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ABSTRACT OF THE THESIS

Empirical Study on the E↵ect

of Zero-Padding in Text Classification

with CNN

by

Henry Jen-Hao Cheng

Master of in Applied Statistics

University of California, Los Angeles, 2020

Professor Yingnian Wu, Chair

In CNN-based text classification tasks, where a CNN model is trained on top of pre-trained

word vectors, padding is applied to ensure the input dimension is consistent, which is a

requirement for CNN architecture. Traditionally, there are no set rules on how padding

should be applied and padding is usually applied to the bottom of the text to achieve uniform

length. Borrowing from the idea in computer vision, we show that there is no significant

di↵erence between applying zero-padding to the bottom of text embeddings and to both

sides of the text embeddings.
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CHAPTER 1

Introduction

The goal of text classification is to assign labels to a body of text, which is useful in ap-

plications such as question answering, sentiment analysis, document categorization, spam

detection and many more. In deep-learning based text classification techniques, specifically

the one using Convolutional neural network (CNN) trained on top of word embeddings such

as CBOW, text are projected from 1-of-V (where V is the vocabulary size) onto a lower di-

mension space where words having close semantic meanings are close in euclidean or cosine

distance. The word vectors are then used as input to train CNN, which performs the text

classification tasks.

CNN uses convolving layers that apply filters to local features as its feature extraction

process. The idea is popular in computer vision and has been shown to perform well in

NLP tasks, including text classification. Kim [1] had shown that a simple CNN with one

convolutional layer on top of word vectors can achieve excellent results, whereas Conneau

et. al [2] showed that even better performance can be achieved by increasing depth of the

CNN.

One problem arises with CNN, both in computer vision and NLP, is that the input

dimension can be of di↵erent values. A CNN takes fixed dimension, n x m x c, as input

and has to perform padding where vectors, often with value of zero, are appended to ensure

the input image or text fits the input dimension n x m. In the case of computer vision,

images are mostly in rectangular shape; padding is often done by appending zero-vectors

symmetrically to the width and/or length dimension, as shown in figure 1.1. In NLP, word
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embedding ensures the m dimension to be fulfilled as part of the embedding process and

therefore only the n dimension needs to be enforced, where n dimension is the length of the

text “block” or the input data. Padding for NLP has been traditionally done by adding

zero-vectors to the bottom of the text to lengthen the word vectors until its length reaches

n.

In this paper, we perform empirical study to compare symmetric padding and bottom-

only padding in the context of CNN text classification. We trained word2vec embedding on

2 datasets over 3 neural network models. Our datasets include one with smaller paragraphs

while having multiple classes and one with larger paragraphs and two classes. The neural

network models consist of one multilayer perceptron model, which serves as a baseline, and

two CNN models with various depths. In addition to symmetric and bottom-only padding,

random padding where zero-vectors are inserted randomly into the text is also used to show

symmetric and bottom-only padding has e↵ect on classification accuracy. We then compare

the model performances and found that both padding methods achieve similar performances.

Code is available at: https://github.com/henryjcheng/text padding
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Figure 1.1: zero-padding applied to image
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CHAPTER 2

Related Work

Text classification that utilizes a two stage approach, feature extraction and classification, is a

well-researched area. In Kim’s work, a shallow network is introduced that uses word2vec pre-

trained on 100 billion words from Google News for feature extraction, followed by shallow

network consisting of a convolutional layer, a max pooling over time layer, and a fully

connected layer with dropout and softmax for classification. The network adopts dropout on

the penultimate layer and l2-norms on the weight vectors to prevent overfitting. Kim uses 6

datasets to verify the results.

Kalchbrenner et. al [3] described a sentence modeling architecture called DCNN using

CNN with dynamic k-max pooling, which is a global pooling operation over linear sequences.

The DCNN includes 5 convolutional layers, starting with wide convolution over projected

sentence matrix, dynamic k-max pooling, another layer of wide convolution, a folding layer

followed by k-max pooling layer, and finally a fully connected layer. K-max pooling di↵erent

from max pooling by returning k maximum values in the subsampling operations rather

than a single maximum value. K can be dynamically chosen by making k a function of other

aspects, such as sentence length. DCNN is evaluated on four di↵erent experiments, each

varying by tasks performed, and achieved excellent result.

Conneau et. al introduced VDCNN architecture inspired by VGG and ResNet. VDCNN

performs feature extraction at character level then passes the embedding through a deep

neural architecture for text classification. The architecture starts with a mapping layer to

map characters to their corresponding vectors, a convolutional layer followed by temporal
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“convolutional blocks” where each block consists of a convolution layer, batch norm layer,

and a ReLu activation, a k-max pooling layer, and three fully-connected layers. A memory

reduction technique is also implemented by doubling feature space from two convolution

blocks, then halve the temporal resolution, or output dimension, with a pooling layer. VD-

CNN is evaluated on 8 datasets, with 2 being a variation of other datasets that are also used

in the evaluation.

Le et. al [4] showed that while a deep network performs well using character-level em-

bedding, a shallow and wide network can achieve even better performance using word-level

embedding. The paper compared Kim’s shallow and wide network with DenseNet [5], which

is introduced by Huang et. al for image classification task. DenseNet uses the same mem-

ory reduction technique as VDCNN, where temporal convolution doubles the feature space

followed by a pooling layer that halves the output dimension. In addition, skip-connections

is introduced to allow the gradient to back-propagate deeper in the network and eliminated

issues such as vanishing gradients. With the potential issue of skip-connection negatively

a↵ect the information flow in the model, dense connection is implemented which allows

to create direct connections from any layer to all subsequent layers. Le et. al compared

shallow-and-wide and DenseNet architectures at character-level embedding and word-level

embedding over 5 datasets.

Mahdi [6] compared image resizing with zero-padding and interpolation (scaling) where

zero-padding is applied around the images to expand their dimension to fit AlexNet [7], a

CNN based architecture with 5 convolutional layers followed by 3 fully-connected layers, and

showed that zero-padding has no e↵ect on classification accuracy but considerably reduced

training time. The model performances are recorded on two datasets, Tiny Imagenet and

Visual Domain Decathlon, with no pre-processing other than resizing with padding or scaling.

In summary, many architectures have been proposed on CNN-based text classification

method where an embedding stage extracts features on character, word, or other forms

of text units, and a classification stage where CNN is trained on top of the embedding
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layer to perform classification tasks. In such modeling technique, padding is applied after

embedding to keep the input dimension constant, which is a requirement for CNN. The

di↵erence is padding methods are not systematically studied and therefore, this study is

devoted to exploring that.

6



CHAPTER 3

Model

We use word2vec embedding as feature extraction, padding to the maximum sentence length,

and 3 separate neural network models for classification tasks.

3.1 Word Vectors

Word2Vec is a shallow, two-layer neural networks trained to convert words into vectors where

words with close semantics are close in the cosine distance of the generated vector space.

Training neural network using word vectors as inputs has been shown to greatly improve

model performances.

Word2Vec starts with a one hot encoded vector of size V, where V is the vocabulary

size of the input corpus and xi 2 V, 1  i  V represents the unique word or text unit in

vocabulary. The model uses the one-hot encoded vectors as input layer to train a hidden

layer with N neurons, where the value of N is specified (in our case, 50). Softmax is then

applied to the output layer which also has dimension V .

