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Highlights:

●	 The complex climatic and geologic history of the last 
three million years altered and shaped patterns of 
population connectivity and gene flow as organisms 
tracked climate and environmental changes.

●	 Landscape and genetic structure often change at 
different rates resulting in a disconnect between 
contemporary genetic patterns and the current 
landscape, emphasizing the importance of both 
current and past processes in shaping population 
genetic patterns, and in examining these factors 
through multidisciplinary research approaches.

●	 We present a combination of analyses that quantify 
historic and contemporary factors that influence 
modern patterns of genetic structure in Triodanis 
perfoliata across the contiguous United States.

●	 Our analyses highlight the importance of evaluating 
both landscape and phylogeographic drivers from 
historic and contemporary perspectives when 
investigating genetic structure.

Abstract

The dynamic nature of intrinsic (e.g., reproductive 
system, hybridization) and extrinsic factors (e.g., physical 
barriers to gene flow) across space and time generate 
complex biological processes that influence contemporary 
patterns of genetic diversity, highlighting the need 
for interdisciplinary studies. Using the widespread, 
mixed-mating annual Triodanis perfoliata, previous 
work demonstrated the important roles of breeding 
system, isolation by distance, and isolation by resistance 
in shaping patterns of population genetic diversity. Here 
we significantly build on this first step by incorporating 
paleoclimatic data, historical admixture, and estimating 
species divergence times across 18 populations of 
T. perfoliata spanning the contiguous US. This current 
study provides novel insights into factors driving patterns of 
intraspecific diversification that were not explained using 
only contemporary climate models. Specifically, these new 
analyses highlight the early Holocene (11.7 - 8.326 ka) and 
the Marine Isotope Stage M2 (ca. 3.3 Ma), as important 
time periods for explaining patterns of contemporary 
population genetic diversity, the latter of which appears 
to be an important time period for intraspecific divergence 
of T. perfoliata. In addition, we explored the influence 
of historical intrinsic factors, via admixture to explain 
patterns of population isolation and connectivity. The 
inclusion of an admixture analysis provided clarity through 
evidence of historical gene flow between populations that 
would have experienced suitable habitat connectivity in 
past climates. Our study illustrates the importance of 
incorporating historic, as well as contemporary data, into 
phylogeographic studies to generate a comprehensive 
understanding of patterns of population diversity, and the 
processes important in driving these patterns.

Keywords: biogeography, Campanulaceae, landscape genetics, paleoclimate, population genetics, statistical phylogeography, 
time lag
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Introduction
Contemporary patterns of intraspecific biodiversity 

are influenced by a range of factors both extrinsically 
(e.g., environmental, geospatial; Brown et al. 2016a, 
Alvarado-Serrano  et  al. 2019) and intrinsically 
(e.g., demography, breeding system; Chan et al. 2011, 
Toczydlowski and Waller 2019, Tackett et al. 2022). 
These factors, however, can vary across space and 
time, suggesting the potential influence of historic 
processes in shaping population genetic patterns. 
For example, patterns of lineage diversification and 
hybridization are directly impacted by decreased or 
increased population connectivity, which is spatially 
and temporally dynamic (Chan et al. 2011, Cruzan and 
Hendrickson 2020, Hellwig et al. 2022).

Traditional approaches to understanding spatial 
patterns of genetic diversity have primarily focused on 
contemporary environmental and resistance barriers as 
the cause of intraspecific genetic structure (Manel et al. 
2003, Storfer et al. 2010, Wang 2010, Bohonak and 
Vandergast 2011, Manel and Holderegger 2013, Rissler 
2016). Geospatial variation across the landscape may 
either facilitate or impede population connectivity 
(e.g., physical barriers to dispersal, climate suitability), 
and these factors have a strong influence on patterns 
of gene flow across populations (e.g., Ricketts 2001, 
Cushman et al. 2009, Tackett et al. 2022). However, 
it is important to also consider historic barriers, both 
physical and environmental, that may have played 
important roles in modern distributions and genetic 
patterns (Galbreath et al. 2009, Zellmer and Knowles 
2009, Brown and Knowles 2012, Crowl et al. 2015).

Historic climate dynamism can influence population 
size and dispersal patterns as organisms track 
environmental changes, altering patterns of population 
connectivity and gene flow (Zellmer and Knowles 
2009, Epps and Keyghobadi 2015, Rissler 2016). Due 
to the spatial mosaic of ecosystems, these changes 
occur at different rates creating a potential disconnect 
between present day genetic patterns and the 
landscape, referred to as time lag (Wu et al. 2015). This 
phenomenon can make it challenging to disentangle 
historic and contemporary influence on population 
genetic structure. In fact, most landscapes are highly 
dynamic and change more rapidly than population 
genetic patterns (Epps and Keyghobadi 2015, Wu et al. 
2015, Rissler 2016).

