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Does china income FSDs follow Benford? A comparison
between Chinese income first significant digit distribution
with Benford distribution
Qiuzi Fua, Sofia B. Villas-Boasb and George Judgeb

aNational School of Development, Peking University, Beijing, 100871, China; bDepartment of Agricultural and
Resource Economics, University of California, CA, Berkeley, USA

ABSTRACT
Since Benford’s law is an empirical phenomenon that occurs in a
range of data sets, this raises the question as to whether or not the
same thing might be true in terms of the Chinese income distribu-
tion data. We focus on the first significant digit (FSD) distribution
of Chinese micro income data from the 2005 Inter-Census sample,
which corresponds to 1% of Chinese population and other micro
income data from the China family panel studies (CFPS) and
Chinese General Social Survey (CGSS). We use information theore-
tic-entropy based methods to investigate the degree to which
Benford’s FSD law is consistent with the FSD of Chinese income
data and our findings suggest consistency between the Chinese
FSD income distribution and Benford’s distribution. The close
connection between the two distributions has implications for
the quality of the sample of Chinese micro data.
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1. Introduction

Simon Newcomb (1881), an astronomer and mathematician, in 1881 conjectured that
in natural data sets, the first digits did not occur with equal frequency, but rather he
suggested that the occurrence of numbers is such that all mantissa of their logarithms
are equally probable. Fifty-seven years later, Benford (1938) empirically began to test
Newcomb’s hypothesis and demonstrated that a large number of seemingly unrelated
sets of numbers provided a good fit to the FSD exponential distribution and gave it law
status. Since then, others have published studies showing that ‘Benford’s Law’ applies to
a surprisingly large number of natural-behavioral data sets and has the nice properties
of being scale and base invariant (see Varian (1972) and Miller (2015)). This FSD
phenomenon was then named ‘Benford’s Law’, after its popularizer rather than its
discoverer.

It was another 57 years before Hill (1995), using a base-invariance argument, became
the first to rigorously prove Benford’s Law. Prior to Hill, others had only suggested
possible explanations for the phenomenon. For instance, Benford suggested that the law
held when data came from a mixture of uniform distributions that were more likely to
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have relatively small upper bounds. More recently, power-law and information-theore-
tic methods have been proposed as being more intuitively appealing and general ways
of determining similar FSD distributions (Grendar, Judge, and Schechter 2007 ).
Pietronero et al. (2001) suggest that Benford’s Law is a special case of Zipf’s Law,
which claims that all rankings of natural processes by size follow power laws. For
example, word frequencies have been shown to have such a distribution where the most
frequent word occurs approximately twice as often as the second most frequent word,
which occurs twice as often as the fourth most frequent word (Zipf 1949). In this
fashion, probability of occurrence is inversely proportional to its rank. The argument
that Zipf’s Law is a generalization of Benford’s Law is based on the scale-invariant
nature of both laws’ respective applications, but since Zipf’s Law is simply an empirical
observation of a family of distributions, the claim that Zipf’s Law justifies Benford’s Law
is intriguing but not rigorous.

Moving in a rigorous direction, we have noted the role of scale invariance underlying
data outcomes in Hill’s 1995 proof of Benford’s Law. Scale invariance occurs when
multiplying either the underlying data distribution P(D) or its FSD counterpart P(d) by
a constant s yields an identical outcome. Following Pietronero et al. (2001), we note that
scale invariance leads to the functional relation

P sDð Þ¼ PD�Þ ¼ K pð ÞP Dð Þ (1:1)

and that the general solution to (1.1) has the power law nature

PðD�Þ ¼ PðD��αÞ ¼s�αD�α (1:2)

For these types of distributions, we can compute the probability of the first digit by
noting that we have the same (uniform) relative probability for the integers d = 1, 2, . . .,
9, for each cycle. Following Pietronero et al. (2001), we can write for P(d) that, for α�1,

P D�ð Þ ¼ �
αþ1

α
D�α dD ¼ 1

1� α
d þ 1ð Þ1�α � d1�α

� �
(1:3)