In continuous bag-of-words (CBOW) architecture, a word is left out and the model tries

to predict the target words using the surrounding words. The output layer of the model, in

this case, represents the probability of each word being the left out word. A simple example

of CBOW architecture is shown in figure 3.1. The Skip-Gram architecture uses the inverse

of CBOW, where target words are used to predict surrounding context. In our experiment,

we use CBOW to train our word vectors due to its training e�ciency and not much drop in
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accuracy. Once the training is completed, the weights used for input layer to hidden layer is

extracted as a lookup table for embedding.

Figure 3.1: A simple CBOW model with only one word in the context

source: https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa
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3.2 Padding

Padding here refers to concatenating vector(s) to the word vectors. The padding vector

shares the same dimension as the word vectors, and can have specified or random values for

each element. In our case, we use zero value for our padding vectors to perform bottom and

symmetric padding.

For bottom padding, the operation takes the form of

xl � ⌫n�l

where � is the concatenating operation, ⌫ is the zero vector, l is the text length, and n is the

required CNN input dimension. The bottom padding operation essentially adds zero vectors

to the bottom of the word embeddings until it reaches length n. For symmetric padding,

the operation takes the form of

⌫bn�l
2 c � xl � ⌫dn�l

2 e

The padding operation adds zero vectors to the top and bottom of the word vectors until

the entire embedding unit has length n.

3.3 Multilayer Perceptron

This is our baseline model for comparison against other CNN-based models. The multilayer

perceptron model (MLP), as shown in figure 3.2, starts with the lookup table to map words

to its corresponding embedding vectors, a flattening layer as the first fully connected layers,

and two more fully connected layers with the last layer having dimension equals to class size.

A max operation is applied to determine the class label.

Let xb 2 Rn⇥m be the b-th mini batch of word embedding vectors (with padding applied),

then xi
n⇥m⇥1

2 Rm corresponds to the i-th input in xb; here n is the paragraph length in

addition to padding, m is the dimension of embedding vectors, and 1 is the channel size.
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With f defined as the flattening operation, the flattening transformation is therefore:

x0
i

(n⇥m⇥1)⇥1
= f( xi

n⇥m⇥1
)

The feedforward transformation can be represented as:

yi = g(wT · x0
i + b)

where g represents the ReLu activation function, w
(n⇥m⇥1)⇥d

is the weight matrix, d is the

output dimension, and b is the bias term.

Feedforward transformation is carried out twice in our setting and call the result y 2 Rc

with c representing the class size. A max function is applied to determine the class label:

ŷ = max{y} 2 R

Figure 3.2: Multilayer Perceptron Architecture
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3.4 CNN - simple

This is our vanilla version of CNN architecture which uses one layer of convolution with ReLu

activation function, followed by a max pooling layer, followed by the multilayer perceptron

model introduced earlier. The kernel size is 4 for both the convolutional layer and max

pooling layer. The 3 feedforward layers in MLP has output dimensions of 120, 50, and c,

respectively, where c represents the number of classes in the dataset.

Let xi 2 Rm be the m-dimensional word vector corresponding to the i-th word in a

paragraph. Convolution operation applying a filter w 2 Rhm to h-grams xi:i+h�1 can be

represented as:

ci = g(w · xi:i+h�1 + b)

Here g is the non-linear ReLu function and b 2 R is the bias term. This window is applied

to each possible window of words in the paragraph {x1:h,x2:h+1, ...,xn�h+1:n} to produce

feature map c 2 Rn�h+1. Max pooling is then applied to extract the maximum value from

the feature map:

ĉ = max{c}

In figure 3.3, we use ”4, Conv, 1” to denote convolutional layer with kernel size 4 and

output dimension 1 and ”fc(120, 50), ReLu” to denote fully connected layer with input

dimension 120, output dimension 50, with ReLu activation function.

Figure 3.3: CNN -simple Architecture
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3.5 CNN

This is our “shallow” CNN architecture that’s similar to Kim’s model. The model, as shown

in figure 3.4, consists of 1 layer of convolution with 3 channels; the channels have kernel

size of 3, 4, 5, respectively. ReLu activation is then applied, followed by max pooling with

decreasing filter size for each channel to ensure the output dimensions are consistent. Here

we replicate the input x 3 times and stack them to create x0 with 3 identical channels. h or

the filter size of {3, 4, 5} are applied to channel 1, 2, 3 respectively. Max pooling layer is

then applied with filter size {4, 3, 2} to ensure the output dimension of ĉ is consistent for

each channel. ĉ is then passed through the MLP model introduced earlier.

Figure 3.4: CNN Architecture
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3.6 CNN - deep

Our “deep” model borrows the architecture from Conneau et. al, with the exception of using

embedding at word-level instead of character-level, as well as omitting k-max pooling. The

model starts with an embedding layer that maps words to their corresponding embedding

vectors, followed by a convolutional layer with dimension of 64, followed by 3 convolutional

blocks, and finally, the multilayer perceptron introduced in previous paragraphs. The convo-

lutional block is the exact replica in VDCNN with two convolutional layers, each with batch

norm and ReLu applied, and a pooling layer. The memory reduction trick is also applied in

our model.

In figure 3.4, we use ”Conv Block, 64” to signify convolutional block with output dimen-

sion of 64, ”3, Conv, 64” to signify a convolutional layer with kernel size of 3 and output

dimension of 64, and ”fc(4096, 2048)” to signify fully-connected layer with input dimension

of 4096 and output dimension of 2048.

13



Figure 3.5: CNN - deep Architecture and one unit of Convolutional Block
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CHAPTER 4

Datasets and Experimental Setup

We use six datasets for our experiment. The summary statistics for the dataset is in table

4.1.

For datasets with large text lengths, such as Amazon Review and Yelp Review, 50000

records are sampled, with each class having similar proportions. The sampling was required

due to limited RAM. The word2vec embedding, however, are all trained using the entire

dataset.

Table 4.1: Summary Statistics of Dataset

Dataset Class Size Avg. Text

Length

Train Set

Size

Vocab Size Test Set Size

AG News 4 193 120000 104195 7600

Amazon Review Polarity 2 84 3600000 308293 400000

Amazon Review Full 5 86 3000000 278564 650000

DBpedia Ontology 14 48 560000 140361 70000

Yelp Review Polarity 2 726 560000 108236 38000

Yelp Review Full 5 153 650000 119256 50000
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Table 4.2: Examples of text samples and their labels

Dataset Class Sample

AG News 1 Reuters - Venezuelans turned out early and in large numbers on

Sunday to vote in a historic referendum that will either remove

left-wing President [...]

Amazon

Polarity

2 I’m reading a lot of reviews saying that this is the best ’game

soundtrack’ and I figured that I’d write a review to disagree a

bit. [...]

Amazon

Full

5 I hope a lot of people hear this cd. We need more strong and

positive vibes like this. Great vocals, fresh tunes, cross-cultural

happiness. Her blues is from the gut. [...]

DBpedia

Ontology

1 Schwan-STABILO is a German maker of pens for writing colour-

ing and cosmetics as well as markers and highlighters for o�ce

use. It is the world’s largest manufacturer of highlighter pens

Stabilo Boss.

Yelp Polar-

ity

1 I’m writing this review to give you a heads up before you see

this Doctor. The o�ce sta↵ and administration are very unpro-

fessional. I left a message with multiple people regarding my bill

[...]

Yelp Full 4 Got a letter in the mail last week that said Dr. Goldberg is

moving to Arizona to take a new position there in June. He will

be missed very much. [...]
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4.1 Dataset

4.1.1 AG News

News articles in the 4 largest classes (world, sports, business, sci/tech) on AG’s corpus of

news articles on the web. Each class is equally represented in the training and testing dataset.

