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Abstract 

A comprehensive evaluation of the clear cell renal cell carcinoma (ccRCC) immune landscape was found using 584 RNA-sequencing 
datasets from The Cancer Genome Atlas (TCGA), we identified 17 key dysregulated immune-associated genes in ccRCC based on 

association with clinical variables and important immune pathways. Of the numerous findings from our analyses, we found that several 
of the 17 key dysregulated genes are heavily involved in interleukin and NF-kB signaling and that somatic copy number alteration 

(SCNA) hotspots may be causally associated with gene dysregulation. More importantly, we also found that key immune-associated 

genes and pathways are strongly upregulated in ccRCC. Our study may lend novel insights into the clinical implications of immune 
dysregulation in ccRCC and suggests potential immunotherapeutic targets for further evaluation. 

Neoplasia (2022) 24, 145–154 

Keywords: Renal clear cell carcinoma, TCGA 

 

 

 

 

 

 

 

 

 

 

t  

a  

s  

[  

t  

p  

c  

a  

s  

m
[  

t

Introduction 

Kidney cancers comprise a heterogeneous group of malignancies that
affect nearly 270,000 patients [1] . Of the different types of kidney cancers,
renal cell carcinomas (RCCs) originate within the renal cortex and account
for 85% of all primary kidney neoplasms [2] . RCCs are divided into
several histological subtypes, the most common of which is clear cell
renal cell carcinoma (ccRCC, or KIRC), comprising 70-80% of RCCs
[3] . The driving oncogenic event in ccRCC is attributed to VHL gene
dysfunction resulting in accumulation of hypoxia-inducible factor (HIF),
leading to downstream angiogenesis, cell growth, and cell proliferation [4] .
Despite recent improvement in kidney cancer outcomes due to VEGF
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argeted therapies, kidney cancer still accounts for over 115,000 deaths
nnually worldwide and further progress is necessary to improve patient
urvival outcomes and for better patient selection for systemic therapy
1,5] . ccRCC is recognized as an immunogenic tumor due to its ability
o induce adaptive immune responses, via recruitment of T-cells, and the
resence of tumor-associated macrophages [6] . Several subsets of immune
ells have been reported in ccRCC tumors, including 17 subtypes of tumor-
ssociated macrophages and 22 subtypes of T-cells identified with mass
pectrometry data and antibody panels [7] . Expression of immune checkpoint
olecules on infiltrating T-cell surface correlates with ccRCC progression 

8] . Immunotherapy has risen as a key therapeutic strategy in ccRCC
reatment with the development of CTLA4-targeted therapies and PD- 
/PD-L1 checkpoint inhibitors, such as the monoclonal antibody nivolumab 
6] . PD-1 is often upregulated in ccRCCs, enabling ccRCC cells to avoid
estruction by the immune system. By blocking PD-1, nivolumab has shown
romise in increasing immune response against ccRCC cells but has often
roduced immune-related adverse events, including autoimmunity as well as 
ilder side effects, including fatigue, skin rash, and nausea in some patients

9] . In addition, a large percentage of patients fails to respond successfully to
D-1 blockade, for reasons that remain largely unclear [10] . 

Several markers have been found that can partially predict response
o PD-1 or PD-L1 blockade in ccRCC. PD-L1 has been shown as a
arker for PD-L1 blockade response, but the correlation is controversial

11] . PD-1/PD-L1 blockade failure may be related to lack of angiogenesis,
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Table 1 

Fold change and statistical significance of 17 key IA genes 

Gene 

Fold 

Change 

Adjusted 

p-value 

AIM2 8.25 5.75E-05 

C1S 2.56 2.01E-07 

CD72 6.59 6.45E-04 

CEBPB 2.67 9.58E-06 

CMTM4 0.27 9.28E-04 

FCGR1A 8.53 8.70E-04 

HCST 4.07 1.18E-06 

IFNG 21.24 4.44E-03 

IL20RB 15.31 3.35E-09 

IRF6 0.33 3.65E-06 

JAK3 5.44 5.48E-09 

NOD2 5.46 1.54E-04 

OSM 3.74 1.42E-03 

PYCARD 4.22 5.03E-06 

RNASE2 5.42 8.27E-05 

TNFSF13B 5.69 1.03E-04 

TNFSF14 13.8 4.53E-06 
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myeloid inflammation, and T-cell/IFN- γ activation, based on exploratory
gene expression correlations [12] . On the genomics scale, loss-of-function
mutations in PBRM1 correlates with better response to PD-1/PD-L1
blockade in ccRCC [13] . 

