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Abstract

Many physical systems are described by probability distributions that evolve in both time and 

space. Modeling these systems is often challenging due to their large state space and analytically 

intractable or computationally expensive dynamics. To address these problems, we study a 

machine-learning approach to model reduction based on the Boltzmann machine. Given the form 

of the reduced model Boltzmann distribution, we introduce an autonomous differential equation 

system for the interactions appearing in the energy function. The reduced model can treat systems 

in continuous space (described by continuous random variables), for which we formulate a 

variational learning problem using the adjoint method to determine the right-hand sides of the 

differential equations. This approach can be used to enforce a reduced physical model by a 

suitable parametrization of the differential equations. The parametrization we employ uses the 

basis functions from finite-element methods, which can be used to model any physical system. 

One application domain for such physics-informed learning algorithms is to modeling reaction-

diffusion systems. We study a lattice version of the Rössler chaotic oscillator, which illustrates the 

accuracy of the moment closure approximation made by the method and its dimensionality 

reduction power.

I. INTRODUCTION

Probability distributions that evolve in both space and time appear in many modeling 

applications, such as reaction-diffusion systems [1-4], neural population activities [5,6], and 

fluid dynamics [7], as well as in engineering fields such as traffic forecasting [8] and 

navigation of autonomous vehicles [9]. However, (1) the state space of such distributions is 

generally large, and (2) the dynamical systems obeyed by their observables may be unknown 
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or intractable to solve analytically. These aspects make modeling spatiotemporal systems a 

computational challenge and limit the interpretability of such models.

Reaction-diffusion systems are a typical example of these problems. The distribution over 

system states obeys a chemical master equation (CME) [10], but the state space grows 

exponentially with the number of random variables that describe it [11]. Further, the time 

evolution of observables is not closed, i.e., the time evolution of lower-order moments 

depends on higher-order ones (similar to a BBGKY hierarchy [12]). Their estimation 

therefore requires the use of a moment closure approximation (e.g., Refs. [13,14] and others; 

see Ref. [15] for a review), or otherwise sampling algorithms such as the Gillespie stochastic 

simulation algorithm (SSA) [16] or related methods for spatial systems [17,18].

A reduced model is one which approximates both the true distribution and its dynamics and 

should address the challenges above by (1) having a smaller state space and (2) being more 

easily tractable or computationally efficient [15]. Reduced models of reaction-diffusion 

systems are widely studied [1,19], particularly in multiscale modeling in biology [20]. 

Recent work [2,4,13] has demonstrated methods based on entropic matching as a highly 

general approach to model reduction of reaction networks.

In this paper, we demonstrate a machine-learning (ML) approach to model reduction using 

Boltzmann machines (BMs) [21]. We formalize the methods of earlier work [15,22] and 

extend these with the introduction of latent variables. Our approach also extends work on 

entropic matching methods to treat spatial systems. We present examples for spatial 

chemical reaction systems that demonstrate the moment closure properties of the reduced 

model and apply the method to learn a spatial chaotic oscillator.

The area of ML most suited for model reduction of reaction-diffusion systems are generative 

models [23], where it is assumed that data are samples of an unknown probability 

distribution, with the goal of estimating this distribution by a structured approach. This 

structure can offer insight into the problem that has not been obtainable analytically [24] and 

allows new samples to be drawn using, e.g., Markov-chain Monte Carlo methods [25]. 

Typically, a graphical model for the distribution is introduced and learned by determining 

interaction parameters between random variables. Similar ML approaches have emerged as a 

powerful tool for studying quantum many-body problems [26,27].

Our approach introduces a differential equation (DE) model for interaction parameters in the 

graph. The learning problem is formulated to determine these DEs by a maximum likelihood 

approach. In contrast to ML methods for learning temporal data such as recurrent networks, 

here prior information about the system may be used to enforce a reduced physical model by 

parametrizing the functional forms of the DEs.

A further advantage of this strategy is that it offers a natural description of systems where 

neither time nor space are discretized, i.e., the system is described by random variables 

representing space continuously and varying continuously in time. In this case, a partial 

differential equation (PDE) model can be introduced. Spatially continuous descriptions are 

beneficial when confined geometries would introduce error into lattice-based methods, e.g., 

when modeling reaction-diffusion systems at synapses [17].
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The algorithmic solution to this learning problem takes the form of a PDE-constrained 

optimization problem. The algorithm and its derivation are closely related to BM learning, 

but in this case data samples are trajectories in space and time rather than instantaneous 

snapshots or slices. A related framework, graph-constrained correlation dynamics [15], has a 

similar learning goal but uses spatially aggregated snapshots in time and does not consider 

spatial reduced models.

The outline of this paper is as follows: (1) in Sec. II we introduce spatial dynamic 

Boltzmann distributions as reduced models of reaction-diffusion systems in continuous 

space and formulate their learning problem using the adjoint method; (2) in Sec. III we 

demonstrate the connection to a restricted Boltzmann machine; (3) in Sec. IV we show how 

hidden layers implement moment closure approximations and apply the method to a spatial 

chaotic oscillator.

II. SPATIAL DYNAMIC BOLTZMANN DISTRIBUTIONS

In this section, we introduce the reduced model for a spatiotemporal distribution and its 

dynamics in continuous space from Ref. [22] and formulate the learning problem using the 

adjoint method. We consider the specific application of a reaction-diffusion system but note 

that the methods are also applicable to other spatiotemporal systems.

The state of a reaction-diffusion system at some time t is described by n particles of species 

labels α located at positions x in generally continuous three-dimensional (3D) space (each xi 

for i = 1, . . . , n is a coordinate in 3D space). Let the true distribution over system states be 

denoted by p(n, α, x, t), whose time evolution can be described using the Doi-Peliti 

formalism [46].

To define the reduced model, introduce k-particle interaction functions νk(α
〈i〉k

n, x
〈i〉k

n, t), 

where 〈i〉k
n denotes any ordered subset of k indexes with each index in {1, . . . , n}. Given a 

set of such interaction functions {ν}k = 1
K  up to cutoff order K, define a spatial dynamic 

Boltzmann distribution as one of the form:

p(n, α, x, t; {ν}) = 1
Z[{v}]exp − ∑

k = 1

K
∑
〈i〉k

n
vk(α

〈i〉k
n, x

〈i〉k
n, t) , (1)

where the sum over 〈i〉k
n iterates over unique kth-order interactions between n particles, and 

the partition function is

Z[{ν}] = ∑
n = 0

∞
∑

α
∫ dx exp − ∑

k = 1

K
∑
〈i〉k

n
νk(α

〈i〉k
n, x

〈i〉k
n, t) . (2)
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Boltzmann distributions are maximum entropy (MaxEnt) distributions, where each 

interaction function νk(α
〈i〉k

n, x
〈i〉k

n, t) controls a corresponding moment μk(α
〈i〉k

n, x
〈i〉k

n, t), given 

by:

μk α
〈i〉k

n, x
〈i〉k

n, t = ∑
n′ = 0

∞
∑
α′

∫ dx′ p(n′, α′, x′, t)

× ∑
〈 j〉k

n′
δ x

〈i〉k
n − x

〈 j〉k
n′′ δ α

〈i〉k
n − α

〈 j〉k
n′′ ,

(3)

that is, the average number of k-sized tuplets of particles of species α
〈i〉k

n at locations x
〈i〉k

n. 

Note that α′ and x′ are of size n′.