Then, for d = 1:

P D�ð Þ ¼ �
dþ1

d
D dD ¼ �

dþ1

d
d logDð Þ ¼ log

d þ 1
d

� �
(1:4)

This expresses Benford’s law as determined from the underlying data distribution.
Consequently, in a power law context when α = 1, we have a uniform FSD in logarithmic
space. For values of α > 1, the FSD distribution is more tilted than Benford. For values of
α < 1, the FSD distribution is tilted toward a uniform FSD distribution. Pietronero et al.
(2001) calls this family of power laws a generalized Benford law.

Zipf’s Law, as mentioned earlier, is an instance of a rank order statistic that is scale
invariant and applicable to a large range of phenomena, including income distributions,
city sizes, and linguistics (Pietronero et al. 2001; Raimi 1976; Zipf 1949). Of particular
interest is the connection between Benford’s Law and Zipf’s law. Following Pietronero
et al. (2001), in analyzing the rank-order properties of a set of numbers extracted from a
general distribution, P(N) ~ Nα, if a maximum number Nmax corresponds to the rank
k = 1 and the rank Nk is given by all the numbers between Nk and Nmax, then
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k ¼ �
Nmax

N kð Þ
P Nð Þ dN,N kð Þ1�α (1:5)

Inverting (1.5) gives us

N kð Þ,k
1

1�/; (1:6)

which highlights a link between the Benford and Zipf’s Law.
Overviews of the history and theoretical explanations include Raimi (1976), Diaconis

(1977), Hill (1995), Berger and Hill (2006), Miller and Nigrini (2009), Judge and
Schechter (2009). Even when FSD data sets deviate from the Benford pattern, the
lower digits are favored and decline monotonically. Furthermore, in the physical
sciences area, Shao and Ma (2010a and 2010b) demonstrate empirically that in physical
statistics, the Boltmann–Gibbs and Fermi–Derac distributions with respect to the
temperature of the system, fluctuate around the Benford distribution and that the
Bose-Einstein distribution exactly conforms to it.

Since Benford’s law is an empirical phenomenon that occurs in a range of data sets,
this raises the question as to whether or not the same thing might be true in terms of
the Chinese income distribution data. To pursue this question, we focus on the first
significant digit (FSD) distribution of Chinese micro income data from the 2005 Inter-
Census sample, which corresponds to 1% of Chinese population. We use information
theoretic-entropy based methods to investigate the degree to which Benford’s FSD law
is consistent with the FSD of Chinese income data.

The rest of the paper proceeds as follows. In section 2, we introduce the information
theoretic methods used to recover the FSD distributions from the micro income data.
In section 3, we present in graph form the relationship between Benford and the data-
based FSD income distributions. In section 4, we note the agreement between Benford
and the empirical income FSD distributions and speculate on the implications of the
results.

2. The conceptual framework

Pre analysis knowledge suggests that the FSD distribution of a sequence of positive real
numbers from scale-independent multiplicative data should vary with the phenomena
in question. In this context entropy based information theoretic methods offer a natural
way to establish a data-based link that captures the varying monotonically decreasing
nature of the FSD.

To use information theoretic methods to recover the FSD distribution from a
sequence of positive real numbers, we assume for the discrete random variable di (for
i ¼ 1; 2; . . . ; 9), that at each trial, one of nine digits is observed with probability pi.
Suppose after n trials, we have first-moment information in the form of the average
value of the FSD:

X9
j¼1

djpj ¼ �d: (2:1)
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Based on sample information;
P9
j¼1

djpj ¼ �d:,
P9
j¼1

pj ¼ 1, and 0 � pj � 10; the nine digit

FSD ill-posed inverse recovery problem cannot be solved for a unique solution. In such
a situation it seems useful to have an approach that permits the investigator to use
sample based information recovery methods without having to choose a parametric
family of probability densities on which to base the FSD probability density function.