It is necessary that we develop an in-depth understanding of the clinically
relevant immune-associated landscape of ccRCCs in order to understand
the causes of differential clinical effects of immunotherapy in ccRCC [14] .
Therefore, in this study, we examined dysregulation of immune-associated
(IA) genes in ccRCC and investigated their relevance to tumor formation.
Using 512 RNA-sequencing datasets from The Cancer Genome Atlas
(TCGA) of primary, untreated ccRCC tissues, we identified a panel of
17 key dysregulated IA genes in ccRCC from a total of 371 dysregulated
and survival-associated IA transcripts. To gain insight into potential sources
of IA gene dysregulation, we investigated the relationship among IA gene
dysregulation, mutation, and copy number alteration occurrences in ccRCC
to assess the ability of genomic alterations to modulate the ccRCC IA
landscape. Mutations have been widely recognized as key driving events in
malignant transformation, while SCNAs have been implicated in various
cancer phenotypes due to rearrangement of large genomic regions [15,16] .
With the recent recognition that microRNAs may function as key modulators
of the tumor immune response, we explored the ability of these small
transcripts to modulate IA gene. Finally, we performed gene set-level analyses
by correlating expression of individual IA genes to expression of genes within
cancer and immune-related signatures and pathways to gain a pathways-scale
understanding of the immune-associated cancer development. 

Results 

Identification of dysregulated immune-associated (IA) genes in ccRCC 

We performed differential expression analysis for TCGA ccRCC vs.
adjacent normal samples and found 829 IA genes to be dysregulated between
the cancer and normal cohorts (FDR < 0.05, Table S1-S2). Since TCGA
sequences the bulk tumor, mRNAs within all tumor-infiltrating immune cells
would have been captured along with mRNAs within cancer cells. Therefore,
IA genes we identified can be dysregulated in immune cell populations. After
completing the workflow outlined in Fig. 1 A, we identified 829 IA genes to
be dysregulated in ccRCC and 371 of those to correlate with patient survival.
We then proceed to identify a panel of 17 IA genes that we believe to be most
critical to the biological phenotype of ccRCC immune landscape, based on
clinical relevance and importance to immune processes ( Table 1 , Fig. 1B).
Each of these metrics will be detailed in the sections below. 15 of the 17
genes are upregulated in ccRCC (Fig. 1C). These 17 genes are involved in a
variety of immune processes, including interleukin, interferon, and NF-kB
signaling as well as inflammation (Fig. 1D). A large fraction of the 17 genes,
including OSM, JAK3, IL20RB, NOD2, IFNG , and CEBPB , are involved
in interleukin signaling. A significant number of genes, including HCST,
NOD2, TNFSF13B, TNFSF14 are involved in NF-kB signaling. 

Clinical significance of dysregulated IA genes in ccRCC 

In order to evaluate the clinical relevance of IA genes in ccRCC, we
examined their expression relative to clinical variables, including vital status,
cancer status, pathologic stage, and histologic grade. The 17 IA genes
may significantly modulate different clinical phenotypes (Kruskal-Wallis test,
p < 0.05, Fig. 2 A–E). 4 IA genes, C1S, FCGR1A, JAK3 , and PYCARD ,
were found to display significantly elevated expression in TCGA patients
whose tumors were not eliminated by the time of last follow-up (cancer
status) (Fig. 2A). The dysregulation of 14 IA genes, all except CMTM4,
IL20RB , and OSM , are strongly associated with worse pathologic N stage, or
tumor invasion of nearby lymph nodes (Fig. 2B). 7 IA genes, C1S, FCGR1A,
IL20RB, JAK3, TNFSF13B, PYCARD , and NOD2 , are highly expressed
n patients with metastasis (M1 stage) (Fig. 2C). Lastly, CD72 expression 
orrelates with increasing pathologic stage, and C1S expression correlates with 
ncreasing histologic grade (Fig. 2D,E). Notably, C1S, JAK3 , and PYCARD , 
ll upregulated in ccRCC, are highly expressed in patients with tumors at 
ast follow-up, in patients with higher pathological stage, and in patients 
ith metastatic tumors. We also found that all 17 IA genes’ expressions are

