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ABSTRACT  

This paper describes the use of slitting to form a two-dimensional spatial map of one component of 

residual stress in the plane of a two-dimensional body. Slitting is a residual stress measurement 

technique that incrementally cuts a thin slit along a plane across a body, while measuring strain at a 

remote location as a function of slit depth. Data reduction, based on elastic deformation, provides the 

residual stress component normal to the plane as a function of position along the slit depth. While a 

single slitting measurement provides residual stress along a single plane, the new work postulates that 

multiple measurements on adjacent planes can form a two-dimensional spatial map of residual stress. 

The paper uses numerical simulations to develop knowledge of two fundamental problems regarding 

two-dimensional mapping with slitting. The first fundamental problem is to estimate the quality of a 

slitting measurement, relative to the proximity of a given measurement plane to a free surface, whether 

that surface is the edge of the original part or a free surface created by a prior measurement. The second 

fundamental problem is to quantify the effects of a prior slitting measurement on a subsequent 

measurement, which is affected by the physical separation of the measurement planes. The results of the 

numerical simulations lead to a recommended measurement design for mapping residual stress. Finally, 

the numerical work and recommended measurement strategy are validated with physical experiments 

using thin aluminum slices containing residual stress induced by quenching. The physical experiments 

show that two-dimensional residual stress mapping with slitting, under good experimental conditions 
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(simple specimen geometry and low modulus material), has precision on the order of 10 MPa. 

Additional validation measurements, performed with x-ray diffraction and ESPI hole drilling, are within 

10 to 20 MPa of the results from slitting.  

Keywords: Residual stress, measurement design, slitting, mapping, superposition 

1. INTRODUCTION 

The present work is directed at developing a method for determining the two-dimensional 

distribution of one in-plane component of residual stress in a thin part, that can be idealized as a two-

dimensional body. There are a wide range of potential techniques for residual stress measurement, with 

some providing residual stress at a point (e.g., hole drilling or x-ray diffraction) and others providing a 

profile of stress along a line (e.g., slitting or deep hole drilling). The contour method, invented by Prime 

[1], is unique in that it provides a two-dimensional distribution of the residual stress component normal 

to a plane. An example contour measurement from our earlier work [2] is shown in Fig. 1, comprising 

the measurement of quenching stress in a long bar (Fig. 1a). The contour method determines the stress 

normal to a plane of interest, and in the earlier study found that the stress along the length of the long 

quenched bar, σzz, had a paraboloid distribution in x and y (Fig. 1b). The contour method results are 

useful because they illuminate spatial variations of the stress field that may not be recognizable with a 

point or line measurement, which can be very useful for failure assessment or process model validation. 

The present work describes a method to determine a two-dimensional residual stress distribution, in x 

and y, like that provided by the contour method, but where the part is thin (along z), and the stress 

component of interest lies in the plane of the thin part (i.e., either σxx or σyy). An example of such a part 

is a thin slice of material removed near the middle of the long bar of Fig. 1a. 

A two-dimensional distribution, commonly called a “map”, of one or more residual stress 

components might be determined in a variety of ways. A map of the near surface stress could be built up 
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by performing a series of point stress measurements using x-ray diffraction or hole drilling. Neutron 

diffraction could be used in a similar way, but with that method’s larger sampling volume providing a 

thickness-averaged, rather than near surface, measurement. Some interesting measurements of 

quenching residual stress in thick aluminum bars were made using two diffraction techniques [3]. Those 

measurements comprise a very basic map of stress along three orthogonal lines, and because the 

measurements were in large parts they demonstrate the significant time and care required to form a map 

using diffraction. In welded materials, residual stress maps can also be obtained with diffraction, but 

with additional difficulties arising from spatial variations of stress-free lattice spacing, texture, and 

chemistry found in welds [4,5]. 

A map of the in-plane stress could also be built up by performing a series of line stress 

measurements. Such a map might be constructed from a series of deep hole drilling measurements [6] in 

thick parts or a series of slitting measurements [7] in thin parts. Recently, a technique comparison of in-

plane residual stress mapping using hole drilling, neutron diffraction, and slitting was performed in a 

thin slice taken from a dissimilar metal weld [8]. The stress maps from each measurement technique 

showed that all three methods are capable of mapping in-plane residual stress, with slitting having lower 

experimental complexity and providing the best precision.  

When mapping with a mechanical stress release method like slitting, care is required in placing 

adjacent measurements. In determining a suitable placement for each measurement, one must assure that 

a prior measurement does not affect a subsequent measurement, or that an anticipated effect can be 

accounted for. Upshaw et al. suggested when hole drilling measurements are placed five hole diameters 

apart, they can be considered independent [9]. Currently, there are no suggestions in the literature for 

recommended measurement spacing for slitting or deep hole drilling. However, work regarding the 
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contour method [10] and slitting [11] has demonstrated the ability to explicitly correct for the effect of a 

prior measurement on a subsequent one, with good accuracy. 

This work is directed to develop methods for mapping one in-plane residual stress component in a 

thin body using a series of slitting measurements, since slitting has excellent measurement precision [12] 

and utilizes readily available equipment [13]. To fix ideas, consider a single slitting method 

measurement in a rectangular, two-dimensional part having width W along the x direction and height t 

along the along the y direction. A typical slitting method measurement is performed at the mid-width 

(x = W/2), and determines σxx(W/2, y) (i.e., the residual stress component normal to the mid-width plane, 

as a function of height). The measurement consists of cutting a thin slit along the height, from y = 0 to 

y = t, while measuring part deformation as a function of cut depth. Cutting is typically performed using 

wire electric discharge machining (EDM) and deformation is typically measured using metallic foil 

strain gages. Given measured deformation as a function of cut depth, residual stress is computed using 

an elastic inverse. A map of stress could be formed by making a number of slitting measurements on 

adjacent planes, but a study is required to determine a means to maintain the quality of the slitting 

measurements and to account for the interactions between adjacent measurements.  