A. Moment matching

Given a set of training data drawn from p(n, α, x, t) at some instant in time, the BM learning 

algorithm determines parameters in the energy function such that the instantaneous 

distribution (1) is the MaxEnt distribution consistent with the moments in the data set. To 

learn a reduced model of a system that evolves in both time and space continuously, we seek 

the distribution that is at all times the MaxEnt solution. Define as the action the Kullback-

Leibler (KL) divergence 𝒟KL between the true and reduced models, p and p, integrated over 

all times:

S = ∫
t0

t f
dt 𝒟KL(p‖p), (4)

where the Lagrangian is ℒ(t; {ν}) = 𝒟KL(p‖p) for

𝒟KL(p‖p) = ∑
n = 0

∞
∑

α
∫ dx

× p(n, α, x, t)ln p(n, α, x, t)
p(n, α, x, t; {ν}) .

(5)

Minimizing S is thus equivalent to maximizing the integrated log-likelihood of the observed 

data given the interaction functions. Other approaches for modeling time series are discussed 

in Sec. III A.

The condition for extremizing the action follows from the chain rule as
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δS = ∫
t0

t f
dt ∑

n = 0

∞
∑

α
∫ dx

× ∑
k = 1

K
∑
〈i〉k

n
Δμk α

〈i〉k
n, x

〈i〉k
n, t δνk α

〈i〉k
n, x

〈i〉k
n, t = 0,

(6)

where

Δμk α
〈i〉k

n, x
〈i〉k

n, t = μk α
〈i〉k

n, x
〈i〉k

n, t − μk α
〈i〉k

n, x
〈i〉k

n, t , (7)

where μ and μ are averages taken over p and p. This appearance of a difference of moments 

is the common result from using the KL divergence in the objective functional.

B. An adjoint method learning problem for spatial dynamic Boltzmann distributions

Introduce for each interaction function νk(α
〈i〉k

n, x
〈i〉k

n, t) a functional model:

d
dt νk α

〈i〉k
n, x

〈i〉k
n, t = ℱk[{ν}](α, x, t), (8)

with initial condition νk(α
〈i〉k

n, x
〈i〉k

n, t0) = ηk(α
〈i〉k

n, x
〈i〉k

n) and where {ν} = {νk}k = 1
K  denotes 

possibly all interaction functions. We use ℱ to denote a functional, allowing, for example, a 

PDE model to be introduced. Note that the arguments to the left-hand side may also appear 

on the right, for example, through a spatial derivative term∇νk(α
〈i〉k

n, x
〈i〉k

n, t).

Introduce vector notation1 ν(α, x, t) and ℱ[{ν}](α, x, t) for the left- and right-hand sides of 

(8), which contain N = ∑k = 1
K n

k
 entries, one for every possible (k, 〈i〉k

n) in some order i = 

1, . . . , N. To enforce the constraint (8), define the Lagrangian as the functional:

ℒ[{ν}, {ζ}](t) = 𝒟KL(p‖p) + ∑
n = 0

∞
∑

α
∫ dx ζ⊺(α, x, t)

× dν(α, x, t)
dt − ℱ[{ν}](α, x, t) ,

(9)

1In this notation, the dot product is a⊺(α, x)b(α, x) = ∑k = 1
K ∑

〈i〉k
na(α

〈i〉k
n, x

〈i〉k
n)b(α

〈i〉k
n, x

〈i〉k
n).
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where we have introduced Lagrange multiplier functions ζ(α, x, t) corresponding to ν(α, x, 

t) and {ζ} = {ζk}k = 1
K . Since the constraint is satisfied, then the action is as before 

S = ∫ t0

t f dt ℒ[{ν}, {ζ}](t).

Introducing perturbations δν(α, x, t) to the interaction functions gives as condition for 

extremizing the action:

δS = ∫
t0

t f
dt ∑

n = 0

∞
∑

α
∫ dx δv⊺(α, x, t)

× Δμ(α, x, t) − dζ(α, x, t)
dt − δ𝒥[{ν}, {ζ}](t)

δν(α, x, t) = 0,
(10)

where the boundary terms from the integration by parts in the second term have vanished 

due to the boundary condition for the adjoint variables ζ(α, x, tf) = 0, and we have defined:

𝒥[{ν}, {ζ}](t) = ∑
n′ = 0

∞
∑
α′

∫ dx′ × ζ⊺(α′, x′, t)ℱ[{ν}](α′, x′, t) . (11)

From (10) we obtain the adjoint system

dζ(α, x, t)
dt = Δμ(α, x, t) − δ𝒥[{ν}, {ζ}](t)

δν(α, x, t) . (12)

Depending on the form of the functional, additional boundary conditions may be enforced to 

evaluate the term on the right. Equations (8) and (12) can be equivalently expressed by the 

Hamiltonian system

dν(α, x, t)
dt = δH[{ν}, {ζ}](t)

δζ(α, x, t) ,
dζ(α, x, t)

dt = − δH[{ν}, {ζ}](t)
δν(α, x, t) ,

(13)

where

H[{ν}, {ζ}](t) = − 𝒟KL(p‖p) + 𝒥[{ν}, {ζ}](t) . (14)

Given a reduced model for the dynamics (8), Eq. (10) gives the necessary condition for 

extremizing the action. In a typical model reduction setting, however, the reduced model is 

not known beforehand. What should the form of the model (8) be to extremize the action 

(4)? Consider the case where the functional is specified in terms of some ordinary functions. 

We next set up a variational problem for these functions appearing on the right-hand side of 

the differential equation. Variational problems of this form have been studied previously, 

first in the context of optimal control theory [28,29] and later didactically in Ref. [30].
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Let the functional be of the form:

d
dt νk(α

〈i〉k
n, x

〈i〉k
n, t) = ℱk[{ν}, {Fk}](α, x, t), (15)

where the Mk ordinary functions appearing on the right-hand side are Fk
(s)({ν(α, x, t)}) for s = 

1, . . . , Mk, denoted by {Fk} = {Fk
(s)}s = 1

Mk . For arbitrary perturbations δFk
(s), extremizing the 

action gives

δS = − ∫
t0

t f
dt ∑

n = 0

∞
∑

α
∫ dx ∑

k = 1

K
∑
〈i〉k

n
∑

s = 1

Mk δ𝒥[{ν}, {ζ}](t)
δFk

(s)({ν(α, x, t)})

× δFk
(s)({ν(α, x, t)}) = 0 .

(16)

Equation (16) is the variational calculus form of the sensitivity equation obtained by the 

adjoint method when the functional model is specified in terms of some parameter vector 

[31]. This is particularly clear if we consider the specific form of (15) as the autonomous 

ordinary differential equation (ODE) system:

d
dt νk α

〈i〉k
n, x

〈i〉k
n, t = Fk ν(α

〈i〉k
n, x

〈i〉k
n, t) , (17)

where {ν(α
〈i〉k

n, x
〈i〉k

n, t)} denotes all ν of all possible arguments appearing on the left-hand 

side. In this case, (16) becomes

δS = − ∫
t0

t f
dt ∑

n = 0

∞
∑

α
∫ dx

× [ζ⊺(α, x, t)δF({ν(α, x, t)})] = 0,
(18)

where as before we have used vectors of length N to denote possible (k, 〈i〉k
n) as before. This 

resembles the adjoint method sensitivity equation, where variational terms δFk and δS 
replace ordinary derivatives with respect to parameters. This will be pursued further in Sec. 