ignificantly associated with overall survival in a manner consistent with the 
irection of their dysregulation in ccRCC (Cox regression, p < 0.05, Fig. 2F).
sing just the 17 IA genes as a survival signature, we were able to predict

cRCC survival at 2,500 days with 79% accuracy (Fig. S1A). To ascertain that
A gene expressions’ association with survival is not an effect of correlation 
etween other clinical variables and survival, we performed a multivariate Cox 
egression analysis and found that the association between IA gene expression 
nd survival is almost always stronger than the association between survival 
nd clinical variables associated with IA genes (mostly pathologic N and M 

tages)(Table S3). 

ssociation of IA gene dysregulation with genomic alterations in ccRCC 

We used the REVEALER algorithm to explore the possible associations 
etween genomic alterations and IA gene function. REVEALER generates 
 combination of likely causal genomic alteration events involved in 
odulating individual IA genes by exhaustively examining all alterations [17] . 

We found all 17 genes to have significant correlation with SCNAs (listed 
n Fig. 3 A,B). We also observed that several SCNA hotspots, including 
eletions within chromosome arms 3p,14q, and 9p and amplifications 
ithin 20q, associate with the dysregulation of multiple IA genes (Fig. 3C). 

nterestingly, we did not find any mutations that correlated with the 
ysregulation of IA genes. None of the IA genes are associated with SCNAs
n their own chromosomes, except for CEBPB, which is on 20q13 and 
orrelated strongly with the amplification of 20q11. This result suggests that 
ost IA genes are not dysregulated due to copy number changes on their own

hromosomes. 
To reveal the precise genes within SCNA loci that may alter the 

xpression of IA genes, we correlated the expression of each IA gene to the
xpressions of all genes within each genomic locus associated with the IA gene
Spearman, p < 0.05). We observed that some genes, such as PRKAR2A, 
ECTD1, ARHGAP5, ARHGEF12, FAM122A, SETD3, TXNDC16 , and 
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Fig. 1. Summary of study workflow and differential expression results. ( A ) Schematic of data processing procedures and algorithms utilized. ( B ) Heatmap of 
all IA genes differentially expressed when comparing ccRCC samples to normal samples. All genes correlate with patient survival (see Figure 2). In order from 

low to high expression, the heatmap displays dark blue, light blue, light red, and dark red. Asterisks next to gene names denote downregulated IA genes in 
ccRCC. ( C ) Volcano plot of differential expression significance vs. fold change in ccRCC samples vs. normal samples. All dots on the volcano plot represent 
survival-associated IA genes with significant fold change (|FC| < 2) and corrected p-value ( p < 0.05). Selected 17 IA genes of interest in this study are labeled in 
red. ( D ) Schematic highlighting the interactions between selected IA genes of interest and key immune cells, processes, and pathways. 
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Fig. 2. Correlations of immune-associated gene expression with clinical 
variables and survival in ccRCC patients. Boxplots of IA gene expression vs. 
( A ) cancer presence after treatment, ( B ) pathologic M stage, ( C ) pathologic 
N stage, ( D ) pathologic T stage, and ( E ) histologic grade (Kruskal-Wallis, 
p < 0.05). ( F ) Kaplan-Meier survival plots for 17 selected IA genes (Cox 
regression, p < 0.05). 
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ATF , exhibited much higher associations with the IA gene than other genes
ithin the same region (Fig. 3D). Furthermore, many of the SCNA-related 
enes with high correlations are immune-related and may very likely affect 
he function of the IA gene (Fig. 3E,F). The 17 key IA genes are still the
ost clinically important IA genes, however, since only 69 out of 102 genes

n SCNA loci that correlate with expression of a key IA gene also correlate
ith patient survival (Table S4). For the top 10 genes out of these 69 survival-

ssociated genes, 7 out of 10 genes did not have a more significant correlation
ith survival than the survival correlation of key IA gene(s) they are associated
ith, suggesting that many of these genes may correlate with survival because 

heir gene expression correlates with the expression of survival-associated IA 

enes (Table S5). 

