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Abstract
We investigate how the structure of interactions between coupled oscillators influences
the formation of asynchronous patterns in a multilayer network by formulating a
simple, general multilayer oscillator model.We demonstrate the analysis of this model
in three-oscillator systems, illustrating the role of interactions among oscillators in
sustaining differences in both the phase and amplitude of oscillations leading to the
formation of asynchronous patterns. Finally, we demonstrate the generalizability of
our model’s predictions through comparison with a more realistic multilayer model.
Overall, ourmodel provides a useful approach for predicting the types of asynchronous
patterns that multilayer networks of coupled oscillators which cannot be achieved by
the existing methods which focus on characterizing the synchronous state.

Keywords Synchronization · Multilayer networks · Coupled oscillators

1 Introduction

The synchronization dynamics of systems of coupled oscillators play a central role in
a tremendous range of phenomena across the physical, biological, and social sciences
(Faloutsos et al. 1999; Freeman 1996; Holland and Hastings 2008; Jeong et al. 2000;
Varela et al. 2001). A system of coupled oscillators can represent any dynamical sys-
tem characterized by interactions between components with regular fluctuations in its
state variables such as neurons, heart cells, animal populations, and power generators.
Determining how and why oscillators in these systems either converge on the same set
of dynamics (synchrony) or differentiate from one another (asynchrony) is central to
both understanding and managing these types of systems (Albert and Barabási 2002;
Boccaletti et al. 2006; Strogatz 2001).

A valuable tool for investigating the synchronization dynamics of coupled oscillator
systems has been the Kuramoto model, which features extremely simple and general-
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izable oscillator dynamics describing constant phase evolution following a sine wave
and diffusion-based coupling between oscillators (Kuramoto 1975; Strogatz 2000).
However, due to the simplicity of the model the coupling of Kuramoto oscillators is
only able to influence phase, while in many systems coupling also influences the inter-
nal dynamics of oscillators. Specifically, in multilayer networks where oscillations are
produced by the interactions between multiple types of internal components, the cou-
pling of like components between oscillators can cause differences in not only phase
but also the amplitude of the oscillatory equilibrium. Thus, the study of multilayer
networks can reveal much about the role of structure in the synchronization dynamics
in more complex real-world systems (Boccaletti et al. 2014).

Unsurprisingly, the synchronization dynamics of both single- and multilayer oscil-
latory systems can be extremely complex. In the simplest case where every oscillator
and their internal components are identical, total synchronization is expected and
intuitive. However, even when oscillators are identical, these systems are able to dif-
ferentiate into a variety of dynamical regimes, reaching stable asynchronous equilibria:
a phenomenon known as pattern formation (Cross and Hohenberg 1993; Turing 1952).
These patterns are primarily known to be caused by Turing instabilities, wherein the
synchronized, homogeneous state is destabilized by coupling between the components
of the system (Turing 1952). It is not necessary for the synchronous state to be desta-
bilized however; coupling among oscillators can also stabilize a variety of alternative
asynchronous equilibria that coexist with the synchronous state (Nakao andMikhailov
2010; Wolfrum 2012). In this case, the equilibrium found by the system depends on
initial conditions and may shift with large enough perturbations depending on the
landscape of equilibria and their attractive properties.

Despite the appearance of stable asynchronous equilibria even in the absence of
Turing instability, pattern formation has been studied primarily by characterizing the
stability of the synchronous state. Specifically, themaster stability function (MSF) for-
malism is commonly used to determine the conditions for stable synchrony in a given
system and the general ability of individual structures to maintain synchrony (Are-
nas et al. 2008; Barahona and Pecora 2002; Pecora and Carroll 1998). This approach
considers the local stability of the synchronized equilibrium, particularly whether the
system will return to synchrony following a small asynchronous perturbation. This
tells us nothing about the number and qualities of asynchronous equilibria, however,
as it considers a system’s behavior only near the synchronous equilibrium. Studies on
pattern formation inmultilayer networks in particular have, so far, focused on theMSF
and similar methods (Asllani et al. 2014; Brechtel et al. 2018; Hata et al. 2014; Kou-
varis et al. 2015) for characterizing the stability of the synchronized state. Thus, it is
necessary to develop alternative approaches to further investigate the role of structure
in the formation and stabilization of alternative asynchronous equilibria, particularly
in multilayer networks.

