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ITERATIVE JOINT PTYCHOGRAPHY-TOMOGRAPHY WITH TOTAL VARIATION
REGULARIZATION

Huibin Chang ∗

Tianjin Normal University
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Tianjin, China

Pablo Enfedaque, Stefano Marchesini†

Lawrence Berkeley National Laboratory
Computational Research Division

Berkeley, U.S.A.

ABSTRACT

In order to determine the 3D structure of a thick sam-
ple, researchers have recently combined ptychography (for
high resolution) and tomography (for 3D imaging) in a sin-
gle experiment. 2-step methods are usually adopted for re-
construction, where the ptychography and tomography prob-
lems are often solved independently. In this paper, we provide
a novel model and ADMM-based algorithm to jointly solve
the ptychography-tomography problem iteratively, also em-
ploying total variation regularization. The proposed method
permits large scan stepsizes for the ptychography experiment,
requiring less measurements and being more robust to noise
with respect to other strategies, while achieving higher recon-
struction quality results.

Index Terms— Ptychography, Tomography, Ptycho-
Tomography, Total Variation (TV), Rytov scattering, ADMM

1. INTRODUCTION

Ptychography [1] is an increasingly popular imaging tech-
nique. It overcomes the resolution limit imposed by image-
forming optical elements of a regular microscope, enabling
high resolution images with a large field of view and in-
creased contrast. In the recent years, ptychography has been
combined with tomography [2] to produce 3D reconstruc-
tions with phase contrast and an increased resolution, pro-
viding chemical, magnetic or atomic information about the
measured sample.

In a Ptychography-Tomography (PT) experiment, a col-
lection of diffraction patterns is measured at each rotation
angle. The experiment permits to separately solve each 2D
ptychography problem first, and then reconstruct the 3D vol-
ume based on the collection of ptychographic images. We
refer to this analysis as 2-step approach. A downside of this
scheme is that the redundancy from ptychography measure-
ments from different rotation angles is not exploited. A joint
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PT model that iteratively refines the whole 3D object at the
same time could exploit this additional redundancy. Such
method could achieve high reconstruction quality even with
low redundancy, while providing enhanced stability and ro-
bustness to noisy measurement.

High resolution 3D reconstructions at nano-scales were
obtained in [3, 4], employing a 2-step algorithm to solve the
PT problem [5, 6, 7, 8, 9]. A recent article proposed an it-
erative algorithm for PT while treating each reconstruction
model independently [10]. In our previous work [11], an iter-
ative algorithm was designed for near-field PT using a sand-
paper analyzer in the Fresnel region.

In this paper, we propose a novel joint model that com-
bines both ptychography and tomography problems in a
standard far-field setting. We design a fast iterative algo-
rithm based on Alternating Direction Method of Multipliers
(ADMM), where each subproblem can be efficiently solved
either by the Conjugate Gradient (CG) method or by simple
algebraic operations. We employ a sparse prior in order to re-
duce redundancy requirements, especially when considering
large stepsizes for each ptychography scanning. In addi-
tion, we consider more efficient objective functions based
on the maximum likelihood estimate of the noise, which is
more accurate and produces enhanced reconstruction results.
Experiments presented here demonstrate the computational
performance and quality of the method: a synthetic Shepp-
Logan sample of size 1283 can be reconstructed obtaining
sharp features and clean background employing only 12 ro-
tation angles and a ptychography stepsize twice as big as the
illumination size.

This paper is structured as follows. In Section 2, the for-
ward joint PT model is presented, along with the proposed
ADMM-based algorithm for PT (APT). Section 3 presents the
experimental results and Section 4 concludes this work.

2. PROPOSED METHOD

2.1. Forward model

We first introduce the model for 2D ptychography. Mathemat-
ically, a 2D detector measures a collection of size J of phase-
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less signals {Ij}J−1
j=0 from the far-field propagation of an illu-

mination (probe) ω ∈ Cm̄ going through a sample v ∈ Cn.
This propagation can be modeled as Ij = |Aj(ω, v)|2, where
bilinear operatorAj is denoted asAj(ω, v) := F(ω◦Sjv),F
represents the normalized discrete Fourier transform, Sj de-
notes a binary matrix that extracts a small window with index
j and size m̄ over the entire image v, and ◦ is a pointwise
multiplication.

