with various nonlinear phase shifts and

compare simulated to experimental broadened spectrum to obtain a holistic (at this point)

pulse measurement.

8.2 Application

The pulse to be temporally measured has F0 = 43.95 mJ/cm3 and, λ0 = 787 nm and is

transmitted through a thin film of fused silica with n2 = 2.5× 10−16 cm2/W and L = 1.2

mm (when accounting for refraction at Brewster’s angle). An unchirped temporal shape

of sech2 is chosen to model the broadening with an initial guess for τ0. The constants

listed above are used in Eq. 8.7 that then determines the laser electric field with nonlinear

phase shift

E(t) ∝
√
I0Sech(1.76

t

τ0

)ei(ω0t−φ(t)NLL) (8.7)

where I(t) in the nonlinear phase shift is defined by

I(t) = I0Sech
2(1.76

t

τ0

). (8.8)

After the nonlinear phase shift without a change in pulse envelope, the spectrum is

broadened as discussed in Chap. 2. This can be seen by taking the Fourier transform of

the laser field with the nonlinear phase shift (ie. the Fourier transform of Eq. 8.7).
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A pulse duration scan is carried out in the range 30 - 45 fs in steps of 1 fs while holding

all other values constant (ie. F0, λ0, n2, L). The resultant broadened simulated spectrum

(blue) is then overlapped with the experimentally obtained spectrum (red) is shown in

Fig. 8.1 to look for agreement.

Figure 8.1: Shown above is the result of scanning the analytical pulse duration and
comparing the resultant broadening (blue) to the measured experimental broadening (red)
due to SPM
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The difference between the experimental and simulated broadened spectrum is minimized

for τ = 37 fs. However, since there are discrepancies in the bimodal shape and the tails

between the experimental and simulated spectrum in each of the spectral comparisons,

error bars will need to encompass each of these scenarios. For example, if the tails are

the critical feature that needs to be matched, pulses of up to 40 fs could be predicted

by this method. Alternatively, if the overlap of the center of the peaks of the bimodal

structure is most important, pulses down to 34 fs could be predicted. Whereas under no

circumstances could spectral comparisons near 30 fs or 45 fs be considered good fits to the

data. Therefore this method (in its infancy) predicts that this spectrum was generated

by a 37± 3 fs laser pulse.

It is noted here that the experimentally measured bimodal structure will be produced

by SPM only if the second order phase is minimized and the higher order phase terms

are small (the closer to zero phase the laser pulse has, the better the prediction of this

simple measurement). This interesting fact is explored very briefly in the next section.

To validate this pulse measurement technique with experimental data, we compare to a

pulse measurement by scanning SHG FROG. As described in Chap. 3 this technique

is completely different than the method being explored in this chapter. Scanning SHG

FROG uses the laser pulse to interfere with itself in a nonlinear crystal and spectrally

resolve the intensity autocorrelation as the pulse is delayed with respect to a cloned

reference pulse. The measured spectrogram and intensity autocorrelation can be seen in

Fig. 8.2.

The pulse length as determined by intensity autocorrelation (vertically binned spectrogram)

is measured to be ∼ 35.5 fs. Similarly, as seen below in Fig. 8.3 the pulse duration

determined by phase retrieval was found to be ∼ 35.6 fs. Additionally, as expected due to

its bimodal spectral broadening this pulse is seen to have very flat phase inside its fwhm

pulse duration.
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Figure 8.2: The measured spectrogram (top) and intensity autocorrelation (bottom) of
the laser pulse.
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Figure 8.3: The pulse duration determined through phase retrieval of the SHG FROG
trace. The intensity profile (red) and phase (blue) of the pulse determined through phase
retrieval of the SHG FROG trace

Based empirically on these experimental findings, the centers of the bimodal peaks may

be a more critical factor to match as opposed to the tails of the experimental spectrum

in order to accurately predict the pulse length of intense unchirped laser pulses by the

method presented in this chapter. For example, in Fig. 8.1 the center of the bimodal peaks

in the experimental and simulated spectrum line up best somewhere between τ = 35 and

τ = 36. Where the short wavelength peak just begins to poorly match at τ = 34 and the

long wavelength peak begins to poorly match at τ = 37. If this is the case, this method

could predict pulse durations nearly as accurately as the SHG FROG.
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It is worth re-iterating that this method is much cheaper and requires vastly less

infrastructure than a scanning SHG FROG (ie. no specially cut/grown nonlinear crsytals,

motorized stages, LabVIEW programs etc.). Furthermore, this method is not restricted

to the 800 nm wavelength, can be used in pulses below the duration limited by most BBO

crystals (due to low conversion efficiency), and can be used as a single-shot diagnostic.