Some approaches have been effective in illuminating the role of structure in the for-
mation of asynchronous patterns, particularly by analyzing the spectral properties of
the network’s adjacency matrix. One approach demonstrates that for an asynchronous
pattern to be stable, the ‘coloring’ of oscillators (where oscillators with the same color
are synchronized) must be balanced such that all oscillators of the same color are
connected to the same numbers and colors of other oscillators (Stewart et al. 2003).
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A variety of methods for determining all the balanced colorings from a given struc-
ture have been developed (Aguiar and Dias 2014; Kamei and Cock 2013). From a
balanced coloring, a ‘quotient network’ can be constructed, which reduces the net-
work to interactions between differently colored nodes (Stewart et al. 2003). Another
approach identifies the special case where eigenvectors are localized to specific sub-
graphs within the network (Do et al. 2012). The authors demonstrate that in this case
the relationship between dynamics and topology can be understood within subgraphs
independent of the network inwhich they are embedded and that this analysis can aid in
understanding and control of any network containing such subgraphs, or to which such
a subgraph could be added. While these approaches reveal much about how structure
constrains asynchronous patterns, predicting how the dynamics of oscillators change
due to asynchrony in the general case remains an unsolved problem.

To move beyond the focus on the stability of the synchronized state and investigate
the effect of interaction structure on both the conditions for and dynamics of alterna-
tive asynchronous equilibria, we develop and analyze a simple multilayer oscillator
network model. We illustrate the use of this model in predicting the emergence and
effect of asynchronous patterns on oscillator phase and amplitude by first analyzing
the structure of three-oscillator networks. These systems are small enough to be solved
effectively, while complex enough to provide insight into the mechanisms underly-
ing pattern formation in more complex structures. Through this analysis, we discuss
how each oscillator’s potential for differentiation is determined by its position within
a network structure and the mechanisms underlying the differentiation of oscillator
dynamics.

Finally, we compare the predictions of our model with the numerical results of a
more complex multilayer model characterized by oscillations generated via nonlinear
interactions among oscillator components. Our model successfully predicts many of
the patterns generated by thismore complexmodel, despite being significantly simpler.
Overall, our model provides a useful starting point for the analysis of pattern forma-
tion in multilayer networks which generalizes readily to more complex and realistic
systems.

2 Multilayer Oscillator NetworkModel

Our multilayer oscillator network model is:

x ′
i = δ

∑

j=1

Li j r j cos(θ j − θi ) + ψ(1 − ri ) (1)

y′
i = δ

∑

j=1

Li j r j sin(θ j − θi ) (2)

θ
′
i = ω + tan−1(

y′
i

x ′
i
) (3)

r
′
i =

√
(ri − x

′
i )
2 + y

′2
i − ri (4)
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Fig. 1 Illustration of the components of our multilayer oscillator network model. Each oscillator i is pulled
toward the state of its neighbors j based on coupling strength δ and interaction strength L ji , with the x
and y dimensions acting as independent layers. Oscillators are also repelled from the center toward the
intrinsic limit cycle based on the strength of repulsionψ and distance from the intrinsic limit cycle (1−ri ).
Calculations for the net effect of these forces on each oscillator i are simplified by rotating the frame of
reference by oscillator i’s phase such that the phase of all oscillators j , θ j = θ j − θi , making θi = 0,
yi = 0, and xi = ri (Color figure online)

We illustrate the components of our model in Fig. 1. Our model is constructed
similarly to the Kuramoto model (Kuramoto 1975), where θi is the phase of oscillator
i and ri its amplitude. Internally, each oscillator undergoes constant phase evolution
ω around a limit cycle described by the unit circle, where the x dimension is cos(θ)

the y dimension is sin(θ). Oscillators are coupled independently on both the x and y
dimensions by thematrix L with coupling strength δ, such that δLi j describes the effect
of coupling from oscillator j on oscillator i . The matrix L is the negative Laplacian,
or A−D where A is the adjacency matrix and D is the diagonal degree matrix. Thus,
off-diagonal elements of L are positive while each diagonal element Lii is the negative
sum of the off-diagonal elements of row i .

Because oscillators are coupled on both the x and y dimensions, amplitude r can
vary, unlike the Kuramoto model. This allows oscillators to escape their intrinsic limit
cycle (r = 1). To simulate the behavior of real limit cycles with unstable fixed points
at their center, we introduce the parameter ψ for the repelling force of the center; the
term ψ(1 − ri ) causes amplitude r to move toward the limit cycle r = 1 at a fraction
of ψ proportional to the oscillator’s distance from the original limit cycle.

Calculations are simplified by rotating the frame of reference about the limit cycle
by θi such that the phase of all oscillators j becomes θ j = θ j − θi , making θi = 0,
yi = 0, and xi = r , as illustrated in Fig. 1. It should be noted that this rotation
assumes that coupling strength δ and interaction structure L are same for both the
x and y dimensions of the oscillators. In our formulation of this model, this holds
true; however, it is possible to alter the model such that interactions among oscillators
differ between the x and y dimensions as they may for many multilayer systems.
Additionally, the changes in x and y dimensions shown in Eqs. 1 and 2 are changes
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post-rotation to simplify calculation of the change in phase and amplitude and thus do
not represent the actual change in the x and y dimensions of each oscillator. Finally,
as ω is constant (all oscillators are identical), we set ω = 0 so that the only changes
in phase analyzed are those relative to the phase of other oscillators and not intrinsic
rotation about the limit cycle.