Paleoclimates profoundly impacted the evolution 
and distribution of species on Earth (Rangel et  al. 
2018, Rahbek et al. 2019a, Rahbek et al. 2019b), and 
paleoclimates of the last interglacial cycle have been 
the traditional focus of biological investigations, largely 
because they correspond to times of temperature 
extremes in the northern latitudes (Hewitt 2000, 
Carstens and Richards 2007, Knowles et al. 2007). 
Nonetheless, there exists considerable variation in their 
ability to explain the distribution of biological diversity 
(for instance see: Raxworthy et al. 2003, Thomas et al. 
2004a, Thomas et al. 2004b, Batalha-Filho et al. 2013, 
Brown et al. 2014, Smith et al. 2014, Brown et al. 
2016a). Over the past decade, hundreds of studies have 
combined data on species occurrences with climate 

descriptions from interpolated weather-stations to 
model the distribution of animals and plants worldwide 
(Graham et al. 2004). When projected into paleo- and 
future-climatic scenarios, these models are widely used 
to investigate the historic and future distributions of 
biodiversity (Prates et al. 2016, Brown et al. 2016a, 
Brown et al. 2016b, Knowles and Alvarado-Serrano 
2010, He et al. 2013). However, very few studies access 
paleoperiods outside of the last glacial cycle, with most 
studies focusing on the mid-Holocene (6 ka), Last Glacial 
Maximum (21 ka) and the Last Interglacial (130 ka). 
Moreover, for most taxa, speciation occurred well 
before the last interglacial cycle (ca. 130 ka to modern 
times, Rull 2008, Rull 2011) and climate dynamism 
throughout the last 0.8 ma mediated key diversification 
and extinction processes in the Americas (Rangel et al. 
2018, Rahbek et al. 2019a, Rahbek et al. 2019b).

In this study, we examine how both contemporary 
and historic factors influence patterns of population 
genetic structure in the common, widespread North- 
and South American annual Triodanis perfoliata 
(Campanulaceae/Campanuloidae). The distribution 
of T. perfoliata encompasses a large geographic range 
and multiple climatic regions (Gleason and Cronquist 
1991, Weakley 2010) providing an excellent study 
system for broad scale phylogeographic questions. This 
species has also been the subject of numerous previous 
studies (Ansaldi et al. 2019, Berg et al. 2019, Berg et al. 
in press), specifically as a model to understand how 
contemporary habitat suitability, isolation by distance, 
habitat resistance, and breeding system influence 
patterns of genetic diversity in Triodanis perfoliata 
across the United States (Tackett et al. 2022). Building 
significantly on this framework we explore novel 
research questions concerning the roles of historic and 
current climatic factors, as well as signatures of past 
introgression in driving present-day genetic patterns 
of T. perfoliata. Including spatially explicit historic 
climate factors allows us to more fully elucidate how 
historic population connectivity influenced modern 
distributions and patterns of gene flow. This study 
dramatically expands the analyses of Tackett et al. 2022 
which focused on univariate models of contemporary 
climate factors to explain landscape genetic patterns. 
Further, the phylogenetic results of Tackett et  al. 
2022 lacked estimates of divergence times, therefore 
could not provide context on how past periods 
influenced the diversification of T. perfoliata. Last, the 
population genomic analyses used by Tackett et al. 
2022, failed to account for historical introgression. 
Here we improve upon the research of Tackett et al. 
2022 and address novel research questions by (1) 
quantifying the timing of divergence of our study 
species, T. perfoliata, and describing patterns of past 
hybridization among populations. We predict that 
patterns of past introgression will reveal previously 
undescribed patterns of gene flow among our study 
populations. In addition, we (2) quantify the influence of 
environmental factors (e.g., soil and fire frequency) and 
historical and contemporary climate (e.g., temperature 
and rainfall) in driving patterns of population 
divergence and structure using mixed models. 
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We predict that by expanding our study to include 
historic factors,we can more fully explain patterns of 
population divergence. In conjunction, our analysis 
including both historical and modern processes is a 
powerful approach for addressing time lag patterns, 
providing more spatiotemporal context to fundamental 
biological processes. Therefore, we significantly expand 
on the preliminary framework of Tackett et al. (2022), 
which only included current climate data, and directly 
address issues of time lag by incorporating paleoclimate 
data and estimating historic patterns of introgression 
between populations. Overall, we (3) merge these 
results to better describe the spatial and temporally 
explicit factors important in driving current and past 
patterns of population genetic diversity for T. perfoliata.

Materials & Methods

Study system
Triodanis perfoliata (L.) Nieuwl. (Campanulaceae/

Campanuloideae) is a common, weedy, widespread 
annual herb, native to much of North- and South- 
America (Weakley 2010). Historically found in prairies, 
T. perfoliata is now found in a wide variety of habitats, 
including road sides, disturbed areas, rocky outcrops, 
prairies, and across a variety of climates (Gleason and 
Cronquist 1991, Weakley 2010). Seeds of T. perfoliata are 
very small (approx. Length = 0.5 mm, width = 1.3 mm) 
and may be dispersed by ants (McVaugh 1948, Shetler 
and Morin 1986). This taxon exhibits a mixed mating 
system through dimorphic cleistogamy. This breeding 
system consists of open self-compatible, chasmogamous, 
purple, five-petaled flowers that are ~1.5cm in diameter 
and closed, obligate selfing, cleistogamous flowers that 
lack a corolla (Trent 1940, Gara and Muenchow 1990, 
Goodwillie and Stewart 2013). The overall production of 
chasmogamous and cleistogamous flowers varies widely 
among populations of this species, and is associated 
with variation in abiotic conditions (i.e., climate and 
soil) as well as pollinator activity (Ansaldi et al. 2018a, 
Ansaldi et al. 2018b, Tackett et al. 2022). Notably, greater 
production of chasmogamous flowers on average is 
associated with increased population genetic diversity, 
emphasizing the importance of the breeding system 
in driving contemporary patterns (Tackett et al. 2022).

