
UC Riverside
UCR Honors Capstones 2019-2020

Title
Remote Controlled Robot Arm

Permalink
https://escholarship.org/uc/item/7bh36701

Author
Lu, Mengen

Publication Date
2021-01-11

Data Availability
The data associated with this publication are within the manuscript.

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7bh36701
https://escholarship.org
http://www.cdlib.org/

5(027(�&21752//('�52%27�$50

0HQJHQ�/X

$SULO�����

.RQVWDQWLQRV�.DU\GLV
(OHFWULFDO�DQG�&RPSXWHU�(QJLQHHULQJ

$EVWUDFW

'XULQJ�WKH�6HQLRU�'HVLJQ��P\�JURXS�DQG�,�GHYHORSHG�D�UHPRWH�FRQWUROOHG�URERW�DUP��7KH�ILQDO�SURWRW\SH�LQFOXGHV�WZR�
PDMRU�SDUWV��WKH�JORYH�FRQWUROOHU�DQG�WKH�URERW�DUP��0\�FRQWULEXWLRQV�WR�WKLV�SURMHFW�LQFOXGH�HVWDEOLVKLQJ�D�FXVWRPL]HG�
FRPPXQLFDWLRQ�SURWRFRO��GHVLJQLQJ�SRZHU�V\VWHP��FDOLEUDWLQJ�IOH[�VHQVRUV�DQG�VHUYRV��DQG�PHDVXULQJ�FXUUHQW�UDWLQJV��
0DQ\�GHVLJQ�SUHSDUDWLRQV�DQG�DQDO\VLV�ZHUH�SHUIRUPHG�DW�WKH�EHJLQQLQJ�RI�WKH�SURMHFW��7KH�FRQVLGHUDWLRQV�LQFOXGH�WKH�
VHOHFWLRQ�RI�PDQ\�FRPSRQHQWV��VXFK�DV�PLFURFRQWUROOHU��ILQJHU�PRWLRQ�WUDFNLQJ�GHYLFHV��DUP�DQG�VKRXOGHU�PRWLRQ�
WUDFNLQJ�GHYLFHV��DQG�WKH�FRPPXQLFDWLRQ�GHYLFHV��,Q�DGGLWLRQ��ZH�GHYLVHG�WKH�V\VWHP�DQG�VRIWZDUH�DUFKLWHFWXUH�EDVHG�
RQ�WKH�VHOHFWHG�FRPSRQHQWV��)OH[�VHQVRUV��038������J\URVFRSHV��+&����%OXHWRRWK��DQG�$UGXLQR�1DQR��ZHUH�LQVWDOOHG�
RQ�WKH�JORYH�VLGH��7KH�URERW�DUP�KDV�IRXU�6*���0LFUR�6HUYRV�IRU�HDFK�ILQJHU�DQG�IRXU�0*����0HWDO�*HDU�6HUYRV�IRU�
ZULVW��HOERZ�DQG�VKRXOGHU�MRLQWV��$IWHU�WKH�FRQVWUXFWLRQ��P\�WHDPPDWHV�DQG�,�GHVLJQHG�VSHFLILF�H[SHULPHQWV�WR�WHVW�WKH�
IXQFWLRQDOLW\�RI�WKH�V\VWHP��7KHVH�WHVWV�LQFOXGH�REVHUYLQJ�%OXHWRRWK�GDWD�WUDQVPLVVLRQ�UDWH��GHFRGLQJ�WKH�UHFHLYHG�
LQIRUPDWLRQ�IURP�%OXHWRRWK��DQG�FRQQHFWLQJ�WKH�PXOWL�PHWHU�WR�PHDVXUH�WKH�FXUUHQW�UDWLQJV�WKURXJK�WKH�VHUYRV���

1

Table of Contents
INTRODUCTION .. 2

PERSONAL CONTRIBUTIONS TO PROJECT .. 3
Bluetooth Communication and Software Development.. 3