From Eq.3, we observe that the phase of oscillator i relative to the other oscillators
is locked only if y′

i = 0, or:

θi = tan−1

( ∑
j �=i Li j r j sin(θ j )∑
j �=i Li j r j cos(θ j )

)
(5)

This condition can be satisfied regardless of each oscillator’s amplitude r j or the
strength of interactions Li j if sin(θ j −θi ) = 0 for all j , meaning θi = θ j ±nπ, n ∈ N

for all j . Alternatively, the sum of all interactions with other oscillators must balance
to zero, or

∑
j �=i Li j r j sin(θ j − θi ) = 0.

From Eq.4, amplitude is locked when phase is locked (y′
i = 0) and xi = 0, or:

ri =
ψ
δ

+ ∑
j �=i Li j r j cos(θ j − θi )

ψ
δ

− Lii
(6)

With these conditions together, we can identify all equilibria present in a given system,
including the trivial case of total synchrony (θi = 0 and ri = 1 for all i).

3 Three-Oscillator Systems: Equilibrium Phases

To demonstrate the analysis of our model and shed light on the effects of structure on
pattern formation, we analyze the effects of structure L on the equilibria of systems of
three oscillators. There are two possible structures which connect all three oscillators.
The first is a triangle where every oscillator is connected to the other two, and the
second is a line where two outer oscillators connect to a single middle oscillator.
When describing phases, we rotate our point of reference about the unit circle such
that the phase of each oscillator is described by their difference from the first oscillator,
θi−θ1. The first oscillator thus serves as our point of reference and is always 0 (θ1−θ1).
This simplifies analysis and highlights the differences between oscillator phases as the
meaningful driver of dynamics.

As discussed, the condition for phase locking (Eq.5) has a guaranteed solution
independent of each oscillator’s amplitude or the strength of interactionswhen sin(θ j−
θi ) = 0 for all i, j , or θi = θ j ± nπ, n ∈ N. As the period of each oscillator is 2π ,
π and −π are equivalent and we have two possible phases for each oscillator: equal
(θi − θ1 = 0) or antiphase (θi − θ1 = ±π ) to the first oscillator. This gives us three
sets of asynchronous equilibrium phases for each structure, each with two oscillators
sharing a phase and one antiphase to them. The amplitude of these oscillators can then
be determined separately as we describe later.
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Phases can also be lockedwhen the effects of other oscillators on phase are balanced
and cancel out; Li j r j sin(θ j − θi ) = −Likrk sin(θk − θi ). Unlike the solutions with
all phases equal or antiphase, these do depend on the strength of interactions and
amplitude. This type of solution also requires that each oscillator has at least two
connections to balance against each other, and as a result, these equilibria are possible
only for the triangle structure and not the line. We find by substitution the conditions
for these equilibria:

L12L23L31 = L21L32L13 (7)

θ2 − θ1

= ± cos−1
[
(L23L13r3)2 − (L21L13r1)2 − (L12L23r2)2

2(L21L13r1)(L12L23r2)

]
(8)

θ3 − θ1

= ∓ cos−1
[
(L32L12r2)2 − (L31L12r1)2 − (L13L32r3)2

2(L31L12r1)(L13L32r3)

]
(9)

The conditions specifying θ2 − θ1 and θ3 − θ1 turn out to be the equations for finding
the angle of triangle from its sides, the law of cosines. In conjunction with a constraint
on interaction structure, Eq.7, these conditions specify that phases are locked only if
the angles π − (θ2 − θ1), π − (θ3 − θ1), and π − (θ3 − θ2) form a triangle with sides
equal to the oscillator’s amplitudes scaled by their interactions with other oscillators.
The weighting of the sides of the triangle may differ between the equations for θ2 − θ1
and θ3 − θ1 as the first condition ensures that the angles of both triangles agree by
requiring that all sides of the triangle for θ3 − θ1 are proportional to the sides of the
triangle for θ2 − θ1 by

L23
L32

.
From these conditions, we observe that phase locking for these equilibria depends

on ratios of amplitudes and interaction strengths, specifically
Li j r j
Likrk

. Thus, equilibrium
phase can be determined independent of amplitude if the ratios remain constant, or
r ′
1 = r ′

2 = r ′
3. To illustrate, we consider the case of a triangle with equal interactions

between all oscillators (Li j = 1 for all i, j) and equal amplitudes for all oscillators,

making
Li j r j
Likrk

= 1 for all i, j, k. This satisfies the constraint on structure in Eq.7 and

simplifies Eqs. 8 and 9 to θ2 − θ1 = ± 2π
3 and θ3 − θ1 = ∓ 2π

3 . Following this, Eq. 4

simplifies to dri
dt = δ(−3ri ) + ψ(1 − ri ), making the change in amplitude equal for

all oscillators if the amplitudes are equal. Thus, there is an asynchronous equilibrium
at r1 = r2 = r3 and θ2 − θ1 = ± 2π

3 , and θ3 − θ1 = ∓ 2π
3 .