The most fundamental concerns for using slitting for stress mapping can be framed by considering 

two adjacent measurements made on a single part. Assuming elastic behavior dominates, which is 

fundamental to slitting and all mechanical stress release measurement techniques, superposition allows 

any number of adjacent measurements to be planned from knowledge gained by studying two adjacent 

measurements. Consider a first measurement along the dashed line in Fig. 2, with the slit cut from y = 0 

to y = t and deformation measured by a single strain gage at y = t. Past work suggests that the quality of 

this measurement will depend on the distance from the part free edge to the slit plane, s1, because it 

affects the response of the strain gage to stress on the cut plane (further discussed below). A second 
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measurement location is indicated with the dotted line in Fig. 2, which is a distance s2 from the prior 

measurement. The first measurement affects the second measurement in two ways. First, the quality of 

the measurement will be affected by s2 in the same way the first measurement was affected by s1 (the 

distance from the free edge) and second, s2 will determine the degree to which stress released during the 

first measurement will change the stress measured during the second measurement.  

One approach to mapping is to choose s2 large enough that the first slitting measurement does not 

affect the second. For the configuration of Fig. 2, a rule of thumb suggests that spacing would need to be 

s2 ≈ t, so that the measurement resolution along x would be quite coarse. However, if multiple identical 

articles are available, measurements could be made in a series of articles with offset measurement 

locations, and the results combined to reveal the spatial map. Either option is unlikely to be of general 

utility. For parts with strong spatial stress gradients, or to minimize the number of identical articles 

needed, it would be desirable to use small measurement spacing. 

The initial goals of this paper are to determine values of s1 and s2 that are likely to be useful in 

slitting mapping. The first goal is to determine the effect of s1 (and also s2) on measurement uncertainty. 

The second goal is to determine the effect of s2 on stress release due to the first measurement at the 

location of the second measurement, including a determination of s2 such that the first measurement has 

a negligible effect on the second measurement. Because the first two goals are attained with numerical 

modeling, a third goal is to provide experimental confirmation of the numerical work. The physical 

experiments use a series of thin slices removed from the quenched aluminum bar of Fig. 1a, and 

demonstrate the effects of various choices made in designing a mapping experiment. 

2. METHODS 

A useful summary of the theoretical background for slitting is given in [7], with key details 

summarized here to support an understanding of an uncertainty analysis that enables achieving the first 
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goal of this work. Considering the orientation of Fig. 2, the unknown residual stress perpendicular to the 

slit plane, as a function of position y, σxx(y), is assumed to be a sum of known basis functions, Pj(y), 

having a set of unknown amplitudes Aj 

σxx(y) = . 
(1) 

The strain that would occur at the strain gage, for a particular cut depth ai, εxx(ai), is related to the 

unknown amplitudes through a compliance matrix, Cij  

εxx(ai) = . 
(2) 

Each entry of the compliance matrix is the strain that would occur in a body having a slit of depth ai, 

when the slit faces are loaded by a traction distribution Pj(y). Given a specific strain gage size and 

location, the entries of the compliance matrix may be determined using elastic finite element modeling, 

as was described earlier [14]. 

The unknown amplitudes, Aj, are determined from measured strain versus slit depth data. Adopting 

matrix notation, Eq. (2) becomes 

ε = CA 
(3) 

where ε is a column vector of strain measured at each slit depth, C is the compliance matrix having rows 

and columns reflecting slit depth and basis functions, respectively, and A is a column vector of 

amplitudes (with the number of rows corresponding to the number of basis functions). The compliance 

matrix often has more rows than columns, so that Eq. (3) is solved in a least squares sense 

A = Bε 
(4) 

where B is the pseudoinverse [15] of C 

B = (CTC)-1CT
. (5) 
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An uncertainty estimate for residual stress measured by slitting was developed by Prime and Hill 

[16]. A column vector of stress variance (square of uncertainty), with rows reflecting stress at a series of 

discrete y values (usually taken to be the cut depths), is given by 

s2 = diag(PB[DIAG(u2
ε)]BTPT) 

(6) 

where u2
ε is a column vector of the strain variance with rows reflecting the cut depths, P is a matrix 

containing the values of Pj(yk), with rows corresponding to the discrete y values and the columns 

correspond to the basis functions, diag is an operator that forms a vector from the diagonal values of a 

matrix, and DIAG is an operator that forms a diagonal matrix from the values of a vector. Typically, the 

strain variance is either assumed constant at all depths, or computed as the difference between the 

measured strain and the strain fit, uε = ε – CA.  

There are two commonly used basis functions for slitting, Legendre polynomials and unit pulses. 

The Legendre polynomials were used historically [13], and are useful because they automatically satisfy 

mechanical equilibrium (taking only second and higher order terms of the series) and also reflect 

reasonable (plausible) residual stress fields, which makes them useful for measurement design. For 

example, the second order Legendre polynomial is similar to a residual stress field induced with 

quenching [17] and the sixth order Legendre polynomial is similar to a residual stress field induced with 

peening [18]. Unit pulse basis functions are newer and are very useful from an experimental perspective 

because they can resolve more general stress fields, including those with sharp stress gradients (e.g., as 

may arise from laser shock peening [19]). With unit pulse basis functions, supplementing the stress 

calculation procedure with Tikhonov regularization provides useful smoothing [20]. Both basis 

functions are used in this work. The Legendre polynomials are used for the numerical experiments and 
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the unit pulses are used in the physical experiments (to take advantage of the strengths of each basis 

function, as just described). 

