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Modeling a reaction time variant of the Perruchet effect in humans 
 

Amy McAndrew (am375@exeter.ac.uk)      Fayme Yeates      Frederick Verbruggen      Ian P.L. McLaren 
 

School of Psychology, College of Life and Environmental Sciences, University of Exeter, UK. 
 

Abstract 

This paper presents a reaction time (RT) experiment that follows 
on from the work of Perruchet, Cleeremans, and Destrebeceqz 
(2006), investigating the extent to which reaction times (RTs) 
are governed by the conscious expectancy of a particular 
response. In this experiment, participants were presented with a 
single stimulus (which we will call the conditioned stimulus; 
CS) followed by one of two outcomes (which we will call 
unconditioned stimuli; USs); to which participants had to make 
an appropriate instrumental response. On every trial we recorded 
the time taken to make this response and participants were asked 
to rate their expectancy that one of the USs (US1) was going to 
occur. We found that the expectancy rating for US1 correlated 
negatively with RT on US1 trials. Over successive runs of 
reinforcement, when participants rated US1 as less likely to 
occur they were slower to respond to US1 (lower ratings, higher 
RTs). When we calculated the expectancy for US2 as the 
complement of that for US1 expectancy, expectancy of US2 
correlated positively with RTs. Thus, across runs of 
reinforcement, participants responded more quickly to US2 
when considering US2 less likely (low rating, low RT). We 
argue that the requirement to make a conscious expectancy 
rating results in participants attending more to US1 occurrences 
than those of US2. This results in a qualitatively different 
relationship between conscious expectancy and automatic 
responses that cannot be reconciled by a single processing 
system account. A dual processing system explanation of 
learning is proposed to explain these results. In support of this 
position, we successfully modeled our US2 RT data using a 
modified version of the Augmented simple recurrent network 
(Yeates, Jones, Wills, McLaren, & McLaren, 2013). 

Keywords: Perruchet effect; Modeling; Dual processing 
systems; AugSRN; Associative learning  

 
Introduction 

Recently, there has been a lively debate on the extent to 
which learning is governed by a single processing system or 
dual processing systems (e.g. McLaren, Green, & 
Mackintosh, 1994). A single processing system view 
advocates one conscious reasoning process (e.g. Lovibond, 
& Shanks, 2002). From this viewpoint, conditioned 
responding (CR) obtained in an instrumental conditioning 
paradigm is driven by contingency knowledge that develops 
during the course of conditioning between a conditioned 
stimulus (CS) and unconditioned stimulus (US). Within a 
dual processing system framework, associative automatic 
processes can be responsible for the CR without explicit 
contingency knowledge. Based on this account, an 
associative link forms between a representation of the CS 
and representation of the US. Presentation of the CS 
activates the link between the CS and US, which activates 
the US representation, which then produces a CR.  

One of the most convincing sources of evidence 
(Mitchell, De Houwer, & Lovibond, 2009; Shanks, & St 
John, 1994) for dual processing systems is the Perruchet 
effect (Perruchet, 1985). In the reaction time (RT) version of 
this experiment employed by Perruchet, Cleeremans, and 
Destrebeceqz (2006), participants hear an auditory tone (the 
CS) on every trial. Half the time the CS is followed by a 
visual US to which participants have to make a keypress 
response. On the other half of the trials there is no US and 
participants are not required to make a response. 
Participants make an online expectancy rating on every trial 
regarding the extent to which they think the US is going to 
appear on that trial.  