From the conditions for phase locking, we find that structure plays a role in enabling
the emergence of asynchronous equilibria on two levels. First, the ’qualitative’ struc-
ture, or the presence/absence of interactions among oscillators, determines whether
oscillators can be phase-locked without being equal or antiphase to each other. This
effect immediately differentiates the line and triangle structures from one another,
enabling a much wider range of possible asynchronous patterns for the triangle than
for the line. Second, the ’quantitative’ structure, or the strength of interactions among
oscillators, provides an additional condition whichmust be met for equilibrium phases
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that are not equal or antiphase to be possible (Eq.7) and additionally plays a role in
arbitrating the relationship between phase and amplitude in the more complex case of
equilibria due to its appearance in the ratios

Li j r j
Likrk

(Eqs. 8, 9).
Overall, oscillators with more neighbors to interact with have more possibilities

for differentiation. An oscillator with a single interaction must be equal in phase
or antiphase with its neighbor, while an oscillator with two neighbors can also be
phase-locked if the neighbor’s effects cancel out. The complexity of possible pattern
formation mechanisms continues to scale with the number of oscillators and interac-
tions; an oscillator with three neighbors can be phase-locked by having one neighbor
cancel the other two, by being antiphase or equal to one and having the other two
cancel, and so on. As a result, the number of possible asynchronous patterns can be
expected to scale with the complexity of the network.

4 Three-Oscillator Systems: Equilibrium Amplitudes

Next we consider how interaction structure L influences the amplitude of oscillators,
first by analyzing the conditions for amplitude locking, found through substitution of
Eq.6:

ri = ψ3 + ψ2δF(i) + ψδ2G(i)

ψ3 + ψ2δH1 + ψδ2H2 + δ3H3
(10)

where

Bi j = Li j cos(θi − θ j )

F(i) = (Bi j + Bik) − (Bj j + Bkk)

G(i) = (Bkj Bik + Bi j B jk + Bj j Bkk)

− (Bi j Bkk + Bj j Bik + Bjk Bk j )

H1 = −(B11 + B22 + B33)

H2 = (B11B22 + B11B33 + B22B33)

− (B12B21 + B13B31 + B23B32)

H3 = (B33B12B21 + B22B13B31 + B11B23B32)

− (B11B22B33 + B12B23B31 + B21B13B32).

The terms ofEq.10 aremade upof combinations of elements B, amatrix combining the
effect of phase differences and the matrix of interaction strengths between oscillators
L . Of these terms, F(i) and G(i) can differ for each oscillator, while H1, H2, and H3
will be constant for all oscillators in the system.

In the cases where phase is locked independently from amplitude, amplitude is
straightforward to calculate using the parameters of the system. To illustrate we show
examples of the calculated amplitude for each of the equilibrium phases, we identified
in the previous section in Table1, where interactions are equal among all oscillators for
both structures (Li j = 1 for all i, j). These results highlight an interesting difference
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4 Page 8 of 16 S. M. Hayes, K. E. Anderson

Table 1 Calculated amplitudes
for selected asynchronous
equilibria

θ2 − θ1 θ3 − θ1 r1 (end) r2 (mid.) r3 (end)

Line structure

0 ±π .975 .8 .775

±π 0 .8 .6 .8

±π ±π .775 .8 .975

Triangle structure

0 ±π .8 .8 .6

±π 0 .8 .6 .8

±π ±π .6 .8 .8

±2π/3 ∓2π/3 .7 .7 .7

The parameters used were equal interaction strengths for all interac-
tions (Li j = 1 for all i, j), δ = .1, and ψ = .7. For the line structure,
oscillators 1 and 3 are at the ends and do not connect to each other
(L13 = L31 = 0) while oscillator 2 is the middle connected to both.
For the triangle structure each oscillator is equivalent due to equal
weighting of interactions

between the line and triangle structures: for the triangle, oscillators with equal phases
have the same amplitude, while oscillators at the end of the line structure (1 and 3)
have differing amplitudes when phase is equal to the middle oscillator. Thus, despite
oscillators in the line structure being constrained to two phases, all three are able to
differentiate and avoid total synchronization with their neighbors.