One way to solve this ill-posed inverse problem for the unknown pj without making a
large number of assumptions or introducing additional information is to formulate it as an
extremum-optimization problem. In this context a solution is achieved by minimizing the
divergence between the two sets of probabilities and an optimizing goodness-of-fit criter-
ion, subject to data-moment constraints. One attractive set of divergence measures is the
Cressie-Read (CR) power divergence family of statistics (Cressie and Read (1984), Read
and Cressie (1988), and Judge and Mittelhammer (2011, 2012)):

I p; q; γð Þ ¼ 1
γ 1þ γð Þ

XN
j¼1

pj
pj
qj

� �γ

� 1

� �� �
; (2:2)

where γ is an arbitrary unspecified parameter. All well known entropy divergences
belong to the class of CR functions. In the context of recovering the unknown sample
information FSD distribution, we make use of the CR criterion (2.2) and seek a solution
to the following extremum problem:

p̂ ¼ argmin
p

I p; q; γð Þ j
XN
j¼1

pjdj ¼ �d;
XN
j¼1

pj ¼ 1; pj � 0

" #
: (2:3)

When γ ! �1 and I p; q; γð Þ converges to an estimation criterion equivalent to the

empirical likelihood (EL) criterion
PN
j¼1

lnðpjÞ. As γ varies, power law like behavior is

efficiently described and the resulting estimators that minimize power divergence
exhibit qualitatively different sampling behavior. Over defined ranges of the divergence
measures, the CR and entropy families are equivalent.

In terms of the information-theoretic variants of the CR I p; q; γð Þ we demonstrate
for the Benford recovery problem the case of the Maximum Entropy Empirical
Likelihood (MEEL)-CR γ ! �1; anda uniform reference distribution q (qj ¼ 1=9;"j).
First moment information �d is used as a basis for recovering discrete FSD probability
distributions. As noted above, under the criterion CR γ ! �1, the CR I p; q; γð Þ
converges to the empirical likelihood criterion metric 9�1P9

j¼1
ðlnpjÞ and the extremum

likelihood function

max
p

9�1
X9
j¼1

lnpj j
X9
j¼1

pjdj ¼ �d;
X9
j¼1

pj ¼ 1

" #
: (2:4)

The corresponding Lagrange function is
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L p; η; λð Þ;9�1
X9
j¼1

lnpj � η
X9
j¼1

pj � 1

 !
� λ

X9
j¼1

pjdj � �d

 !
(2:5)

with the solution

bpj �d; λ� 	 ¼ 9�1 1þ λ̂ dj � �d
� 	
 �h i�1

; (2:6)

for the jth FSD outcome. As the mean of the significant first digits varies a family of

probability density functions-distributions result In Equation (2.6), p̂j is a function of λ̂,
the Lagrange multiplier for constraint (2.3). This information may be used as a basis for
modifying the distribution of FSD probabilities.

For mean FSD values less than 5, the resulting estimated FSD distribution reflect the
monotonic decreasing FSD probabilities exhibited by the Benford distribution. As the
FSD mean approaches the Benford mean 3.44, the CR-EL and FSD distributions are
approximately equal. If we use the CR in the limit γ→–1 criterion and a Benford
reference distribution I p; qB; γð Þ ¼P9

j¼1
ðlnpj=qjBÞ, then with the first moment condtion

of 3.44, the Benford FSD distribution is exactly reproduced.

3. Benford and the Chinese micro income data

The data used in this section originate from the China’s inter-census survey from 2005.
The inter-census survey represents 1% of the population and is conducted every
10 years for years ending in 5. The sample contains over one million observations on
personal characteristics and income data among the population of current residence.
The survey covers all the 2861 counties of China and is representative of the 333
prefectures.

In Figure 1, we display for the Chinese 2005 micro data, the FSD probability density
function and the Benford distribution. The fit of the Chinese FSDs and Benford FSDs is
very good with a correlation of 0.964 and Chi-square of 0.031.