Classification involves identifying the class for each article.

AG News are medium in text lengths relative to other datasets, which has the advantage

of giving enough information without occupying significant memory resources. Distinctive

words also exists in each category, which is extremely helpful in categorization tasks. For

example, country-specific words such as ”Venezuelans” or ”S.Koreans” are present in the

”world” category and sports-specific words such as ”freestyle” or ”Olympics” are present in

the ”sports” category.

Conneau et. al achieved error of 8.67 using VDCNN architecture using character-level

embedding. Given that we are restricted in computing power and performing embedding at

word-level, we should expect slightly worse performance from all our models.

4.1.2 Amazon Review Polarity

34,686,770 Amazon reviews from 6,643,669 users on 2,441,053 products, from the Stanford

Network Analysis Project (SNAP). This subset contains 1,800,000 training samples and

200,000 testing samples in each polarity sentiment.

Within the ”positive” class, dataset contains words such as ”intrigued”, ”awesome”, or

”excellent”. The ”negative” class tends to have words such as ”horrible”. The challenge in

this dataset is that sentiments may not be expressed in only one words, which word-level

embedding will have a hard time capturing. For example, ”stay away from” has a negative

connotation but since embedding is done separately for each word, when none of the words

in itself is particularly negative, the connotation will not be captured. Other issues such as

17



irony or contexts are also not captured by word-level embedding method.

Conneau et. al achieved error of 4.28 for this particular task. Given that we had to

randomly sample the dataset so the training process fits into memory, we are expecting a

much worse performance than what Conneau et. al was able to achieve.

4.1.3 Amazon Review Full

34,686,770 Amazon reviews from 6,643,669 users on 2,441,053 products, from the Stanford

Network Analysis Project (SNAP). This full dataset contains 600,000 training samples and

130,000 testing samples in each class. Each class represents the ”stars” the product received

for the review, with ”starts” ranging from 1 star to 5 stars.

Amazon Review Full dataset contains the same challenges the polarity dataset presents.

In addition, the sentiment level also needs to be captured; that is, the model needs to be

able to distinguish between a 1-star review and a 2-star review. The model also needs to

capture ”neutral” reviews, or the 3-star ones.

Conneau et. al achieved error of 37. Given that we had to randomly sample the dataset

so the training process fits into memory, we are again expecting a much worse performance.

In fact, since the training dataset for each class is much smaller, chances are our model won’t

be able to capture the relationships well. We may therefore observe similar performances

across all models as well as all padding methods.

4.1.4 DBPedia Ontology

40,000 training samples and 5,000 testing samples from 14 non-overlapping classes from

DBpedia 2014. Each class represents an ”infobox” on Wikipedia, which can be categories

such as book, music, history, or food and drinks, ...etc. The infobox can be viewed as a short

summary for the subject on the Wikipedia page.

DBPedia Ontology presents a di↵erent type of challenge, which is a larger number of

18



classes. The classes are also general concepts that can contain a large variety of texts.

However, since class-specific words are more of less present in each class, our word-level

embedding should be expected to perform well on this dataset.

Conneau et. al achieved error of 1.29. We should expect our models to have similar

performances.

4.1.5 Yelp Review Polarity

1,569,264 samples from the Yelp Dataset Challenge 2015. This subset has 280,000 training

samples and 19,000 test samples in each polarity.

Yelp Review Polarity is another sentiment analysis task that has challenges similar to

Amazon Review Polarity. In addition to the semantic challenges, Yelp reviews are in its

nature lengthier than Amazon product reviews since Yelp reviews tend to be describing

scenarios that had happened at restaurants or stores.

Conneau et. al achieved error of 4.28. With word-embedding having trouble capturing

sentiments, we should expect much worse performances.

4.1.6 Yelp Review Full

1,569,264 samples from the Yelp Dataset Challenge 2015. This full dataset has 130,000

training samples and 10,000 testing samples in each star.

Yelp Review Full presents similar challenges to Amazon Review Full. In addition, Yelp

reviews are much longer in length, which contains more information but also consumes more

memory in training.

Conneau et. al achieved error of 35.28. We are expecting much worse performances

since a sub-sample is used to fit data into memory. We’re also expecting model to fail in

capturing relationship between text and stars; therefore, all of our models should have similar

performances across di↵erent padding methods.
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4.2 Hyperparameters and Training

For all our datasets, we use: rectified linear units (ReLu) as activation function, features

map of 50 to start, mini-batch size of 32, and 50 epochs with early stopping. The models are

trained to minimize cross-entropy loss using stochastic gradient descent with learning rate

of .001 and momentum of 0.9.

Our Word2Vec has dimension of 50 and uses the continuous bag-of-words (CBOW) archi-

tecture. The parameters are chosen to reduce training time and memory space requirement.

Both the context window and subsampling frequency are set to 5. Words that are not in the

vocabulary of the custom trained Word2Vec model are dropped.

20



CHAPTER 5

Results and Discussions

The result of our models with di↵erent padding methods are listed in table 5.2. As expected,

padding by inserting random zero-vectors has the highest error among the three methods. In

general, we did not notice much di↵erence in accuracy between bottom padding

and symmetric padding. However, when the CNN model is deep, bottom-padding tends

to outperform both-side padding (5 out of 6 in our experiment).

We also observed that a simple multilayer perceptron achieves similar result as the relative

more complicated CNN models. In one instance, DBPedia Ontology, multilayer perceptron

model even outperforms our CNN model and only slightly worse than the CNN - deep model.

This is di↵erent from Conneau et. al’s conclusion where better performance can be achieved

by adding layers to neural network model.

From our experiment, we also made the following discoveries:

1. word2vec and CNN is a good feature learner

In many cases, we were able to make accurate classifications even when texts has semantics

relating to multiple classes. One example in our AG News dataset is as follows:

AP - If Hurricane Charley had struck three years ago,

President Bush’s tour through the wreckage of this

coastal city would have been just the sort of post-disaster

visit that other presidents have made to the scenes of

storms, earthquakes, floods and fires.
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The correct class for this article is ”world”, but the article is not too far from the ”science”

category. In fact, 2 out of our 8 models (excluding random padding models) predicted

”science” category, while 5 models correctly identified this article as ”world” category. In

addition to having science-related terms, this article also lacks the more common world-

related words such as specific country names. Yet, most of our CNN models were able to

pick up the right category.

However, the model can struggle when not enough information is given. In the following

example,

Descriptions of urban afflictions and images of giant mosquitoes and

cockroaches to convey a sense of how Houston is nevertheless

beloved by many residents.

all but one model struggled to identify this as ”business” category. There is an even spread

between ”science” and ”sports” for the incorrect answers. This may be due to the fact that

words such as ”mosquitoes” and ”cockroaches” are present for the ”science” category, as well

as the word ”Houston” for the ”sports” category.

2. Neutral Feeling is hard to be captured

In Yelp and Amazon review dataset, we tried to predict the number of stars associated with

the review. Among the di↵erent star counts, 3-star is consider to be having a neutral feeling

towards the business or the product. All of our models struggled to learn the patterns for

neutral reviews. In fact, after inspecting, we believe human would also have a hard time

identifying 3-star reviews.

In the following example in Yelp Review Full dataset,

not thrilling, not disappointing. RB is average across the board.