dentification of microRNAs involved in IA gene regulation 

We selected miRNAs that are dysregulated in ccRCC and are predicted 
o target IA genes by the TargetScan software as candidate miRNAs that 
an potentially regulate IA genes (Table S6). Using gene set enrichment 
nalysis (GSEA), we found the expressions of a large number of candidate 
iRNAs to be negatively enriched relative to IA gene expression for many 

f our IA genes ( p < 0.05, Fig. 4 A,B). Sample GSEA graphs indicate an
nverse relationship between IA gene expression and expression of multiple 

iRNAs, as expected for miRNA-mediated gene silencing (Fig. 4C). Overall, 
his suggests a potential mechanism of IA gene regulation in ccRCC and also
ends crucial insight into the potential use of miRNAs as therapeutic targets 
o modulate the immune response. We note that miRNAs do not serve as
etter ccRCC biomarkers than the 17 IA genes, as shown by their lower fold
hange in ccRCC samples, relative to the fold change of the 17 key IA genes
Table S7). We have also correlated the miRNA panel to patient survival and
ound that it is not as good a predictor of survival as the panel of 17 IA genes
re (Fig. S1B). 

ene set-scale analysis of IA dysregulations in ccRCC 

To further explore the impact of our 17 IA genes on the immune
nvironment, we used GSEA to correlate expression of individual IA genes to 
xpression of genes implicated in immunologic signature gene sets. We found 
AK3, IFNG , and TNFSF14 upregulation to associate more with NKT cell 
ctivity than conventional CD8 + T-cell activity ( Fig. 5 A–C). NKT cells are
estricted to recognizing CD1d molecules, making them much less versatile 
han conventional CD8 + T-cells in recognizing tumor cells [18] . We found
AK3 expression to associate with the expression profile of tumor-bearing 
onocyte cells, which may indicate JAK3 ’s potential ability to modulate 
onocyte phenotype in ccRCC (Fig. 5A). We also discovered that high 
NFSF14 expression correlated with high exhausted CD8 + T cell activity 
nd inhibition of helper T cells generation, signifying TNFSF14 ’s potential 
ole in diminishing adaptive immune function (Fig. 5B). Finally, we identified 
SM to promote the resting state of T cells over the activated state, suggesting

ts potential role in immunosuppression as well (Fig. 5D). 
We also explored cancer-related genes’ dysregulation signatures and 

anonical cellular pathways implicated in ccRCC. We found that the 
ownregulation of MEL18, BMI1, STK33 , and SNF5 and upregulation 
f LEF1, KRAS , and IL2 are significantly correlated with ccRCC samples 
ver normal samples (Fig. 5E). The downregulation of certain oncogenic 
ignatures, such as for BMI1 and STK33 activity, in ccRCC suggests that 
nti-cancer mechanisms may still be present in ccRCC cells. GSEA analysis of 
anonical pathways dysregulated in ccRCC confirmed a general upregulation 
f immune processes in ccRCC, corroborating the immune upregulation 
ndicated by the dysregulation of the 17 key IA genes (Fig. 5F). The
nly immunosuppressive IA pathway upregulated in ccRCC is the CTLA4 
athway. The majority of pathways downregulated in ccRCC are related to 
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Fig. 3. Genomic alterations most associated with dysregulation of each IA gene. REVEALER plots of amplifications, deletions, or mutations that have the 
highest correlation with gene expression for ( A ) IA genes upregulated in ccRCC and ( B ) IA genes downregulated in ccRCC, with the significance threshold at 
|CIC| > 0.3. ( C ) Bar graphs of Spearman correlation coefficient of IA gene expression with expression of genes within SCNA regions seen in panels (A) and 
(B). Only correlations with correlation coefficient > 0.4 or < -0.4 are presented. ( D ) Circos plot visualizing chromosomal locations of correlations presented 
in panels (A) and (B). IA gene names are listed on the green circle, while SCNA regions are listed on the yellow circle. Blue lines connecting IA gene names to 
SCNA region names indicate that deletion of the regions correlate with dysregulation of the IA gene, while red lines indicate that amplification of the regions 
correlate with IA gene dysregulation. ( E ) Scatter plots of most significant direct (positive) correlations from panel (C). ( F ) Scatter plots of most significant 
inverse (negative) correlations from panel (C). 