We can determine the conditions for oscillators with equal phase to exhibit different
amplitudes by determining whether F(i) = F( j) and G(i) = G( j) in Eq.10. In
particular, for two oscillators to maintain different amplitudes while sharing the same
phase, at least one of these conditions must be false:

F(i) = F( j) ↔ (Bi j + Bik) − (Bji + Bjk) = 0

G(i) = G( j) ↔ Bik[(Bki + Bkj ) − (Bji + Bj j )]
+ Bjk[(Bii + Bi j ) − (Bki + Bkj )]
+ Bkk[(Bji + Bj j ) − (Bii + Bi j )] = 0

These conditions will always be true if the set of interactions both to and from the
two oscillators i and j are isomorphic, or Bi . ∼= Bj . → F(i) = F( j), B.i ∼= B. j →
G(i) = G( j). As we observed, when interactions are equal among all oscillators
(Li j = 1 for all i, j), all oscillators are isomorphic in the triangle structure and thus
will have the same amplitude if phase is equal. For the line structure, the two ends are
isomorphic while the center is not, and so as we observed the ends will share the same
amplitude if their phase is equal while the amplitude of the ends will differ from the
middle when phase is equal.

From this, the symmetry of an interactions structure, which is defined by the
automorphisms of the interaction structure, is shown to play a significant role in
constraining the types of asynchronous patterns possible. The ability to maintain dif-
ferences in dynamics among oscillators with the same phase through variation in

123



Predicting Pattern Formation in Multilayer Networks Page 9 of 16 4

amplitude can create a variety of patterns unique to multilayer networks; however,
this is not possible between oscillators which are isomorphic. As a result, the addition
or removal of links which increase the symmetry of an interaction structure prevents
the formation of certain patterns, as observed in our comparison between the line and
triangle structures. Overall, structures with low self-symmetry but a high degree of
connectance among oscillators are expected to foster the greatest number of possible
asynchronous patterns.

By further analyzing Eq.10, we can identify the specific elements of structure
that drive of differences in amplitude between oscillators. First, we observe that the
terms of this equation correspond to important subcomponents of the matrix B, where
Bi j = Li j cos(θi − θ j ), specifically the determinant det(B) trace, tr(B) = ∑

Bii
and cofactors Ci j = (−1)i+ jdet(Di j ), where Di j is a submatrix of B with row i and
column j removed:

F(i) =
∑

j=1

(Bi j ) − tr(B)

G(i) =
∑

j=1

C ji

H1 = −tr(B)

H2 =
∑

j=1

C j j

H3 = −det(B)

As Lii = −∑
j �=i L ji , the sum of all columns of L equals 0. Therefore, when all

phases are equal L = B, making F(i) = H1, G(i) = H2, and H3 = 0, thus r = 1
for all oscillators. This corresponds to our case of total synchrony with no deviation
in amplitude from the original limit cycle.

The conditions which maximize change in amplitude from the basal state r = 1
can be found by minimizing F(i) and G(i) and maximizing H1, H2, and H3. F(i) and
H1 both depend on the negative sum of the diagonal elements of the coupling matrix
L , which is the total of all interaction strengths in the system. High total interaction
strengths increase both H1 and F(i); however, F(i) is not affected by the value of Lii .
F(i) can also be reduced independently from H1 by phase differences greater thanπ/2
and less than 3π/2 between oscillator i and its neighbors, which make the elements
Bi j negative. F(i) is minimized for a given interaction matrix when oscillator i is
antiphase with its neighbors, as in the two-cluster solutions of Table1. F(i) is then
further reduced the greater the strength of interaction with antiphase neighbors.

Next, G(i) and H2 depend on the cofactors of B. For H2, the cofactors are the
determinants of the matrices describing the coupling between each pair of oscillators.
For cofactor i, i this value is

Cii = (L j j Lkk) − (L jk Lk j ) cos
2(θ j − θk). (11)
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4 Page 10 of 16 S. M. Hayes, K. E. Anderson

The maximum for each of these values is L j j Lkk , which is realized either when L jk

and/or Lkj is zero orwhen θ j−θk = π/2±nπ, n ∈ N. In caseswhere all oscillators are
equal or antiphase, this simplifies to (L j j Lkk)− (L jk Lk j ) as cos2(π) = cos2(0) = 1.
Substituting Lii = −∑

j �=i Li j , cofactor i, i becomes L ji Lki + L ji Lk j + L jk Lki ,
illustrating the dependence of these values on interactions with the third oscillator, i .
In cases where the phases of oscillators are locked by balancing their interactions, each
cofactor is increased the closer θ j −θk is to π/2±nπ, n ∈ N, which also corresponds
to an increasing effect of oscillators j and k on the other’s phase, requiring an equally
strong opposing effect for phase to be locked. Overall, H2 is increased by balanced
interactions among oscillators.