Try the Hazelnut Crusted Chicken.

only 1 out of 8 model classified it as a 3-star. Most model predicted 4-star for this review.
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A 4-star seems to be reasonable since one can argue the overall tone is slightly positive.

In another example,

The Korean tacos are not half bad, and the kid really likes the burgers.

2 out of 8 models correctly identified this as a 3-star, while the rest believe the review is

either a 4-star or 5-star. 4 to 5 stars seems to be reasonable considering the phrase ”really

likes” exists.

The above two examples are related to the di�culty of quantifying satisfaction; that

is, certain individual may view an experience as neutral when other’s view it as positive.

Another type of challenge in identifying neutral review is when both positive and negative

experiences exist and cancel each other out, leaving the reviewer feeling neutral. For example,

Drink prices are high but the dancing is fun!

Our models assigned 4 to 5 stars to this review when the reviewer felt neutral about the

experiences. This review is, again, hard to be determined even by human.

Table 5.1 shows the accuracy of predicting 3-star reviews. We can see the performance

is low across all models and padding methods.

3. Negating words and sarcasms are hard to capture

Negating words such as ”not” turns the sentiment of a word from positive to negative and

vice versa. Sarcasm also carries the same e↵ect but done so in an even more subtle way.

Our models had a hard learning and identifying the correct sentiment when negating words

or sarcasm is present in the text.

In the following example,

Overpriced, salty and overrated!!!

Why this place is so popular I will never understand.
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Table 5.1: Accuracy of 3-star reviews

Type Yelp Amazon

Overall 2.28% 1.77%

By model MP 1.58% 0.85%

CNN - simple 1.27% 1.01%

CNN 4.28% 1.38%

CNN - deep 1.99% 3.84%

By padding method bottom 2.27% 2.09%

symmetric 2.29% 1.45%

the sentiment is clearly negative, but only 1 of our models correctly identify the sentiment.

It is likely that the models saw the phrase ”this place is so popular” and classified the review

as positive, despite the reviewer’s intent was to be sarcastic.
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Table 5.2: Error of Model by Padding Method

Dataset Model Bottom Symmetric Random

AG News Multilayer Perceptron 15.34 14.93 19.3

avg. text length 193 CNN - simple 32.36 29.99 31.17

vocab size 104195 CNN 15.33 14.76 19.59

class size 4 CNN - deep 13.32 20.58 19.62

Amazon Review Polarity Multilayer Perceptron 23.60 24.12 27.71

avg. text length 84 CNN - simple 22.76 24.02 30.18

vocab size 308293 CNN 19.15 19.37 19.60

class size 2 CNN - deep 24.54 26.58 29.47

Amazon Review Full Multilayer Perceptron 65.73 66.51 68.60

avg. text length 86 CNN - simple 68.10 67.11 72.91

vocab size 278564 CNN 63.90 63.59 64.68

class size 5 CNN - deep 64.29 79 71.14

BDPedia Ontology Multilayer Perceptron 7.11 10.07 17.30

avg. text length 48 CNN - simple 42.36 41.55 41.21

vocab size 140361 CNN 13.82 14.37 16.34

class size 14 CNN - deep 6.17 15.78 18.69

Yelp Review Polarity Multilayer Perceptron 14.94 15.41 16.31

avg. text length 726 CNN - simple 13.18 13.18 22.26

vocab size 108236 CNN 9.61 9.58 10.69

class size 2 CNN - deep 9.93 9.47 10.14

Yelp Review Full Multilayer Perceptron 58.42 58.77 62.16

avg. text length 153 CNN - simple 64.16 65.26 69.94

vocab size 119256 CNN 54.87 55.79 56.32

class size 5 CNN - deep 53.03 58.87 72.60
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CHAPTER 6

Conclusion

We used 6 di↵erent datasets, each with various text length, vocabulary size, as well as class

size, to train their own customized word2vec embedding model, then use the embedding

vectors as input to train 4 neural network model, each model having di↵erent complexity

and depth. The neural network models are all trained using the same hyperparameters,

except epoch which is adjusted by early-stopping to prevent overfitting.

We have shown that for CNN-based text classification, where traditionally padding is

applied to the bottom of the text, there is no significant di↵erence in applying zero-padding

to the bottom of the text versus padding symmetrically. This is expected because in image

recognition, zero-padding was introduced to bring minimal e↵ect while addressing the di-

mension di↵erence issue. While the convolutional outputs may be di↵erent for each padding

method, the max pooling layer ensures that the feature extracted to be similar if not the

same. That said, we did observe that if the model is deep, bottom padding seems to slightly

outperform symmetric padding. This is more likely to due to randomness or our setup unin-

tentionally favoring bottom-padding method. Further study should be conducted to validate

if such e↵ect exists by comparing the performances on more datasets.

In our experiment, we used the same hyperparameters and training criteria across all

models. In the future, to address the issue of our setup favoring a certain type of model-

padding method combination, we should train each combination to its best ability (such as

achieving testing error less than a chosen value) then compare their performances. We also

failed to train model that captured the relationship between words and neutral responses, as
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well as between sarcasms and negative semantics; thus, we were not able to draw conclusion

from those datasets. Similar experiment should be carried out with models properly trained

to identify neutral responses or sarcasms and compare whether padding methods have e↵ect

in those types of text classification tasks.

Lastly, we focused on the padding methods for pre-trained word embedding on top of

convolutional neural network. Future research can be done to explore if the same conclusion

holds for other types of architecture that have word embedding component such as LSTM

or transformers.
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CHAPTER 7

Code

7.1 Word2Vec Model Training

7.1.1 Configuration

# Config f i l e f o r t ra in w2v . py

[PATH]

data path = . . / . . / data/ y e l p r e v i ew po l a r i t y / t r a i n . csv

model save path = . . / . . / model/w2v

[MODEL]

datase t = y e l p r e v i ew po l a r i t y

model name = y e l p r e v i ew po l a r i t y . model

embedding dimension = 50

min frequency = 5

7.1.2 Main

import os

import sys

import time
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import pandas as pd

import mul t i p r o c e s s i ng

import c on f i g p a r s e r

from gensim . models import Word2Vec

from n l tk . t oken i z e import word token ize

## f i r s t time uinsg n l t k , uncomment the f o l l ow i n g 2 l i n e s

# import n l t k

# n l t k . download ( ’ punkt ’ )

def t ra in w2v ( df , emb dim , min count ) :

”””

This f unc t i on i s the main func t i on t ha t t r a i n s

word2vec model from given t e x t .