For a thick 3D sample u, following the Rytov approxima-
tion when the size of the probe is much larger than the X-ray
wavelength, the probe ω illuminates the linear projection of
the sample u rotated at an angle θ, such that the phaseless
measurements {fj,θ}j,θ are:

fj,θ = |Aj(ω,QRθu)|2, (1)

where Q denotes the X-ray transform linear projection and
Rθ denotes the rotation transform at the angle θ.

2.2. ADMM-based algorithm for PT

2.2.1. Optimization Model

Let Dj,θ(ω, u) := Aj(ω,QRθu). Instead of directly solv-
ing the quadratic multidimensional systems in (1), following
[12], a nonlinear least squares model for PT can be addressed
as min

u

1
2

∑
j,θ

∥∥|Dj,θ(ω, u)|−
√
fj,θ
∥∥2
. In order to deal with

data contaminated by different noise types, based on the max-
imum likelihood estimation (MLE), a more general mapping
B(·, ·) : Rm+ ×Rm+ → R+ was introduced in [12]. It measures
the distance between the recovered intensity g ∈ Rm+ and the
collected intensity f ∈ Rm+ as

B(g, f)=

{
1
2‖
√
g + ε1−

√
f + ε1‖2, (pAGM)

1
2 〈g + ε1−(f + ε1) ◦ log(g + ε1),1m〉, (pIPM)

(2)
where

√
·, ·· denote the element-wise square root and divi-

sion of a vector, respectively, 1 represents a vector whose el-
ements are all ones, and 〈·, ·〉 denotes the L2 inner product in
Euclidean space. Note that the penalization parameter ε was
introduced [12] to guarantee the Lipschitz differentiability of
the objective function in order to prove the convergence.

Based on the the above mapping B(·, ·), a general opti-
mization model with Total Variation (TV) regularization [13]
can be given as follows:

min
u

∑
j,θ Gj,θ(Dj,θ(ω, u)) + λTV(u), (3)

where Gj,θ(zj,θ) := B(|zj,θ|2, fj,θ), and total variation
TV(u) := ‖

√
|∇xu|2 + |∇yu|2 + |∇zu|2‖1, with ∇x,∇y

and ∇z denoting the finite difference in x, y and z directions
for the 3D sample u. To solve this nonconvex and nonsmooth
problem, an efficient ADMM [14] algorithm will be adopted.

2.2.2. ADMM-based PT (APT)

By introducing p = ∇u := (∇Tx u,∇Ty u,∇Tz u)T and zj,θ =
Dj,θ(ω, u), (3) can be reformulated, and consequently we de-
rive the equivalent saddle point problem as

maxΛ1,{(Λ2)j,θ}minu,{zj,θ},p;Λ1,{(Λ2)j,θ}L (u, z, p; Λ1,Λ2)

with augmented Lagrangian

L (u, z, p; Λ1, {(Λ2)j,θ}) :=
∑
j,θ Gj,θ(zj,θ) + λ‖p‖1

+ r1<(〈p−∇u,Λ1〉) + r1
2 ‖p−∇u‖

2

+
∑
j,θ

(
r2<(〈zj,θ−Dj,θ(ω, u), (Λ2)j,θ〉)+ r2

2 ‖zj,θ−Dj,θ(ω, u)‖2
)
,

and multipliers Λ1, {(Λ2)j,θ}. The ADMM scheme is con-
structed by alternating the minimization of the variables
u, {zj,θ}, p and the multipliers update of Λ1, {(Λ2)j,θ}. Then,
the subproblem w.r.t. u is given as

minu
r1
2 ‖Λ1+p−∇u‖2+

∑
j,θ

r2
2 ‖(Λ2)j,θ+zj,θ−Dj,θ(ω, u)‖2.