Furthermore, if more experiments can empirically verify that matching bimodal peaks

accurately predicts pulse duration down to 1 fs resolution for unchirped ∼ 1 TW/cm2

pulses, this method could reproduce SHG FROG measurements down to 1 fs resolution.

Last but not least, since SPM is a third order effect, when pulses do not have zero chirp

they produce unique spectral signatures depending on the sign of their chirp (which isn’t

the case with second order effects) as will be briefly explored in the next section.

8.3 Second order phase effects

As mentioned in the previous section, SPM produces a unique spectrum depending on the

second order phase, or lack thereof. A compressor sweep carried out at UCI to determine

the location of most significant SPM broadening (shortest FTL) of 1.3 TW/cm2 laser

pulses in 1.2 mm of fused silica is shown below in Fig. 8.4 (e). Figure 8.4 (a) shows the

unbroadened laser spectrum, which was obtained by stretching the pulse out in time by

increasing the amount of positive chirp until the point at which no spectral broadening was

observed. The remaining spectra in Fig. 8.4, show the unique spectral SPM signatures of

having slight positive chirp (b), near zero chirp (c), and slight negative chirp (d). When

chirp is positive, there is some spectral broadening, but since the pulse intensity is not

maximized it is not as strong as when the chirp is near zero. When the chirp is negative,

SPM actually produces spectral narrowing [88] as seen below through not only the visual

decrease in fwhm, but also in the increase of FTL in the compressor sweep in the region
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> 5295. Recall from Chap. 3 that at UCI, when the compressor has actuator positions >

5295 the pulse has negative chirp, and at actuator positions < 5295 the pulse has positive

chirp.

Figure 8.4: SPM spectra (a - d) generated at UCI by ∼ 1.3 TW/cm2 pulses in 1.2 mm
of fused silica with varying amounts of quadratic chirp. A spectrum sufficiently chirped
(low enough intensity) such that it has no spectral modulations is shown (a) to compare
to SPM with slightly positive chirp (b), near zero quadratic chirp (c), and negative chirp
(d). A compressor scan is shown in (e) to show that the broadest bimodal spectra are
generated near zero quadratic phase, and that the FTL actually decreases on the negative
chirp through spectral narrowing

A similar compressor sweep was carried out during one of the experimental campaigns at

the HERCULES laser. Laser pulses of ∼ 0.6− 0.8 TW/cm2 were spectrally broadened in

0.5 mm of fused silica, where again the compressor sweep was utilized to determine the

location of the most significant SPM broadening. Again here, Figure 8.5 (d) shows the

unbroadened laser spectrum, which was obtained by stretching the pulse out in time by
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increasing the amount of negative chirp until the point at which no spectral modulation

was observed. The remaining spectra in Fig. 8.4, show the unique spectral SPM signatures

of having slight positive chirp (a), near zero chirp (b), and slight negative chirp (c). When

chirp is positive, again there is some spectral broadening, but since the pulse intensity is

not maximized it is not as strong as when the chirp is near zero. Again here negatively

chirped pulses are shown to visually decrease in fwhm, and also slightly increase of FTL

in the compressor sweep in the region > -3.1 mm. In this particular case, I do not have a

phase calibration for the compressor sweep to verify the positively chirped and negatively

chirped sides, but we know from the SPM spectra which is which.

The upshot of this is that not only can we determine the pulse duration of the shortest

un-chirped pulse by the method described in this chapter, but we can also determine

whether it is positively or negatively chirped by simply looking at the SPM spectrum.

The sign of the chirp is another thing we cannot get from second order effects like SHG

FROG, but we get for free by using SPM in fused silica wafers. During the development

of this technique by the author, a much more mature technique using multiple wafers

and phase retrieval algorithms was discovered in the literature [166]. The simplicity and

implicitly limited scope distinguishes the method described in this chapter from the cited

method. Since the output spectra from SPM is unique depending on not only the amount

of chirp, but also the sign of the chirp it also may be possible to utilize machine learning

algorithms (trained by SHG FROG) to uniquely determine the pulse duration and phase,

when only provided a spectrum.
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Figure 8.5: SPM spectra (a - d) generated at HERCULES by ∼ 0.6 − 0.8 TW/cm2

pulses in 0.5 mm of fused silica with varying amounts of quadratic chirp. A spectrum
sufficiently chirped (low enough intensity) such that it has no spectral modulations is
shown (d) to compare to SPM with slightly positive chirp (a), near zero quadratic chirp
(b), and negative chirp (d). A compressor scan is shown again in (e) to show that the
broadest bimodal spectra are generated near zero quadratic phase, and that the FTL
actually decreases on the negative chirp through spectral narrowing
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Chapter 9