The column conta in ing t e x t needs to

have column name as ’ t e x t ’ , eg . d f [ ’ t e x t ’ ]

d f : pandas DataFrame comtaining at l e a s t

one column named ’ t e x t ’

emb dim : embedding dimension , dimension

o f the word2vec model

min count : minimum frequency count o f

word in the word2vec model

”””

print ( ’ S ta r t t r a i n i n g word2vec . . . ’ )

time0 = time . time ( )

# tok en i z e
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print ( ’\ tToken izat ion . . . ’ )

d f [ ’ t ex t token ’ ] = df [ ’ t ex t ’ ] . apply ( lambda x : word token ize ( x ) )

# tra in model

print ( ’\ tTrain word2vec model . . . ’ )

print ( f ’ \ t\t− dimension : {emb dim} ’ )

print ( f ’ \ t\t− min count : {min count} ’ )

w2v = Word2Vec( df [ ’ t ex t token ’ ] . t o l i s t ( ) ,

s i z e=emb dim ,

window=5,

min count=min count ,

negat ive =15,

i ter=10,

workers=mu l t i p r o c e s s i ng . cpu count ( ) )

t im e d i f f = round( time . time ( ) − time0 , 2)

print ( f ’ Tra in ing complete . Time e lapsed : { t im e d i f f } ’ )

return w2v

i f name == ” ma in ” :

c on f i g = con f i g p a r s e r . Conf igParser ( )

c on f i g . read ( ’w2v . c f g ’ )

# s e t t i n g up parameters
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data path = con f i g [ ’PATH’ ] [ ’ data path ’ ]

model save path = con f i g [ ’PATH’ ] [ ’ model save path ’ ]

da ta se t = con f i g [ ’MODEL’ ] [ ’ da ta se t ’ ]

model name = con f i g [ ’MODEL’ ] [ ’ model name ’ ]

emb dim = int ( c on f i g [ ’MODEL’ ] [ ’ embedding dimension ’ ] )

min f req = int ( c on f i g [ ’MODEL’ ] [ ’ min frequency ’ ] )

# preproce s s ing

i f datase t == ’ ag news ’ :

d f = pd . r ead c sv ( data path )

d f t e x t = df [ [ ’ De s c r ip t i on ’ ] ] \

. r e s e t i n d e x ( drop=True )\

. rename ( columns={ ’ De s c r ip t i on ’ : ’ t ex t ’ })

i f datase t == ’ y e l p r e v i ew po l a r i t y ’ :

d f = pd . r ead c sv ( data path , header=0,

names=[ ’ l a b e l ’ , ’ t ex t ’ ] )

d f t e x t = df [ [ ’ t ex t ’ ] ] . r e s e t i n d e x ( drop=True )

else :

print ( f ’ Dataset : { datase t } not r ecogn i z ed . ’ )

# tra in model

w2v = tra in w2v ( d f t ex t , emb dim , min f req )

# save t ra ined model

w2v . save ( os . path . j o i n ( model save path , model name ) )
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7.2 Model Training

7.2.1 Configuration

[PATH]

t r a i n da ta pa th = . . / data/ag news/ t r a i n . csv

t e s t da t a pa th = . . / data/ag news/ t e s t . csv

w2v path = . . / model/w2v/ag news . model

model save path = . . / model/cnn/ag news

model name = MP bottom test

data se t = ag news

[MODELPARAMETERS]

# sample : i f True , sample 5000 records

# mode l type : t a k e s va lue : MP, CNN, CNN kim , CNN deep

# emb dim : embedding dimesnion f o r word2vec

# pad method : padding method , t a k e s va lue :

# bottom , bo th s ide , random

sample = Fal se

model type = MP

emb dim = 50

pad method = bottom

ba t ch s i z e = 32

s h u f f l e = True

epoch = 5
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7.2.2 Main

”””

This module conta ins code to t r a i n model .

The module t a k e s input from model . c f g f i l e .

”””

import os

import time

import random

import pandas as pd

import c on f i g p a r s e r

from n l tk . t oken i z e import word token ize

from gensim . models import Word2Vec

import torch

import torch . nn as nn

import torch . optim as optim

from torch . u t i l s . data import TensorDataset , DataLoader

from u t i l i t y import zero padding , model loader , vocab c lean up

## 0. s e t t i n g up parameter

c on f i g = con f i g p a r s e r . Conf igParser ( )

c on f i g . read ( ’model . c f g ’ )

## PATH

data path = con f i g [ ’PATH’ ] [ ’ t r a i n da ta pa th ’ ]

w2v path = con f i g [ ’PATH’ ] [ ’ w2v path ’ ]
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model save path = con f i g [ ’PATH’ ] [ ’ model save path ’ ]

model name = con f i g [ ’PATH’ ] [ ’ model name ’ ]

da ta se t = con f i g [ ’PATH’ ] [ ’ da ta se t ’ ]

## MODELPARAMETERS

sample = con f i g [ ’MODELPARAMETERS’ ] . getboo lean ( ’ sample ’ )

model type = con f i g [ ’MODELPARAMETERS’ ] [ ’ model type ’ ]

emb dim = int ( c on f i g [ ’MODELPARAMETERS’ ] [ ’ emb dim ’ ] )

pad method = con f i g [ ’MODELPARAMETERS’ ] [ ’ pad method ’ ]

b a t c h s i z e = int ( c on f i g [ ’MODELPARAMETERS’ ] [ ’ b a t ch s i z e ’ ] )

s h u f f l e = con f i g [ ’MODELPARAMETERS’ ] . getboo lean ( ’ s h u f f l e ’ )

epoch = int ( c on f i g [ ’MODELPARAMETERS’ ] [ ’ epoch ’ ] )

## 1. load da t a s e t

i f sample :

nrows = 5000

else :

nrows = None

i f datase t == ’ ag news ’ :

d f = pd . r ead c sv ( data path , nrows=nrows )

df [ ’ Class Index ’ ] = df [ ’ Class Index ’ ] . r e p l a c e (4 , 0)

df = df . rename ( columns={ ’ C lass Index ’ : ’ l a b e l ’ })

df [ ’ t ex t token ’ ] = df [ ’ De s c r ip t i on ’ \

. apply ( lambda x : word token ize ( x ) )

e l i f datase t == ’ y e l p r e v i ew po l a r i t y ’ :
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nrows=50000 # so i t f i t s i n t o 32Gb RAM

df = pd . r ead c sv ( data path , nrows=nrows ,

names=[ ’ l a b e l ’ , ’ t ex t ’ ] )

d f [ ’ l a b e l ’ ] = df [ ’ l a b e l ’ ] . r e p l a c e (2 , 0)

df [ ’ t ex t token ’ ] = df [ ’ t ex t ’ \

. apply ( lambda x : word token ize ( x ) )

else :

print ( f ’ Dataset : { datase t } i s not r ecogn i z ed . ’ )

## 2. app ly t o k en i z a t i o n and embedding

w2v = Word2Vec . load ( w2v path )

df [ ’ t ex t token ’ ] = df [ ’ t ex t token ’ ]\

. apply ( lambda x : vocab c lean up (x , w2v ) )

# clean up rows wi th empty embedding

df [ ’ t e x t l e n g th ’ ] = df [ ’ t ex t token ’ ] . apply ( lambda x : len ( x ) )

df = df [ d f [ ’ t e x t l e n g th ’ ] > 0 ] . r e s e t i n d e x ( drop=True )

# reduce f o o t p r i n t

i f datase t == ’ ag news ’ :

d f = df

e l i f datase t == ’ y e l p r e v i ew po l a r i t y ’ :

d f = df [ [ ’ l a b e l ’ , ’ t ex t token ’ , ’ t e x t l e n g th ’ ] ] \

. r e s e t i n d e x ( drop=True )

else :

print ( f ’ Dataset : { datase t } i s not r ecogn i z ed . ’ )

d f [ ’ embedding ’ ] = df [ ’ t ex t token ’ ] . apply ( lambda x : w2v [ x ] )
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## 3. zero pad to max l en g t h

i f datase t == ’ ag news ’ :

max length = 245

e l i f datase t == ’ y e l p r e v i ew po l a r i t y ’ :

max length = 1500

else :

print ( f ’ Dataset : { datase t } i s not r ecogn i z ed . ’ )

print ( f ’ sample i s { sample } ,

t r a i n i n g s i z e : {df . shape [ 0 ] } , max length : {max length} ’ )

d f [ ’ embedding ’ ] = df [ ’ embedding ’ ]\

. apply ( lambda x : zero padding (x ,

max length , emb dim , pad method ) )