III A. From (18) follows the common result that extremizing the action requires that the 

adjoint variables vanish everywhere ζk(α
〈i〉k

n, x
〈i〉k

n, t) = 0. One case when this is satisfied is if 

the adjoint system is source free Δμk(α
〈i〉k

n, x
〈i〉k

n, t) = 0, i.e., the moment matching condition 

is met.

Ernst et al. Page 7

Phys Rev E. Author manuscript; available in PMC 2019 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



From the Euler-Lagrange equations (12), the adjoint variables obey:

dζ(α, x, t)
dt = Δμ(α, x, t) − G⊺(α, x, t)ζ(α, x, t), (19)

where the elements of the N × N matrix G are

Gi, i′(α, x, t) =
∂Fk ν α

〈i〉k
n, x

〈i〉k
n, t

∂νk′ α
〈i〉k

n′
, x

〈i〉k
n′

, t
, (20)

where (k, 〈i〉k
n) corresponds to index i and (k′, 〈i〉k′

n ) corresponds to index i′. Appendix A gives 

the formal solution to (19) and makes explicit the connection between the conditions for 

extrema (18) and (6).

III. DYNAMICS FOR RESTRICTED BOLTZMANN MACHINES

We next consider a specific case of the formalism of Sec. II where the system is described 

by discrete random variables. A Boltzmann distribution on a state v = {v1, . . . , vN} of N 
discrete random variables is of the form:

p(v) = 1
Z exp[ − E(v)], (21)

where Z is the partition function, and the energy function E(v) is typically defined by a 

chosen Markov random field (MRF). For example, a BM [21] is a binary MRF, where binary 

units update their state based on a bias and pairwise connections to other units. A MRF 

where all variables v are driven by data is fully visible; otherwise, the N′ units h = {h1, . . . , 

hN′} which are not driven by data are denoted as hidden.

A restricted Boltzmann machine (RBM) [32] is a BM in which hidden and visible units are 

organized into layers, where a layer is defined by the property that there are no interactions 

among units in the same layer. For example, a typical energy function for an RBM is of the 

form:

E(v, h, θ) = − ∑
i = 1

N
bivi − ∑

j = 1

N′
b′ jh j − ∑

{i, j}
W i, jvih j, (22)

where the summation {i, j} is determined by the graph edges and θ is the vector of length K 
of all interaction parameters in the graph. This defines a joint distribution over v and h:

p(v, h; θ) = 1
Z(θ) exp[ − E(v, h, θ)] . (23)
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Each parameter θk in this MaxEnt distribution controls a corresponding moment μk, given 

by μk = ∂ ln Z(θ) ∕ ∂θk.

Define a dynamic Boltzmann distribution as one with time-dependent interaction 

parameters:

p(v, h; θ(t)) = 1
Z[θ(t)] exp{ − E(v, h, θ(t)]} . (24)

For example, the energy function of the RBM becomes

E[v, h, θ(t)] = − ∑
i = 1

N
bi(t)vi − ∑

j = 1

N′
b′ j(t)h j

− ∑
{i, j}

W i, j(t)vih j .
(25)

This is a specific case of a spatial dynamic Boltzmann distribution (1) in the discrete lattice 

limit. To see this, assign to every visible unit vi a spatial location xi. By taking self-

interaction functions ν1(x, t) = − ∑i bi(t)δx,xi in (1), we recover the first term in (25) with vi 

∈ {0, 1}, where δx,xi is unity if the coordinates are coincident and zero otherwise.

Similarly, hidden units can also be represented in continuous space. Let the species labels αv 

denote visible units and βh denote hidden units, and assign to every hidden unit hj a spatial 

location yj. The weights between layers are then obtained by taking pairwise interactions 

ν2(α, β, x, y, t) = − ∑{i, j} Wi, j(t)δx,xiδy,yjδα,αvδβ,βh.

A. An adjoint method learning problem for restricted Boltzmann machines

Introduce for each interaction parameter θk, k = 1, . . . , K, in the interaction graph a time-
evolution function Fk forming an autonomous ODE system [analogously to (17)]:

d
dt θk(t) = Fk(θ(t)), (26)

with initial conditions θk(t0) = θk,0. To obtain from the variational problem derived in Sec. 

IIB an ordinary optimization problem for parameters, further consider the paramaterization 

by the vectors uk of size Mk, generally unique for every k:

d
dt θk(t) = Fk(θ(t); uk) . (27)

Analogously to the continuous case, define as the objective function the KL divergence 

between the true and reduced models, p and p, over all times [analogously to (4)]:
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S = ∫
t0

t f
dt 𝒟KL(p‖p),

𝒟KL(p‖p) = ∑
z

p(z) ln p(z)
p(z; {u}) .

(28)

where {u} = {uk}k = 1
K . Minimizing S is thus equivalent to maximizing the log-likelihood of 

the observed data given the parameters, i.e., L({u}; z) = log p(z; {u}). A more common 

approach is to instead maximize the conditional likelihood of observations conditioned on 

the first observation: L({u}; z2, z3, … ∣ z1) = log p(z2, z3, … ∣ z1; {u}) or similar causal relations. 

For Markov chains, this approach is highly successful (leading to, e.g., Kalman filters; see 

Ref. [33] for an introduction). If a prior is available, then Bayesian methods that compute the 

posterior p({u}; z) ∝ p(z; {u}) × p({u}) can provide further improvements. The advantage of 

the current approach is that a reduced physical model can be enforced through the 

parametrization (27). This model can be based on prior information, such as reaction 

networks with known solutions [22]. A second advantage is that the generalization to 

spatially continuous systems follows naturally using PDEs as in (8).

Algorithm 1 Stochastic Gradient Descent for Learning Restricted Boltzmann Machine Dynamics.

1: Initialize

2:  Parameters uk controlling the functions Fk(θ; uk) for all k = 1, . . . , K.

3:  Time interval [t0, tf], a formula for the learning rate λ.

4: while not converged do

5:  Initialize ΔFk,i = 0 for all k = 1, . . . , K and parameters i = 1, . . . , Mk.

6:  for sample in batch do

7:   ⊳ Generate trajectory in reduced space θ:

8:   Solve the PDE constraint (27) for θk(t) with a given IC θk,0 over t0 ⩽ t ⩽ tf, for all k.

9:   ⊳ Wake phase:

10:   Evaluate moments μk(t) of the data for all k, t.

11:   ⊳ Sleep phase:

12:   Evaluate moments μk(t) of the Boltzmann distribution.

13:   ⊳ Solve the adjoint system:

14:   Solve the adjoint system (31) for ϕk(t) for all k, t.

15:   ⊳ Evaluate the objective function:

16:   Update ΔFk,i as the cumulative moving average of the sensitivity equation (30) over the batch.

17:  ⊳ Update to decrease objective function:

18:  uk,i → uk,i − λΔFk,i for all k, i.

The time integral in S can lead to undesired extrema, for example for periodic systems 

where the objective function may not minimize the KL divergence at each time point. One 

algorithmic strategy for eliminating these in practice is to shift the limits of integration 

during the optimization, as done in the examples of Sec. IV A.