150 The renal clear cell carcinoma immune landscape O.A. Saad et al. Neoplasia Vol. 24, No. xxx 2022 

Fig. 4. Correlations between IA gene expression and regulatory miRNA expressions. ( A ) Plot of interactions between dysregulated IA genes and targeting 
miRNAs. ( B ) A Circos plot depicts the potential interactions between dysregulated miRNAs and dysregulated IA genes with their relative positions in the 
genome. Potential interactions are defined as interactions forming the leading edge subsets of each GSEA plot. ( C ) Sample gene set enrichment analysis plots 
indicate negative enrichment of miRNA expression in relation to expression of IA genes IFNG , IRF6 , and OSM . All lines connecting to a single IA gene are 
of the same color in panels (A) and (B). 
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signal transduction or metabolism, which may be suggestive of tumor necrosis
(Fig. 5F). 

Discussion 

To the best of our knowledge, we are the first to comprehensively
profile dysregulation of immune-associated (IA) genes in ccRCC using whole
transcriptome sequencing. We believe our evaluation of IA genes’ modulation
nd clinical functionality in ccRCC may lend crucial insights into the 
easons for differential patient response as well as suggest novel potential 
mmunotherapeutic targets for further study. Using 512 ccRCC and 72 
ormal kidney RNA-seq datasets from TCGA, we identified a panel of 17 

mmune-associated (IA) genes most critical to the immune dysregulation 
andscape of ccRCC and most clinically actionable based on our collective 
orrelation results, ranging from regulatory potential to clinical variable 
ssociations. 
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Fig. 5. Gene set-scale analysis of IA dysregulation. GSEA was used to associate the expression of ( A ) JAK3 , ( B ) TNFSF14 , ( C ) IFNG , and ( D ) OSM to 
expressions of genes in immunologic signatures ( p < 0.05). Bar graphs were plotted of GSEA enrichment result using fold change of gene expression in ccRCC 

vs. normal samples, against ( E ) cancer-related signatures and ( F ) canonical pathways as gene sets (FDR < 0.1). Red bars indicate correlation with negative fold 
change for signatures of downregulated genes after knockdown of cancer-related genes in panel ( E ), while blue bars indicate correlation with negative fold 
change for signatures of downregulated genes after upregulation of cancer-related genes. Red bars indicate negative enrichment against fold change, and blue 
bars indicate positive enrichment against fold change in panel (F) 
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These 17 genes are involved in a wide variety of important immune
processes. We found 4 genes, JAK3, AIM2, PYCARD , and OSM , that can
potentially be involved in adaptive immune resistance. Adaptive immune
resistance occurs when cancer cells are induced to evade the adaptive immune
system in response to an active cytotoxic or inflammatory response [19] . In
many cases, the cancer cell upregulates immune checkpoint receptors, such as
PD-L1, when it is exposed to interferons or cytokines [19] . We found JAK3 ,
a gene overactivated in various cancers and able to induce adaptive immune
resistance, to be upregulated in ccRCCs [20,21] . Previous studies have shown
that JAK3 may desensitize patients to PD-1 blockade by amplifying PD-
1-related tumor cell preservation through PD-L1 overexpression [22] . We
also identified AIM2, PYCARD , and OSM , three genes involved in the
inflammatory response, to be upregulated in ccRCCs. AIM2 interacts with
PYCARD (ASC) to activate caspase-1, which then cleaves and activates the
pro-inflammatory cytokines IL-1b and IL-18 [23 , 24] . Caspase-1 activation
s often the rate-limiting step in the pro-inflammatory response, thus AIM2
nd PYCARD may be useful targets in modulation of inflammation 24] .
SM, on the other hand, synergizes with TNF-a and IL-1b to enhance

xpression of the pro-inflammatory cytokine IL-6 in ccRCCs [25,26] . These
roinflammatory cytokines have been documented to cause adaptive immune 
esistance through upregulation of PD-L1 [27,28] . 