The cofactors determining G(i) include one of the cofactors from H2, Cii , the
determinant of the coupling matrix between j and k. G(i) also includes the signed
determinants of the other submatrices constructed from L with column i removed.
Cofactor j, i is

C ji = Li j L jk cos(θi − θ j ) cos(θ j − θk)

− L j j Lik cos(θi − θk). (12)

The minimum for these cofactors is −(L ji Lik + L jk Lik + Li j L jk), as L j j =
−∑

i �= j Li j . This occurs for a given interaction matrix when i is antiphase with both
j and k, or θi − θ j and θi − θk equals π ± n2π, n ∈ N, and θ j − θk equals zero. Both
C ji and Cki are minimized by these phase differences. These conditions are similar
to those that minimize F(i); however, G(i) is also minimized by strong interactions
between its two neighbors, L jk and Lkj , and high total interaction strength for each,
L j j and Lkk .

Finally, H3 is the negative determinant of B. This value expands to

−det(B) = Li j L ji (Lki + Lkj )(1 − cos2(θi − θ j ))

+ Lik Lki (L ji + L jk)(1 − cos2(θi − θk))

+ L jk Lk j (Li j + Lik)(1 − cos2(θ j − θk))

+ (Li j L jk Lki + Lik Lk j L ji )(1 − cos(θi − θ j )

× cos(θi − θk) cos(θ j − θk)). (13)

Maximizing H3 depends on the specific interaction matrix, as no one set of phase
differences canmaximize 1−cos2(θi −θ j ) for all i, j . In the case where all interaction
strengths are equal, Li j = 1 for all i, j , H3 is maximized when θ j − θi = ±2π/3
and θk − θi = ∓2π/3, the triangle’s three-cluster equilibrium in Table1. In this case,
H3 like H2 is increased by even phase differences among oscillators due to the evenly
distributed interaction strengths between oscillators. In other cases, the maximum for
H3 will shift such that oscillators with stronger interactions (Li j L ji ) should have
phase differences closer to π/2±nπ, n ∈ N, making cos2(θi − θ j ) closer to zero and
indicating a stronger effect of i and j on each other’s phase.

Altogether, these conditions provide insight into the mechanisms by which inter-
action structure changes oscillator dynamics. System-wide reductions in amplitude
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are promoted by high total interaction strengths (H1), evenly distributed interactions
among oscillators (H2), and phase differences which match the pattern of interac-
tions among oscillators (H3). Curiously, both high total interaction strength and even
distribution of interaction strengths are both known to promote synchrony (Arenas
et al. 2008; Watts and Strogatz 1998). This may not be surprising, as the conditions
which maximize differences in amplitude also suggest strong effects of oscillators on
one another which promotes synchronization. This presents an interesting trade-off in
maximizing either the frequency of asynchrony, in terms of the range of initial con-
ditions which will lead to asynchrony, versus the strength of the effect of asynchrony
on oscillator amplitude.

In addition to the aforementioned system-wide effects, F(i) and G(i) describe
the conditions which influence the amplitudes of individual oscillators. Specifically,
oscillator i’s amplitude is reduced by strong interactions with neighbors j and k when
both have high phase differences with i . Additionally, strong interactions and low
phase differences between j and k reduce i’s amplitude. These effects compete with
the system-wide effects on amplitude: the conditions which minimize F(i) and G(i)
have all oscillators are equal or antiphase, constraining H3 to zero and limiting H2. The
ultimate effect of each of these terms on amplitude depends on the center resistance
ψ and coupling strength δ. Higher values of coupling strength δ increase the effect of
H3 in particular and the effect of G(i) and H2 relative to F(i) and H1, respectively.
Higher values of center resistance ψ have the opposite effect, having no effect on H3
while increasing F(i) and H1 relative to G(i) and H2.

5 Simulation Results and Comparison with Ecological Model

We compare the dynamics of our model with a commonly studied and more complex
ecological model, the Rosenzweig–MacArthur predator–preymodel (Rosenzweig and
MacArthur 1963). Thismodel has been used previously to study the effects of structure
on dynamics (Holland and Hastings 2008; Hayes and Anderson 2018), though analyt-
ical prediction from the model has been challenging due to its complexity. Other work
has been successful in extracting analytical predictions of the conditions for and qual-
ities of synchronous and asynchronous states from this model (Goldwyn and Hastings
2008), but only when coupling is too weak to change the amplitude of limit cycles,
only the phase of oscillations. By contrast, we show that our model can reproduce
much of the behavior of the more complicated Rosenzweig–MacArthur model while
still being accessible to direct analytical prediction even in the case of strong coupling.