Across successive CS-US (reinforced) trials, expectancy 
ratings that the US will occur decrease. However, after 
experiencing runs of nonreinforced, CS-noUS, trials 
participants’ ratings indicate they think it more likely that 
the US will occur; and thus, that a response is more likely to 
be required. This is consistent with the gambler’s fallacy 
phenomenon (Burns, & Corpus, 2004). In contrast, the CR 
(the instrumental response to the US measured by RT) gets 
faster (improves) with successive reinforcement. This means 
consecutive CS-US trials result in shorter RTs, whereas runs 
involving an absence of the US result in slower responding. 
This pattern of responding is hard to reconcile with the 
gambler’s fallacy, as participants become quicker to respond 
to the US at the same time as their expectancy of the US 
(and thus their expectancy that they are required to make a 
response) decreases. An associative account can, however, 
explain the change in RT with reinforcement history, as 
over successively reinforced trials the associative link 
between the CS representation and the US representation 
becomes stronger, leading to faster RTs. This link is 
extinguished and weakened by the absence of the US on the 
CS-noUS trials, leading to slower RTs. Thus, a dual 
processing systems account is required to explain both the 
conscious processes underlying expectancy along with the 
RT pattern that captures our automatic, associative learning 
about CS-US relationships (McLaren, Green, & 
Mackintosh, 1994).   

The experiment presented here aims to further investigate 
the effects observed in a RT version of the Perruchet 
paradigm, and to provide support for a dual processing 
systems account of learning. To build on the original 
experiments, we presented participants with two USs in 
order to obtain RT data on every trial and to keep the 
demands of each trial consistent. We were therefore able to 
take a measure of CR for the two USs separately and 
compare these to expectancy of each US. If RT and 
expectancy of the US are found to follow different trends 
this would imply that a single processing system 
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explanation of learning would be unable to explain the 
results and that a dual processing systems account would be 
more appropriate. If our assumptions regarding the nature of 
the processes underlying RT performance are correct, we 
should be able to model these associatively. Therefore, to 
assess this claim, we used a model of human learning (the 
revised augmented simple recurrent network: RASRN; 
Yeates, Jones, Wills, McLaren, & McLaren, 2013) in an 
attempt to simulate the instrumental responding of 
participants in this experiment.  
 

Method 
Participants 

64 University of Exeter students (13 men and 51 women) 
were recruited for course credit to participate in this 
experiment. Their ages ranged from 18 to 49 years, with a 
mean age of 21.  

 
Design and Stimuli 

The CS was visually presented to participants as a brown 
cylinder (11 x 7 cm) in the centre of a white screen. The 
words “Peanut Butter” and “Brown Sugar” were the two 
USs that followed the presentation of the CS. Both USs 
were presented to and counterbalanced across each 
participant as US1 and US2. Each of the USs was presented 
half the time after the CS, forming a partial reinforcement 
schedule where the occurrence of each US was equally 
likely.  

In a typical Perruchet design, we are interested in runs of 
reinforced and non-reinforced trials, therefore a repeated-
measures factor of run length (the number of a given trial 
type that occur consecutively in a row) was constructed. 
There were 8 levels of this factor; -4, -3, -2, -1, +1, +2, +3, 
and +4. When analyzing the sequence of trials given to each 
participant in this experiment, we can examine repetitions of 
the same US (D, different trials) or repetitions of the 
opposing US (S, same trials) as equivalents of these positive 
and negative runs of trials, respectively. A CR measurement 
is taken on the trial after the run itself, thus when 
considering US1 trials, a +2 trial would have involved two 
consecutive CS-US1 trials prior to this, whereas a -3 trial 
would have been preceded by a run of three CS-US2 trials 
(see Table 1 for an example of how runs are labeled within 
the sequence).  
 
Table 1. An example of a sequence of CS-US pairings and 
the corresponding run lengths of these trials. These are 
labeled both in terms of classic Perruchet positive and 
negative runs; and in terms of same (S) and different (D) 
runs. Trial type indicates whether US1 or US2 is paired with 
the CS (which occurs on each trial). 
 

Trial 
type US1 US1 US2 US2 US2 US1 US2 

Run 
length 

 +1 -2 +1 +2 -3 -1 
 S1 D2 S1 S2 D3 D1 

 
We aimed to compile sequences of US1 and US2 trials 

that involved these same (S/positive) and different 
(D/negative) runs from 1 to 4, following a binominal 

distribution as shown in Table 2. However, the original 
Perruchet experiments only comprised of one CS and one 
US, while the current experiment involves two USs. As each 
run has to end in the opposite trial type (e.g. a US1 run 
would have to end in a US2 trial), two ‘different’ runs of 
length five are included in each block. These are a 
requirement for the sequence, are counterbalanced across 
the US type across blocks and excluded from the analysis; 
and so are not discussed further.  
 