System Power Design and Calculation ... 3

Flex Sensor Calibration ... 4

Servo Current Measurements and Servo Angle Calibration ... 5
DESIGN CONSIDERATIONS .. 5

Selection of microcontroller for this project ... 5

Selection of finger motion tracking devices .. 7

Selection of wrist, arm and shoulder motion tracking devices ... 8
Selection of communication devices ... 8

SYSTEM ARCHITECTURE ... 9

SOFTWARE ARCHITECTURE.. 13

MODULES ... 16

Bluetooth ... 16
Power Supply .. 16

EXPERIMENT DESIGN AND TESTING .. 19

Synchronizing Bluetooth ... 19

Bluetooth Data Extraction Function Testing ... 20
Current Ratings Measurements ... 21

CONCLUSION ... 22

ACKNOWLEDGEMENT .. 23

REFERENCE .. 24

2

INTRODUCTION

The electrical modules on the glove included Arduino Nano, gyroscopes, flex sensors, a

Bluetooth HC-05 module and LEDs. The microcontroller, Arduino Nano, sampled all the sensors

on the glove. Flex sensors on the glove were designed to track the user's finger and elbow

positions. The two gyroscopes on the user’s wrist and shoulder reflected joint rotation angles.

The LEDs installed on the breadboard indicate the current status of the system during

initialization. The button helped to transit from the current initialization phase to the subsequent

ones. The Bluetooth module sends the data acquired by the Arduino Nano.

The actual robot arm is in a separate and different system. The Bluetooth HC-05 module

in the robot system was designed to only receive data from gloves, which indicates the user's

finger and arm positions. There are eight servos mounted on the robot arm: four SG90 Micro

Servos and four MG995 Metal Gear Servos. After receiving the user’s movement data, the

Arduino Mega converted that information to PWM signals. Also, it distributed the signals in

terms of voltages to the servos. The SG90 Micro Servos were used to move the fingers. The

MG995 Metal Gear Servos were used to move the robot's wrist, elbow, and shoulder.

This project required students think like engineers and implement theories learned from

lectures to the real world. It gives every engineer opportunities to face challenging problems and

to come up with solutions. The overall objective of this project was to give practical training and

better prepare electrical engineers for the future through this experience.

3

PERSONAL CONTRIBUTIONS TO PROJECT

Bluetooth Communication and Software Development

I was responsible for coming up with solutions to achieve high speed wireless

communication for our project. After a thorough research about the subject on the internet, I

decided to use the Bluetooth module for this project due to its cheap price and plenty of online

documentation about its setup. The success of our final project partially depends on whether

Bluetooth could communicate and transfer data to each other. During the fall quarter 2019, I

found out that there were two modes of configuration and each required different circuit setup.

Even though I was able to set up Bluetooth to transfer data, the communication was buggy and

unreliable and occasionally generated garbage. After reading many documentations for this bug

in winter 2020, I designed a communication protocol, which ensured that microcontrollers could

receive data from Bluetooth even if both microcontrollers worked asynchronously. I applied my

communication protocol in software and programmed Arduino Nano to transfer data and

Arduino Mega to receive data on Arduino IDE software. The majority part of Bluetooth function

is on the slave file. Despite establishing communication protocol, I also wrote the majority part

of the code for both the master and slave system. The code on the master file includes all

functions for system initializations except for gyroscopes, getting and mapping user finger

position, and sending data string. The entire program for the slave system was solely written by

me.

System Power Design and Calculation

Another major contribution to this project is figuring out a way to properly power the

entire system. I did a lot of research online regarding the servos’ voltage and current because

4

they are the key components on the robotic arm. I talked to Professor Chomko and asked him

questions about the servos’ electrical behavior and characteristics. He explained to me that when

the servos were not in operation, they were basically open circuits. Once the servos started

operating, they could be considered as variable resistors, of which the resistance would decrease

if heavier load is applied, thus drawing more current from the power source. I calculated the

current of all components on our glove and estimated that the total current was less than 100mA.