Specifically, we compare our model with the non-dimensional form of the
Rosenzweig–MacArthur model with dispersal between subpopulations of predators
and prey, which has previously been used to study the effects of structure on dynam-
ics (Holland and Hastings 2008; Goldwyn and Hastings 2008; Hayes and Anderson
2018):

h′
i = hi (1 − hi K ) − pi hi

1 + hi
+ δ

n∑

j=1

Li j h j (14)
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p′
i = epi hi

1 + hi
− mpi + δ

n∑

j=1

Li j p j (15)

where hi and pi are the abundance of prey and predators, respectively, in subpopula-
tion i , K represents prey self-regulation, e the intensity of predation, and m predator
mortality. L is the structure of movement among subpopulations and δ the rate of
movement, both of which are equivalent to the structure L and strength δ of coupling
among oscillators in our model. In comparing the two models, each subpopulation of
predator and prey are equivalent to the x and y dimensions of an oscillator. The limit
cycle of the predators and prey is centered around the system’s unstable fixed point,
ĥ = m(e − m) and p̂ = (1 + ĥ)(1 − ĥK ).

Between the two models, interactions between oscillators are the same while
each differs in terms of the local dynamics generating oscillations. While the sim-
ple limit cycle followed by our general multilayer model is explicitly constructed,
the Rosenzweig–MacArthur model’s limit cycle is an emergent property of nonlinear
interaction between the predator and prey, specifically (pi hi )/(1+hi ). Thus, our com-
parison is intended to illustrate the degree to which interactions in oscillators alone
can be used to predict the emergence of asynchronous states which generalize across
different types of local dynamics.

We compare the asynchronous states exhibited and dynamics produced by both
models in Fig. 2. We use parameters for the ecological model used in previous work
(Holland and Hastings 2008; Hayes and Anderson 2018) to represent systems with
strong density dependence in prey and high predation, creating high amplitude oscil-
lations which emphasize the role of spatial structure in these systems. Despite the
different shape of limit cycle and intrinsic nonlinearity of the ecological model, the
asynchronous states it produces and their dynamics resemble those found in our mul-
tilayer oscillator model. In particular, the pattern of phases and amplitudes of the
two-cluster and three-cluster triangle equilibria are very similar, demonstrating simi-
lar mechanisms underlying the formation of asynchronous equilibria in both models.
Specifically, we observe the action of both the phase locking of antiphase oscillators
(Fig. 2 two cluster) and the balancing of phase differences to produce asynchronous
equilibria (Fig. 2 three-cluster triangle) in the Rosenzweig–MacArthur predator–prey
model.

By contrast, we note substantial differences in the equilibria produced by the multi-
layer oscillator andRosenzweig–MacArthur for the three-cluster line treatment.While
theRosenzweig–MacArthurmodel is asynchronous in this case, the amplitudes of each
oscillator do not follow the expected pattern and differences in phase are irregular.
Irregularity in phase difference occurs due to differences in the period of each oscilla-
tor’s limit cycle, a feature of the Rosenzweig–MacArthur model not accounted for in
our model. In the multilayer oscillator model, the phase evolution of each oscillator is
fixed and equal (ω), locking each oscillator to the same period of fluctuations regard-
less of any other details about the state of the system. In the Rosenzweig–MacArthur
model, oscillations depend on the nonlinear interaction between prey hi and predators
pi , leading to a great deal of potential variation in period.We illustrate this variation in
Table2 by summarizing the periods of oscillations observed in each equilibria for the
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Fig. 2 Comparison between the asynchronous states observed in the Rosenzweig–MacArthur model and
our multilayer oscillator model. Simulations were run until dynamics were stationary for 5000 timesteps.
We used the parameters ω = .5, δ = .1, and ψ = .7 for the multilayer model and K = .3, e = 5, m = 1,
and δ = .001 for the Rosenzweig–MacArthur model following (Holland and Hastings 2008; Hayes and
Anderson 2018). The two three-oscillator interaction structures were used, a line and a triangle, both with
Li j = 1 for all i, j . Initial conditions known to produce asynchrony in the multilayer model were used,
with r = 1 and θ = [0, 0, 0] for synchrony, [0, π, 0] for two clusters, [0, 0, π ] for three clusters on the
line, and [0, 2π/3, −2π/3] for three clusters on the triangle. For the Rosenzweig–MacArthur model, the
same initial conditions were translated into the x and y dimensions, with amplitude rescaled and centered
around the limit cycle, predator abundance pi = p̂ + ri cos(θi )+ and prey hi = ĥ + .25ri sin(θi ) (Color
figure online)

Rosenzweig–MacArthur model. In particular, we note that the period of each oscilla-
tor is same for the two-cluster and three-cluster triangle equilibria, which agree with
the predictions of the multilayer oscillator model, while the period of each oscillator
varies dramatically for the three-cluster line equilibrium.