With an uncertainty estimate established, the effect of s1 on measurement quality can be found by 

determining the uncertainty inherently associated with measurement for a range of values of s1. This 

approach follows on the work of Rankin and Hill, who used the numerical quality of the compliance 

matrix, which correlates with stress uncertainty, as a basis for selecting strain gage configurations in 

slitting [21].  

To understand how measurement uncertainty varies with s1, a series of compliance matrices were 

developed with a range of values of s1. The analysis considered a body with unit height, t, and width 

W1 = 3t, as shown in Fig. 2. The distance from the edge of the sample to the cut plane, s1, was varied 

from 0.05t to 1.5t. Each compliance matrix was determined using a finite element model with 400 

elements evenly spaced along the height, and element size increasing with distance from the cut plane, 

varying from t/400 at the cut plane to t/40 at the free edge. Each compliance matrix assumed Legendre 

polynomial basis functions, orders 2 through 6, and cut depths evenly spaced by 0.01t. The inherent 

stress uncertainty for a given value of s1 was then found using Eq. (6), assuming 1 με uncertainty at all 

cut depths. The inherent stress uncertainty provides an estimate of the minimum uncertainty that is 

driven by the geometry of the experimental conditions and ignores all sources of bias error, such as 

selection of appropriate number of basis functions (or amount of regularization) [22] that can strongly 

influence total uncertainty. Comparison of the inherent uncertainty for various values of s1 versus 

position in the depth, and as a root mean square over all depths, enables an assessment of measurement 

quality.  

The procedure to use slitting to form a map is very similar to the procedure used to make a single 

measurement. For the second measurement, the compliance matrix would be different, since the new 
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width, W2 = W1 – s1 ≠ W1. However, for the special case when s2 = s1, and W2 remains large enough 

(more than 1.25t), the compliance matrix for the second measurement can be assumed to be the same as 

the compliance matrix for the first measurement, since the first slitting measurement essentially creates a 

new free surface. If the measurements are close enough to one another, the effect of the first slitting 

measurement on the second should be accounted for, and would depend on s2. For small values of s2, 

there should be a large effect, and for large values of s2, there should be a negligible effect.  

The effect of a prior measurement on a subsequent one will be accounted for using a correction, 

which is determined using a supplemental stress analysis, similar to earlier work by Pagliaro, Prime et 

al. [10] and Wong and Hill [11]. Pagliaro et al. used a supplemental stress analysis to determine the 

effect of a prior contour method measurement on stress at a subsequent measurement plane, where the 

plane was orthogonal to and intersected the original measurement plane. Wong and Hill extended that 

idea to the slitting method, where two slitting measurements were made on orthogonal planes. In both of 

these earlier studies, the supplemental stress analysis used stress determined in the prior measurement as 

a traction boundary condition input in a stress analysis whose geometry reflected the configuration of 

the subsequent measurement (i.e., the analysis included the prior cut from contour or from slitting). The 

measured stress was applied as a traction on the prior cut plane, and stress was determined at the 

subsequent measurement plane. Here, the correction is used for two parallel measurement planes. The 

analysis is illustrated in Fig. 3, and used commercial finite element software [23]. The correction 

approach determines the stress originally present at the subsequently measurement plane as a sum of the 

output of the supplemental stress analysis at the subsequent plane and the stress that will be measured at 

the subsequent plane. This process is repeated for each subsequent measurement, where the 

supplemental stress analysis uses the total original stress present at the prior measurement plane. (An 

alternative, expedient supplemental stress analysis uses only the measured stress from each prior 

measurement as the applied traction, rather than total original stress, and extracts the stress from the 
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analysis at all subsequent measurement planes. This approach has the advantage that the corrections for 

all planes are computed in one step for each measurement.)  

To determine the effect of s2 on stress release due to the first measurement at the location of the 

second measurement, the second through sixth order Legendre polynomials (L2 through L6) were used to 

find how corrections for a set of plausible residual stress fields vary as function of s2. The analyses 

applied a traction boundary condition to one edge of a model with a unit height, t, and a variable width, 

W2. To understand how stress fields vary with part width, W2 was varied from 0.25t to 2t. The stresses 

caused by the polynomial tractions are extracted from the model at various values of s2, 0 < s2 < W2.  

A series of physical experiments were performed to test the conclusions drawn from the numerical 

results, including both the effects of s1 and s2. Measurements were made on 5 mm thick slices removed 

from a long 7050 aluminum alloy bar that had been quenched to induce high residual stresses indicative 

of the T74 temper. The slices have a width of 77.8 mm and a height of 50.8 mm. The coordinate system 

used in this work has the origin at the center of the slice in the horizontal direction (38.9 mm from the 

edge) and at the bottom of the slice. The x-direction is positive to the right and the y-direction is positive 

up. All slitting measurements cut from y = 0 to 48.9 mm (to a depth 96% of the part height). A total of 

six slices were used in this work and will be called slice 1, slice 2, etc. The first four slices were used to 

form a map of stress in the slice. Slice 1 had measurements at -20 mm, 0, and 20 mm; slice 2 had 

measurements at -15 mm, 0, and 15 mm; slice 3 had measurements at -10 mm, 0, and 10 mm; and slice 

4 had measurements at -5 mm, 0, and 5 mm, all of which can be seen in Fig. 4. The remaining two slices 

(slices 5 and 6) were used to test if the measurement order would affect the measured result. Slices 5 and 

6 used the same measurement locations as slice 3, but altered the order so that the stress at each spatial 

location could be measured with a different measurement order. The measurement locations and cut 
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order can be seen in Table 1 and the choice of s (s1, s2, and s3) for each measurement can be seen in 

Table 2. 