## 4. load nn a r c h i t e c t u r e

net = mode l loader ( model type , data se t )

# de f i n e l o s s f unc t i on and op t imi ze r

c r i t e r i o n = nn . CrossEntropyLoss ( )

opt imize r = optim .SGD( net . parameters ( ) , l r =0.001 , momentum=0.9)

i f con t i nuou s t r a i n :

print ( ’\nTraining from checkpo int . ’ )

checkpo int = torch . load ( mode l checkpoint path )

net . l o a d s t a t e d i c t ( checkpo int [ ’ s t a t e d i c t ’ ] )
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epoch = ep o c h s l e f t

# tra in on GPU

dev i ce = torch . dev i ce ( ”cuda : 0 ”

i f torch . cuda . i s a v a i l a b l e ( ) else ’ cpu ’ )

print ( f ’ \ndev ice : { dev i ce } ’ )

net . to ( dev i c e )

## 5. c r ea t e t r a i n i n g p i p e l i n e

t en so r x = torch . t en so r ( df [ ’ embedding ’ ] . t o l i s t ( ) )

t en so r y = torch . t en so r ( df [ ’ l a b e l ’ ] . t o l i s t ( ) , dtype=torch . long )

da t a t r a i n = TensorDataset ( tensor x , t en so r y )

l o a d e r t r a i n = DataLoader ( da ta t ra in ,

b a t c h s i z e=bat ch s i z e , s h u f f l e=s h u f f l e )

## 6. t r a i n and save model

save eve ry epoch = Fal se

for run in range ( epoch ) :

r unn i ng l o s s = 0 .0

print ( f ’ \nepoch { run + 1} ’ )

t ime0 epoch = time . time ( )

for i , data in enumerate ( l o a d e r t r a i n ) :

# ge t the inpu t s ; data i s a l i s t o f [ inputs , l a b e l s ]

inputs , l a b e l s = data [ 0 ] . to ( dev i c e ) , data [ 1 ] . to ( dev i c e )
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i f model type != ’MP’ :

inputs = inputs . unsqueeze (1 )

# reshape by add 1 to num channel

# ( parameter : b a t c h s i z e , num channel , he i gh t , width )

# zero the parameter g r ad i en t s

opt imize r . z e ro g rad ( )

# forward + backward + opt imize

outputs = net ( inputs )

l o s s = c r i t e r i o n ( outputs , l a b e l s )

l o s s . backward ( )

opt imize r . s tep ( )

# pr in t s t a t i s t i c s

r unn i ng l o s s += l o s s . item ( )

i f i and i % 200 == 0 :

print ( f ’ \ tbatch { i } l o s s : { r unn i ng l o s s /200} ’ )

r unn i ng l o s s = 0 .0

t ime d i f f e p o ch = round( time . time ( ) − t ime0 epoch , 2)

print ( f ’ \tTime e lapsed : { t ime d i f f e p o ch } ’ )

i f save eve ry epoch :

mode l s av e pa th f u l l = os . path\

. j o i n ( model save path , model name temp )

torch . save ( net . s t a t e d i c t ( ) , mode l s av e pa th f u l l )
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# save model checkpo in t f o r re−t r a i n i n g purposes

s t a t e = { ’ s t a t e d i c t ’ : net . s t a t e d i c t ( )}

model name temp = model name + ’ checkpo in t . pth ’

mode l ch e ckp t pa th fu l l = os . path\

. j o i n ( model save path , ’ checkpo int ’ , model name temp )

torch . save ( s ta te , mode l ch e ckp t pa th fu l l )

# save f u l l model

model name temp = model name + ’ . pth ’

mode l s av e pa th f u l l = os . path\

. j o i n ( model save path , model name temp )

torch . save ( net . s t a t e d i c t ( ) , mode l s av e pa th f u l l )

print ( ’\nProcess complete . ’ )

7.2.3 Net Architecture Classes

”””

This module conta ins neura l network c l a s s e s

”””

import torch

import torch . nn as nn

import torch . nn . f un c t i o n a l as F

class mul t i l a y e r p e r c ep t r on (nn . Module ) :

def i n i t ( s e l f , da ta se t ) :
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i f datase t == ’ ag news ’ :

s e l f . f c 1 i n = 245 ∗ 50 ∗ 1

s e l f . f c 1 ou t = 120 # same as f c 2 i n

s e l f . f c 2 ou t = 50 # same as f c 3 i n

s e l f . f c 3 ou t = 4

# same as number o f c l a s s e s

e l i f datase t == ’ y e l p r e v i ew po l a r i t y ’ :

print ( ’ space ho lder ’ )

else :

raise ValueError ( f ’ Dataset : { datase t } not r ecogn i z ed . ’ )

super ( mu l t i l aye r pe r c ep t ron , s e l f ) . i n i t ( )

s e l f . f c 1 = nn . Linear ( s e l f . f c 1 i n , s e l f . f c 1 ou t )

s e l f . f c 2 = nn . Linear ( s e l f . f c1 out , s e l f . f c 2 ou t )

s e l f . f c 3 = nn . Linear ( s e l f . f c2 out , s e l f . f c 3 ou t )

def forward ( s e l f , x ) :

x = x . view (−1 , s e l f . f c 1 i n )

# token l eng th , w2v embedding dimension , channel

x = F. r e l u ( s e l f . f c 1 ( x ) )

x = F. r e l u ( s e l f . f c 2 ( x ) )

x = s e l f . f c 3 ( x )

return x

class CNN(nn . Module ) :

def i n i t ( s e l f ) :

super (CNN, s e l f ) . i n i t ( )
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s e l f . conv1 = nn . Conv2d (1 , 1 , (4 , 50) )

# input channel , output channel , k e rne l s i z e

s e l f . pool = nn . MaxPool2d ( k e r n e l s i z e =(4 , 1 ) , s t r i d e =(1 , 1 ) )

s e l f . f c 1 = nn . Linear (239 ∗ 1 , 120)

# 120 chosen randomly (< inpu t dimension )

s e l f . f c 2 = nn . Linear (120 , 50)

# 50 chosen randomly (< 50)

s e l f . f c 3 = nn . Linear (50 , 4)

# 4 = number o f c l a s s e s

def forward ( s e l f , x ) :

x = s e l f . poo l (F . r e l u ( s e l f . conv1 (x ) ) )

x = x . view (−1 , 239 ∗ 1)

x = F. r e l u ( s e l f . f c 1 ( x ) )

x = F. r e l u ( s e l f . f c 2 ( x ) )

x = s e l f . f c 3 ( x )

return x

class CNN kim(nn . Module ) :

def i n i t ( s e l f ) :

super (CNN kim , s e l f ) . i n i t ( )

s e l f . conv1 a = nn . Conv2d (1 , 1 , (3 , 50) )

# channel 1 o f conv , wi th k e rne l=3

s e l f . conv1 b = nn . Conv2d (1 , 1 , (4 , 50) )

# channel 2 o f conv , wi th k e rne l=4

s e l f . conv1 c = nn . Conv2d (1 , 1 , (5 , 50) )