However, for the servos on the robot arm, I needed to connect an amp meter to the circuit and

measure servos’ working current. After several measurements, which was carried out at

solarium, I learned that the maximum total current for four micro-servo is about 1.3 A and 1.8 A

for each MG995 servo. Based on the information from the professor and my practical current

measurements, which set the design criteria for the power of our system, I bought the USB

Charger which could supply up to 5V/2.4A for each of six ports and had a total power of 60W.

To harness the USB power, I bought six USB male breakout boards and soldered 5V and ground

pins. This setup enables my team to power all servos without using power supply from the

school lab.

Flex Sensor Calibration

My learning and calibrating flex sensor took place in the first few weeks during the

Senior Design. Since I had a good knowledge of how potentiometers work, I measured the

resistance of each flex sensor when it’s flat as well as when it’s bent, and quickly came up with

the circuit layout for those sensors. My teammate Mohammad suggested me to implement a user

friendly feature, which calculates flex sensor maximum and minimum position during user

5

initialization phase. I was able to transform his idea to software, so now the initialization phase is

more user friendly.

Servo Current Measurements and Servo Angle Calibration

In order to measure servos’ working currents, I had to program Arduino and write

multiple test files to see the maximum current in each unique scenario, such as that the servos are

receiving continuous position values from the microcontroller and that they are not. Despite

measuring servo’s current, I also took part in calibrating the servo’s angle with my teammates.

During the making of the robotic arm, my teammate needed to tie the string around each finger

on the servos, so I had to program a microcontroller to reset servo to either 0 degree or 180

degrees.

DESIGN CONSIDERATIONS

 At the beginning of the design process, many design parameters and variables were taken

into consideration. Those considerations include but not limited to the selection of

microcontroller, software, and motion tracking and communication hardware.

Selection of microcontroller for this project

One of the major concerns includes determining the type of software and microcontroller

to be implemented in this project. The type of system hardware chosen affects the selection of

software because the hardware usually comes with its own software or programming

environment. The decision to which microcontroller to implement has to be made early on so

that engineers have sufficient time to read and study the documentations of the chosen

6

microcontroller’s internal structure as well as its software environment. There are a variety of

available options for microcontrollers on the market, such as Arduino Uno, Arduino Mega,

Arduino Nano, Raspberry Pi, and Teensy. Arduino and teensy boards can be programmed in

Arduino IDE software, which uses C language. Raspberry Pi has a stronger on board processor

and comes with many functionalities, which runs mainly on Python scripts in Linux

environment. Raspberry Pi is also capable of running multiple tasks at the same time due to its

multi thread processing functionality. However, even though Raspberry Pi is more powerful and

surpasses Arduino in numerous aspects, it still has limitations when it comes to controlling

servos and motors. While Raspberry Pi’s built in processor is good at dealing with software

applications, such as installing libraries and performing complex task algorithms, it lacks the

ability to interface and control multiple sensors given the limited number of pins. In addition,

Raspberry Pi does not have onboard storage, so any improper hardware handling or software

shutdown can possibly corrupt the files [1]. Arduino, on the other hand, comes with onboard

storage, so no additional storage unit like SD card is needed. A developer can also benefit from

Arduino’s plenty of digital and analog pins because the robotic projects often involve various

wire connections to either digital or analog pins. The microcontrollers’ selections are therefore

narrowed down to Arduino.

There are three major types of Arduino Uno, Arduino Mega, and Arduino Nano on the

market. The key differences between these three types are the board size and the number of

onboard pins. Arduino Nano has the smallest size among the three. It has 22 digital I/O pins and

6 of those pins are PWM [2]. In addition, Arduino Nano has 8 analog I/O pins, which can be

used to sample the analog signals. Slightly bigger than the size of Arduino Nano, Arduino Uno

comes with 14 digital I/O pins and 6 analog input pins [3]. Lastly, Arduino Mega 2560 board has

7

the biggest size among the three and it also has the most number of digital and analog I/O pins.