Table 2. The binomial distribution of run lengths.  
 

Run 
length 

-4 -3 -2 -1 +1 +2 +3 +4 
D4 D3 D2 D1 S1 S2 S3 S4 

Number 
of runs 2 4 8 16 16 8 4 2 

 
In this experiment, each participant experienced two 

blocks of 57 trials, which comprised of unique, randomized 
sequences of run lengths. These sequences were constructed 
using MatLab. We measured both expectancy and RT as our 
dependent variables and compared them across run length 
for both USs separately.  
  
Procedure  

A cover story was given to participants, who were told 
they were playing the role of a doctor seeing a number of 
patients with both diabetes and a nut allergy.  Participants 
were exposed to the CS for 5 seconds on each trial and were 
told that this brown cylinder could represent either peanut 
butter or brown sugar. During this time, participants had to 
make a rating on a scale of 1 to 9 regarding the extent they 
thought this trial would be a US1 trial. For half of the 
participants, peanut butter was US1; for the other half, 
brown sugar was US1. If US1 was peanut butter, they were 
told that a rating of 1 would indicate: "I definitely do not 
think the patient will need adrenaline"; up to a rating of 9: "I 
definitely think the patient will need adrenaline". Adrenaline 
was replaced by insulin when brown sugar was US1. 
Participants were told that half the time “peanut butter” 
would appear after the CS and on the other half of trials 
“brown sugar” would appear. One of these stimuli (the US) 
was then presented immediately after the CS. Participants 
were instructed to respond as quickly as possible to the 
stimuli to administer adrenaline to “peanut butter” and 
insulin to “brown sugar” with left Ctrl and left Alt keys 
(counterbalanced) to avoid anaphylactic shock or 
hyperglycemia, respectively. The US remained onscreen 
until a response was made, followed by a variable ITI of 2 
to 5 seconds before the next trial commenced. Participants 
were allowed a short break between the two blocks to allow 
them to rest.  
 

Results 
Both RT and expectancy data were collected using 

MatLab and PsychToolbox (Brainard, 1997). RTs for US1 
and US2 were recorded on each trial in milliseconds (ms). 
Any RTs over 1 second were excluded from the analyses. 
The mean RT for each run length for US1 and US2 can be 
seen in Fig. 1 top panel. In terms of expectancy, participants 
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were required to make ratings based on the extent they 
thought US1 was going to occur. Therefore, we divided the 
data into average expectancy for US1 on US1 trials and 
average expectancy for US1 on US2 trials for each 
participant on each run length, see Fig. 1 bottom panel. 

 

 
Figure 1. The top panel displays the RT data for US1 and 
US2 across run length. The bottom panel displays the 
expectancy for US1 on US1 and US2 trials across run 
length.  
 

A two-way repeated-measures analysis of variance 
(ANOVA) was run on the RT data using the factors US 
(US1 versus US2) and run length (-4, -3, -2, -1, +1, +2, +3, 
+4). A significant interaction between US and run length 
was found, F(7,238) = 2.58, MSE = 0.025, p = .029, as well 
as a significant linear trend interaction, F(1,34) = 8.84, MSE 
= 0.085, p = .005. This indicates that there is a significant 
difference in US1 and US2 RTs across run length. From 
Fig. 1 top panel, it can be seen that US1 RTs appear to 
increase after a run of US1 trials (i.e. RT increases when run 
length increases), whilst US2 RTs decrease after a run of 
US2 trials (i.e. RT decreases when run length increases). 

One-way repeated-measures ANOVAs were then used to 
analyze the US1 and US2 RT data separately. There is a 
highly significant main effect of run length for the US2 RTs, 
F(7,336) = 6.21, MSE = 0.07, p <.001. There was also a 
significant linear trend decreasing from -4 to +4 across run 
length, F(1,48) = 16.86, MSE = 0.27, p < .001. With regards 
to US1 RTs, however, the numerically increasing linear 
trend from -4 to +4 was not significant. 