Future applications and outlook

The most significant pulse compression results from the experiments carried out in this

thesis work came from using high intensity (∼ 2 TW/cm2) laser pulses and a several thin

(4x 0.1 mm) plastic films of Zeonor as the SPM target. Laser pulses were compressed to

less than half of their original duration to ∼ 23 fs using chirped mirrors to compensate

their phase. This promising result suggests that plastics appear be a very tantalizing

alternative to fused silica due to their strong nonlinear response as suggested by [48].

Future experiments looking to utilize thin film compression in experiments using Zeonor

or other plastics will require the use of optical quality plastic films when they become

available. Alternatively, other materials with higher n2 could also be used, but plastics

are routinely made into sub-millimeter films and are inexpensive and therefore expendable-

making them an ideal candidate for these exploratory studies. On the other hand, optical

quality fused silica wafers can be used as a robust reusable source for of nonlinearity, but

may require higher intensities or several stages of compression to reap the benefits of TFC

due to the smaller n2.
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9.1 Multi-stage thin film compression

A second stage of thin film compression could be used to take laser pulses to even shorter

durations toward the single-cycle limit. Since ∆ω ∝ dI/dt, shorter pulses will require

less material to produce the same spectral broadening. For thin film compression to

work most effectively, one should begin with as little noise in the near field intensity

pattern as possible and a flat-top beam. As discussed at several points throughout the

experimental portion of this thesis, laser pulses from high power facilities are rarely “flat-

top” and due to small scale spatial intensity fluctuations are susceptible to filamentation

[82]. This filamentation can lead to mode-collapse [81] resulting in hot-spots that can

damage optics and a ultimately produce a less usable mode. In any real system, there

will be some amount of spatial noise in the initial beam that will self-focus and produce

filamentation. To address these challenges Mourou et al. suggested the use of a spatial

filter and deformable mirror after spectral broadening in a thin film [48]. This procedure

removes high frequency noise and corrects the wave-front of the compressed pulse to

prepare the pulse for a second stage of compression. Single stage pulse compression by ∼

a factor of two was demonstrated several systems in this thesis, slightly higher results are

likely possible.

Important limiting factors are the multi-photon ionization threshold of the nonlinear

media, and the intensity distribution of the near field of the initial laser pulse. The

damage threshold of the chirped mirrors themselves also must be high enough to support

the compressed intensities. For example, the initial proposal suggested the compression

of 5 TW/cm2 27 fs laser pulses to the single cycle limit. If losses are low, this would bring

the intensities close to the multi-photon ionization limit for fused silica (∼ 30 TW/cm2)

[167].
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9.2 Self-compression

Additionally for optical wavelengths, materials like fused silica normally have positive

GVD which means that the pulse stretches out in time, and makes it very difficult

to maintain pulse length with ultra-short pulses. However, in the NIR there exists a

wavelength around ∼ 1270 nm at which the GVD for fused silica goes to zero. Taking this

a step further by going beyond the zero dispersion point we can tune to wavelengths that

have negative GVD in fused silica. This means we may be able to investigate wavelengths

that self-compress in fused silica without the need for compressive optics like chirped

mirrors. This effect has been studied in fibers and when the positive chirp from SPM

and the negative chirp from GVD perfectly counteract each other it can lead to soliton

formation [65]. Therefore in the case that the GVD compensates for the linear chirp

added through SPM it is referred to as soliton compression, as dispersion will compress

the newly added linearly chirped bandwidth [95].

9.3 Short-cut to the QED regime

The compression schemes mentioned above have the potential to extend pulse compression

further towards the single-cycle regime. As explored in Chap. 1, optical laser pulses in

the single-cycle regime have been shown in simulations to produce 10% efficient Doppler

up-shifted laser pulses through a coherent relativistic reflection from an overdense plasma

[3]. Further scaling of this physical mechanism suggests that laser pulses from Joule class

lasers could generate pulses down to 1-10 attoseconds. This relativistic compression to

higher frequency could serve as a powerful shortcut to the QED regime as seen in Fig.