Not to mention three sets of transmission and receiving ports, Arduino Mega has a total of 54

digital pins and 16 analog pins [4]. Since most of the sensors are going to be located on the

user’s hand, forearm, and shoulder, a lightweight microcontroller should be put on the user’s

arm. Despite being small and light, a microcontroller needs to have sufficient analog pins to be

used for sensor sampling. Therefore, Arduino Nano was chosen as the master for the user’s arm

thanks to its miniature size and abundant analog pins. For the robot arm, there is no choice better

than Arduino Mega because most electrical modules, such as servos, require PWM signals.

Selection of finger motion tracking devices

Besides deciding the microcontroller model for this project, we also need to find a

solution to track the user's arm and finger movement. There are a few options for tracking finger

movements. One solution is to use three terminal potentiometers, which consists of a three pin

variable resistor and a turning knob. The resistance can be varied by turning the knob on the

potentiometer. The advantage of using those potentiometers is that the analog readings from

those sensors are often accurate and do not fluctuate much. However, the drawback is that those

potentiometers are bulky and they add a lot of weight to the user’s hand. If they were selected to

track the user's finger movement, additional modification needs to be made to measure finger

flex angles. This additional mechanism includes adding extra joints between the user’s fingers

and the potentiometers. Any slight movement on the finger should also move the joints and those

joints then rotate the knob on the potentiometer. Another solution for finger tracking is to

implement flex sensors. The flex sensor looks like a long flat tape, which has two terminals on

one of its ends. The working principle of the flex sensors is similar to that of the three terminal

8

potentiometers, but instead of turning the knob, one has to bend the flex sensor in order to

change its resistance. The advantages of using flex sensors is that they can easily fit on a

person’s hand and they are way much lighter compared to three terminal potentiometers. As long

as those flex sensors are securely strapped to the back of the hand, they can report any person’s

finger movements to the microcontroller. Thus, flex sensors are the preferred finger movement

tracking modules. Since all sensors take quantitative measurements differently, the two same

types of sensors report different values. Flex sensor calibration is needed in the future to ensure

data accuracy.

Selection of wrist, arm and shoulder motion tracking devices

Tracking of the user's arm and shoulder can be done by gyroscopes. Gyroscope is a

motion sensing device, which is able to detect any rotation in a three dimensional environment

[5]. To keep it simple, it tracks X, Y, and Z axis rotation of the user’s arm and shoulder.

Gyroscopes also use I2C communication protocol, which only needs serial clock (SCL) and

serial data (SDA) connections. This communication protocol simplifies the communication

between gyroscopes and the microcontroller, since only two connections are required. The plan

is to use multiple gyroscopes, which are going to be located at different parts of the arm. Each

gyroscope will receive a unique 7-bit address when using I2C protocol in order to differentiate

itself from others.

Selection of communication devices

Speaking of communication, there are two communication options for this project. One

option is to use the wired communication supported by I2C interface, and the other option is to

9

go wireless. Even though both wired I2C and wireless communication speeds are sufficient for

the project, the effective communication distance of wired I2C reaches only up to 1 meter,

whereas the wireless communication goes far beyond this range. Since the objective of this

project is to achieve remote controlling of the robot arm, a wireless communication module

becomes the priority. Bluetooth was eventually chosen as the wireless communication module.

SYSTEM ARCHITECTURE

 There are four key modules on the glove. Those components include an Arduino Nano,

two gyroscopes, four flex sensors, and a Bluetooth module. All components are powered by an

external power supply. Since the glove is a low power device, it is sufficient to use the external

power supply to power the circuits. Gyroscopes, flex sensors are the major sensors for detecting

the user’s finger and arm movement, so they are sampled by Arduino Nano on the glove.

Arduino Nano integrates all that information and transmits it using Bluetooth.

The brain of the robot system is Arduino Mega, which controls all servos using PWM

signals. The Bluetooth module receives the data and provides feedback to Arduino Mega.

Arduino Mega then takes the information and generates the PWM signals accordingly. Four

SG90 Micro Servos are connected in parallel and share a common power port. Each MG995

servo has its own port because each demands high current. The Bluetooth module, however, is

powered by Arduino Mega due to its low working current.