A two-way repeated-measures ANOVA was also run on 
the US1 expectancy data, again with the factors US and run 
length. A significant interaction between US and run length 
was found, F(7,371) = 3.39, MSE = 22.42, p = .017, as well 

as a significant linear trend interaction, F(1,53) = 4.43, MSE 
= 48.92, p = .040. This indicates expectancy of US1 on US1 
differs significantly from expectancy of US1 on US2 trials 
across run length. From Fig. 1 bottom panel, it appears that 
expectancy for US1 on US1 trials decreases across run 
length whilst expectancy of US1 on US2 trials increases 
across run length.  

One-way repeated-measures ANOVAs were then used to 
analyze expectancy on US1 and US2 trials separately. There 
is a significant main effect of expectancy of US1 on US2 
trials across run length, F(7,399) = 2.51, MSE = 9.78, p = 
.041, and a significant linear trend increasing from -4 to +4, 
F(1,57) = 5.38, MSE = 33.78, p = .024. With regards to 
expectancy of US1 on US1 trials, a marginally significant 
main effect of run length was found, F(7,392) = 2.44, MSE 
= 11.26, p = .051. However, the decreasing numerical linear 
trend was not reliable. 
 

Discussion 
Regarding the expectancy measure (Fig. 1, bottom panel), 

we should make it clear from the start that both lines on the 
graph reflect US1 expectancy, however we have split this by 
whether the rating was taken on a US1 or US2 trial. 
Expectancy for US1 on US1 and US2 trials can be 
explained by the gambler’s fallacy phenomenon (Burns & 
Corpus, 2004). Expectancy of US1 after a run of US1 trials 
numerically decreases, while expectancy of US1 after a run 
of US2 trials increases. Thus, after a run of US1 trials the 
participant thinks US2 is more likely to occur, so 
expectancy of US1 declines; but after a run of US2 trials the 
participant now believes it is US1s turn, so expectancy of 
US1 increases.  

Within the RT data, participants’ responses to US1 
numerically increased as a function of run length. This 
indicates participants were faster to respond after successive 
CS-US2 trials, and therefore were slower after successive 
CS-US1 trials. We found a negative correlation between 
US1 expectancy and US1 RTs, r = -.871, n = 8, p = .005. 
Thus, after a run of CS-US1 trials participants made lower 
ratings that US1 would occur and were slower to make US1 
responses. Therefore it would appear that a propositional 
explanation would be sufficient to explain this result, by 
simply claiming expectancy directly influenced RT. 

Turning to US2, we propose that, logically, if a 
participant is expecting one US to happen then they are not 
expecting the other, so if a participant is expecting a US1 
trial to occur then that implies they are not expecting a US2 
trial. This would suggest expectancy of the two USs is 
complementary such that, if expectancy of US1 is the 
highest possible rating (9), then expectancy of US2 should 
be the lowest possible rating (1). We can assume that these 
sum (9+1=10) and thus calculate expectancy for US2 as 
equal to 10 minus US1 expectancy. Based on this 
assumption, we can predict participants’ expectancy of US2 
on US2 trials as being the complement of their expectancy 
of US1 on US2 trials, see Fig. 2. If this supposition is true, 
then we have shown expectancy of US2 on US2 trials 
decreases as a function of run length. Therefore, higher 
ratings of US2 are made if participants have experienced a 
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run of US1 trials, and vice versa. This pattern of responding 
can be attributed to the propositional, gambler’s fallacy 
phenomenon discussed previously.  

 
Figure 2. This graph displays expectancy of US1 on US2 
trials and the hypothetical expectacny of US2 on US2 trials.  
 

