Lawrence Berkeley National Laboratory

Recent Work

Title CHARCOAL ADSORBANT DESIGN

Permalink https://escholarship.org/uc/item/7bg5r8hf

Author Mitina, S.

Publication Date 1976-02-20

Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

Engineering & Technical Services Division

RECEIVED LAWRENCE BERKEY EX LAPOPATORY

APR 2 1 1983

LIBRARY AND DOCUMENTS SECTION

LBID-635

For Reference

Not to be taken from this room

LEGAL NOTICE

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Lawrence Berkeley Laboratory is an equal opportunity employer.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

		LD.	LUIU 635		
LAWRENCE BERKELEY	LABORATORY - UNIVERSITY OF CALIFORNIA	CODE	SERIAL	PAGE	
ENGIN	EERING NOTE	ESO 510	M4904	1 OF 2	
UTHOR	DEPARTMENT	LOCATION	DATE		
S. Mitina	Mechanical Engineering	Berkeley	20 Februa	ary 1976	
ROGRAM - PROJECT - JOB	an a				
ESCAR REFR	IGERATION SYSTEM				
				Pol	
ITLE			· · · · · · · · · · · · · · · · · · ·	10	
CHARCOAL	ADSORBANT DESIGN			-	
OBJECTIVE: Design a char	coal adsorber to purify helium	flow with a pre	ssure drop 1	less tha	
OBJECTIVE: Design a char 0.7 ÷ 0.8 psi erations. <u>GIVEN</u> :	coal adsorber to purify helium . Estimate approximate operat	flow with a pre ing time betwee	ssure drop i en successiv	less tha e regen	
OBJECTIVE: Design a char 0.7÷0.8 psi erations. <u>GIVEN:</u> 3,000 SCFM of Pressure ves Bed depth 20 Thus linear v	coal adsorber to purify helium Estimate approximate operation of dry helium gas at 18-20 atm, sel diameter - $36'''$ $0'' \div 25'''$ elocity $V = \frac{3000}{20} \frac{7}{16} \left(\frac{18}{12}\right)^2 = 21$	flow with a pre ing time betwee assumed: 1 pp . 22 <u>ft.</u> min	ssure drop i en successiv m of oil.	less tha e regen	

INTRODUCTION:

The charcoal adsorber performs a similar job to the fiberglas filter, which is the removal of oil particles from helium flow, but uses different physical pheno - mena: adsorption. The physical ruggedness, chemical stability and permanence of the adsorbing surfaces are important factors from a theoretical approach to the problem.

From the engineering point of view distribution of the adsorbent, hardness, mesh size, pressure drop, adsorptive capacity per unit weight, none of which are closely related to the theoretical aspects of adsorption, are much more important. Essence of the theoretical equations used for calculations is that the break-through concentration is a function of the number of transfer units N_{pore} and through - put parameter Z (Eq. 3). Separately N is related to rate factors and residence time (T) and Z to capacity factors for the solid and the fluid.

Empirical relation (Ref. 1 Eq. 16-111, 16-112):

 $X = 0.557 [N_{\text{pore, F}} (Z-1) + 1.15] - 0.0774 [N_{\text{pore, F}} (Z-1) + 1.15]^2$ (1) with

Npore, $F = \frac{60 \cdot D \text{ pore} \cdot \mathcal{T}}{F \cdot d^2_p}$ (2) where

D pore - solid phase diffusivity (pore diffusion);

 \mathcal{V} - volume of contractor (bed volume); f - volumetric flow rate of fluid phase;

d_- effective spherical diameter of sorbent particle;

x^P-dimensionless fluid-phase concentration

z - through-out parameter

	LABORATORY UNIVERSITY OF CALIFORNIA.	ESO 510	M4904	PAGE 2. OF 2
S. Mitina	Mechanical Engineering	Berkeley	20 Februa	ry 19 76
Consequently	(ref. 1 Eq. 16-96)	Т (а		
Z = <u> </u>	$D_{\rm b} \cdot V = D_{\rm b} \cdot V = D_{\rm c} \cdot V$	±2−/F (3), where	'n
Co - total con Q - total con D _E - distribut T - time; F - volumet	ncentration of solutes in fluid pha centration of solutes in solid pha ion ratio for binary ion exchange ric flow rate of fluid phase	ase; se; e;		~
Our problem Ref. (p. 16-3 steps were m	(to calculate on-stream time) co 7) which is for high concentratio ade in the same order.	rresponds to t n sugar solutio	he exam ple on. Comput	given in ation
Solution of Ec	(1.) for $X = 0$ gives a negative	number for Z.		
Since Z (from column, divid tion process,	h Eq. 3) is number of void volum ded by distribution ratio which ca this solution is invalid.	nes that have pann not be negat	assed throug ive during t	gh the he adsorb
Further study limits of vali	y of the theory of adsorbtion show dity for all of these empirical eq	ws that $X = 0$ and uations.	nd X = l are	the
PRESSURE D	ROP:			
The problem gram 1, 2, 3 ceed 0.6 inch depth) and any	of pressure drop calculation is r (Ref. 2) below. Pressure drop es of water (~ 0.014 psi.), for a y available mesh size of charcoa	nuch simpler a through charco large range o l.	as seen fron al bed d oes f bed den si t	n dia- not ex- y (bed
20 4-6 Mesh 16-30 Lb. per Cu. Fl. 212 212 212 212 212 212 212 21	$\begin{array}{c} 24 \\ 6-8 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	24 4-14 32 Lb. 6 32 Lb. 6 5 16 5 16 5 16 90 90 8 4 0 0 0 90 8 4 0 0 0 0 8 4 0 0 0 0 8 10 0 0 0 8 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 0 10 0 0 0	Mesh wr Cu. Fl. 80 10 10 10 10 10 10 10 10 10 10	30 30 20 0 70 NU VO
SUMMARY:				
One can't dete This must be	ermine precisely the one-stream confirmed by operating experien	time by availance.	able equat io n	ns.
If longer serv ficant increas	ice time is needed the bed depth e in pressure drop.	can be increa	sed without	signi-
References:	 Chemical Engineers 'Handb Chemical Engineers' Handb Adsorption, Mantell, 1951 	ook, 1953, Fou book, 1950, Th	arth Edition ird Edition	
$\frac{1C}{RL - 3220 - 2a(Bev. 8/71)}$	<i>*</i>			·

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

e.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable. • • • *

TECHNICAL INFORMATION DEPARTMENT LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720