Figure 1 is the electrical system of the glove. The system includes five major

components: power supply, Arduino Nano, Gyroscopes, Flex sensors and Bluetooth. The

external power bank provides energy to the Arduino Nano, which interacts with the rest of the

10

modules. Gyroscopes and flex sensors track user motion and give feedback to the Arduino Nano.

Arduino Nano then sends the information to Bluetooth.

Figure 1. Electrical System Architecture and Design of Glove

Arduino Mega 2560 microcontroller controls the robot arm, since it has the most PWM

signals. Arduino Mega outputs the PWM signal to control the angles of the servos. Since there

are eight servos on the robot arm, eight PWM wires are connected to the servos. The power

supply is capable of distributing at most 2.4 A of current to each servo. The SG90 Micro Servos

11

are low power devices, so power supply can easily handle four of them. Each MG995 Servo gets

a 5 V port because the minimum current requirement for MG995 Servo is 2 A.

Figure 2 is the electrical system of the robot arm. This system includes USB Hub,

Arduino Mega, Micro-Servos, MG995 Servos, and a Bluetooth. USB Hub supplies power to

Arduino Mega, which interacts with all the servos and Bluetooth. Bluetooth provides position

information to Arduino Mega, which then integrates that information and sends it to the servos.

Figure 2. Electrical System Architecture and Design of Robot Arm

12

Figure 3 is a block diagram showing detailed connection of flex sensors, Bluetooth and

Arduino Nano on the glove. The flex sensor are connected in series with the resistors and the

analog pin measures the voltage across the flex sensor’s two terminals. Bluetooth’s VCC and

GND are connected to 5 V power rail and the ground. Microcontroller’s RX pin is connected

directly to the Bluetooth’s TX pin. Microcontroller’s TX output is stepped down using a voltage

divider and connects to RX pin on Bluetooth.

Figure 3. Electrical Connections on Glove

13

SOFTWARE ARCHITECTURE

Figure 4 block diagram shows how the software architecture of the glove runs and how

the processes are queued and decided. The software on the glove system starts with an

initialization phase, which involves calibrating LEDs, gyroscopes, and flex sensors. The LED

initialization resets and turns off all the LEDs, which are used to indicate the progression during

the initialization phase. Then the glove system calibrates the gyroscopes, which are used for

tracking arm and shoulder motion. Gyroscope calibration takes about ten to fifteen seconds to

finish. An LED turns on as soon as gyroscopes finish their initialization. Next the system

samples the value from the flex sensor. Zero flex initialization samples the flex sensor values

when the user straightens his or her fingers and arms. Full flex initialization samples the flex

sensor values only when the user fully bends his or her fingers and arm. The initialization phase

ends when the system finishes sampling flex sensor values. The code then enters an infinite loop,

which continuously samples wrists, elbow, and shoulder movements. The gyroscopes take the

values from the user’s wrist, elbow, and shoulders, while flex sensors acquire data from the

user’s fingers. The sampled sensor data is then calculated and mapped into corresponding angles

on each joint. Finally, the mapped angles for the joints are formatted and transmitted by

Bluetooth. This loop continues until the system is powered off. The software for the glove

system was developed by Mengen and Mohamad. Mohamad was responsible for creating the

initialization and calibration phase. Mengen was responsible for value acquisition and using the

Bluetooth module to communicate with the robotic arm to provide it with commands.

14

Figure 4. Software Architecture of Glove

Figure 5 block diagram shows how the software architecture of the robotic arm runs and

how the processes are queued and decided. Similar to the software architecture on the glove,

architecture on the robot arm also enters the setup phase first. There are two major components

that require initialization: Bluetooth and Servo. Bluetooth initialization clears the buffer in the

microcontroller and connects Slave Bluetooth to the Master Bluetooth. During Servo

15

initialization, the system creates Servo objects and assigns a digital output pin to each Servo

object. Then the system enters a loop, which checks whether the incoming data is valid. If a valid

string is found, then the system proceeds to extract information from the string. Otherwise, the

system returns to receiving data. After extracting the needed angle information, the system

distributes the angle information to specific variables. The Servo objects will then write those

assigned variables to the output. The loop returns back to receiving data upon completion. The

software for the robot arm was developed by Mengen.