Ernst et al. Page 10

Phys Rev E. Author manuscript; available in PMC 2019 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Minimizing the objective function defines a PDE-constrained optimization problem: 

minimize (28) subject to the PDE constraint (27). Define the Lagrangian function 

[analogously to (9)]:

ℒ(t; {u}) = 𝒟KL(p‖p) + ∑
k = 1

K
ϕk(t)

× d
dt θk(t) − Fk[θ(t); uk] ,

(29)

where we have introduced the adjoint variables ϕk associated with each θk. Taking the 

derivative of the objective function S = ∫ t0

t f dt ℒ(t; {u}) with respect to a parameter gives the 

sensitivity equation [analogously to (18)]:

dS
duk, i

= − ∫
t0

t f
dt

∂Fk[θ(t); uk]
∂uk, i

ϕk(t), (30)

and taking the derivative with respect to θ gives the ODE system obeyed by the adjoint 

variables [analogously to (19)]:

d
dt ϕk(t) = μk(t) − μk(t) − ∑

l = 1

K ∂Fl[θ(t); ul]
∂θk(t) ϕl(t), (31)

where μk(t′) and μk(t′) are averages taken over to p and p at time t′, and the boundary 

condition is ϕk(tf) = 0.

Algorithm I outlines how this optimization problem can be solved in practice. The inner 

loop of an “wake” and “sleep” phase of sampling are identical to that of BM learning. 

Standard algorithmic improvements are possible, such as the use of accelerated gradient 

descent methods such as Adam [34], and using persistent contrastive divergence (PCD) [35] 

to estimate the moments of the reduced model μk(t′).

Adjoint methods for solving PDE-constrained optimization problems are also called “black-

box” methods [36,37], since the PDE constraint (27) is eliminated in the derivation of the 

sensitivity equation (30). A competing class of methods (sometimes referred to as “all-at-

once” methods) treat the constraint explicitly in the optimization, and may offer a 

computational advantage over this approach. These include sequential quadratic 

programming and augmented Lagrangian methods.

Additional constraints or regularization terms can be included in the optimization, such as 

conserved quantities identified from the left null space of the net stoichiometry matrix. For 

example, L2 regularization can be incorporated into the objective function:
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S = ∫
t0

t f
dt 𝒟KL(p‖p) + λr∫

t0

t f
dt ∑

k = 1

K
[θk(t) − θk(t)]2, (32)

where θk(t) are some specified functions or otherwise constant and λr is a regularization 

parameter. In this case, the adjoint variables are given by:

d
dt ϕk(t) = μk(t) − μk(t) + 2λr[θk(t) − θk(t)]

− ∑
l = 1

K ∂Fl(θ(t); ul)
∂θk(t) ϕl(t) .

(33)

B. Finite-element parameterization

What choice should be made for the parametrization (27) of the right-hand sides of the 

differential equations? In Ref. [22], we considered simple reaction-diffusion systems from 

which general forms of approximate models could be inferred that maintain physical 

interpretations. A second approach also explored in Ref. [22] is to use a separate moment 

closure approximation to derive analytic solutions for simple reaction systems on 1D 

lattices, where the inverse Ising problem is analytically solvable. The form of (27) can then 

be taken as either linear or nonlinear combinations of known solutions.

Here, we take a finite-element method [38] approach to the parametrization that is more 

aligned with the unsupervised learning problem in a Boltzmann machine. The space of 

solutions to the general variational problem (16), which is some Banach space, is therefore 

restricted to the space of finite-element method solutions.

An important restriction is that the learning rule (30) requires C1 finite elements. One choice 

for such elements is the Q3 family of finite elements [39], which has the advantage that basis 

functions in dimensions higher than one are easily constructed as tensor products of 1D 

cubic polynomials.2 For C1 elements that control the value of the function and its derivative 

at the endpoints, these polynomials are just the Hermite polynomials, shown in Fig. 1(d).

We introduce for each time-evolution function in (27) a domain of hypercubic cells, with 4d 

degrees of freedom, where d are the number of arguments to Fk. In practice, we found it is 

rarely necessary to have more than d = 3 arguments (see Sec. IV). For d = 3, each cube has 

64 degrees of freedom (8 degrees of freedom at each vertex, specifying the function value 

and derivatives). For a cubic lattice of V = L1 × L2 × L3 cells, there are 8V degrees of 

freedom in total, with the parametrization taking the usual form in terms of the basis 

functions fl associated with each degree of freedom:

2An alternative choice for tetrahedral meshes is the P3 family of finite elements.
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Fk(θ1, θ2, θ3; uk) = ∑
l = 1

8V
ul f l(θ1, θ2, θ3) . (34)

Note that here the right-hand side of the differential equation is parameterized (as opposed to 

the solution of the differential equation), since the objective of the learning algorithm is to 

determine a suitable differential equation model.

IV. LEARNING REACTION-DIFFUSION SYSTEMS ON LATTICES

Recall that the state of a reaction-diffusion system at some time is described by n particles of 

species α located at positions x in generally continuous 3D space. To make an explicit 

connection to binary random variables, we consider a simpler model of particles hopping on 

a discrete lattice in the single-occupancy limit. To generate stochastic simulations of such a 

system, we adapt the method of Takayasu and Tretyakov [40] for a lattice-based variant of 

the popular Gillespie SSA [16] as follows: At each time step:

(1) Perform unimolecular reactions following the standard Gillespie SSA.

(2) Iterate over all particles in random order; for each:

(a) Hop to a neighboring site, chosen at random with equal probability.

(b) If the site is unoccupied, then the move is accepted. If the site is occupied, then a 

bimolecular reaction occurs with some probability; else, the move is rejected and the particle 

is returned to the original site.

The lattice on which particles hop is designated as the visible part of the MRF. Assign a 

unique index i to each of the N sites in the lattice, and let the vector of possible species be s 
of size M in some arbitrary ordering (excluding ∅ to denote an empty site). Spins at a site i 
are now multinomial units, represented as a vector vi of length M where entries vi,α ∈ {0, 1} 

for α = 1, . . . , M denote the absence or presence of a particle of species sα (an n-vector 

model in statistical mechanics). The single-occupancy limit corresponds to the implicit 

constraint that the vectors are of unit length, i.e., ∑α = 0
M vi, α = 1, where α = 0 denotes an 

empty site. The matrix V of size N × M describes the state of the visible part of the MRF, 

where each row denotes a lattice site.

Likewise, introduce hidden layer species s′ of size M′, which may be different from s. 

Indexing all hidden sites as j = 1, . . . , N′, hidden unit vectors are hj of length M′. The state 

of the hidden units is H of size N′ × M′, with the single-occupancy constraint as before.

The dynamic Boltzmann distribution becomes p[V, H ∣ θ(t)] = exp{ − E[V, H ∣ θ(t)]} ∕ Z[θ(t)], 
where interaction parameters θ(t) may also be species dependent. For example, the energy 

function for the RBM becomes
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E[V, H, θ(t)] = − ∑
i = 1

N
∑

α = 1

M
bi, α(t)vi, α

− ∑
j = 1

N′
∑

β = 1

M′
b′ j, β(t)h j, β

− ∑
{i, j}

∑
α, β

W i, j, α, β(t)vi, αh j, β .

(35)

A. Learning hidden layers for moment closure

A typical problem in many-body systems is the appearance of a hierarchy of moments, 

where the time evolution of a given moment depends on higher-order moments. Moment 

closure approximations terminate this infinite hierarchy at some finite order. In this section, 

we develop the perspective of the learning problem (30) as a closure approximation using a 

simple pedagogical example. We note some similarity to previously proposed closure 

schemes [14,15], as well as to entropic matching [13], although the current approach differs 

in the objective function (28) and the formulation for spatially continuous systems in Sec. II.