# channel 3 o f conv , wi th k e rne l=5
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s e l f . pool = nn . MaxPool2d ( k e r n e l s i z e =(4 , 1 ) ,

s t r i d e =(1 , 1 ) )

s e l f . poo l b = nn . MaxPool2d ( k e r n e l s i z e =(3 , 1 ) ,

s t r i d e =(1 , 1 ) )

s e l f . poo l c = nn . MaxPool2d ( k e r n e l s i z e =(2 , 1 ) ,

s t r i d e =(1 , 1 ) )

s e l f . f c 1 = nn . Linear (240 ∗ 3 , 120)

s e l f . f c 2 = nn . Linear (120 , 50)

s e l f . f c 3 = nn . Linear (50 , 4)

def forward ( s e l f , x ) :

x0 = x

x = s e l f . poo l (F . r e l u ( s e l f . conv1 a (x ) ) )

y = s e l f . poo l b (F . r e l u ( s e l f . conv1 b ( x0 ) ) )

z = s e l f . poo l c (F . r e l u ( s e l f . conv1 c ( x0 ) ) )

x = x . view (−1 , 240 ∗ 1)

y = y . view (−1 , 240 ∗ 1)

z = z . view (−1 , 240 ∗ 1)

x = torch . cat ( ( x , y , z ) , dim=1)

# combine r e s u l t s from three conv

x = F. r e l u ( s e l f . f c 1 ( x ) )

x = F. r e l u ( s e l f . f c 2 ( x ) )

x = s e l f . f c 3 ( x )

return x

class CNN deep(nn . Module ) :

def i n i t ( s e l f ) :
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super (CNN deep , s e l f ) . i n i t ( )

s e l f . conv1 = nn . Conv2d (1 , 64 , (3 , 50) )

# Conv b l o c k 1

s e l f . conv2 = nn . Conv2d (64 , 64 , (3 , 1 ) )

s e l f . conv2 bn = nn . BatchNorm2d (64)

s e l f . pool2 = nn . MaxPool2d ( k e r n e l s i z e =(120 , 1 ) ,

s t r i d e =(1 , 1 ) ) # ha l ve the dimension

# Conv b l o c k 2

s e l f . conv3 = nn . Conv2d (128 , 128 , (3 , 1 ) )

s e l f . conv3 bn = nn . BatchNorm2d (128)

s e l f . pool3 = nn . MaxPool2d ( k e r n e l s i z e =(59 , 1 ) ,

s t r i d e =(1 , 1 ) ) # ha l ve the dimension

# Conv b l o c k 3

s e l f . conv4 = nn . Conv2d (256 , 256 , (3 , 1 ) )

s e l f . conv4 bn = nn . BatchNorm2d (256)

s e l f . pool4 = nn . MaxPool2d ( k e r n e l s i z e =(28 , 1 ) ,

s t r i d e =(1 , 1 ) ) # ha l ve the dimension

s e l f . f c 1 = nn . Linear (27 ∗ 1 ∗ 512 , 4096)

s e l f . f c 2 = nn . Linear (4096 , 2048)

s e l f . f c 3 = nn . Linear (2048 , 4)

def forward ( s e l f , x ) :

x = s e l f . conv1 (x )
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# Conv b l o c k 1

x = F. r e l u ( s e l f . conv2 bn ( s e l f . conv2 (x ) ) )

x = F. r e l u ( s e l f . conv2 bn ( s e l f . conv2 (x ) ) )

x = s e l f . pool2 ( x )

x = torch . cat ( ( x , x ) , dim=1)

# doub l ing the f e a t u r e space

# Conv b l o c k 2

x = F. r e l u ( s e l f . conv3 bn ( s e l f . conv3 (x ) ) )

x = F. r e l u ( s e l f . conv3 bn ( s e l f . conv3 (x ) ) )

x = s e l f . pool3 ( x )

x = torch . cat ( ( x , x ) , dim=1)

# doub l ing the f e a t u r e space

# Conv b l o c k 3

x = F. r e l u ( s e l f . conv4 bn ( s e l f . conv4 (x ) ) )

x = F. r e l u ( s e l f . conv4 bn ( s e l f . conv4 (x ) ) )

x = s e l f . pool4 ( x )

x = torch . cat ( ( x , x ) , dim=1)

# doub l ing the f e a t u r e space

x = x . view (−1 , 27 ∗ 1 ∗ 512)

x = F. r e l u ( s e l f . f c 1 ( x ) )

x = F. r e l u ( s e l f . f c 2 ( x ) )

x = s e l f . f c 3 ( x )

return x
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7.2.4 Miscellaneous Functions

”””

This module conta ins misc . f unc t i on used

in t ra in mode l . py

”””

import random

import numpy as np

import torch

import nets

def zero padding ( l i s t t o p ad , max length ,

pad dimension , pad method=’ bottom ’ ) :

”””

This f unc t i on t ak e s a l i s t and add l i s t o f z e ro s u n t i l

max length i s reached .

The number o f z e roe s in added l i s t i s determined

by pad dimension , which i s the

same as the dimension o f the word2vec model .

There are t h r e e modes a v a i l a b l e :

bottom − zero v e c t o r s are added to the bottom/ r i g h t

s i d e o f the embedding bo t h s i d e − zero v e c t o r s are

added to both s i d e o f the embedding random −

zero v e c t o r s ’ s p o s i t i o n s are randomly i n s e r t e d

in t o the embedding

This f unc t i on i s in tended to handle one l i s t

45



only so i t can be passed

in t o a dataframe as a lambda func t i on .

”””

# f ind number o f padding vec t o r needed

num pad = max length − len ( l i s t t o p a d )

# crea t e zero vec t o r based on pad dimension

vector pad = np . asar ray ( [ 0 ] ∗ pad dimension , dtype=np . f l o a t 3 2 )

vector pad = [ vector pad ]

# conver t to l i s t o f np . ndarray so we can append t o g e t h e r

i f pad method == ’ bottom ’ :

i t e r a t i o n = 0

while i t e r a t i o n < num pad :

l i s t t o p a d = np . append ( l i s t t o p ad ,

vector pad , ax i s=0)

i t e r a t i o n += 1

e l i f pad method == ’ boths ide ’ :

num each side = int ( num pad/2)

i t e r a t i o n = 0

l i s t e a c h s i d e = np . empty ( ( 0 , pad dimension ) ,

dtype=np . f l o a t 3 2 )

while i t e r a t i o n < num each side :

l i s t e a c h s i d e = np . append ( l i s t e a c h s i d e ,

vector pad , ax i s=0)

i t e r a t i o n += 1

46



l i s t t o p a d = np . append ( l i s t e a c h s i d e ,

l i s t t o p ad , ax i s=0)

l i s t t o p a d = np . append ( l i s t t o p ad ,

l i s t e a c h s i d e , ax i s=0)

# add one more pad to the r i g h t s i d e when odd

# number o f padding vec t o r

i f num pad%2 == 1 :

l i s t t o p a d = np . append ( l i s t t o p ad ,

vector pad , ax i s=0)

e l i f pad method == ’ random ’ :

pos i t ion random = random . sample ( range (0 , max length −1) ,

num pad )

i n d e x l i s t t o p a d = 0

l i s t t emp = np . empty ( ( 0 , pad dimension ) , dtype=np . f l o a t 3 2 )

for po s i t i o n in range ( max length ) :

i f po s i t i o n in pos i t ion random :

vector to append = vector pad

else :

vec tor to append = [ l i s t t o p a d [ i n d e x l i s t t o p a d ] ]

i n d e x l i s t t o p a d += 1

l i s t t emp = np . append ( l i s t t emp ,

vector to append , ax i s=0)

l i s t t o p a d = l i s t t emp
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else :

raise ValueError ( f ’{pad method} i s not

a va l i d padding method . ’ )

return l i s t t o p a d

def eva lua t e accuracy ( l o ad e r t e s t , net , c l a s s e s , model type ) :