Then, we have

0 = r1(−∆u+∇ · (Λ1 + p))

+ r2

∑
j,θ(∇uDj,θ)(Dj,θ(ω, u)− (Λ2 + z)j,θ),

(4)

with ∇· denoting the divergence operator. Introducing op-
erators Tj,θ as Tj,θu := SjQRθu, we have Dj,θ(ω, u) =
F(ω ◦ Tj,θu). Readily, (4) reduces to

− r1∆u+ r2

∑
j,θ T Tj,θ(|ω|2 ◦ Tj,θu) = −r1∇ · (Λ1

+ p) + r2

∑
j,θ T Tj,θ(ω∗ ◦ F∗(Λ2 + z)).

(5)

We rewrite the linear systems as

Lu = −r1∇ · (Λ1 + p) + r2

∑
j,θ T Tj,θ(ω∗ ◦ F∗(Λ2 + z)),

where the linear operator L is denoted by

Lu := −r1∆u+r2

∑
θ(QRθ)T

∑
j STj |ω|2 ◦(QRθu). (6)

One readily knows that the above linear operator L is sym-
metric positive definite such that the conjugate gradient
method can be exploited.

The subproblem w.r.t. the variable zj,θ is formulated as:

z?j,θ := arg minzj,θ Gj,θ(zj,θ)+ r2
2 ‖(z+Λ2)j,θ−Dj,θ(ω, u)‖2.

Here we focus on the case where the penalization parameter
ε = 0, since the related subproblem has a closed-form solu-
tion. Readily one gets zj,θ = ProxG;r2(z̃j,θ) [15], where

ProxG;r2(z̃j,θ):=


√
fj,θ+r2|z̃j,θ|

1+r2
◦ sign(z̃j,θ)

r2|z̃j,θ|+
√
r22 |z̃j,θ|2+4(1+r2)fj,θ
2(1+r2) ◦ sign(z̃j,θ)



for different metrics in (2), with z̃j,θ := Dj,θ(ω, u)− (Λ2)j,θ.
Here sign denotes the pointwise complex sign of a vector.

The subproblem w.r.t. the variable p is formulated as

p? := arg min
p

λ
r1
‖p‖1 + 1

2‖p+ Λ1 −∇u‖2.

The soft thresholding solution is given as p? = max{0, |∇u−
Λ1| − λ

r1
} ◦ sign(∇u− Λ1).

Algorithm 1 summarizes the method and subproblems in-
troduced above, with penalization parameter ε = 0.

Algorithm 1: APT

• Step 0: Initialization of u0 = 1, z0
j,θ = Dj,θ(ω, u0),

p = 0, Λ0
1 = 0, (Λ0

2)j,θ = 0, k = 0,W :=
∑
j STj |ω|2.

• Step 1: Solve uk+1 by using CG for

− r1∆u+ r2

∑
θ PTθ (W ◦ Pθu) = −r1∇ · (pk + Λk1)

+ r2

∑
j,θ PTθ STj (ω∗ ◦ F∗(zk + Λk2)j,θ),

with Pθ := QRθ.

• Step 2: Solve zk+1
j,θ and pk+1 in parallel by

zk+1
j,θ = ProxG,r2(z̃kj,θ);

pk+1 = max{0, |p̃k| − λ
r1
} ◦ sign(p̃k);

with z̃kj,θ :=Dj,θ(ω, uk+1)−(Λk2)j,θ, p̃
k := ∇uk+1−Λk1 .

• Step 3: Update the multipliers by

Λk+1
1 = Λk1 + pk+1 −∇uk+1;

(Λk+1
2 )j,θ = (Λk2)j,θ + zk+1

j,θ −Dj,θ(ω, u
k+1).

• Step 4: If satisfying the convergence condition, stop
and output uk+1 as the final result; otherwise, go to
Step 1.

We also consider a special case without regularization
with λ = 0 in (3). Then the APT algorithm can be further
simplified by setting λ = r1 = 0 in Step 1 of Algorithm 1,
and removing the update of variables p and Λ1. This special
case is denoted as APTs (APT simplified, without TV).