Consider a bimolecular-annihilation process on a 1D lattice of length N, where particles of a 

single species A hop and react according to A + A → ∅. The time evolutions of the first 

two moments are (see Appendix B)

d
dt ∑

i
vi = − 2kr ∑

i
vivi + 1 ,

d
dt ∑

i
vivi + 1 = 2D ∑

i
vivi + 2 − 2kr ∑

i
vivi + 1vi + 2

+ (kr − 2D) ∑
i

vivi + 1 ,

(36)

where kr is the reaction rate and D the diffusion rate. The simplest graph to capture such 

observables is a fully visible Markov random field with N units, i.e., a 1D Ising model 

including interactions up to some order. For example, including third-order interactions, let:

E[v, b(t), J(t), K(t)] = − b(t) ∑
i = 1

N
vi − J(t) ∑

i = 1

N − 1
vivi + 1

− K(t) ∑
i = 1

N − 2
vivi + 1vi + 2,

(37)

where b is the bias, J is the nearest neighbor (NN) interaction term, and K is the next-

nearest-neighbor (NNN) interaction term. Let the differential equation model be

b
.

= Fb(b, J, K; ub),
J
.

= FJ(b, J, K; uJ),
K
.

= FK(b, J, K; uK),
(38)
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for some parameter vectors u to be learned, where time derivatives are denoted as ẋ = d/dt. 
The corresponding graphical model is illustrated in Fig. 1(b). The choice of the energy 

function in (37) defines which moments are explicitly captured by the reduced model. The 

additional choice of the form of the differential equations Fγ defines the moment closure 

approximation made.

We next show through computational experiments that the introduction of hidden layers can 

improve on a fully visible closure model:

(1) In any closure scheme, moments beyond a certain order are not captured explicitly by the 

model, so that their approximation may be poor. The representation power of hidden layers 

[24] can be used to incorporate information about which higher-order moments are relevant 

to the data set.

(2) Two distinct states having the same lower-order moments are indistinguishable in the 

reduced model (the model is not sufficiently high dimensional). Hidden layers may be able 

to separate such states if their connectivity is suitably chosen to represent relevant higher-

order correlations, even if the model remains low order.

(3) The number of higher-order terms appearing on the right of (36) grows with the order on 

the left. This problem is compounded if species labels are included. Hidden layers and a 

restriction on the number of species M′ allowed to occupy hidden units may be used to 

approximate such higher-order interactions with fewer parameters.

It is generally difficult to choose the optimal close approximation, i.e., to know which 

moments are relevant to the time evolution of a given data set. A key advantage of the 

present approach is that the connectivity of the hidden layers may be chosen based on the 

differential equations derived from the chemical master equation. For example, consider to 

the bimolecular annihilation system (36): If the goal is to accurately model the mean number 

of particles, then the right-hand side of (36) shows that the nearest-neighbor moment is 

relevant to the time evolution. The graphical model of the reduced system could therefore 

introduce a hidden unit for every pair of neighboring lattice sites (N − 1 units in the hidden 

layer), with corresponding energy function:

E[v, h, b(t), W(t), b′(t)] = − b(t) ∑
i = 1

N
vi − b′(t) ∑

j = 1

N − 1
h j

− W(t) ∑
j = 1

N − 1
∑

i ∈ { j, j + 1}
vih j,

(39)

where b is bias for visible units, b′ is the bias for hidden units, and W are the weights 

connecting visible and hidden units. Let the differential equation model be

b
.

= Fb(b, b′, W; ub),
b
.
′ = Fb′(b, b′, W; ub′),

W
.

= FW(b, b′, W; uW) .
(40)
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The corresponding graphical model is shown in Figs. 1(a) and 1(c).

The time-evolution functions for (38) and (40) are learned using Algorithm 1 and compared 

in Fig. 2. For the visible model, cells of size 0.5 × 0.5 × 0.5 in (b, J, K) are used, and for the 

hidden layer model cells of size 0.5 × 0.5 × 0.05 in (b, W, b′), as shown in Fig. 2.

As training data, 50 points (b, J, K) are sampled evenly over (b, J, K) ∈ [−1, 1]3. Each point 

corresponds to an initial distribution (37), from each of which 50 lattices of length N = 1000 

are sampled (top left panel of Fig. 2). The corresponding initial conditions in (b, W, b′) 

space are learned separately using the BM learning algorithm (bottom left panel of Fig. 2). 

Each lattice is simulated for 200 time steps of size Δt = 0.01 with reaction probability pr = 

0.01 on encounters for the reaction A + A → ∅, as shown in Fig. 1(e). These trajectories 

are pooled for Algorithm 1. Note that a single set of parameter vectors {u} in (38) and (40) 

is learned, i.e., the parameter vectors are shared among trajectories from all initial 

conditions.

For the fully visible model, sleep phase moments are estimated by running a Gibbs sampler 

for a single step. Similarly, for the hidden model, wake and sleep phase moments are 

estimated by a single step of contrastive divergence (CD), i.e., CD-1. The learning rate used 

in both models is λ = 1 for 200 optimization steps.

The time integral in the action (28) can lead to undesired extrema, e.g., for periodic 

trajectories. We use an online algorithm to shift the limits of integration in (30) as new data 

are available:

dS
duk, i

= ∫
τ

τ + Δτ
dt

∂Fk(θ(t); uk)
∂uk, i

ϕk(t), (41)

where Δτ is fixed and τ is gradually incremented t0 ⩽ τ ⩽ tf − Δτ. In this case, the PDE 

constraint (27) is solved from t0 to τ, decreasing the size of the trajectories early in the 

training. Further, the adjoint system (31) only has to be solved backward from ϕ(τ + Δτ) = 0 

to ϕ(τ), which also controls the magnitude of the update steps as the length of the trajectory 

grows, allowing a constant learning rate to be used. For the annihilation system, we found 

that fixing Δτ = 5 time steps and shifting τ → τ + 1 every two optimization steps gave fast 

convergence.

Figure 2 shows the learned time-evolution functions and trajectories of the training data. For 

the visible model, these show an expected symmetric structure. As particles diffuse and NN 

and NNN moments decay, FJ and FK force J, K → 0 everywhere, while the bias term tends 

to negative infinity. The representation learned by the hidden layer model is more compact. 

Figure 3(a) shows the nearest-neighbor moment ⟨∑i vivi+1⟩ overlaid onto the initial 

conditions, showing an almost monotonic organization from low to high values by which the 

model can distinguish these states (no organization is apparent in the visible model). Figure 

3(b) shows the learned parameter trajectories: b monotonically decreases (not shown), W 
asymptotically approaches a negative value, and b′ either increases monotonically or 

initially decreases before increasing again. This division corresponds to the decay of spatial 

correlations 2⟨δvivi+1⟩ − 1 (such that 1 corresponds to a fully correlated lattice and −1 to a 
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fully anticorrelated lattice), also shown in Fig. 3(b). The two types of trajectories of b′ have 

a clear correspondence to two types of trajectories in the correlation function, and the 

separation is visible in Fb′ in the negative and positive regimes. We conclude that the 

moment closure approximation learned by the model therefore captures relevant low-range 

spatial correlations to approximate the right-hand sides of the moment equations (36) 

identified from the CME.