If in the above CR formulation, γ ! �1; theBenford reference distribution probabil-
ities qB replaces the uniform reference distribution, this leads to the BEL or Benford EL,
criterion

Figure 1. Benford and Chinese 2005 data FSD distribution.
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lim
γ!�1

Iðp; qB; γÞ ¼
X9
j¼1

qjBlnðpj=qjBÞ ¼
X9
j¼1

qjBlnðpjÞ �
X9
j¼1

qjBlnðqjBÞ: (3:1)

where
P9
j¼1

qjBlnðqjBÞ is an added constant(see Grendar, Judge, and Schechter 2007).

Using the criterion (3.1), the data constraint
P9
j¼1

djpj ¼ �d; andthe probabilities adding-

up condition,resultsin

cpjB �d; λ̂

 �

¼ qjBð1þ λ̂ðdj � �dÞÞ�1; (3:2)

where λ̂ is such that bpB (d, λ̂) satisfies the mean FSD constraint. When the Benford
distribution is used as a reference distribution, the Benford distribution is exactly
reproduced.

4. The China Family Panel Studies (CFPS) income data case

As an additional example of the association between the two distributions, we make use
of micro data from the China Family Panel Studies (CFPS). The CFPS is a nationally
representative, annual longitudinal survey of Chinese communities, families, and indi-
viduals launched in 2010 by the Institute of Social Science Survey (ISSS) of Peking
University, China. The CFPS is designed to collect individual-, family-, and commu-
nity-level longitudinal data in China. The studies focus on the economic, as well as the
non-economic, wellbeing of the Chinese population, with a wealth of information such
topics as economic activities, education outcomes, family dynamics and relationships,
migration, and health. As a follow-up to the 2010, 2012, and 2014 data, the CFPS 2016
data also contains the five parts: community, family roster, family, adult and child. We
use household income from family roster part. The data is monthly salary per capita for
household and is in ‘Yuan’. A graph of the two income FSDs and Benford is given in
Figure 3.3. As in the comparisons in Figure 2, there is a degree of association between
the two distributions as noted by a correlation of 0.97 and a Chi-square of 0.999.

Figure 2. Benford and Chinese 2005 FSD distributions with Benford prior.
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5. The Chinese General Social Survey (CGSS) income data case

The General Social Survey (CGSS) survey is a national representative continuous survey
project launched in 2003. Conducted by Renmin University of China and Hong Kong
University of Science and Technology, CGSS is one of the earliest and most comprehensive
dataset in China. CGSS contains social and quality-of-life variables of individuals in both
urban and rural China. The released data are from 2003 to 2015, so the latest data that we can
find are in 2014. The quality-of-life part of CGSS includes individual salary of the past year. So
the Chinese transformed the data into monthly salary (unit: Yuan) and try to analyze the first
digit distribution pattern. As shown in Figures 4 and 5, both 2010 and 2014 CGSS income data
show correlated income FSD with Benford. The Chi-squares are both 0.999 as well.

6. Summary and conclusions

In this paper, we have used a sample of Chinese micro income data and an entropy
based member of the Cressie–Read family to present evidence that the associated micro

Figure 3. Benford and the Chinese 2016 CFPS FSD income data.

Figure 4. Benford and the CGSS 2010 FSD income data.
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income FSD data and the Benford distribution are closely linked. This result along with
a similar FSD results for Australian income data (see Villas-Boas, Fu, and Judge 2015)
and physical systems indicate that the data from these behavioral worlds are closely
linked to the Benford distribution. From a methodological view point we have demon-
strated how entropy based information theoretic methods may be used in identifying
and making distributional comparisons. Benford’s law can also be used to test for errors
in micro sampling data (see Shechter and Judge 2009; Cho and Gaines 2007; Cho and
Judge 2015). The close association between Benford’s law and the Chinese income FSDs
bodes well for the quality of the 2005 micro data and the CFPS and CGSS data used in
this study. Looking ahead, we plan to use the 2005 Chinese micro income data to
develop income probability density functions-distributions and entropy inequalities
measures for China and its 31 provinces.
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