Description of Source Dataset
This study includes a previously published dataset 

that represents an expanded Campanuloideae genetic 
dataset, and is included here in order to estimate 
divergence times using available fossil data. This 
dataset was required because the population-level 
SNP dataset from Tackett et al. (2022) lacked species 
directly associated with fossil data. Thus, we first 
performed a phylogenetic analysis on a broadly 
sampled Campanuloideae dataset (Crowl et al. 2014) 
in order to include fossil data and obtain a divergence 
time estimate for the most-recent-common ancestor of 
T. biflora and T. perfoliata. The resulting age estimate 
of this ancestor was subsequently used in our second 
divergence time analysis using the population-level 
SNP dataset from Tackett et  al. (2022). Sampling 

for the expanded Campanuloideae genetic dataset 
included the addition of T. biflora sequences generated 
for a Crowl et al. (2014) study. Crowl et al. (2014) 
amplified and sequenced four plastid regions (matK, 
petD, rbcL, and the atpB-rbcL spacer region) and two 
low-copy nuclear loci (PPR11 and PPR70) from the 
pentatricopeptide repeat (PPR) gene family.

For our landscape genetic research, we performed 
novel analyses using the open-source dataset from 
Tackett (et al. 2022, https://doi.org/10.5061/dryad.
sf7m0cg98 and https://doi.org/10.5061/dryad.
wh70rxwr9) and build from their framework of basic 
population genetic and landscape genetic results. Given 
these data are central to this study, as follows is a 
summary of methods used by Tackett et al. (2022). Leaf 
tissue was collected from individuals in 18 populations 
of Triodanis perfoliata (range: 1-6 individuals per 
population; average: 4.2 individuals per populations) 
across the contiguous United States (Fig. 1). A total 
of 76 samples were collected and used for genetic 
sequencing along with six accessions of Triodanis 
biflora, which was selected to serve as an outgroup 
because of its placement as sister to T. perfoliata 
(Tackett et al. 2022; Table S1).

RADseq (Restriction site Associated DNA sequencing) 
was performed by Floragenex Inc. (http://floragenex.
com) to identify genetic variation within samples 
(Eaton 2014). The restriction enzyme Sbf1 was used 
and all samples were analyzed on the same flow 
cell with Illumina 1x91 bp sequencing. Sequencing, 
quality control, sequence alignment, and variant 
calling were conducted using Bowtie (Langmead 
and Salzburg 2012), BWA (Li 2011), Velvet (Zerbino 
2010), and Samtools (Li  et  al. 2009) respectively. 
The resulting final dataset consisted of variant calls 
with a minimum sequencing depth of 15x, minimum 
Phred score of 20, and no more than 10% of missing 
genotypes; variant calling yielded 4705 SNPs (single 
nucleotide polymorphisms) observed in >90% of 
sequenced individuals of T. perfoliata (see Tackett et al. 
2022 for more details about the genomics pipeline). 
The population-level SNP dataset from Tackett et al. 
(2022) was the primary genomic dataset used for all 
genetic analyses in this study (see divergence analysis 
a single exception).

Tackett  et  al. (2022) assigned genetic clusters 
using STRUCTURE (Pritchard et al. 2000) and used 
STRUCTURE HARVESTER v6.0 (Earl and vonHoldt 
2012) to estimate the number of genetic clusters (K). 
Briefly, ten independent runs were performed for 
each genetic cluster (K) and a burn in value of 40,000 
were allowed before running 80,000 iterations per K. 
Admixture models and correlated allele frequencies 
were used. The values of ΔK were determined using 
the Evanno  et  al. (2005) method in STRUCTURE 
HARVESTER v6.0 (Earl and vonHoldt 2012). These 
analyses revealed that both K = 4 and K = 17 have high 
support (ΔK = 7.68 and ΔK = 6.28, respectively, these 
past results are summarized in Figs. 1 and 2). Tackett 
et. al (2022) also explored genetic clusters via sMNF 
(Frichot et al. 2014), which is robust to deviations 
from standard statistical assumptions; results were 
similar to STRUCTURE.

https://doi.org/10.5061/dryad.sf7m0cg98
https://doi.org/10.5061/dryad.sf7m0cg98
https://doi.org/10.5061/dryad.wh70rxwr9
https://doi.org/10.5061/dryad.wh70rxwr9
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Divergence Time Estimation
To provide a time estimate for the divergence 

between T. perfoliata and T. biflora, we carried 
out a Bayesian fossil-calibrated analysis. Fossil 
calibration was challenged by the limited fossil 
record for Campanulaceae, with no available fossils 
in our focal group. Therefore, we ran a BEAST2 
(v.2.1.2; Bouckaert et al. 2014) analysis on a broad 
Campanuloideae-wide dataset (based on Crowl et al. 
2014) that additionally included Triodanis perfoliata 
and Triodanis biflora. As in several previous studies 
(Cellinese et al. 2009, Roquet et al. 2009, Olesen et al. 
2012, Crowl et al. 2014, 2015, 2016), we used the 
only reliable Campanulaceae fossil identified as seeds 
of Campanula paleopyramidalis and dated from the 