9.1.
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Figure 9.1: Shown above is focused peak intensity versus time. The so-called λ3 short-cut
could grant access to the QED regime, and can be accessed by high energy laser pulses
compressed to the single-cycle regime through the relativistic mirror mechanism. Image
credit: [1]

These intense, short pulses are anticipated to have many applications in nuclear physics

and medicine [2]. Furthermore, these pulses are well-suited to driving wakefields in media

with much higher critical density (ie. solids) enabling higher acceleration gradients and

extremely compact accelerators with acceleration gradients of TeV/cm2 [139]. Previously,

the path to exawatt power seemingly required ever increasing energy such as MJ lasers.

Compression to the optical single-cycle regime and subsequent relativistic compression

presents a tantalizing secondary path to this new frontier of high-field science.
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Appendix A

EPOCH QED synchrotron

The photon emission package in the simulation code EPOCH is based on quantum

corrected synchrotron radiation theory developed by Klepikov [149]. It closely resembles

theory developed by Schwinger in the same year [128]. This section will very briefly

review the classical synchrotron function and discuss its limitations. Finally it will present

the quantum corrected functions from Schwinger and Klepikov (the relevant model for

EPOCH).

A.1 Classical synchrotron function

When the Lorentz factor of high energy electrons executing sinusoidal motion becomes

large enough, the trajectory becomes distorted in the lab frame. The radiation from this

motion is called Synchrotron radiation and is characterized by a series of harmonics up

to a critical energy εcr [61].

~ωcr = εcr =
3

2

~c
r
γ2
e (A.1)
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This photon energy-determined by the bending radius r, and the electron Lorentz factor

γe fully determines the synchrotron spectrum given by εcr [61].

dI

d
(
ε
εcr

) 1

I
= S

( ε

εcr

)
=

9
√

3

8π

( ε

εcr

)∫ ∞
ε/εcr

K5/3(x)dx (A.2)

Here I = 4πe2γ4
e/(3r) and K5/3 is the modified Bessel function. One thing to note

about the classical function is that when the electron energy and bending fields become

strong enough, the model begins to predict photons with higher energies than their parent

electrons [128]. In Table A.1, typical bending fields present in laser wakefields in solids

O(∼ 1012 V/m), along with different electron energies in the range ∼ 5 - 500 GeV are

shown. It is seen that as the electron energies become large, the classical model becomes

nonphysical - violating energy conservation.

η E [V/m] γe Ee [GeV] εcrit[GeV]
0.01 1012 104 5.1 0.077
0.1 1012 105 51 7.7
1 1012 106 510 770

Table A.1: Predicted values for critical photon energy in classical synchrotron theory.
Near η ∼ 1, photon energies with more energy that their emitting electrons are predicted,
violating energy conservation. A quantum corrected theory was developed by Schwinger
and Klepikov in 1954.

A.2 QED corrected synchrotron function

Klepikov introduced parameters χ and η which serve as the parameterized unitless photon

and electron energies [149, 153].

η = γe sin θ
E

ES
(A.3)
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χ =
hν

2mec2

E

ES
(A.4)

Here ES = m2
ec

3/(e~) is the Schwinger field. When these quantities become ≥ 0.1,

quantum effects begin to play more of a role [122]. Specifically, the η parameter determines

the when the photon emission process of high energy electrons in strong bending fields

needs to be corrected by the quantum mechanical model. On the other hand, χ determines

the degree of which photon processes such as pair production play a role. The quantum

corrected synchrotron model used by EPOCH can be seen below

F (η, χ) =
4χ2

η2
yK2/3(y) +

(
1− 2

η

χ

)
y

∫ ∞
y

K5/3(x)dx (A.5)

y =
4χ

3η(η − 2χ)
(A.6)

The critical thing to note, as seen below in Fig. A.1 is that if η ≥ 0.1 the synchrotron

emission spectrum becomes suppressed. Figure A.1 shows the classical synchrotron curve

for various η parameters in all cases with a dotted blue line. Figure (a), (b) and (c)

show the Schwinger correction to the classical synchrotron function with a solid orange

line, whereas (d), (e) and (f) show the Klepikov correction which is used in EPOCH,

and begins to deviate from Schwinger at η ∼ 1. Note that in the Schwinger model at

η = 1 (Ee ≈ 5 × 105 MeV), photons are predicted to have energies up to ∼ 106 MeV,

whereas in the Klepikov model under the same conditions, photons are predicted to have

energies up to ∼ 3.5 × 105 MeV preserving energy conservation. Assuming η << 1, the

critical photon energy can be estimated with classical theory (the blue dotted line) by

εcr[MeV] = 0.75ηγe, and the most probable photon value by εmp = 0.22ηγe [154, 153].
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