To assess the accuracy of the reduced models, we generate a test set of points (b, J, K) and 

the learn the corresponding points (b, W, b′) as before. These are evolved in time using the 

learned DE systems (38) and (40). Define ε(t) = 〈[μ(t) − μ(t)]2〉 as the root-mean-square 

error (RMSE) between some moments of the reduced model μ and the stochastic simulations 

μ, where the moments are approximated by averaging over 50 samples. Figure 3(c) shows 

the RMSE for the third-order moment ⟨∑i vivi+1vi+2⟩ and fourth-order moment ⟨∑i vivi+1vi

+2vi+3⟩. Both models have relatively low error in reproducing the observables, however, the 

error in the hidden layer model is lower than in the visible model. This is because the 

representation learned by the hidden layer model is more compact, in that states initially 

distributed uniformly in (b, J, K) space are mapped to an approximately 1D curve in (b, W, b
′) space. Yet higher accuracies may be possible by further tailoring that parametrizations of 

the differential equations from the cubic finite elements used here.

B. Learning the Rössler oscillator

The Williamowski-Rössler oscillator system [41] is a chemical version of a spiral oscillator 

in three species. The original formulation requires additional species that are fixed at 

constant concentration. Recent work [42], however, has developed a volume-excluding 

version where these constraints are incorporated into pseudo-first-order reaction rates, 

eliminating the need for additional reservoir populations. We follow this approach, such that 

the reaction system for species A, B, and C is

A
p1

k1 2A, A + B
p2 2B, A + C

p3 ∅,

B
k2 ∅, C

p4

k3 2C,
(42)

where the unimolecular reaction rates used are k1 = 30, k2 = 10, k3 = 16.5 (arbitrary units), 

and the probabilities for bimolecular reactions are p1 = 0.1, p2 = 0.4, p3 = 0.24, p4 = 0.36. 

We simulate this system on a 3D lattice of size 10 × 10 × 10 sites in the single-occupancy 

limit as before. Figure 4 shows snapshots of such a stochastic simulation. Figure 4(b) in 

particular shows the characteristic shape of the Rössler oscillator, with further structures 

evident in higher-order moments shown in Fig. 4(c). A snapshot of the spatial waves that 

occur during transitions between A-, B-, and C-dominated regimes is shown in Fig. 4(a).

The time evolution of the mean number of particles in A, B, and C, denoted by μα, is related 

to the number of nearest neighbors, denoted by Δαβ, as follows (see Appendix B for 

derivation):
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d
dt μA = k1μA − κ1ΔAA − κ2ΔAB − κ3ΔAC,
d
dt μB = κ2ΔAB − k2μB,
d
dt μC = − κ3ΔAC − k3μC − κ4ΔCC,

(43)

where κ1, κ2, κ3, and κ4 are the reaction rates for the bimolecular reactions specified by 

probabilities p1, p2, p3, and p4 above. As previously, this system is not closed, such that two 

close initial states in Fig. 4(b) will diverge over their long-term time evolution. The 

challenge for the latent variables in the reduced differential equation model is to incorporate 

relevant higher-order correlations to separate states which are close in their lower-order 

moments.

As in Sec. IV A, let the visible part of the graph be the lattice of Fig. 4(a). For the hidden 

layer, we choose a connectivity that coarse grains the visible lattice by one unit in each 

spatial dimension as shown in Fig. 5. Note that the hidden layer is also of size 10 × 10 × 10 

units that implement periodic boundary conditions. The visible layer of the graph is 

multinomial in one of {A, B, C, ∅}, and similarly the hidden layer in {X, Y, Z, ∅}. The 

corresponding energy model is

E(V, H, θ(t))

= − ∑
i

∑
α ∈ {A, B, C}

bαvi, α − ∑
j

∑
α ∈ {X, Y , Z}

bαh j, α

− ∑
{i, j}

(W AXvi, Ah j, X + WBYvi, Bh j, Y + WCZvi, Ch j, Z),
(44)

where H refers to the hidden layer and the sum over {i, j} implements the connectivity 

shown in Fig. 5 and

γ. = Fγ(bA, bB, bC; uγ) (45)

for γ ∈ {bA, bB, bC, WAX, WBY, WCZ, bX, bY, bZ}. The right-hand side of the differential 

equation is parameterized (34) by cubic C1 finite elements as before. To reduce the 

complexity of the model, we have purposefully omitted interactions WAY, WAZ, WBX, WBZ, 
WCX, WCY. With this choice, the latent species X coarse grains the visible species A, and 

similarly for Y, B and C, Z. Note that all differential equation models share the same domain 

in (bA, bB, bC) space. While the biases hA, hB, hC are the Lagrange multipliers 

corresponding to the constraints for the number of particles of each species, through the 

energy function (44) both biases and weights together control all spatial correlations of the 

model.

Stochastic simulations are generated from an initial state with bA = bB = bC = − ln(2), WAX 

= WBY = WCZ = WXY = WYZ = 0, and bX = bY = bZ = − ln(1/7). By setting the initial 

weights to zero, this is the MaxEnt state given that the number of particles is μA = μB = μC = 

200, since with zero weight:
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μα = 1000 e
bα

1 + ∑β = A, B, C e
bβ

(46)

for α ∈ {A, B, C}, and where the factor 1000 results from summing over all visible sites. 

With zero weight, the choice for the initial hidden layer bias is free—by choosing to set it to 

− ln(1/7), we are setting the target sparsity to approximately half of that of the visible layer 

with approximately 100 particles of each species as given by (46). Simulations are run for 

500 time steps of size Δt = 0.01. Figure 4(d) shows the relaxation of the distribution to 

equilibrium [43].

For training, we use Algorithm 1 with learning rate λ = 0.05 for the weights and λ = 0.8 for 

the biases for 10 000 optimization steps. To estimate the wake phase moments, we sample 

p(H = 1 ∣ V) for each sample in a batch size of η = 5, where V is a data vector. To estimate 

the sleep phase moments, we alternate between sampling p[H(r) = 1 ∣ V(r)] and 

p[V(r) = 1 ∣ H(r − 1)] for r = 1, . . . , 10 steps, starting from a random configuration V(0). 

Alternatively, we also found fast convergence using k = 10 steps of CD, as well as using 

PCD. To reduce the noise in the estimates, we use as is common raw probabilities instead of 

multinomial states for the hidden units when estimating both the wake and sleep phase 

moments.

As before, we use the online variant (41) of Algorithm 1 where the limits of integration are 

shifted during training, with window size Δτ = 10, and τ is gradually incremented τ → τ 
+ 1 every 100 optimization steps. To learn smooth trajectories and avoid jumps in the 

learned differential equation model, each time step is divided into 10 substeps when solving 

the differential equations (44) and (45).

We compare the learned trajectories to a simplified MaxEnt model in Figs. 6(a)-6(c). The 

side length of the cubic finite elements used was 0.1 on all sides, centered at the initial 

condition, as shown in Fig. 6(d). Figure 6(a) shows the mean number of particles over the 

first 100 time steps, as in Fig. 4(d). Figure 6(b) transforms these points to the parameters 

(bA, bB, bC) of a simple MaxEnt model constrained on these lowest-order moments as given 

by (46). Figure 6(c) shows the learned model (45), where the biases now control both the 

means and spatial correlations together with the weights. The trajectory no longer resembles 

a periodic trajectory, having learned to separate close states in Fig. 6(b). Figure 7 shows the 

learned time evolution functions for the Rössler oscillator over the first 100 time steps.

The agreement between the stochastic simulations and reconstructed observables is shown in 

Fig. 8(a). At each time point, 100 samples are drawn from the reduced model by running 25 

steps of CD sampling, starting from a random configuration. Nearest neighbors, which 

determine the time evolution of the means in (43), are reasonably approximated, primarily 

due to the connectivity chosen in Fig. 5.