Figure 5. Software Architecture of Robot Arm

16

MODULES

Bluetooth

 The default baud rate of Bluetooth HC-05 modules is 38400. Two Bluetooth modules

were needed in order to set up the system. One Bluetooth functioned as a slave and the other as a

master. In this design, the glove is the master and the robotic arm is the slave. Master Bluetooth

converts the binary input to 5 V and 0 V, and sends this information through radio waves. The

slave Bluetooth intercepts the radio wave and converts the radio wave to digital signal. Bluetooth

has two modes of operation: AT mode and standard mode. AT mode is used to configure the

Bluetooth modules, and the standard mode is used when the Bluetooth transmits or receives data.

Holding down the button on the Bluetooth module allows programmers to enter AT mode. Slow

flashing red LED is an indication that the module has entered its AT mode. Programmers can

interact with Bluetooth by typing in commands on Serial Monitor in Arduino IDE software [6].

Make sure to configure the roles of Bluetooth and bind the address to establish secure

connection. Bluetooth interfaces with Arduino microcontroller in this project. The

communications are done on the TX and RX wires and the serial data is between 0 and 255,

which corresponds to the decimal number on the ASCII table. Arduino microcontroller maps the

data to the corresponding voltages, which is between 0 and 5 V. The mapped voltages are

applied to the Bluetooth module through the TX wire. After sending the data, Bluetooth sends a

signal back to the Arduino microcontroller through TX wire indicating task completion.

Power Supply

 The power supply is a multiport USB charging station. It can supply 60 W and up to 12

A. There are a total of 6 ports on this device and each of the ports can tolerate up to 2.4 amps of

17

current. The 1.5 meter power cable is long enough to let the charger reach further or hide out of

sight. RAVPower 6-Port Wall Charger is also fire-resistant and comes with a sleek matte black

finish. The compact body is a new generation of the circuit design with overcharging,

overheating, short circuit protection. This module can process 110 V to 240 V input. The 60 W

power supply needs to be plugged to an outlet with a power cord. The outputs are female USB

ports, so six 2.0 Type A male breakout boards were soldered to match the connections.

Figure 6.1 Power Supply Module

Source: Reference [7] (User Guide)

18

Figure 6.2 Power Supply Side Views

Source: Reference [7] (User Guide)

Figure 6.3 Description and Specification of Power Supply

Source: Reference [7] (User Guide)

19

EXPERIMENT DESIGN AND TESTING

Synchronizing Bluetooth

The objective was to determine whether an asynchronous communication was established

in the system. Arduino Mega was set to receive data only if Arduino Mega finished all the other

tasks. Arduino Nano was set to publish data regardless whether Arduino Mega received it. A

serial port read function was placed inside a while loop code to ensure Arduino Mega received

more than one complete string. The code then double checked whether a string with a size of less

than 80 existed. The size limit was chosen to be 80 because this size was more than enough to

store one string but not two. If this string was found, then the system would store this string.

Otherwise, the receive function would keep running until the system found an acceptable string.

A pair of Bluetooth modules needed to be set up to assess the feasibility of this system. The

master Bluetooth’s TX and RX pin should be connected to the RX and TX pin on Arduino Nano.

The slave Bluetooth’s TX and RX pin should be connected to the RX and TX pin on Arduino

Mega. The results of the experiment could be seen from the serial monitor in Arduino IDE. The

results are shown in the next section.