Early-Middle Miocene (approximately 17–16 Ma; 
Lancucka-Srodoniowa 1977, 1979). We applied a 
lognormal prior distribution constraint to the node 
representing the most recent common ancestor of 
C. pyramidalis and C. carpatica, with mean = 5.0, 
stdev = 1.0, and offset = 16. An additional constraint 
was placed at the root of the Campanulaceae clade as 
a normal distribution with mean = 54.0 and stdev = 5.0 
based on past studies (Bell et al. 2010, Crowl et al. 
2016). This analysis was run under an uncorrelated 
lognormal model for 50 million generations, logging 
parameters every 1000 generations, and assuming a 
Yule process. Tracer v.1.6 (Rambaut et al. 2014) was 
used to verify effective sample sizes (ESS values >200) 
for estimated parameters and to determine burn-in.

Figure 1. Results of mixed spatial models of landscape genetic connectivity including the 22 genetic groups depicted by 
colored dots. Areas of high population connectivity are represented with warm colors while those with poor connectivity 
with cool colors. (A) The highest-ranking composite model consisting of the early Holocene (11.7 - 8.3 ka) and the Marine 
Isotope Stage M2 period (ca. 3.3 Ma). Populations are colored to match cluster assignment from (B) STRUCTURE results 
(K=17) from a genomic SNP dataset, figure reproduced from Tackett et al. 2022. (C) Plot of highest-ranking mixed spatial 
model showing relationships between the predicted landscape friction and the observed genetic distance.
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Figure 2. The admixture structure for Triodanis perfoliata populations (K = 4 from STRUCTURE), with colors corresponding 
to genetic clusters consistent with Figure 3, as well was cluster figures from Tackett et al. (2022), and an outgroup, T. biflora. 
Analyses with A) no migration events and B) two migration events. Migration arrows are colored according to their migration 
weight. The scale bar for the drift parameter shows ten times the average standard error of the entries in the sample 
covariance matrix. Residual fit plotted in the heatmap are comparisons of the residual fit from the maximum likelihood 
for each tree among each input population. Residuals deviating from zero identify populations that are not well-modeled 
under non-migration and thus are candidates for admixture events. C) Map of population distributions in the contiguous 
United States (K = 4). D) STRUCTURE results (K=4) from a genomic SNP dataset, figure reproduced from Tackett et al. 2022.

To infer the timing of diversification within 
T. perfoliata, we additionally estimated divergence 
times with MCMCTree in PAML v4.8 (Yang 2007) using 
our large SNP dataset with population-level sampling 
of T. perfoliata. Divergence time estimation from large 
genomic datasets can be computationally challenging, 
but MCMCTree allowed us to include all SNPs in our 
dataset and compute the output in a reasonable 

amount of time. We used the ML topology from 
Tackett et al. (2022) as a reference given it included 
all samples. We used an independent rates clock 
model for rate priors because we expect our broad 
intraspecific sampling will lead to branch-specific, 
heterogeneous rates of evolution, violating the rate 
homogeneity assumptions of a strict molecular clock 
(Wertheim et al. 2010, Brown and Yang 2011).
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We first ran the MCMCTree analysis without 
sequence data to assess whether our model parameters 
produced reasonable priors from our calibration. To 
expedite the analysis, we then implemented BASEML 
(also in PAML) to calculate approximate branch length 
values prior to running MCMCTree, under an HKY 
substitution model. We selected the HKY model due 
to computational constraints encountered when the 
parameter-rich GTR model was attempted and failed. 
We ran MCMCTree for 2,000,000 burn-in generations 
and subsequently, sampled every 1,000 generations 
until we obtained 20,000 samples across a total of 
22,000,000 iterations. We input the age prior of 1.9 mya 
(95% HPD = 0.5 – 3.7) for the common ancestor of 
T. perfoliata, as estimated with our fossil-calibrated 
BEAST analysis. To assess convergence, we ensured ESS 
values for each node were over 200 using Tracer v1.7.1 
(Rambaut et al. 2018), and ran our analysis twice from 
two different random starting seeds before confirming 
that both converged to similar posterior estimates.

Species Distribution Modeling
Species distribution models (SDMs) were generated 

using occurrence records previously curated and vetted 
in Tackett et al. (2022). Spatial biases were addressed 
by randomly selecting points clustered within a 10-km 
radius using SDMtoolbox 2.4 (Brown 2014). The final 
vetted dataset consists of 1735 occurrence records. 
Fourteen bioclimatic layers at a 30 arc-second resolution 
downloaded from WorldClim v2.0 (Hijmans et al. 2005; 
Bio 1, Bio 4, Bio 8-19). We tested for collinearity of 
all bioclimatic layers selecting variables with Pearson 
Correlation coefficients below 0.7 (Brown et al. 2017), 
which were then used to generate SDMs in MaxEnt 3.3.3k 
(Phillips et al. 2020). These Contemporary SDMs were 
projected into six key paleoclimatic periods spanning eight 
thousand years ago to three million years ago at 2.5 arc-
minute resolution from Paleoclim.org (Brown et al. 2018; 
Early-Holocene, Bolling-Allerod, Last Glacial Maximum, 
Last Interglacial, Marine Isotope Stage M19, and 
Marine Isotope Stage M2, see Table S2 for more details). 