Another IA gene, CMTM4, is recently found to increase PD-L1
evels by reducing ubiquitination of the PD-L1 protein at the cell
urface, thereby increasing PD-L1 protein half-life [29] . However, we
dentified the IA gene CMTM4 to be downregulated in ccRCCs. Although
MTM4 downregulation seems to be inconsistent with oncogenesis in this
ontext, CMTM4 downregulation is in accordance with previous findings 
ocumenting tumor suppressive functions of CMTM4 in ccRCC and is
onsistent with our correlation of higher CMTM4 expression with increased
atient survival. Therefore, we suspect that differences in the ratio of
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expressions of CMTM4 and PD-L1-inducing genes may result in variable
PD-L1 expressions for individual patients through their competing effects on
PD-L1 regulation. CMTM4 may also have alternate unknown functions that
must be further investigated before it can be considered a therapeutic target
for ccRCC. 

2 of the 17 IA genes are also involved in NF-kB signaling, a pathway
that has been found to regulate various aspects of RCC tumor biology that
render conventional therapies ineffective, including resistance to apoptosis
and multi-drug resistance [30] . We identified TNFSF13B and TNFSF14 ,
both implicated in NF-kB activation, to be upregulated in ccRCC, suggesting
that their inhibition may lead to improved patient outcomes [31] . However,
TNFRSF13C, the receptor for TNFSF13B, is associated with higher
likelihood of responding to PD-1 blockade according to our analysis of
PD-1 blockade response signature. Therefore, TNFSF13B ’s upregulation
may actually contribute to ccRCC’s ability to response to immunotherapy.
On the other hand, TNFSF14 has also been found to associate with
improved patient survival in colon cancer due to its ability to drive
cytotoxic T-cell response and enhance immune eradication of metastatic
cancer cells, although this mechanism of action is not fully understood
[32] . These NF-kB-associated TNF superfamily members should be further
investigated clinically for their capacities of influencing immunotherapy
response. 

To identify possible intervention points to regulate the immune landscape
of ccRCC, we identified key genomic alterations and miRNA regulators
potentially associated with IA gene dysregulation. Notably, we found multiple
IA genes to associate with deletion hotspots in chromosome arms 3p,14q,
and 9p and an amplification hotspot in 20q. However, the genes within
these regions that we found to correlate with IA genes dysregulation are
not the same for each IA gene, suggesting that the event of genomic
alteration, over specific genes the alterations target, may be more important
to IA dysregulation. We found that several miRNAs, including miR-3065,
miR-508, and miR-149, can potentially target a significant fraction of the
17 core IA genes, suggest that they may be valuable targets for ccRCC
therapy. Specifically, miR-149, which may target PYCARD, IFNG, HCST,
TNFSF14, CD72, and NOD2, has been found to be downregulated in
various cancers, including ccRCC, and can suppress tumor formation and
metastasis [33] . 

Our study implicates novel and attractive IA genes in ccRCC that
should be further investigated for whether they can be used as targets for
immunotherapy in ccRCC. Although much remains to be elucidated, we
believe that our study sheds light on the relatively unexplored immune
landscape of ccRCC to lay a foundation for future work on ccRCC
immunotherapy. 

Materials and methods 

mRNA differential expression analyses 

Level 3 normalized mRNA expression read counts for 512 ccRCC
(KIRC) and 72 adjacent normal samples datasets were downloaded on 1
Sep 2017 from The Cancer Genome Atlas (TCGA) ( https://tcga-data.nci.
nih.gov/tcga) . All samples collected for TCGA came from patients who
have not received previous cancer treatments. mRNA read count tables
(htseq files) were imported into edgeR v3.5 ( http://www.bioconductor.
org/packages/release/bioc/html/edgeR.html ) as a DGE list. Lowly expressed
mRNAs (counts-per-million < 1 in an amount of samples greater than the
size of the smaller cohort of each analysis) were filtered from the analysis,
and then TMM (trimmed mean of M-values) normalization factors, common
dispersion, and tagwise dispersion were calculated for the expression matrix.
Significantly differentially expressed mRNAs in ccRCC vs. normal samples
were then identified using the exact test ( p < 0.05). Immune-associated genes
from which differentially expressed mRNAs were transcribed were identified
s dysregulated and retained as candidates. Differential expression is defined 
s p < 0.05 and fold change < -2 or > 2 in edgeR analysis. All statistical tests
erformed in this study are two-tailed. A gene is determined to be immune-
ssociated if it is related to any process in the innate or adaptive immune
ystem based on existing literature. 