The current algorithm can be generalized to a problem
with unknown probe. Similarly to [12], one has to solve
the subproblem w.r.t. the probe, i.e. minω

∑
j,θ

1
2‖zj,θ +

(Λ2)j,θ − Dj,θ(ω, u)‖2. Calculating the first-order derivative

yields ω ←
∑
j,θ(SjQRθu)∗◦F∗(z+Λ2)j,θ∑

j,θ |SjQRθu|2
.

We have presented the algorithm for the special case
where ε = 0 in (2). The Lipschitz differentiability of the
objective functional can be used to show the convergence of
the APT algorithm, similarly to [12]. The Lipschtiz property
of the objective requires a positive penalization parameter
ε > 0. This case requires an extra inner loop, leading to
additional computational cost. Numerically we observe con-
vergence of APT using ε = 0, and we leave the convergence
analysis for APT without Lipschtiz property as future work.

(a) (b)
Fig. 1. (a) Ground truth synthetic image from a 3D Shepp-
Logan phantom, slice 64 out of 128. (b) Absolute value of the
illumination (probe) with beamsize (Full width at half maxi-
mum (FWHM)) 14 pixels.

3. NUMERICAL EXPERIMENTS

For this experimental analysis we consider a synthetic 3D
sample with pure phase with size 128 × 128 × 128 pixels
(Fig. 1(a)). The ptychography measurements are simulated
using a single grid scan with non-periodical boundary at
every rotation angle, with a probe of size 64 × 64 pixels
(amplitude shown in Fig.1(b)). For the tomography setting,
the sample is rotated discretely with angles ranging from 0
to π. Two quantitative measurements will be used in this
analysis: the signal-to-noise ratio (SNR) and the R-factor.
The ground truth sample can be used to compute the SNR

of uk as: SNR(uk, ug) = −10 log10

∑
t
|ζ∗uk(t+T∗)−ug(t)|2

‖ζ∗uk‖2 ,

where ug corresponds to the ground truth sample. The error
is computed up to the translation T ∗ and phase factor ζ∗,
and the phase shift and scaling factor ζ∗ are determined
by (ζ∗, T ∗) := arg min

ζ∈C,T∈Z

∑
t |ζuk(t + T ) − ug(t)|2.

The R-factor (fitting error) is defined as: R-factork :=∑
j,θ

∥∥|Dj,θ(ω,uk)|−
√
fj,θ

∥∥
1∑

j,θ ‖
√
fj,θ‖1

.

First, we show the advantage of the proposed algorithm
compared with the 2-step method. The 2-step strategy is com-
puted using SHARP [16] for the ptychography reconstruction
(with default parameters and 100 iterations) and conjugate
gradient with 10 iterations for the tomography part using the
Tomopy framework [17]. We show the results with scan step-
size 32 pixels (230% of beamsize). The reconstruction results
for the center slice of the sample can be found in Fig. 2. With
this configuration, the 2-step approach does not converge to a
reconstruction (Figs. 2 (a),(d)), since the ptychography solver
does not have enough redundancy giving the large scan step-
sizes. On the other hand, the proposed APTs algorithm (Figs.
2 (b),(e)) is able to recover the sample but presenting some
blurred areas, whereas APT can achieve a cleaner reconstruc-
tion with very sharp features (Figs. 2 (c), (f)). With the help
of more rotation angles, the results are also improved, as de-
picted in Fig. 2 second row. The R-factors and SNRs of the
recovery results can also be found in Table 1, showing how
APT with regularization achieves better R-factors and SNRs
than APTs.

For the next experiment, we generate a second dataset
with much smaller scan stepsize for ptychography (4 pixels),
and maintaining 12 rotation angles for tomography. Recon-
struction results for this experiment are depicted in Fig. 3.



(a) (b) (c)

(d) (e) (f)
Fig. 2. Results of a synthetic sample generated with step-
size = 32 and 12 rotation angles (first row) and with 48 rota-
tion angles (second row). First column: reconstruction using
the 2-step method. Second column: APTs. Third column:
APT.