The stress in each slice was measured on three planes of constant x. The stress at the third 

measurement plane is found using the same methodology as is used to calculate the stress at the second 

measurement plane, except that the traction boundary condition applied in the supplemental stress 

analysis is the total stress at the second measurement plane (i.e., the measured stress from slitting at the 

second measurement plus the correction from the first measurement at the second location).  

The experiments followed best practices given by Prime [24] and by Hill [7]. Each measurement 

used a single strain gage mounted on the back face of the sample (y = 50.8 mm) with a 1.57 mm active 

gage length, and temperature compensated for aluminum. Each slitting measurement consisted of 60 cut 

increments, ranging in size from 0.25 to 1.5 mm. After each cut increment, the EDM wire was powered 

off and strain was recorded after allowing the Wheatstone bridge strain indicator to develop a stable 

readout (~1 min). Cut closure was avoided using visual inspection and cutting toward the initial cut 

depth as needed to maintain a gap on the cut plane. Elimination of cut closure is required given the 

linear formulation of Eq. (2). After the experiment, an instrumented optical microscope was used to 

determine the location of the slit, the location of the strain gage, the maximum slit depth, and the slit 

width.  

A compliance matrix for each experiment was determined from a 2D, plane strain, finite element 

model and unit pulse basis functions for residual stress. The model reflected the measured geometry, 

which assures fidelity of measured residual stress [25], and assumed an elastic modulus of 70 GPa and 

Poisson’s ratio of 0.3, to match aluminum. A typical model had 400,000 eight-node, biquadratic 

elements, with 1000 elements across the height and a bias of element size with distance away from the 

cut plane, with square elements at the cut plane and element size roughly 10x larger at the free end. 
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Lastly, since the compliance matrix is computed using a plane strain model, it was scaled using the 

correction scheme developed by Aydiner and Prime [26] to account for the finite thickness of the slice. 

The uncertainty in each slitting measurement was calculated with Eq. (6). The strain uncertainty, uε, 

was taken as the maximum of either the difference between measured strain and strain fit, or a minimum 

value of 2 με. The uncertainty in the corrections for prior slitting measurements was estimated using a 

Monte Carlo approach. Each correction was found five times with a “noisy” stress distribution, where 

the noisy stress is the sum of the known, prior measured stress and noise corresponding to the 

uncertainty in the prior measurement. The error in the corrections was then taken as the standard 

deviation of the five corrections with added noise. The total uncertainty was found using 

 
(7) 

where U is the total uncertainty of the stress in the slice, Uslitting is the uncertainty from the slitting 

measurements, and Ucorrection is the uncertainty in the prior measurement correction.  

3. RESULTS 

Fig. 5 shows that small values of s1 result in large uncertainty in stress. The uncertainty as a function 

of cut depth, in Fig. 5a, has a similar distribution for different values of s1, with uncertainty being largest 

at the initial cut depths and decreasing as cut depth increases. The similar shape of the uncertainty 

estimates is a result of the shape of the basis functions used in the stress calculation (i.e., P in Eq. (6)). 

The uncertainty is large for small values of s1 = 0.05t and 0.10t, but quickly becomes smaller for 

s1 > 0.2t. This is further illustrated in Fig. 5b, which shows the RMS of the uncertainty, across all cuts 

depths, as a function of s1. The results show the uncertainty is significantly larger for small values of 

s1 = 0.05t and 0.10t, but decreases rapidly and begins to plateau at s1 > 0.5t. 

U = Uslitting
2 +Ucorrection

2
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Based on these results, we suggest the optimal selection of s (s1, s2, ... etc.) is s = 0.2t as a balance 

between fine measurement spacing (small values of s) and reasonable measurement precision, since the 

uncertainty increases significantly for s < 0.2t.  

The effect of s2 on the stress release due to the first measurement at the location of the second 

measurement was assessed by applying Legendre polynomials as edge tractions to a set of models. A 

plot of the spatial variation of stress from the L2 edge traction (Fig. 6a) shows that the stress is largest 

(and equal to the applied traction) at x = 0 and decays with increasing x to zero at the free surface of the 

far edge. Fig. 6b shows the stress plotted as a function of height at multiple lateral positions (i.e., values 

of s2), which more clearly illustrates the variation of stress across the width of the sample. The 

maximum stress as a function of lateral position for various Legendre polynomial tractions is shown in 

Fig. 6c (normalized by the maximum applied traction), which shows that tractions with lower spatial 

frequency (like L2) have further reaching effects than those with higher spatial frequency (e.g., L6). A 

general residual stress profile can be thought of as a combination of several Legendre polynomials and 

since L2 has the lowest spatial frequency it reflects a limiting case for additional analyses.  

To further understand stress field variation relative to part width, the L2 stress profile was applied to 

models with different widths. To reduce a two-dimensional stress field to one dimension, we plot the 

maximum value of the stress along y at a set of lateral positions representing potential planes for 

measurement, x = s2, for parts with a range of widths, W2. As shown in Fig. 7a, stress in parts with 

smaller values of W2 become smaller more quickly, because no matter the choice of W2, σxx will be zero 

at the opposite edge, which is a free surface. Fig. 7b shows that, on a relative scale, with x normalized by 

W2, the stress in parts with smaller values of W2 becomes smaller relatively more slowly along the part 

width.  
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A good mapping experiment would consist of having s ≥ 0.2t. When this criterion is applied to the 

aluminum slices used in the present experimental work, we would expect good measurement precision 

for measurements with spacing of 20 mm (0.39t), 15 mm (0.30t), and 10 mm (0.20t), but poor 

measurement precision for the measurements with spacing of 5 mm (0.098t). 