Figure. 3. Triodanis perfoliata MCMC time calibrated tree in millions of years with T. biflora as an outgroup using SNPs. Colors 
correspond to cluster assignments, consistent with Figure 2, as well as figures from Tackett et al. (2022); note that colored 
genetic clusters do not indicate monophyly. Purple Error bars represent bounds of 95% confidence intervals for each node, 
and time units are in millions of years. Our results estimate that T. perfoliata diverged from T. biflora approximately 3.3 mya. 
The extant populations of T. perfoliata surveyed shared a common ancestor of approximately 2.4 mya. After speciation, 
T. perfoliata continued to diverge, with the core lineages (sensu Tackett et al. 2022) diverging in the early Pleistocene.
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Five bioclimatic layers (Bio 2, Bio 3, Bio 5-7) were 
unavailable for several of our paleoclimatic datasets, 
and thus were not used in our initial, contemporary 
SDMs. Due to the limited georeferenced occurrence 
records available throughout the Neotropics, as well 
as the considerable taxonomic uncertainty of these 
individuals, we focused our models and model-based 
analysis on the contiguous United States.

SDMs were parameterized with SDMtoolbox 
v2.4 (Brown 2014) to evaluate the performance of 
various combinations of five feature classes (linear; 
linear and quadratic; hinge; linear, quadratic and 
hinge; and linear, quadratic, hinge, product and 
threshold), and five regularization multipliers (0.5, 1, 
2, 3, 4; Radosavljevic and Anderson 2014) with the 
threshold set to the 10th percentile training presence. 
SDM performance built under each combination of 
parameters was assessed through a geographically 
structured k-fold cross-validation (i.e., the occurrence 
records were partitioned into k equal geographically 
clustered subsamples, here k = 3, and the models 
were trained with two of the groups and then 
evaluated with the excluded group until all group 
combinations were run). Model fit was assessed 
via the omission rate, area under the curve (AUC), 
and model feature class complexity (Brown 2014). 
After optimum model parameters were determined 
(those leading to the lowest omission rate, highest 
AUC, and lowest complexity, in the order listed), a final 
SDM was built with all occurrence sites and projected 
into the current climate across the contiguous US. The 
study was confined to the contiguous US as genetic 
sampling and available historic fire data (LANDFIRE 
2020) was restricted to this region.

Spatial Hypothesis of Landscape Connectivity
For this study, we created ten spatial hypotheses 

for landscape connectivity. The first was the output 
from our best SDM model created for T. perfoliata in 
current time, which was subsequently projected into 
six paleoclimatic periods, each used here (Fig. S1). 
Each SDM represented areas of high habitat suitability 
bound by corresponding climates and, also, the shape 
of the terrestrial bounds of the North American 
landmass. We also generated three additional spatial 
hypotheses: climate stability, historic fire frequency, 
and three-dimensional topographic distance (Fig. S1). 
Climate stability through time has been shown to 
predict genetic and lineage diversity (Carnaval and 
Moritz 2008, Carnaval  et  al. 2009). We estimated 
climatic stability by averaging all the continuous 
paleoclimate SDMs and a current SDM that was 
projected in matching 2.5 arc-minute climate data from 
WorldClim v2.0 (Hijmans et al. 2005; Bio 1, Bio 4, Bio 
8-19). Fire history, which is often an important factor 
in the distribution of North American prairie species 
(Anderson et al. 1999, Anderson 2006, Wagenius et al. 
2020), was obtained by using the Mean Fire Return 
Interval dataset downloaded from LandFire database 
(LANDFIRE 2020). Three-dimension topographic 
distance was calculated in ArcGIS (ESRI 2022) using 
30 arc-second SRTM dataset (downloaded from 

Worldclim 2.0) (Hijmans et al. 2005), this hypothesis 
serves as a characterization of the null hypothesis of 
isolation by distance.

Mixed Spatial Models of Landscape Genetic Connectivity
To model the relationships between our observed 

genetic data and the environment, we used linear 
mixed effect models of the ten spatial hypotheses of 
landscape connectivity. Twenty two locations were 
included in this analysis. If individuals from the same 
genetic cluster (by majority assignment to a specific 
cluster, K=17; Tackett et al. 2022) occurred more than 
200 km apart, then that cluster was represented at 
both locations, resulting in n = 22 genetic groups. Mixed 
effect models were run in R package, ResistanceGA 
(Peterman 2018) for every pair of the ten spatial 
hypotheses, as well as, each hypothesis run as a single 
predictor (totaling 37 unique modeled combinations. 
See Table S3 for details). Mixed models with three or 
more predictor variables were not evaluated as model 
groups to be compared were too numerous and thus, 
were not computationally feasible.