Figure 8(b) shows a sampled state V from the learned model, and the activated hidden layer 

probabilities p(H ∣ V) at time point 20. With the learned parameters, the hidden units coarse 
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grain nearest neighbors in the lattice, as needed to approximate the right-hand side of (43). A 

deeper network such as a deep Boltzmann machine (DBM) may approximate yet-higher 

spatial correlations and can therefore be used to close differential equation systems 

depending on higher-order moments.

V. DISCUSSION

We have presented a learning problem for spatiotemporal distributions that estimates 

differential equation systems controlling a time-varying Boltzmann distribution. The ability 

to estimate a reduced physical model makes the method interesting for many modeling 

applications, including chemical kinetics as presented here. Mapping to a differential 

equation model can likewise be useful for engineering applications, allowing constraints to 

be efficiently introduced into BM learning as discussed in Sec. IIIA.

The moment closure approximation presented in Sec. II is broadly applicable due to the use 

of latent variables that can be trained to capture relevant higher-order correlations rather than 

deciding a priori what correlations to include as in typical closure schemes. Minimizing the 

KL divergence between the reduced and true models at all times is closely related to entropic 

matching but differs by the introduction of a differential equation system. We also make the 

connection to spatially continuous reaction systems explicit.

The finite-element parametrization is similar to the unsupervised learning setting of RBMs 

in the sense that it is independent of the system under consideration. For deeper architectures 

such as DBMs as discussed in Sec. IV B, recycling the same time-evolution functions across 

multiple layers may be effective, similarly to convolution layers in convolutional neural 

networks. Factoring weights has also been used effectively in deep learning [44] and may 

similarly reduce the computational burden here. The main advantage of the current DE 

formalism, however, is to use a parametrization (26) that enforces a physically relevant 

model.

We have illustrated the advantage of using latent variables in the learning problem, as 

opposed to a fully visible model. In the fully visible model of Sec. IV A, two and three 

particle correlations are explicitly captured. In the competing hidden layer model, we use a 

locally connected RBM (as opposed to fully connected layers) to control the range of 

correlations captured through the connectivity of the hidden layer. This has the advantage 

that the representation learned by the hidden layers is easily interpretable as it coarse grains 

the visible layer. Further, the local connectivity used can be inferred from the moment 

equations derived from the CME. Deeper networks with multiple hidden layers can be 

constructed in this fashion to learn hierarchical statistics, with the ability to infer long-range 

spatial correlations that may become relevant over long timescales.

A popular alternative class of generative models to RBMs are variational autoencoders 

(VAEs). An adaptation of the proposed method may be possible for these models; however, 

the main advantages of the current RBM framework is that the form of the energy function 

can be used interpret the reduced model [22] and that the distribution over the latent 
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variables is not chosen as in VAEs (typically a standard normal distribution) but rather 

learned from data.

A closely related problem to model reduction is the problem of data assimilation, where 

noisy measurements and an incomplete model for the dynamics are combined to estimate the 

true state of the system and unknown parameters in the model [45]. Model reduction 

methods complement the data assimilation problem by replacing the physical model with a 

reduced one which can increase the efficiency of data assimilation methods.

We view the present work as progress toward linking models across scales in biology [20]. 

Reaction-diffusion systems illustrate many of the common problems in this field. While 

much machinery (CME or field-theoretic methods) exist to formulate problems for 

observables, their solution is nontrivial in most applications. Even without analytic 

challenges such as moment closure, the numerical solution of PDE systems is difficult for 

systems with high spatial organization or where interactions with other scales (e.g., 

molecular dynamics) or physics (e.g., electrodiffusion) become relevant. Learning reduced 

models in the form of spatial dynamic Boltzmann distributions may abstract many of these 

nontrivial interactions.
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APPENDIX A: FORMAL SOLUTION FOR THE ADJOINT SYSTEM

The connection between (6) and (18) can be made more explicitly. A differential equation 

system for the perturbations δνk(α
〈i〉k

n, x
〈i〉k

n, t) in (6) can be derived by linearizing the 

differential equation around a particular solution [22,30]. For the autonomous system (17), 

this leads to the linear ODE system:

d
dt δν(α, x, t) = δF(α, x, t) + G(α, x, t)δν(α, x, t), (A1)

with some given initial condition δν(α, x, t0) = δη(α, x). Here we have used the vector 

notation introduced in Sec. IIB.

Let the homogenous part of this system

d
dt δν(α, x, t) = G(α, x, t)δν(α, x, t) (A2)

have solution given by the nonsingular fundamental matrix A(α, x, t). Then (A1) has as 

formal solution
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δν(α, x, t) = A(α, x, t) δη(α, x) + ∫
t0

t
dt′ A−1(α, x, t′)δF(α, x, t′) , (A3)

which substituted into (6) gives:

δS = ∫
t0

t f
dt ∑

n = 0

∞
∑

α
∫ dxΔμ⊺(α, x, t)A(α, x, t)

× δη(α, x) + ∫
t0

t
dt′ A−1(α, x, t′)δF(α, x, t′) = 0,

(A4)

where Δμ⊺(t) is the vector with components (7). Applying integration by parts on the term in 

parentheses to move the integral over time gives

δη(α, x) + ∫
t0

t f
dt′ A−1(α, x, t′)δF(α, x, t′)

× ∫
t0

t
dt′Δμ⊺(α, x, t′)A(α, x, t′)

t = t0

t f

− ∫
t0

t f
dt∫

t0

t
dt′Δμ⊺(α, x, t′)A(α, x, t′)

× A−1(α, x, t)δF(α, x, t),

(A5)

where the adjoint functions ζ(t) can be identified as:

ζ⊺(α, x, t) = ∫
t0

t
dt′ Δμ⊺(α, x, t′)A(α, x, t′)A−1(α, x, t) . (A6)

By choosing the adjoint functions to satisfy the boundary condition ζ(α, x, tf) = 0, the 

boundary term in (A5) vanishes and we obtain the previous result (16).

APPENDIX B: DERIVATION OF MOMENT EQUATIONS FROM THE 

CHEMICAL MASTER EQUATION

The moment equations (36) and (43) can be derived from the chemical master equation 

using the Doi-Peliti [46] formalism and its equivalent generating function representation. We 

demonstrate this for the Rössler system (43).
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For notational convenience, we do not consider the single-occupancy limit here. The state of 

the system is described by the N × M matrix V′ with entries vi,α ∈ {0, 1, 2, . . . }, where N = 

10 × 10 × 10 rows denote lattice sites, and M = 3 columns denote occupancies of species {A, 
B, C}.