The performance of the communication protocol turned out to be exceptionally well

during testing. The intrinsic delay of data transmission was less than 100 milliseconds. The time

delay for Arduino Mega to check incoming data depended on how fast Arduino Mega processed

the servos. For example, if it took Arduino Mega 1 second to finish processing the servo

functions, then the total delay was about 1.1 seconds. The actual testing showed that there was a

200 millisecond delay from the servos. The total delay added up to 300 millisecond. Therefore,

system refresh rate could reach up to 3 times per second.

20

Bluetooth Data Extraction Function Testing

 The objective of this experiment was to check whether the code “Data Extraction” function

could properly take apart the strings and distribute the data to variables. The test string was

formatted in a specific way. The string started with the left arrow and ended with the right arrow.

Each value was separated by a tab character. To test the function, a person could send a test

string and print out the processed variable array on the serial monitor. The expected results

should be exactly as the test string. For example, if the test string was

“<111\t222\t333\t444\t555\t666\t777\t888\t999\t000>”, then the result should also be

“<111\t222\t333\t444\t555\t666\t777\t888\t999\t000>”.

 A customized test string “<111\t222\333\t444\t555\666\t777\t888\t999\765>” was sent to

the slave Bluetooth during the actual testing. Then the data extraction function performed its

duty and distributed the extracted data to a “tempArrayVal” variable. Figure 7.1 is a screenshot

of the serial monitor, which demonstrated that the data was successfully extracted and assigned

to “tempArrayVal” variables. The “tempArrayVal” was then used to print out values in a nicer

format shown in the figure 7.2.

21

Figure 7.1 Extracted Data Printed Out On Serial Monitor

Figure 7.2 Formatted Data

Current Ratings Measurements

 The objective was to discover the current ratings for the servos and glove system. An amp

meter was connected in series with other modules in the circuit. The power supply from the lab

22

was used to power the circuits. After that, the tester could observe readings on a multimeter. The

optimal current reading should be kept below 1 A for the glove. The combined current readings

of four micro-servo should be less than 2.4 A. The current readings of each individual MG995

servo should also be kept below 2.4 A. In addition, the testing should observe the current

readings when the servos’ inputs were discrete.

The measured total current of all the modules excluding Arduino Nano was about 54 mA

and 60 mA. Each port on the USB Hub could provide up to 5 V / 2.4 A. One port on the USB

Hub thus would be used to power Arduino mega. One port would be used to power 4 micro

servos. The rest four ports would be dedicated to each MG995 servo. Arduino mega would also

be used to power Bluetooth because Bluetooth only consumes up to 35 mA during operation. In

addition, some further testing revealed that the total current of four micro servos went up to 600

mA. Each MG995 servo consumed up to 1.8 A when being fully stalled.

CONCLUSION

The Bluetooth module and the communication protocol designed for this project allows a

decent rate of data transmission on the system. The refresh rate is about two to three times per

second for the robot arm. The power supply selected for the system is able to provide enough

current for the servos to work properly. Since the power consumption on the glove is low, the

circuit is powered directly from the microcontroller. The power system for the glove and the

robot arm worked flawlessly and there was never an issue over the power supply in practical

terms.

Through this project, I gained a deep understanding of electrical properties of various

components, such as potentiometers, servos and power supply. I learned that servos are basically

23

variable resistors, whose resistance changes depending on the load. The lower the resistance, the

higher the current that servos will draw from the circuit. In addition, I acquired knowledge of

UART wireless communication, which uses TX and RX pins to transmit data. The data are

transmitted in binary form and each character is about 10 bits. What’s more, I am able to

understand the power topic. The basic formula for power of the circuit is voltage multiple by the

current. All electrical components have design requirements for voltage and current. Electrical

engineering may be a challenging field, but you will find its beauty once inside this magical

world. Electrical engineering is going to be my lifelong endeavor because I have a strong passion

for this field.

ACKNOWLEDGEMENT

Given this is a team project, my teammates worked on other aspects of the project.