”””

This f unc t i on t ak e s pytorch data loader ,

py torch c l a s s f o r NN,

and a t u p l e o f c l a s s l a b e l s to c a l c u l a t e accuracy

at macro and c l a s s l e v e l s

”””

c o r r e c t = 0

t o t a l = 0

with torch . no grad ( ) :

for data in l o a d e r t e s t :

text , l a b e l s = data

i f model type != ’MP’ :

t ex t = text . unsqueeze (1 )

# reshape t e x t to add 1 channel

outputs = net ( t ex t )

, p r ed i c t ed = torch .max( outputs . data , 1)

t o t a l += l a b e l s . s i z e (0 )

c o r r e c t += ( pred i c t ed == l a b e l s ) .sum ( ) . item ( )

48



print ( f ’ \nAccuracy : {100 ∗ c o r r e c t / t o t a l}% ’ )

c l a s s c o r r e c t = l i s t ( 0 . for i in range ( len ( c l a s s e s ) ) )

c l a s s t o t a l = l i s t ( 0 . for i in range ( len ( c l a s s e s ) ) )

with torch . no grad ( ) :

for batch , data in enumerate ( l o a d e r t e s t ) :

text , l a b e l s = data

i f model type != ’MP’ :

t ex t = text . unsqueeze (1 )

# reshape t e x t to add 1 channel

outputs = net ( t ex t )

, p r ed i c t ed = torch .max( outputs , 1)

c = ( pr ed i c t ed == l a b e l s ) . squeeze ( )

for i in range ( len ( l a b e l s ) ) :

l a b e l = l a b e l s [ i ]

c l a s s c o r r e c t [ l a b e l ] += c [ i ] . item ( )

c l a s s t o t a l [ l a b e l ] += 1

for i in range ( 4 ) :

print ( ’ Accuracy o f c l a s s %5s : %2d %%’ % (

c l a s s e s [ i ] , 100 ∗

c l a s s c o r r e c t [ i ] / ( c l a s s t o t a l [ i ] + . 000001 ) ) )

def model loader ( model type , data se t ) :

49



”””

This f unc t i on l oads model from net . py

”””

i f model type == ’MP’ :

net = nets . mu l t i l a y e r p e r c ep t r on ( datase t )

e l i f model type == ’CNN’ :

net = nets .CNN( datase t )

e l i f model type == ’CNN kim ’ :

net = nets .CNN kim( datase t )

e l i f model type == ’CNN deep ’ :

net = nets . CNN deep( datase t )

else :

raise ValueError ( f ’\nmodel type :

{model type} i s not r ecogn i z ed . ’ )

return net

def vocab c lean up ( t o k e n l i s t , w2v ) :

”””

This f unc t i on removes words not in w2v vocab l i s t .

Meant to be used in lambda func t i on .

eg . d f [ ’ t e x t c l e a n ’ ] = d f [ ’ t e x t ’ ] . app ly ( lambda x :

vocab c l ean up ( x , w2v ))

”””

v o c a b l i s t = w2v .wv

t emp l i s t = [ ]
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for token in t o k e n l i s t :

i f token in v o c a b l i s t :

t emp l i s t . append ( token )

return t emp l i s t

i f name == ” ma in ” :

pass

7.3 Model Evaluation

7.3.1 Main

”””

This module conta ins code to e va l ua t e model a ga in s t t e s t s e t .

The module t a k e s input from model . c f g f i l e .

”””

import os

import random

import pandas as pd

import c on f i g p a r s e r

from n l tk . t oken i z e import word token ize

from gensim . models import Word2Vec

import torch

import torch . nn as nn

import torch . optim as optim
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from torch . u t i l s . data import TensorDataset , DataLoader

from u t i l i t y import zero padding , eva luate accuracy ,

model loader , vocab c lean up

from nets import mul t i l aye r pe r c ep t ron , CNN, CNN kim , CNN deep

## 0. s e t t i n g up parameter

c on f i g = con f i g p a r s e r . Conf igParser ( )

c on f i g . read ( ’model . c f g ’ )

## PATH

data path = con f i g [ ’PATH’ ] [ ’ t e s t da t a pa th ’ ]

w2v path = con f i g [ ’PATH’ ] [ ’ w2v path ’ ]

model save path = con f i g [ ’PATH’ ] [ ’ model save path ’ ]

model name = con f i g [ ’PATH’ ] [ ’ model name ’ ]

da ta se t = con f i g [ ’PATH’ ] [ ’ da ta se t ’ ]

## MODELPARAMETERS

model type = con f i g [ ’MODELPARAMETERS’ ] [ ’ model type ’ ]

emb dim = int ( c on f i g [ ’MODELPARAMETERS’ ] [ ’ emb dim ’ ] )

pad method = con f i g [ ’MODELPARAMETERS’ ] [ ’ pad method ’ ]

c l a s s e s = ( ’ 0 ’ , ’ 1 ’ , ’ 2 ’ , ’ 3 ’ )

## 1. load da t a s e t

df = pd . r ead c sv ( data path )

# conver t c l a s s 4 to c l a s s 0
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df [ ’ Class Index ’ ] = df [ ’ Class Index ’ ] . r e p l a c e (4 , 0)

print ( df [ ’ Class Index ’ ] . va lue count s ( ) )

## 2. app ly t o k en i z a t i o n and embedding

df [ ’ t ex t token ’ ] = df [ ’ De s c r ip t i on ’ ]\

. apply ( lambda x : word token ize ( x ) )

w2v = Word2Vec . load ( w2v path )

df [ ’ t ex t token ’ ] = df [ ’ t ex t token ’ ]\

. apply ( lambda x : vocab c lean up (x , w2v ) )

df [ ’ embedding ’ ] = df [ ’ t ex t token ’ ] . apply ( lambda x : w2v [ x ] )

## 3. zero pad to max l en g t h

df [ ’ t e x t l e n g th ’ ] = df [ ’ t ex t token ’ ] . apply ( lambda x : len ( x ) )

#max length = max( d f [ ’ t e x t l e n g t h ’ ] )

max length = 245 # sp e c i f y max l en g t h from t r a i n s e t

print ( f ’max length : {max length} ’ )

d f [ ’ embedding ’ ] = df [ ’ embedding ’ ]\

. apply ( lambda x : zero padding (x , max length ,

emb dim , pad method ) )

t en so r x = torch . t en so r ( df [ ’ embedding ’ ] . t o l i s t ( ) )

t en so r y = torch . t en so r ( df [ ’ Class Index ’ ] . t o l i s t ( ) ,

dtype=torch . long )
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da t a t e s t= TensorDataset ( tensor x , t en so r y ) # crea t e your da t s e t

l o a d e r t e s t = DataLoader ( da ta t e s t , b a t c h s i z e =32, s h u f f l e=Fal se )

# crea t e your da ta l oader

da t a i t e r = i ter ( l o a d e r t e s t )

text , l a b e l s = da t a i t e r . next ( )

# load model

net = mode l loader ( model type , data se t )

model name temp = model name + ’ . pth ’

mode l s av e pa th f u l l = os . path . j o i n ( model save path ,

model name temp )

net . l o a d s t a t e d i c t ( torch . load ( mode l s av e pa th f u l l ) )

net . eval ( )

eva lua t e accuracy ( l o ad e r t e s t , net , c l a s s e s , model type )
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