Table 1. SNRs and R-factors for results using stepsizes =
4, 32 and rotation angles = 12, 48, using the 2-step method,
APTs and APT. ∗ stands for a failed reconstruction.

stepsize 32 32 4
number of angles 12 48 12

R-factor
2-step ? ? 0.0185
APTs 0.0295 0.0263 0.00995
APT 0.0270 0.0189 0.00852

SNR
2-step ? ? 16.8
APTs 15.1 17.0 17.6
APT 24.1 25.6 26.9

We can see how the 2-step method and APTs produce com-
parable visual results in this case, whereas APT produces a
much more nitid reconstruction with sharper features. The
R-factors and SNRs for this experiment can also be found in
the last column of Table 1, showing the improvements of the
proposed algorithms, compared with the 2-step method.

(a) (b) (c)
Fig. 3. Reconstruction results of a synthetic sample generated
with stepsize = 4 and 12 rotation angles, using (a) the 2-step
method, (b) APTs and (c) APT.

The next experiment, presented in Fig. 4, analyzes the
convergence of the proposed algorithms. The figure shows
how both the errors and R-factors steadily decrease, demon-
strating the reliability and robustness of the method.

Finally, we test the robustness of the proposed algorithms
when data is contaminated by noise. In order to simulate
different intensity peak values, a factor η > 0 is intro-
duced, such that Poisson noise corrupts the clean intensity as
fj,θ(t)

i.i.d.∼ Poisson(fηj,θ(t)), where fηj,θ := η|Dj,θ(ω, ug)|2,
with ground truth ω and ug. The smaller the η factor the
bigger the noise level. SNRintensity [12] is used to mea-
sure the noise level, which is defined as: SNRintensity :=

(a) Error (b) R-factor

Fig. 4. Convergence curves with stepsize = 32 and 12 rotation
angles. Horizontal axis denotes iteration count. Vertical axis:
(a) Relative error as ‖u

k−uk+1‖
‖uk+1‖ , (b) R-factor.

Table 2. SNRs and R-factors of the reconstruction results
from data contaminated by Poisson noise, with stepsize = 32
and 12 rotation angles.

η 1 0.1

R-factor APTs 0.0455 0.0796
APT 0.0427 0.0732

SNR APTs 14.9 13.6
APT 22.7 19.4

−10 log10

∑
j,θ ‖fj,θ−f

η
j,θ‖

2∑
j,θ ‖f

η
j,θ‖2

. We show the reconstruction re-
sults with peak levels 0.1 and 1 in Fig. 5, and the respective
R-factors and SNRs in Table 2. The results demonstrate how
the proposed algorithms are robust to the noisy measure-
ments, even with significantly large scan stepsizes and few
angles. As reported in the previous analysis, Fig. 5 and Ta-
ble 2 show how APT can greatly enhance the reconstruction
quality with respect to APTs thanks to the TV regularization.

(a) APTs (b) APT (c) APTs (d) APT

Fig. 5. Reconstruction results with data contaminated by
Poisson noise, with stepsize = 32 and 12 rotation angles, us-
ing the proposed APTs and APT algorithms. (a)-(b): Peak
level η = 1; (c)-(d): Peak level η = 0.1. The quality of
the noisy measurements with respect to the original intensi-
ties are SNRintensity = 46.3, 38.4 for (a)-(b) and (c)-(d), re-
spectively.

4. CONCLUSION

We propose a novel model and algorithm to iteratively solve
the coupled PT problem for far-field X-ray imaging. We
present the ADMM-based APT and APTs algorithms that are
designed on subproblems requiring low computational cost,
while providing higher reconstruction quality, stability and
robustness. The proposed model and algorithms exploit the
redundancy of ptychography measurements from multiple
rotation angles, and the capabilities of the method regarding
quality and convergence are demonstrated in the experimental
analysis. As a future work, we will test our method using real
experimental data, and also consider additional experimental
issues, such as sample drifts [4] and phase unwrapping [5].
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