Define the N × M single-entry matrix eij with entries zero everywhere except at index (i, j) 
where it is one. The creation and annihilation operators ai, α and ai,α create and destroy 

particles of species α at unit i:

ai, α ∣ V′〉 = ∣ V′ + ei, α〉,
ai, α ∣ V′〉 = vi, α ∣ V′ − ei, α〉 . (B1)

The operators corresponding to reactions in the Rössler system (excluding diffusion) are 

then:

A 2A:k1 ∑
i = 1

N
(ai, A − 1)ai, Aai, A,

2A A:κ1∑
〈i j〉

(1 − a j, A)ai, Aai, Aa j, A,

A + B 2B:κ2 ∑
〈〈i j〉〉

(ai, B − ai, A)a j, Bai, Aa j, B,

A + C ∅:κ3 ∑
〈〈i j〉〉

(1 − ai, Aa j, C)ai, Aa j, C,

B ∅:k2 ∑
i = 1

N
(1 − ai, B)ai, B,

C 2C:k3 ∑
i = 1

N
(ai, C − 1)ai, Cai, C,

2C C:κ4∑
〈i j〉

(1 − a j, C)ai, Cai, Ca j, C,

(B2)

where ∑⟨i j⟩ sums over all neighboring sites without double counting, ∑⟪i j⟫ sums over all 

neighboring sites with double counting, and we specify the species {A, B, C} instead of an 

index α = 1, . . . , M for clarity in the subscripts. Here we place new particles resulting from 

fission reactions with rates k1 and k3 at the same site - in the single-occupancy limit, they 

must be placed at a neighboring site. For bimolecular reactions with rates κ1 and κ4, we 

make the in this case ambiguous choice to place new species at site i versus j. The time 

evolution operator W for the Rössler system is the sum of all terms in (B2).

The system state and the ladder operators admit an equivalent generating function 

representation:

∣ V′〉 ∏
i = 1

N
∏

α = 1

M
zi, α
vi, α, ai, α zi, α, ai, α

∂
∂zi, α

. (B3)
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An observable ⟨X⟩ with generating function representation Xz according to (B3) evolves as:

d〈X〉
dt = XzW ∏

i = 1

N
∏

α = 1

M
zi, α
vi, α

z = 1
, (B4)

where W is now the sum of terms (B2) in the generating function representation (B3). From 

the number operator ak, βak, β which counts the number of particles of species β at position k, 

the time evolution of the mean number of particles of species β is then

dμβ
dt = ∑

k = 1

N
zk, β

∂
∂zk, β

W ∏
i = 1

N
∏

α = 1

M
zi, α
vi, α

z = 1
, (B5)

which can be directly evaluated to give the moment equations (43). For a review on field 

theoretic methods for reaction-diffusion systems, we refer to Mattis and Glasser [47]. The 

formalism can also describe systems in continuous space [46] where it has a similar 

generation function representation [22].
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FIG. 1. 
Comparison of a fully visible and a latent variable model for capturing local correlations in a 

1D lattice. (a) One-dimensional lattice with one hidden layer (similar to an RBM). Note that 

in this simplified example, W is a single translation invariant parameter rather than a matrix 

as common in RBMs. (b) Fully visible model for a 1D lattice including NN interactions J 
and NNN interactions K. (c) An example state of the hidden layer model, where blue 

indicates the presence of a particle in the visible layer and likewise red for the hidden layer. 

By learning the parameters, the hidden layer can be tuned to capture the presence of NNs. 

(d) The basis functions of the Q3 family of C1 finite elements in 1D (Hermite polynomials), 

used to parametrize the right-hand sides of (38) and (40). Basis functions in higher 

dimensions are constructed as tensor products of the 1D polynomials. (e) Moments of 

stochastic simulations for 10 of the 50 initial conditions used for training (each trajectory 

obtained from averaging over 50 lattices simulated from the same initial condition).

Ernst et al. Page 26

Phys Rev E. Author manuscript; available in PMC 2019 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 2. 
Top row: Learned time-evolution functions for the fully visible model (38), using the Q3, C1 

finite-element parametrization (34) with cells of size 0.5 × 0.5 × 0.5 in (b, J, K). Left panel: 

Training set of initial points (b, J, K) (cyan) sampled evenly in [−1, 1]. Stochastic 

simulations for each initial point are used as training data (learned trajectories shown in 

black, endpoints in magenta). Middle three panels: The time evolution functions learned, 

where the heat map indicates the value of Fγ in (38). Right panel: Vertices of the finite-

element cells used. Bottom row: Hidden layer model (40) and parametrization (34) with 

cells of size 0.5 × 0.5 × 0.05 in (b, W, b′). Initial points are generated by BM learning 

applied to the points of the visible model. Note that the coefficients corresponding to the 

other seven degrees of freedom at each vertex are also learned (not shown), i.e., the first 

derivatives in each parameter.
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FIG. 3. 
(a) NN moment ⟨∑i vivi+1⟩ of the two models. The more compact representation learned by 

the hidden layer model (left) captures low range spatial correlations, while the fully visible 

model (right) shows no apparent organization. (b) The parameters W and b′ for the hidden 

layer model for the 50 initial conditions (b is monotonically decreasing for all trajectories). 

The learned parameters encode the spatial correlation 2⟨δvivi+1⟩ − 1 shown on the right. This 

shows the moment closure approximation learned by the reduced model (see text). (c) 

RMSE in the third-order moment ⟨∑i vivi+1vi+2⟩ and fourth-order moment ⟨∑i vivi+1vi+2vi

+3⟩, calculated from a set of test trajectories (not shown). Both models reproduce the 

observables with reasonable accuracy, however, the error in the hidden layer model is lower 

due to the more compact representation learned.
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FIG. 4. 
Rössler oscillator on a 3D lattice. (a) Snapshots of a stochastic simulation on a 10 × 10 × 10 

lattice (A, B, and C in pink, orange, and cyan). (b) Moments from a single simulation over 

500 time steps, producing a stochastic version of the characteristic attractor of the well-

known deterministic model. (c) Nearest-neighbor moments in the simulation of (b) show 

similar structure. (d) Relaxation to a stationary distribution, indicated by the convergence of 

the means from averaging over 300 stochastic simulations.
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FIG. 5. 
(a) Graph to learn for the Rössler oscillator. The lattice on the left corresponds to the visible 

layer, equivalent to the 10 × 10 × 10 cube in Fig. 4; the right corresponds to the hidden layer. 

Gray units in the hidden layer denote those units which implement periodic boundary 

conditions to the visible layer. (b) Connectivity of hidden layer. Each cube of eight 

neighboring units in the visible layer (green circles) is connected to a single unit (blue 

triangle) in the hidden layer (connections shown in red), resembling a body-centered cubic 

structure. Biases for the units are not shown.
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FIG. 6. 
(a) The first 100 time steps of the mean number of A, B and C in the Rössler oscillator 

system. (b) Interaction parameters for a MaxEnt model constrained on the moments in (a) 

given by Eq. (46). (c) The learned trajectory of (44) in (bA, bB, bC) space, with initial 

condition [− ln(2), − ln(2), − ln(2)]. The bias parameters have been tuned to control both the 

means and spatial correlations, together with the weights (not shown). Grayscale value 

indicates bC component for clarity, scaled from dark [min(bC)] to light [max(bC)]. Initial 

point is shown in cyan, and endpoint in magenta. (d) Vertices of the finite-element cells of 

side length 0.1 used to parametrize the differential equations (45).
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FIG. 7. 
Learned time-evolution functions (45) in (bA, bB, bC) space [see Fig. 6(d) for the vertices 

used], and the resulting trajectory in black [see Fig. 6(c)].
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FIG. 8. 
(a) Example of correlations learned by the reduced model compared to stochastic 

simulations, obtained by sampling over 100 samples. Top row: Mean number of A, B, C 
particles. Bottom: Neighboring pairs of (B, B), (C, C), and (A, B). Short range spatial 

correlations relevant to the moment equations (43) are reasonably approximated due to the 

chosen connectivity. (a) Sampled state V from the learned model (top left), and the activated 

hidden layer probabilities p(H ∣ V) at time point 20. After training, the hidden layers coarse 

grain nearest neighbors in the visible layer.
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