The ten spatial hypotheses were converted to 
resistance surfaces for mixed effect modeling using 
the R package, ResistanceGA (Peterman 2018). This 
program requires no a priori assumptions related 
to environmental response and instead utilizes a 
genetic algorithm to fit surface layers individually 
to pairwise genetic data to find the statistically best 
resistance layer(s) (Peterman 2018). ResistanceGA 
optimizes resistance surfaces based on pairwise genetic 
data and distances calculated using CIRCUITSCAPE. 
Since ResistanceGA provides a true unconstrained 
optimization there are no predefined resistance 
surfaces to assess, instead the optimization algorithm 
iteratively generates resistance surfaces exploring 
eight mathematical transformations and a broad 
array weighting regime until no improvement in 
predicting input genetic data can be made. This is 
coupled with maximum likelihood population effect 
(MLPE) model performance criteria to best objectively 
optimize resistance surface(s) (Peterman et al. 2019). 
Fit of regression between the environmental variables 
chosen and genetic data are used to determine the 
most likely migration corridors and the landscape 
features that are most probable in facilitating or 
inhibiting distribution (Van Strien et  al. 2012). For 
these reasons ResistanceGA has become a popular 
method in addressing fundamental questions regarding 
landscape genetics and landscape ecology and was 
chosen for this study. Once all resistance surfaces 
were optimized, ResistanceGA (Peterman 2018) was 
run to assess the resistance of each layer individually 
and in pairs resulting in 37 total models. Models were 
ranked using marginal R2.

Historical Patterns of Population Admixture and Divergence
The statistical model TreeMix v1.13 (Pickrell and 

Pritchard 2012) was used to infer historic patterns 
of population admixture and divergence where the 
frequency of alleles in present-day populations infers 
the structure of the maximum likelihood (ML) tree. 

about:blank
about:blank
about:blank


Simmonds et al. Drivers of genetic structure in Triodanis perfoliata

Frontiers of Biogeography 2024, 16.2, e61656 © the authors, CC-BY 4.0 license  8

A SNP dataset for T. perfoliata was generated from a 
previous analysis in STRUCTURE which yielded four 
genetic clusters (Tackett et al. 2022) and used T. biflora 
as the outgroup (See Table S1). A covariance matrix was 
built to assess model fit for population relationships. 
TreeMix uses a Gaussian model to assess drift between 
ancestral and contemporary populations (Cavalli-Sforza 
and Edwards 1967). We estimated migration events 
from zero to three. For populations with the largest 
residuals migration edges are added and the graph 
is optimized for branch length and the weight of the 
migration edge. Weight of the migration edge indicates 
the allelic fraction of parental population inheritance. 
This process is repeated until the migration edge that 
most improves the likelihood is chosen. Then the 
relative weight of the migration edge is estimated, 
as well as its uncertainty, across the genomic dataset. 
Residuals deviating from zero identify populations that 
are not well-modeled under non migration scenarios 
and thus are candidates for admixture events to best 
explain the genetic data.

Results

Divergence Time Estimation
We estimated the mean divergence time for the 

node corresponding to the most-recent-common 
ancestor of Triodanis perfoliata and Triodanis biflora 
to be approximately 1.9 mya (95% HPD = 0.5 – 3.7) 
in the fossil-calibrated BEAST analysis (Fig. S2). This 
age range estimate approximates well with the age 
recovered by our MCMCTree results (mean of 3.3 MYA 
for the divergence of T. perfoliata from T. biflora and 
mean of 2.4 MYA for the crown clade containing all 
sampled T. perfoliata populations; Fig. 3). We estimate 
that the crown age of T. perfoliata populations surveyed 
in this study is approximately 2.4 mya (3.2-1.4). After 
speciation, T. perfoliata continued to diverge at a 
steady rate, with the core lineages (sensu Tackett et al. 
2022) diverging in the early Pleistocene (2.4-1.5 Ma, 
Fig. 3; Appendix S1).

Mixed Spatial Models of Landscape Genetic Connectivity
The spatial model with the highest support 

(marginal r2= 0.612) is a composite surface of the early 
Holocene (11.7 – 8.326 ka) and the Marine Isotope 
Stage M2 period (ca. 3.3 Ma; Fig. 1). The model with 
the second highest support (marginal r2= 0.597) was a 
composite surface of the current period and the Marine 
Isotope Stage M2 period. Spatial models based only 
on contemporary climate (marginal r2= 0.551) or only 
isolation-by-distance, performed more poorly than 
models with paleoclimate data (3D distance and 2D 
distance: marginal r2= 0.546 and 0.485, respectively). 
The assessment of 2D distance is a default test within 
the ResistenceGA program (see Table S3 for the results 
of all models compared with corresponding AICc, 
marginal r2, conditional r2).

Historical Patterns of Population Admixture and Divergence
Our inference of historical patterns of population 

admixture and divergence best supported a scenario with 

a period of moderate introgression from the ancestors of 
T. biflora into the ancestors of T. perfoliata (2.8% of alleles 
inherited from T. biflora into Cluster 4, p < 0.001, Fig. 2). 
We also recovered an instance of high gene flow from 
the Cluster 1 into Cluster 3 (four genetic clusters in total; 
38.2% of alleles inherited from Cluster 1 to Cluster 3, 
p < 0.001). Cluster 1 is currently distributed in the western 
US and extends eastward into Kansas and Cluster 3 
is currently distributed in New York. The inclusion of 
historical population admixture and divergence better 
explains our observed genetic diversity, with the scenario 
of two migration events resulting in the highest support 
(see Fig. 2A and B, Table S4).

Discussion
Here we explore the roles of paleoclimate, climate 

stability and historic population admixture and 
divergence in shaping population genetic patterns in 
a widespread annual plant, Triodanis perfoliata. Our 
current study significantly expands previous research 
focused on the roles of contemporary climate, isolation 
by distance, and breeding system in shaping population 
connectivity (Tackett et al. 2022). Overall, this research 
is part of the growing call to use interdisciplinary 
approaches to elucidate drivers of population genetic 
patterns (Chan  et  al. 2011, Brown  et  al. 2016a, 
Shen  et  al. 2019, Dolby  et  al. 2022). A range of 
factors, both extrinsic (e.g., environmental, geospatial; 
Brown et al. 2016a, Alvarado-Serrano et al. 2019) and 
intrinsic (e.g., demography, physiological tolerances, 
seed and pollen dispersal, breeding system; Chan et al. 
2011, Toczydlowski and Waller 2019, Tackett et al. 
2022), influence patterns of genetic diversity. These 
factors are highly dynamic, varying across space and 
time, illustrating the potential influence of historic 
processes in shaping patterns of genetic diversity. 
Combining these processes with temporally explicit 
genetic data allows for a more complete understanding 
of population genetics (Carnaval et al. 2009, Bohonak 
and Vandergast 2011, Chan et al. 2011, Shen et al. 
2019, Dolby et al. 2022).

Despite the importance of paleoclimates in 
shaping population genetic patterns, (Rangel et al. 
2018, Rahbek et al. 2019a, Rahbek et al. 2019b), very 
few studies assess paleo-periods outside of the last 
interglacial cycle (ca. 130 ka to contemporary climates; 
Rull 2008, Rull 2011). This potential bias in studies has 
been, in part, a result of limited availability of older 
paleoclimatic datasets. In recent years, however, 
data from additional paleo-periods have become 
available (Lima-Ribeiro et al. 2015, Brown et al. 2018), 
although researchers continue to focus on relatively 
recent geological times. As such, there remains a 
need for studies that incorporate temporally relevant 
paleoclimatic data with genomic data to understand 
drivers of phylogenetics and population genomics 
(however see Evans et al. 2009, Prates et al. 2016, 
Rangel et al. 2018, Guillory and Brown 2021). The 
advantages of including these types of data can be seen 
through studies of several oak species in the Mexican 
highlands in which high genetic diversity but low genetic 
structure is explained through historical processes such 
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as range stability, elevational displacement, and dynamic 
gene flow between populations (Peñaloza-Ramírez et al. 
2020, Sánchez‐Acevedo et al. 2023). The dynamic nature 
of climate, especially over thousands or millions of years, 
alters the landscape and therefore the connectivity 
of populations and movement of individuals. These 
changes can have profound impacts on the genetic 
structure of affected populations (Taylor et al. 2006, 
Yannic et al. 2020). In T. perfoliata, we found that 
paleoclimatic periods both prior to and during the last 
interglacial to be significant in characterizing modern 
patterns of genetic diversity, highlighting the importance 
of diverse paleoclimatic data in these types of population 
genetic analyses. Our results support an important role 
for late Pliocene climates in structuring the population 
genetic diversity of T. perfoliata (Table S3). Our best 
mixed spatial model of landscape genetic connectivity 
had a marginal r2=0.612, which is impressive given the 
observed introgression, as well as, the complicated 
population genomic clustering results in the center of 
the species’ distribution, where multiple cluster groups 
coexisting within many populations. Each of these factors 
challenge the creation of a single ‘genetic landscape’, 
as these events likely occurred at multiple time periods 
that spanned many climatologies. Our genetic results 
(current and past) suggest that T. perfoliata underwent 
a complicated biogeography history, extending beyond 
a single expansion, and rather, likely experience multiple 
and repeated interactions among major lineages within 
T. perfoliata.

The late Pliocene, a key period in our best mixed 
spatial model, also coincides with the early divergence 
of T. perfoliata (2.4 mya [3.2-1.4]), suggesting a key role 
of this time period in shaping the phylogeography of 
this species (Fig. 3). It is worth clarifying that the 95% 
confidence intervals of the divergence estimate extend 
into the early Pleistocene (starting ca. 2.56 mya), thus, 
these mixed spatial modeling results and divergence 
time estimates are not perfectly aligned. However, 
given the fact that we only have paleoclimate data for 
time periods at 3.3 mya (late Pliocene) and 0.0787 mya 
(mid-Pleistocene), there certainly remains many key 
time periods unavailable that could better characterize 
additional historic periods important to the early 
divergence of T. perfoliata. However, these two datasets 
do share many climatic similarities to other temporally 
adjacent periods and might be producing causal 
correlations due to simular climatologies at other time 
periods, something that is most likely to occur in the 
matching epochs (e.g. mid-Pleistocene) corresponding 
to all input climatologies. Given we do not have a climate 
dataset for the early Pleistocene, we cannot compare 
the relative influence of this time period.