In order to verify if our inference regarding expectancy of 
US2 on US2 trials was correct, 32 of our participants carried 
out a further two experimental blocks to those described in 
the earlier method section. In these blocks, two (identical) 
cylinders were presented (successively) and participants had 
to make an expectancy rating to each.  One cylinder 
required the participants to make a “peanut butter” rating, 
the other a “brown sugar” rating. Participants then had to 
make the appropriate RT response as in the previous blocks. 
Comparing participants expectancy of US1 on US1 trials 
and their expectancy of US2 on US1 trials, there was a 
highly significant negative correlation, r = -.969, n = 8, p < 
.001. This shows that on US1 trials, if participants were for 
example, expecting a US1 trial they were not expecting a 
US2, and vice versa. Additionally, comparing expectancy of 
US1 on US2 trials and expectancy of US2 on US2 trials, 
there was also a highly significant negative correlation, r = -
.944, n = 8, p  < .001. This also shows that on US2 trials, if 
participants were expecting a US1 they were not expecting a 
US2. Therefore, our earlier assumption receives 
considerable empirical support from this check. 

Given that expectancy of US2 on US2 trials decreases as 
a function of run length, interestingly we found that US2 
RTs also decreased as a function of run length (see Fig. 1). 
Participants were faster to respond to US2 on a run of CS-
US2 trials, even though their expectancy that US2 would 
occur had decreased. We have therefore demonstrated a 
positive correlation between expectancy of US2 on US2 
trials and US2 RTs, r = .833, n = 8, p = .010. For example, 
after a run of CS-US2 trials, participants rate that a US1 trial 
is more likely (and therefore a US2 is less likely), yet are 
faster to respond to US2. It is consequently hard to reconcile 
this expectancy with the RT result if we take the position 
that a single propositional explanation could explain our 
data. We would argue that associative, link-based processes 
are required to explain the RTs for US2. One version of this 
would be that when a person experiences the CS followed 
by US2, a link is set up between the two representations of 
these stimuli. After a run of CS-US2 trials this would 
strengthen the link between these stimuli, resulting in a 
stronger CR (i.e. a faster key press response) to US2. 

However, after a run of CS-US1 trials, the link between CS 
and US1 strengthens, but the link between the CS and US2 
weakens (extinction). Hence, the more consecutive CS-US1 
trials there are, the weaker the CR to US2 (i.e. the slower 
the RT). The results for US2 are in agreement with previous 
Perruchet RT experiments, in which a single propositional 
process cannot explain both the expectancy and RT data.  

In one experiment we have shown two different results, 
one where expectancy and RT appear positively correlated, 
and another where they are negatively correlated. We have, 
as a consequence, proposed a dual processing systems 
explanation of the US2 result. We would now like to pursue 
this further, by speculating how associative and 
propositional processes could produce both results. We 
hypothesize that the difference between the two effects (for 
US1 and US2) lies in where participants' attention is 
focused. As participants are directed to focus on one US 
(US1), to which they are making expectancy ratings, this 
effectively manipulates the expression of both propositional 
and associative processing systems for that US. We assume 
that because participants are attending to US1, they spend 
less time thinking about US2 and this would suggest 
conscious reasoning processes are more focused on the 
processing of US1 than US2. If US2 is not being 
consciously processed (to the same extent) then changes in 
US2 performance in the experiment might be driven by an 
alternative processing system. By reducing attention to US2, 
we believe we have created an environment conducive to 
associative learning. In contrast, a large amount of cognitive 
resource is being directed to processing US1, and perhaps 
this has led conscious processes to play a larger role in RT 
performance for this outcome, and inhibited the expression 
of associative processes in this case.  

 
Modeling 

To explore how associative processes might be driving 
instrumental responses to US2, we chose to simulate this 
experiment using an established model of associative 
learning. We chose the augmented SRN (Cleeremans, & 
McClelland, 1991; as revised by Yeates, Jones, Wills, 
McLaren, & McLaren, 2013), which is particularly well-
suited to this task as the simple recurrent network (SRN; 
Elman, 1990) was devised to account for learning that is 
observed across sequences of trials. Our aim was to 
ascertain the extent to which learning is driven by the 
development of associative strength between the CS and 
US2, or whether the sequential structure of the experiment 
(runs of US1 and US2) is what drives this result.  

The model (see Fig. 3) is a connectionist network that 
feeds input activation to a hidden layer, which in turn feeds 
activation forward into an output layer, each employing the 
logistic activation function (Rumelhart, Hinton, & Williams, 
1985). The activation of the hidden layer is copied back into 
a set of context units on each trial, which are then fed into 
the hidden layer as input on the next trial. This recurrent 
loop provides the model with a memory of the hidden 
layer’s representation of the last trial. Learning occurs 
through back-propagation of error correction, comparing 
output activation to expected responses. Connection weight 
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changes to represent both short- and long-term learning are 
calculated using fast and slow learning rates, respectively. 
Fast weights have a higher learning rate but decay more 
rapidly, and were introduced to the model by Cleeremans 
and McClelland (1991) to account for the short term 
priming effects evident in their data. The slow weights 
reflect more permanent learning that takes a longer time to 
develop due to the lower learning rate. 

 

 
Figure 3. Architecture of the revised version of the 
Augmented SRN by Yeates et al. (2013) 
 

The model in this simulation involved two output units to 
represent Ctrl and Alt keypress responses to US1 and US2. 
As well as the context units (copy of the previous trial 
hidden unit activation) there were five additional input units. 
These followed revisions to the SRN by Yeates et al. (2013, 
see for further discussion) and included both a 
representation of the previous response made (two units, one 
for US1 and one for US2) as well as a representation of the 
on-screen stimuli on the current trial (one CS unit and two 
US units, one to represent each of US1 and US2). The free 
parameters of the model were: 20 hidden units with the 
learning rates set at 0.4 and 0.533 for slow and fast learning 
rates, respectively (based on Jones, & McLaren, 2009).  

The model was run 64 times with random initial weights 
of between -0.5 and 0.5 to give the same n of networks as 
participants in the experiment. Each of these simulations 
used binary input activations representing the exact 
occurrence of the CS and USs taken from the unique 
sequences that each of the 64 participants were given. Mean 
square error (MSE) was calculated as an index of 
responding to the US on each trial from the squared 
difference between output activations and the expected 
activations for the two possible responses (0.1 and 0.9 for 
incorrect and correct response, respectively). Trials were 
analyzed according to run length and US, like the variables 
of interest used in the behavioral experiment.  

We analyzed the MSE for each US using one-way 
repeated measure ANOVAs and thus examined the 
modeling data in the same fashion as the behavioral data. 
There was a main effect of run length in both US1, F(7,406) 
= 1339.80, MSE = 0.67, p < .001, and US2, F(7,441) = 
1546.46, MSE = 0.67, p < .001. Thus, for both US1 and US2 
MSE differed according to run lengths. Furthermore, we 
found that there was a highly significant linear contrast on 
run length for both USs, F(1,58) = 2633.43, MSE = 4.44, p 

< .001, and F(1,63) = 2908.722, MSE = 4.14, p < .001, for 
US1 and US2 respectively. This is seen quite clearly in Fig. 
4, which shows a decreasing linear trend for both USs 
(which do not differ significantly) across run length. It can 
also be seen from the graph the two functions of MSE lie 
almost entirely on top of one another. Thus, responding to 
both of these USs is extremely similar, both demonstrating a 
reduction in error as run length increases. 

 
Figure 4. Graph of the mean square error (MSE) of the 
model  

 
When comparing the modeling data to the human data we 

are using MSE as an approximation to RTs, as this is what 
we consider to capture the automatic, associative 
relationship between CS and US. We can see that human RT 
responding to US2 has the same, decreasing function across 
increasing reinforcement as is produced by the AugSRN. 
This is supported by a significant positive correlation 
between run length on RT and MSE results for US2, r = 
.895, n = 8, p = .003. Clearly then, the Augmented SRN is a 
good model of human performance on US2 in our 
experiment, but a poor one for US1.  

Further investigation, however, reveals that the basis for 
performance may not be the conventional associative 
explanation offered for the Perruchet effect. There is no 
doubt that transient fluctuations in the strength of CS-US 
associations could explain the results observed for US2. 
But, the Augmented SRN can also learn about the sequence 
of events that take place, rather than just in terms of CS-US 
associations; and with the parameters given in Yeates et al., 
(2013) it could be that the pattern shown in Fig. 4 is based 
on this type of learning, rather than CS-US learning. This 
can be investigated by running the same simulation, but 
with the CS unit permanently set to zero so that no change 
in CS-US associations is possible. When we did this, the 
same function emerged, see Fig. 5. Thus, we would appear 
to have evidence suggesting that transient changes in CS-US 
associations might not be the basis of the function shown in 
Fig. 4. This result is reminiscent of that reported by 
Mitchell, Wardle, Lovibond, Weidemann and Chang (2010), 
who were able to get a Perruchet type effect in an RT 
experiment without any CSs. We have essentially the same 
result in our simulation, using a model that is well known 
for its ability to generate sequential effects. 

 But if sequential effects are the correct explanation of our 
modeling result, the removal of all the input units from the 
model (leaving only the hidden and output layers) should 
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abolish this effect, as there would be nothing left in the 
model that could produce sequential effects (no input or 
copy-back from the hidden layer). However, when we did 
this, we found the same decreasing function in MSE as seen 
before in our previous simulations (see Fig. 5). This 
demonstrates that sequential effects are not necessarily 
driving our result, but rather that the associative fluctuations 
between the hidden and output units are.  

 
Figure 5. Graph of the MSE for the further modelling 

 
At the beginning of these last simulations the hidden units 

have activation values of 0.5 (corresponding to zero input). 
Therefore, after a reinforced trial the link between any 
hidden unit and the output unit will be strengthened. 
Consequently, if another reinforced trial follows the 
previous one this link is again strengthened leading the 
model to produce a smaller MSE. In contrast, a 
nonreinforced trial weakens this link, and the MSE 
increases. Therefore, there is an associative explanation for 
the Perruchet effect that emerges from this model, just not 
the classic explanation as it is usually cited. It is worth 
emphasizing that it is an associative explanation that applies 
here, and not one based on conscious, cognitive expectancy 
of the US. The pattern seen for US1 in our empirical data 
follows that generated by the expectancy ratings given by 
our participants and is quite different from both the pattern 
seen for US2 and the pattern generated by our model 
simulating an explanation in terms of CS-US associations, 
sequential effects, or hidden to output layer connections. 
The correlation between human RTs and modeling data for 
US1 is negative and non-significant across run length, r = -
.562, n = 8, p = .148. Thus, an associative explanation will 
not fit these data, and a more cognitive model is required.   
 

General discussion 
This paper presents behavioral and modeling data based 

on a new RT variant of the classic RT Perruchet paradigm. 
In our behavioral experiment we produced a Perruchet-type 
effect whereby expectancy of US2 decreased as a function 
of run length while RT responses to US2 decreased. We 
have rejected a single processing system explanation of 
learning in favor of a dual processing systems argument to 
explain this result. The propositional, gambler’s fallacy 
heuristic (Burns & Corpus, 2004) explains why expectancy 
of US2 decreased as the run of CS-US2 trials increased, as 
participants are deciding that it is less likely another US2 
trial will happen if they have experienced a run of US2 

trials. However, within the RT data, after a run of CS-US2 
trials participants are faster to respond to US2 despite low 
expectancy that US2 will occur. This seems paradoxical 
when considered from a single systems view, but an 
associative account can explain the RT result, in terms of 
fluctuating hidden-output unit associations, sequential 
effects or CS-US associations. Our feeling is that it would 
be possible to parameterise the Augmented SRN to produce 
the US2 pattern of results on the basis of any of these 
potential mechanisms, though it would appear that in our 
current simulations the effect is mainly carried by 
fluctuating hidden-output associations. Note, however, that 
in Fig. 5 the pattern is more pronounced when the input to 
the model is enabled (suggesting that sequential effects can 
contribute), and we have run other simulations that show 
that the presence or absence of a CS representation can also 
strengthen or weaken this effect indicating that CS-US 
associations can also be effective in this model. More 
research will be needed to determine which of these 
mechanisms is the correct explanation for our data. 

In conclusion, the evidence for dissociable propositional 
and associative processes provided by Perruchet type RT 
experiments is perhaps stronger than we thought. Explaining 
these effects with reference to a single propositional system, 
however, is likely to prove a difficult challenge for theorists 
of that persuasion. 
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