ssociation of candidate genes’ expressions with patient survival and 
linical variables 

Survival analyses were performed using the Kaplan-Meier Model, with 
ene expression designated as a binary variable based on expression above or 
elow the median expression of all samples. Univariate Cox regression analysis 
as used to identify candidates significantly associated with patient survival 
 p < 0.05). Survival-correlated genes were evaluated for clinical significance. 
mploying the Kruskal-Wallis test, we investigated gene association with 
eoplasm histological grade, clinical and pathologic stages, vascular invasion 
f tumor, and percent lymphocyte infiltration using clinical data and mRNA 

xpression values (counts-per-million) from ccRCC patients. In clinical T 

tage analysis, patients with stages T1a and T1b were grouped into stage T1,
nd likewise for stages T2, T3, and T4. Patients with no available information
or a given variable were filtered from analyses involving that variable. 

Results of clinical variable correlations are visualized with boxplots where 
ll datapoints within the boxes are those in between the first and third
uartiles, while the whiskers extend 1.5X the interquartile range (IQR) from 

he boundaries of the boxes, where IQR = quartile 3-quartile 1. Datapoints 
utside the whiskers are considered outliers. Datapoints outside 3X the IQR 

rom the box boundaries are considered extreme outliers and are sometimes 
emoved from the plot to improve visualization of the rest of the plots. No
ore than 5 points, out of 512 points, are removed in a given plot. 

nformation-coefficient based correlation of IA gene expression with 
enomic alterations 

Mutation and SCNA data for the ccRCC tumors were obtained from 

utation and SCNA annotation files generated by the Broad Institute GDAC 

irehose on 28 January 2016. Annotation files were compiled into a binary 
nput file for the program REVEALER (repeated evaluation of variables 
onditional entropy and redundancy), designed to computational identify a 
et of specific copy number alterations and mutations most likely responsible 
or the change in activity of a target profile. The target profile was defined in
ur study to be IA gene expression. In order to identify a set of most relevant
enomic alterations, REVEALER runs multiple iterations of the correlation 
lgorithm, with the genomic feature exhibiting the strongest correlation in 
ach run serving as a seed for the successive run. We set the maximum number
f iterations to three. A seed is a particular mutation or copy number gain
r loss event that most likely accounts for the target activity. When given a
eed, REVEALER will focus correlation on only patients with altered target 
ctivity not accounted for by the seed. Since we do not know which genomic
lteration is responsible for the dysregulation of each gene, we set the seed for
he first iteration to null. We set the threshold of genomic features to input
o features present in less than 75% of all samples. 

dentification of significant genes within each IA 

ysregulation-associated genomic locus 

A complete list of genes located within each genomic cytoband was 
btained using the Ensembl BioMart tool ( https://www.ensembl.org/ ). 
pearman correlation was then applied to correlate the expression of a 
ysregulated IA gene to the expressions of all genes within a cytoband whose
mplification or deletion has been associated with the IA gene dysregulation 
y REVEALER ( p < 0.05). 

https://tcga-data.nci.nih.gov/tcga)
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
https://www.ensembl.org/
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Assessing potential involvement of miRNAs in regulating IA genes 

To identify possible regulatory miRNAs associated with IA genes,
we identified a list of miRNAs predicted to bind to each dysregulated
mRNA using TargetScan version 7.1 ( http://www.targetscan.org/vert _ 71/ )
[34] . This list is then filtered to exclude any miRNAs not dysregulated
in ccRCC. Dysregulation of miRNAs was determined by downloading
miRNA expression datasets on 16 Sep 2017 of the same patients used
earlier in mRNA differential expression analysis from TCGA, and identifying
differential expression using edgeR as described earlier. Only miRNAs that
were dysregulated in a direction consistent with their regulatory roles of IA
genes (i.e. miRNAs that were upregulated if the IA gene was downregulated)
were retained as candidates. 