Even in light of challenges associated with temporally 
connecting spatial and genetic data, this study elucidates 
the importance of including paleoclimates from key 
periods of diversification when examining how climatic 
drivers impact population genetic patterns. Distance 
between contemporary suitable habitats, for example, 
does not necessarily reflect past patterns of variability in 
habitat, which have led to modern patterns of genetic 
structure (Elith et al. 2006). For example, the origins 

of contemporary genetic diversity do not necessarily 
match the current species distribution, as such, past 
periods and regions of high gene flow might be better 
characterized using the methods proposed here. This 
statement is supported by the fact that an analysis 
based on isolation-by-distance had poorer performance 
(marginal r2= 0.546 and 0.485) compared to our highest 
supported (marginal r2= 0.612) based on the early 
Holocene and the Marine Isotope Stage M2 period).

Our study highlights the importance of historic 
climate in shaping patterns of genetic diversity in 
T. perfoliata. By gaining a detailed knowledge of 
geospatial patterns, both historic and contemporary, 
we are able to discern when and where barriers to 
gene flow may have influenced overall patterns in 
population genetics (Elith et al. 2006). For species with 
limited dispersal and widespread distributions, more 
recent climates likely have less impact on the broader 
spatial genetic patterns. Our highest performing mixed 
spatial model was one that included paleoclimates and 
it outperformed a model based only on contemporary 
climates (marginal r2= 0.612 vs. marginal r2= 0.551, 
respectively). Contemporary climates, however, have 
been repeatedly shown to effectively describe patterns 
of population genetic diversity at smaller spatial scales 
(e.g., Toczydlowski and Waller 2019, Tackett et  al. 
2022). For these reasons, considering both historic 
and present-day factors when discerning patterns of 
genetic diversity can provide novel insights into drivers 
of population genetic diversity.

Our inference of historical patterns of population 
structure shed light on an enigmatic cluster group 
that is currently found in New York state (Cluster 3, 
Fig. 2; Tackett et al. 2022). Tackett et al. (2022) placed 
this population in a separate cluster group from other 
East Coast populations (Cluster 4, Fig. 2), which all 
formed a cohesive group. We recovered an instance 
of high gene flow between a cluster group currently 
in the Western and Midwest of the US (Cluster 1) into 
our New York cluster group (Cluster 3). These results 
suggest a historic connection between the Midwest 
and Upper East Coast populations, where members 
of Cluster 1 introgressed into Cluster 3. Our mixed 
models of landscape connectivity also suggest a similar 
Midwestern corridor across the Ohio River drainage 
(Fig. 1). Given the current geographic isolation of the 
modern populations and the inferred directionality of 
the introgression, from the West into the North East, it 
is likely that the ancestral population sizes of Cluster 3 
were small given the predominant genomic signature 
of Cluster 1 present in Cluster 3 (and not vice versa) 
and that this group remained somewhat isolated post-
introgression. These results corroborate population 
genetic structure observed by Tackett et al. (2022). 
Tackett et al. (2022) suggested that T. perfoliata also 
experienced a complex demographic and evolutionary 
history, where they found breeding system, geography, 
and present-day environmental variables shape 
patterns of population genetics of T. perfoliata. Through 
integrative genomic and spatial analyses, we expand 
upon these findings, verifying the importance of both 
historic and present-day factors when discerning 
patterns of genetic diversity.
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Conclusions
In this study, we take an interdisciplinary approach 

to comprehensively understand factors driving patterns 
of population genetics across geographic space and 
through evolutionary time in the widespread annual 
species, Triodanis perfoliata. Previous work examined 
the interplay of a novel, and likely highly inbreeding, 
reproductive system on patterns of population 
connectivity and genetic diversity (Tackett  et  al. 
2022). This previous work quantified the roles of 
isolation by distance and breeding system in shaping 
the overall population genetic structure of this 
species, but also alluded towards the potential roles 
of demographic history and climate for influencing 
population connectivity. Here, we expand on this 
work by specifically elucidating the roles of past- 
and current climate and climatic stability in shaping 
population genetic patterns in these same populations. 
We found that past climatic periods, including those 
prior to the last interglacial, are important factors 
in driving observed patterns of genetic diversity. 
Our divergence time estimation coincides with our 
climate analyses, suggesting the late Pliocene as a 
key time period in the overall evolutionary history of 
T. perfoliata. Understanding demographic history and 
historic climate, provides insights as to the apparent 
genetic divergence among some populations that may 
otherwise appear connected by contemporary suitable 
habitat (i.e. NY population; Fig.  2A; Tackett et  al. 
2022). Taken together, our research in this study 
system, including Tackett et al. (2022) and the present 
work, emphasizes the importance of recognizing the 
impacts of both current and past processes in shaping 
population genetic patterns, and in examining these 
factors through multidisciplinary research approaches 
(see: Chan et  al. 2011, Brown and Knowles 2012, 
Crowl et al. 2015, Brown et al. 2016a).
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