Measured strain data for all three measurements on slice 3 are given in Fig. 8a, and residual stresses 

are given in Fig. 8b. The strain and stress magnitudes are largest for the first measurement, which had 

s1 = 0.57t, and are smaller and similar for the second and third measurements, which had s2 = s3 = 0.2t. It 

is expected that the strain signal would be the largest for the first measurement since there were no prior 

measurements. The corrections for the second and third measurement in slice 3 were very similar, as can 

be seen in Fig. 8c, which suggests that the initial stress was similar at the first and second measurement 

planes (since the correction at the second measurement is from the total stress at the first measurement 

location and the correction at the third measurement is from the total stress at the second measurement 

location). The total stress for the three measurements on slice 3, shown in Fig. 8d shows that the 

quenching induced stress is roughly parabolic along y, and relatively constant along x, over the 20 mm 

measurement span between planes 1 and 3 on slice 3. 

The total stress at x = 0 in all six slices is shown in Fig. 9a. The measurements in slice 2, 3, 5, and 6 

are nearly identical to one another, while the measurements in slices 1 and 4 differ somewhat. The 

measured stress for the first and third measurements (measurements at x = ±s from the mid-plane) in 

slices 1 through 4 can be seen in Fig. 9b. The measured stresses at ±20 mm are very similar to one 

another, showing symmetry that is expected in a part that was uniformly quenched. The same symmetry 

is evident in the results for measurements at ±15 mm, ±10 mm, and ±5 mm. 

The results of the additional measurements intended to test the effects of measurement order using 

slices 3, 5, and 6 are shown in Fig. 10. The results show that although the individual slitting 
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measurements are different due to the order of the measurement, the total stress at the three different 

locations are nearly identical. Since the results are independent of measurement order, this confirms that 

superposition holds in the measurements, and that the measurements have good accuracy. 

The two dimensional spatial maps of stress and uncertainty in Fig. 11 show tensile residual stress in 

the center of the slice, maximum near 60 MPa, and compressive stresses along the upper and lower 

edges, minimum near -100 MPa. (There are six measurements of stress at x = 0, but the results from 

slice 6 are used in the map because they are judged to have the best measurement fidelity.) The 

uncertainty map shows that the total uncertainty is very low (less than 8 MPa) for all measurements, 

except for the measurement at x = 5 mm. To better understand the how the uncertainty is affected by the 

choice of s, the RMS of the uncertainty for each slitting measurement, correction, and total have been 

plotted in Fig. 12 as a function of measurement spacing. Uncertainty due to the correction is smaller 

than the uncertainty due to slitting. As predicted, the results show the uncertainty increases significantly 

when the measurement spacing is 5 mm (0.1t). The uncertainties for the third measurements in slices 1 

through 4 are shown as a function of position in Fig. 13 for both slitting and the corrections. The 

uncertainty for the slitting measurements increases with decreasing s, with the measurement with 

s = 5 mm having the largest uncertainties (15 MPa). The uncertainty in the corrections also has 

uncertainty increasing for decreasing s, with s = 10, 15, and 20 mm having small uncertainty (under 

3 MPa), but s = 5 mm having a large uncertainty (30 MPa). For measurements with s ≥ 10 mm, the 

uncertainties in the corrections are smaller than the uncertainties from slitting because the slitting 

uncertainties have high spatial frequency whose effect becomes small over a relatively short distance. 

The uncertainties in the experiments confirm what was determined in the numerical analysis, that using 

a small measurement spacing (s = 0.1t) leads to imprecise measurement. 
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4. DISCUSSION 

The results presented above show several significant outcomes regarding mapping with slitting. A 

significant outcome is the experimental demonstration of slitting mapping, which provided good 

precision, except when the measurements were too closely spaced. The numerical analysis suggested, 

and experimental measurements confirmed, that measurement spacing of s ≥ 0.2t provides good 

measurement precision (around 5 MPa in the experiments on slice 3) while the spacing of s = 0.1t results 

in poor precision (around 30 MPa in the experiments on slice 4). The numerical analysis shows that the 

poor precision for small values of s1 (or s2) is due to poor condition of the compliance matrix, because 

stress release does not cause strain change for shallow cut depths when s is small. This effect can be 

seen in Fig. 14, which plots the first column of the compliance matrix (strain for the L2 traction) for a 

range of s. For a typical slitting configuration, such as s = t, there is some amount of strain change for all 

cut depths. When the slit is close to the edge of the coupon, such as for s = 0.1t or 0.05t, there is nearly 

zero strain change for shallow cut depths. Therefore, the poor performance of slitting with s ≤ 0.1t is 

expected, and experiments should use spacing of s ≥ 0.2t. 

The measured stresses at x = 0, in Fig. 9a, enable a comparison of measurement results for various 

choices of s and it is promising that the measurements in slice 2, 3, 5, and 6 show very good agreement. 

The measured strain and calculated stress for the second measurement on slice 4, with s2/t ≈ 0.1, is 

shown in Fig. 15, and clearly illustrates the poor outcome when measurement spacing is too small, with 

the measured stress being similar to the estimated uncertainty. It is therefore understandable that the 

second measurement in slice 4 results in an outlier in Fig. 9a. (It is confounding that the measurement in 

slice 1 does not agree well with the other results (by around 50 MPa at shallow cut depths and 10 MPa at 

the mid-height), especially since this measurement has low uncertainty (under 5 MPa).) 
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Typical slitting measurements use a back-face strain gage with the measurement plane at the 

specimen mid-width. The symmetry of that configuration makes the measurement invariant to shear 

stress on the measurement plane. For the slitting mapping approach developed here, shear stress effects 

are possible, and may lead to error. To assess potential for error from shear stress, we performed a 

further analysis. 

Strain arising from shear stress release during slitting was computed using the same elastic stress 

analysis approach described above, and was compared to strain arising from normal stress release. The 

analysis was repeated for a characteristic shear stress distribution and a range of s1/t values for W1/t = 4. 

The distribution of shear stress used was a first-order modified Jacobian polynomial 

J1(y) = 8y/t(2y/t-1)(y/t-1) 
(8) 

which satisfies shear stress equilibrium (integrates to zero) and boundary conditions (zero at the free 

surfaces, y = 0, t) [27].  

The strain that occurs for the J1 shear stress is compared to strain for a L2 normal stress in Fig. 16 for 

s1/t = 1, 0.75, 0.4, and 0.2. The results show that the strain response is smaller for shear stress than for 

normal stress for all values of s1/t and at all cut depths. For s1/t ≥ 0.75, the strain due to shear stress is 

very small relative to that from normal stresses, and might be considered negligible. However, for 

smaller values of s1/t, the strain response from J1 can be significant, especially for larger cut depths (Fig. 

16a).  

To estimate errors that could occur for unaccounted shear stresses, stresses were calculated using the 

strains for a normal stress of 100L2 alone, and combined with modified J1 shear stresses of 20J1, 50J1, 

and 100J1. The stress calculations were as described above, and the calculations do not account for shear 

stress; therefore, the computed stress contains an error due to the strain caused by shear stress. Fig. 17 



 18 

shows stress for 100L2 alone, and with added shear stress for a small value of s1/t (0.2). When the 

magnitude of shear and normal stresses are equal, the error in the computed normal stress is significant 

(17% peak error), and smaller when the shear stress is smaller. For larger values of s1/t, the effects of 

shear stress cause smaller errors. When s1/t > 0.5, error from equal magnitude shear stress is less than 

5%, and when s1/t > 0.75, error from equal magnitude shear stress is less than 2.8%.  

Due to the errors that are possible with significant shear stresses and small values of s1/t, we suggest 

forming the slitting map by repeatedly bisecting the specimen at W/2 when W/t ≤ 1.5. Cutting at W/2 and 

using a central, back-face strain gage is a symmetric configuration, so the measurement is insensitive to 

shear stress, and no error results. 

The data found in the two fundamental numerical problems (as is shown in Fig. 5 through Fig. 7) 

have been distilled to produce Fig. 18, which can be used as an aid in the design of a mapping 

experiment. When designing the mapping experiment, the first item to consider is the limiting 

measurement spacing for large experimental uncertainty. The limits for good measurement precision are 

shown as dashed lines in Fig. 18, where the horizontal dashed line at s/t = 0.2 gives the minimum 

distance from the previous cut plane (or free edge) and the steepest inclined dashed line along 

s/t = W/t - 0.2 gives the minimum distance from the far edge of the coupon. The next item of interest in 

experiment design is the amount of stress remaining at a chosen measurement spacing, relative to the 

stress present prior to the first measurement (i.e., the original stress distribution). This can be found 

using the data in Fig. 7a, assuming the stress does not vary along the width of the bar and varies as L2 

along the height. The stress remaining at a given plane (for a given specimen width) is calculated by 

subtracting σmax/σmax(x=0) in Fig. 7a from 1, since data in the figure provide the stress released by the 

prior measurement. Contours of remaining stress have been plotted in Fig. 18 for levels of remaining 

stress equal to 99%, 95%, 90%, 75%, 50%, 30%, and 10% of the original peak stress, as functions of s/t 
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and W/t. The results show a plateau behavior with increasing part width, where, for example, a part with 

W2 > 1.25t, the stress will be 95% of the original peak stress if s is 0.74t (or larger). Smaller parts and 

smaller spacing result in more stress release, where, for example, a part with W2 = 0.75t measured at 

s = 0.2t will have only 30% of the original stress. Because the figure is based on analysis for the L2 

stress profile, which is a limiting case, an arbitrary residual stress profile would exhibit less stress 

release than predicted using Fig. 18.  

The s/t and W/t ratios used for the second (x = 0) and third measurements (x = 10 mm) in slice 3 

were added to Fig. 18 to further illustrate the use of that chart, where the values for s2, s3, W2, and W3 are 

given in Table 2. Both measurements are on the boundary for good uncertainty (because they have 

s/t ≈ 0.2), so we would expect good measurement uncertainty for both measurements (and that was 

confirmed in the measured results). The relative amount of stress remaining at each slitting location will 

also be explored. The relative amount of stress is computed as the peak magnitude for a given slitting 

measurement divided by the peak magnitude of the total stress at that plane. The relevant values of peak 

stress for the slitting measurements at x = 0 and 10 mm are 33 MPa and 32 MPa (Fig. 8b) and the values 

of total peak stress at x = 0 and 10 mm are 110 MPa and 92 MPa (Fig. 8d). The relative stress remaining 

at x = 0 is 30% (33 MPa / 110 MPa). To compare with the predicted relative amount of stress remaining 

at x = 0, s2/t = 0.197 and W2/t = 0.96 were added to Fig. 18, as shown by the square marker, which gives 

a remaining stress estimate of 30% that agrees with the measured ratio. Similar results are found at 

x = 10 mm, as the measured relative stress remaining is 35% (32 MPa / 92 MPa) and the estimated 

remaining stress is 30% (for s3/t = 0.197 and W3/t = 0.77), as shown by the star marker. Similarly, data 

for the third measurement in slice 1 (x = 20 mm, s3/t = 0.394, W3/t = 0.77), shown by the pentagon 

marker, and the second measurement in slice 2 (x = 0 mm, s2/t = 0.295, W2/t = 1.06), shown by the cross 

marker are included in Fig. 18. The estimated remaining stress for these two measurements, taken from 

Fig. 18, are 70% and 50% respectively. The measured remaining stress values are 71% (54.3 MPa / 



 20 

76.9 MPa) and 49% (43.5 MPa / 89.2 MPa) for the measurements in slice 1 and slice 2, respectively. 

The excellent agreement between measured and estimated remaining stress derives from the similarity 

of the stress field in the physical experiments and that assumed in the analysis, which is evident in the 

weak dependence (assumed independent) of stress with x for the three measurements (Fig. 8d) and the 

similarity of the stress profile along y to L2 (Fig. 8d). The present results provide confidence in the 

results of the numerical experiments, and illustrate the usefulness of Fig. 18 for measurement design. 

The results of the numerical studies could be used to redesign the experimental slitting map using 

two extreme cases that may be of interest. One is the case when the measurements are spaced far enough 

apart that there is a negligible effect of a prior measurement on a subsequent one. This case has the 

advantage of having good precision while not requiring additional stress analysis (corrections). But, the 

large measurement spacing comes at the cost of requiring more material than would be needed if the 

measurements were more closely spaced. The other extreme case is when the measurements are as close 

as possible, while having reasonable measurement precision. This case uses a minimum of material, but 

has the burden of additional stress analyses required for correcting subsequent measurements for the 

effect of prior measurements, moderately larger uncertainty, and possibly larger errors if significant 

shear stresses are present. 

The redesign of the previous experimental work using these two extreme cases assumes the objective 

is to map stress over the interval -25 mm ≤ x ≤ 25 mm, with a measurement pitch of 5 mm. For either 

approach, multiple slices are required, and measurement spacing can be determined with that aid of Fig. 

18. First, we plan the experiment that requires no correction for prior measurements. The first 

measurement is placed at the boundary of the measurement area, x = -25 mm (s1 = 13.9 mm). Following 

the first measurement, the remaining part has a width W2 = 63.9 mm, or W2/t = 1.26. Assuming 95% of 

the original peak stress remaining is sufficient (or, 5% stress release), we enter Fig. 18 with W2/t = 1.26 
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and read over to s2/t ≈ 0.75 or s2 = 38.1 mm, so that the second measurement would be placed 40 mm 

from the first measurement, at x = 15 mm. To determine the location of a third measurement, we repeat 

the same procedure. The relevant parameters are W3 = W2 – s2 = 26.3 mm, or W3/t = 0.52, and from Fig. 

18, at 95% stress of original stress, we find s3/t = 0.43, or s3 = 21.8 mm, so that the third measurement, 

at x ≈ 37 mm, would fall outside the measurement area. Therefore, only two measurements could be 

made on each slice, spaced 40 mm apart. The measurement design is shown in Fig. 19a, with two 

measurements made on each of three slices, and then single measurements on an additional five slices. 

The map requires a total of eleven measurements, made in eight slices. 

Redesigning the experiment to use the minimum amount of material, we set the measurement 

spacing to be 0.2t ≈ 10 mm. The measurement design is shown in Fig. 19b, and requires only two slices, 

with 6 measurements in one slice and 5 measurements in the other. The amount of material required to 

develop the stress map is significantly reduced. With this plan, the amount of stress released by prior 

measurements is significant for each subsequent measurement. Considering measurements on the first 

slice, the stress remaining at the second measurement plane is only 30% of the original using Fig. 18 

with s2 = 0.2t and W2 = 1.26t. The stress remaining will be smaller than 30% for additional measurement 

planes since some amount of stress is released at all measurement planes from each prior measurement. 

To further explore the fidelity of the two-dimensional stress map made with slitting, confirmatory 

residual stress measurements were made at the mid-height (y = 25.4 mm) of a slice as a function of x 

using EPSI hole drilling and x-ray diffraction. Both measurements followed standard practice, as 

described in [28] for ESPI hole drilling and [29] for x-ray diffraction. The measured results from the 

various techniques can be seen in Fig. 20, where ESPI hole drilling results are consistently higher than 

the slitting results, by around 10 MPa, and x-ray diffraction results are consistently lower than the 

slitting results, by 10 to 20 MPa. All three sets of results show a good degree of symmetry, which is 
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expected given the uniform quenching. Considering that 10 MPa is similar to the precision typical of 

any of the three measurement techniques [2], we judge all the results to be in good agreement.  

A recently developed superposition based measurement approach that maps multiple residual stress 

components [30] requires the ability to map in-plane residual stress in a thin slice. The current work 

supports the use of slitting for the required in-plane stress map, and shows that it can provide a 

sufficiently refined spatial map with good measurement precision. 

5. SUMMARY 

The use of slitting to form a two-dimensional map of one in-plane residual stress component in a 

two-dimensional body has been considered in detail. Two numerical studies were performed to assess 

fundamental aspects of using slitting to form a map. The first numerical study assessed the fidelity of a 

slitting measurement as the distance to the part free edge is varied. The results of this numerical study 

show there would be very large uncertainties when the slitting measurement plane is close to either the 

part edge or a previous slitting measurement plane, and leads to a recommended minimum measurement 

spacing of 0.2t. The second numerical study determined the effect of s2 on stress release due to the first 

measurement at the location of the second measurement and showed stress release in parts with smaller 

values of W2 become smaller more quickly; whereas on a relative scale, the stress release in parts with 

smaller values of W2 become smaller relatively more slowly along the part width. The effects of shear 

stress release were investigated and showed the optimal approach for mapping is to repeatedly bisect the 

sample at W/2 when W/t ≤ 1.5. 

Two extreme cases of slitting mapping have been described. One case has the measurements far 

apart, so that the effects of prior measurements on subsequent measurements are negligible. This case 

requires eight slices to form the hypothetical stress map. The other extreme case minimizes the amount 

of material needed, and requires two slices to form the hypothetical stress map. 
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The results of both numerical studies were confirmed with physical experiments using slices that had 

residual stresses induced by quenching. The physical experiments, which had a specimen with simple 

geometry and low modulus material, showed excellent precision (under 10 MPa) for measurements with 

spacing greater than 0.2t. Results from confirmatory measurements made with x-ray diffraction and 

ESPI hole drilling agree well with the slitting mapping results, giving further confidence in the use of 

slitting to form a two-dimensional map of in-plane stress. 
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TABLES 

 x-position with corresponding cut order (mm) 
Slice -20 -15 -10 -5 0 5 10 15 20 

1 1    2    3 
2  1   2   3  
3   1  2  3   
4    1 2 3    
5   1  3  2   
6   3  1  2   

Table 1: Measurement order and measurement plane locations for all slices  

 

Slice s1 (mm) s2, s3 (mm) s1/t s2/t, s3/t W2/t W3/t 
1 18.9 20 0.372 0.394 1.16 0.77 
2 23.9 15 0.470 0.295 1.06 0.77 
3 28.9 10 0.569 0.197 0.96 0.77 
4 33.9 5 0.667 0.098 0.86 0.77 
5 28.9 10 0.569 0.197 0.96 0.39 
6 38.9 10 0.766 0.197 0.77 0.77 

Table 2: Distances between measurement planes, s, normalized distances between measurement planes, s/t, and 
normalized widths, W/t 

 

FIGURES 

 

Fig. 1 – (a) Diagram of a long quenched bar with a contour measurement plane at the mid-length (W = 
77.8 mm) and (b) residual stress from a contour method measurement  
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Fig. 2 – Geometry for the numerical study: t is the part height, W1 the part width, gL is the gage length, 
and s1 is the distance from the edge to the gage center, and s2 is the distance from the first to second 

measurement plane 
 

Fig. 3 – Geometry of the supplemental stress analysis used to find the correction for prior measurement: 
a traction boundary condition is applied to the cut faces of the prior measurement at x = s1, and the 

resulting stress is extracted at the subsequent measurement plane, which is a distance s2 from the prior 
measurement  

 

Fig. 4 – Diagram of the slitting locations  
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Fig. 5 – Uncertainty in stress for 1 με strain error as a function of location of slitting plane from the 
edge of the coupon (s1), (a) as a function of position (y/t) for various values of s1/t, and (b) RMS 

uncertainty as a function of s1/t 
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Fig. 6 – Stress as a function of position with an applied Legendre polynomial edge traction. (a) Contour 
plot of the spatial stress variation resulting from an applied L2 edge traction, (b) line plot of the stress 
variation along the sample height for an applied L2 edge traction, where s2/t = 0 is the solid black line, 
s2/t = 0.1 is the dotted blue line, and the others follow a trend of decreasing magnitude with increasing 
s2/t, and (c) line plot of the maximum normalized stress (along the height) as function of s2/t for the L2, 

L4, and L6 Legendre polynomial edge tractions  
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Fig. 7 – Plot of the stress variation when applying an L2 edge traction at x = 0 with variable sample 
width, W2, (a) as a function of distance away from the cut plane (s2/t) and (b) as a function of relative 

distance away from the cut plane (s2/W2) 
 

 

Fig. 8 – Line plots from slice 3 (10 mm measurement spacing) of the (a) measured strain, (b) computed 
stress, (c) corrections, and (d) total stress 
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Fig. 9 – (a) The total stress at x = 0 mm and uncertainty (95% confidence interval, lines toward bottom 
of chart) and (b) the total stress at various positions symmetric about x = 0 

 

 

Fig. 10 – The measured slitting results from slices 3, 5, and 6 at (a) x = -10 mm, (b) x = 0, (c) x = 10 
mm, and the total stress at (d) x = -10 mm, (e) x = 0, (f) x = 10 mm 
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Fig. 11 – Maps of the total x direction (a) stress and (b) uncertainty 
 

Fig. 12 – RMS uncertainty as a function of cut spacing for (a) cut 1, (b) cut 2, and (c) cut 3. Note: for 
cut 1 there is no correction, thus the total uncertainty is the same as the uncertainty from slitting 
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Fig. 13 – Line plots of the uncertainty (95% confidence interval) for the third measurement from (a) 
slitting and (b) corrections 

 

Fig. 14 – Strain versus cut depth for a second order Legendre stress (i.e. one column of the compliance 
matrix) and different values of s 
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Fig. 15 – Slice 4, cut 2 at x = 0 (a) measured strain and (b) calculated stress with uncertainty 
 

 

Fig. 16 – Strain response for normal (L2) and shear (modified J1) tractions for W1 = 4t for (a) the full 
cut depth range and (b) initial cut depths 
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Fig. 17 – (a) Computed slitting stress with a normal stress of 100L2 and various modified J1 shear 
stresses and (b) percentage stress difference from 100L2 for s1 = 0.2t for W1 = 4t 

 

 
Fig. 18 – Plot of percentage of the maximum stress relative to the original present at a given lateral 

position (s/t) away from a previous slitting measurement plane as a function of specimen width (W2/t) 
for samples with variable width with the position from the cut plane normalized by t. Dashed lines 

indicate boundaries for good uncertainty (horizontal line for s/t  = 0.2 and angled line for spacing from 
far edge equal to 0.2t). The physical experiment in slice 3, cut 2 at x = 0 is shown with a square marker, 

slice 3, cut 3 at x = 10 mm is shown with a star marker, slice 1, cut 3 at x = 20 mm is shown with a 
pentagon marker, and slice 2, cut 2 at x = 0 is shown with a plus marker 
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Fig. 19 – (a) Measurement locations with no corrections needed between measurements (uses 8 slices) 
and (b) with minimum recommended spacing between measurements (uses 2 slices) 

 

Fig. 20 – Line plot showing the stress measured at y = 25.4 mm from slitting, ESPI hole drilling 
(HD), and x-ray diffraction (XRD) 
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