The GSEA software was used to characterize enrichment of miRNA
expressions with respect to IA gene expressions. The full set of candidate
miRNAs for each IA gene was modeled as a gene set. The continuous
expression values of IA genes were used as phenotype labels. The unfiltered
expression values of all miRNAs available from TCGA miRNA expression
datasets were included in the expression dataset input file. One GSEA plot was
produced for each IA gene potentially associated with seven or more candidate
miRNAs. 

Identification of immunologic signatures associated with IA gene 
expressions 

Gene set signatures documenting differences in gene expression between
different immunologic states (C7 gene set) were downloaded from MSigDB
( http://software.broadinstitute.org/gsea/msigdb ). 3492 relevant gene sets
were filtered from the list of immunologic signatures downloaded and then
analyzed for enrichment with respect to IA gene expressions using GSEA.
Each gene set generally lists genes with the greatest change in expression
following stimulation of specific immune cell types with different molecules,
compared to a control sample. Other gene sets list genes with the greatest
expression differences between two immune cell types or populations. With
some exceptions, the top 200 genes with significant expression difference in a
particular direction (decreased or elevated expression) are included in the gene
set. The phenotype file for this analysis was identical to the GSEA performed
for miRNA expression correlation. We replaced the expression dataset input
file containing miRNA expression with one containing mRNA expression
[35] . 

Identification of 17 key dysregulated IA genes 

For all IA genes that are differentially expressed between ccRCC and
normal samples, we performed survival correlation analyses to narrow
the candidate list of important IA genes to over 300 survival-correlated
dysregulated genes. The candidate IA genes’ expressions were then correlated
to clinical variables and immunologic signatures to determine the IA genes’
clinical relevance and relevance to immune processes. The significance
of differential expression analysis, survival correlations, clinical variable
correlations, and immunologic signature correlations were all taken into
account to establish a panel of 17 key IA genes in ccRCC by assigning
each candidate gene a heuristic score. The score is described by the heuristic
formula below: 

if |differential expression fold change | > 2.05, + 1 to score; 
if univariate Cox regression p-value for survival correlation < 0.0015, + 1

to score; 
if sum of GSEA FDRs for immunologic signature correlations < 0.2, + 1

to score; 
if sum of Kruskal-Wallis p-values for clinical variable correlation > 0.074,

+ 1 to score. 
The score was used to further narrow the list of candidate genes, and the
utoff values used in the score were chosen to achieve approximately equal
epresentation of the top genes from each of the 4 analyses and narrow the
ist of IA genes to less than 20. 

dentification of dysregulated canonical pathways and oncogenic 
ignature in ccRCC samples 

GSEA was used to compute the enrichment of canonical pathways (C2:
P gene set, MSigDB) and oncogenic signatures (C6 gene set, MSigDB) in

cRCC samples vs. adjacent normal samples. The GSEA pre-ranked function
as used for the enrichment, with all genes ranked by fold change of ccRCC
s. normal gene expressions. Although the recommended significance cutoff
f enrichment is FDR = 0.25, we filtered for significant pathways at FDR < 0.1
or greater statistical power. The canonical pathways gene set includes a wide
ariety of biological processes and is not specific to cancer or immunology.
he oncogenic signatures gene set lists genes downregulated or upregulated

fter a knockdown or overexpression of a cancer-related gene, which can be
ither a tumor suppressor or oncogene. 

onclusions 

In this study, we explored the IA gene expression landscape in ccRCC
nd identified a panel of 17 key IA genes dysregulated in ccRCC. Within
he 17 IA genes, several genes are involved in interleukin signaling,
F-kB signaling, and inflammation, respectively. We also identified key 

enomic alterations modulating the immune landscape in ccRCC and 
iscovered that miRNAs may be key regulators of dysregulated IA genes. We
elieve the IA genes we identified may be potential targets for therapeutic
ntervention to improve current immunotherapy outcomes or to inform new
mmunotherapy strategies. 
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