While our model offers a simplified look at the effect of interaction structure
between oscillators on the formation of asynchronous equilibria, many of its fea-
tures can be readily generalized to more complex systems. Without modification, it
successfully predicts the pattern of amplitudes and phases of several of the more com-
plex model’s equilibria. While it fails to predict the pattern of amplitudes and phases
of the three-cluster line equilibrium, it is still effective at predicting the conditions
which lead to asynchronous equilibria in all three tested cases. Further adjustments to
the model, specifically changing the rate of phase evolution ω to depend on the cycle’s
amplitude or phase, could be used to capture the effect of nonlinearities on cycle
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Table 2 Cycle periods for each oscillator in all equilibria observed in the Rosenzweig–MacArthur model

Equilibrium type Oscillator Min. period Mean period Max. period

Synchrony Blue 18.33 18.49 18.66

Two cluster Blue 12.04 12.09 12.19

Red 12.05 12.08 12.20

Three-cluster line Blue 12.06 12.27 13.91

Red 11.29 12.17 12.71

Orange 12.05 12.43 15.68

Three-cluster triangle Blue 11.31 11.50 11.68

Red 11.42 11.50 11.57

Orange 11.30 11.50 11.69

Periods were calculated from the last 500 timesteps of each simulation as the difference in timing between
cycle maxima. The estimate of the time of each maximum was improved using quadratic interpolation

period. Overall, the generalizability of many of our results recommends our approach
as a useful starting point for the analysis of the effects of interaction structure on the
appearance of asynchronous equilibria in these systems.

6 Conclusions

Through the analysis of our relatively simple multilayer oscillator model, we have
illustrated the conditions underlying pattern formation on multilayer networks and
provided methods for predicting the asynchronous dynamics of coupled oscillators
based on their interaction structure. In particular, we highlight several mechanisms
governing the appearance of asynchronous equilibria in these networks. In the first
case, the phases of oscillators which are antiphase (θi −θ j = π ) do not influence each
other and will cause the amplitude of both patches to decrease (Fig. 2: two cluster).
In the second, oscillators with the same phase may differ in terms of amplitude if the
positions of the two oscillators in the interaction structure are not isomorphic (Fig. 2:
three-cluster line). Finally, an oscillator’s phase may be locked if the effects of the
oscillators with which it interacts are equal and opposite, or otherwise balance to
zero (Fig. 2: three-cluster triangle). This mechanism has the potential to produce the
most variable type and number of asynchronous dynamics while also being the most
challenging to predict, as, unlike the previous mechanisms, phase locking depends
also on the amplitudes of each oscillator relative to their neighbors.

Our analysis of three-oscillator systems also reveals several properties of the struc-
ture of interactions among oscillators which determine the amplitude of oscillators
for asynchronous equilibria. These properties act on two scales: affecting oscillators
individually and affecting the entire system uniformly. For an individual oscillator,
amplitude is influenced most by strong interactions with neighbors with large differ-
ences in phase. Individual oscillators are also affected indirectly by interactions of
other oscillators with its neighbors. In these cases, amplitude is affected most strongly
when phase differences or interactions between a neighbor and its neighbors are small
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orweak. Finally, the amplitudes of all oscillators in a system are affected equally by the
total dispersal of each oscillator, the cofactors describing coupling between each pair
of oscillators, and the determinant of the matrix combining the effects of interaction
strength and phase difference B = Li j cos(θi − θ j ). The effects on amplitude at each
scale compete with one another: individual differences in amplitude among oscilla-
tors are highest when there is no system-wide effect and vice versa. These effects are
also influenced by the overall strength of coupling δ and the repelling force of the
limit cycle’s center ψ . All effects increase with coupling strength δ; however, indirect
effects and the system-wide effect on amplitude are influenced more strongly. Con-
versely, direct effects scale exponentially with the center’s repelling force ψ , while
indirect effects scale linearly and system-wide effects are not influenced. Altogether
our analysis of these effects of interaction structure on oscillator amplitude provides
valuable insight into the drivers of differentiation among multilayer oscillator systems
during pattern formation.

Overall, the analysis of our model presents a wider view of the mechanisms under-
lying the formation of asynchronous patterns by investigating the effects of structure
on asynchronous equilibria. Our methods can be applied to inform the design of inter-
acting systems tominimize asynchronous pattern formation where this is desired, such
as in power grids (Sachtjen et al. 2000) and wireless communication (Díaz-Guilera
and Arenas 2008). Alternatively, our methods describe how the differentiating effects
of asynchronous patterns can be predicted and manipulated through the structure of
interactions for other applications, such as studies of brain function (Uhlhaas et al.
2010) and reserve design in ecology (Holyoak and Fahrig 2000).
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