Andres and Mohamad were responsible for the development of the electrical and the mechanical

system of the project. They designed the structure of the glove and robot arm by using

TinkerCad. They used modeling tools to 3D print the gears that would be moved by the servo

motors attached to the frame. They also crafted the remote glove controller to incorporate a

development breadboard. The Arduino Nano would tap onto the two MPU6050 units on the

user’s wrist and shoulder. The woodwork done on the frame was made with tools used from the

Institute of Electrical and Electronics Engineers organization. All the woodwork and servo

fittings were all performed by Andres, while George assisted him towards the end of this design

project. Mohamad and George designed the stand, and then Andres and George assembled the

stand to properly support all the gears and sensors. George, Mohamad and Mengen worked on

testing components with the servos, gears, flex sensors, and other parts to ensure everything

24

operated accordingly. George, Mohamad, and Mengen tested current, resistance, and voltage

ensuring all components are properly connected.

Special thanks to Professor Chomko for giving insights on servos’ electrical property.

Gustavo gave the group input on using a power bank or designing a PCB board to power the

servos, and he told us that both would cost the same and gave personal experiences on how he

used a PCB and power banks to power servos. Professor Karydis also gave this group ideas when

brainstorming how to program this project and encouraged the use of arduinos. Also, Professor

Karydis discussed with this group about the use of many of the components and his input was

deeply appreciated in the process of this project.

REFERENCE

[1] “What are the differences between Raspberry Pi and Arduino?” 2017. [Online]. Available:

https://www.electronicshub.org/raspberry-pi-vs-arduino/. [Accessed: 11-Mar-2020]

[2] “Arduino Nano TECH SPECS,” 2020. [Online]. Available:

https://store.arduino.cc/usa/arduino-nano. [Accessed: 11-Mar-2020]

[3] “Arduino Uno TECH SPECS,” 2020. [Online]. Available:

https://store.arduino.cc/usa/arduino-uno-rev3. [Accessed: 11-Mar-2020]

[4] “Arduino Mega TECH SPECS,” 2020. [Online]. Available:

https://store.arduino.cc/usa/mega-2560-r3. [Accessed: 11-Mar-2020]

[5] “MPU-6000 and MPU-6050 Product Specification Revision 3.4,” 2013. [Online]. Available:

https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/. [Accessed: 11-Mar-

2020]

https://www.electronicshub.org/raspberry-pi-vs-arduino/
https://store.arduino.cc/usa/arduino-nano
https://store.arduino.cc/usa/arduino-uno-rev3
https://store.arduino.cc/usa/mega-2560-r3
https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/

25

[6] "HC-03/05 Embedded Bluetooth Serial Communication Module AT command set,"

2011. [Online]. Available:

https://cdn.instructables.com/ORIG/F3O/K70G/H1LWQ0PO/F3OK70GH1LWQ0PO.pdf.

[Accessed: 11-Mar-2020]

[7] “RAVPOWER 60W 6-PORT USB WALL CHARGER User Guide,” [Online]. Available:

https://images-na.ssl-images-amazon.com/images/I/91+H6OS1AjL.pdf. [Accessed: 11-Mar-

2020]

https://cdn.instructables.com/ORIG/F3O/K70G/H1LWQ0PO/F3OK70GH1LWQ0PO.pdf
https://images-na.ssl-images-amazon.com/images/I/91+H6OS1AjL.pdf

	lu_megen_title
	lu_mengen_capstone
	INTRODUCTION
	PERSONAL CONTRIBUTIONS TO PROJECT
	Bluetooth Communication and Software Development
	System Power Design and Calculation
	Flex Sensor Calibration
	Servo Current Measurements and Servo Angle Calibration

	DESIGN CONSIDERATIONS
	Selection of microcontroller for this project
	Selection of finger motion tracking devices
	Selection of wrist, arm and shoulder motion tracking devices
	Selection of communication devices

	SYSTEM ARCHITECTURE
	SOFTWARE ARCHITECTURE
	MODULES
	Bluetooth
	Power Supply

	EXPERIMENT DESIGN AND TESTING
	Synchronizing Bluetooth
	Bluetooth Data Extraction Function Testing
	Current Ratings Measurements

	CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCE

