Lawrence Berkeley National Laboratory

 Recent WorkTitle
INTENSITY CORRELATION SPECTROSCOPY

Permalink

https://escholarship.org/uc/item/7bj1p6tr

Authors

Goldberger, M.L.
Lewis, H.W.
Watson, K.M.
Publication Date
1965-08-24

University of California

Ernest O. Lawrence Radiation Laboratory

INTENSITY CORRELATION SPECTROSCOPY

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

Berkeley, California

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory Berkeley, California

AEC Contract No. W-7405-eng-48

INTENSITY CORRELATION SPECTROSCOPY

M. L. Goldberger, H. W. Lewis, and K. M. Watson

```
                    INTENSIMTY CORRELATTON SPECTROSCOFX*
                        M. L. Goläberger,
                            Palmer Physical Laboratory
        Princeton University, Princeton, New Jersey,
            H. W. Lewis,
                            Physics Department
        University of California, Santa Darbara, California,
            and
            K. M. Watson
        Lawrence Radiation Leboratory and Fnysics Department
            University of California, Berkeley, California
                            August 24, 1965
                    ABSIRACT
    1 A survey is given of techniques for spectroscopic analysis
using intensity fluctuations. Particular attention is given to counting
times, the role of macroscopic sources and detectors, and to the
electronic constraints placed on the observations.
```


I. INTRODUCTION

A variety of techniques have been suggested in the past few years for applying the study of intensity fluctuations to spectroscopic analysis. An excellent review of these has been given by Wolf and by'Glauber. ${ }^{1}$ We have recently provided a quantum mechanical description ${ }^{2}$ of intensity correlations in connection with a method for measuring the 1 phase of a scattering amplitude in X-ray scattering. We shall here apply this quantum mechanical analysis to several of the proposed spectroscopic techniques. We have in mind particularly the observation of the shape and width of a single spectral line. Although the relevant machinery was completely discussed in Reference 2, we shall utilize some notational simplifications which have been developed in some later work. 3.4

We shall consider measurements of intensity fluctuations and time correlations in detectors at separate space points. The classical theory of these is described in the book of Born and Wolf. 5 The stuay of fluctuations in connection with spectroscopy hes been reviewed by Mandel. ${ }^{6}$ The use of space correlations is essentially the technique of Hanoury-Brom end Twiss. 7 A related method involving interference of Pourier components in a non-lineer device has been suggested by Forrester. ${ }^{3}$

In Section II we review the general features of the problem, paying particular attention to the effect of macroscopic sources and detectors and to electronic limitations. The presentation will be
reasonably self-contained, but will not include the derivation of some basic formulae which were given in I, II, and III. Specific applications will be discussed in detail in Sections III and IV. In Section V we describe the use of lenses and other optical instruments in such experiments. Finally, in Section $V \perp$, a discussion of higher order correlations, involving three or more detectors, will be given.

$$
-3-
$$

II. THE OBSERVATION OF INTENSITY CORRELATIONS

In this section we review those results of II and III of relevance to the present study. Our discussion will hopefully be sufficiently complete that reading papers I, II, and III is not necessary unless missing derivations are desired.

We consider a quasi-coherent source, ${ }^{l} \mathrm{~s}$, of optical radiation, as illustrated in Fig. I. Light from the source is detected by a photon counter D after passing through a filter which restricts the radiation to an angular frequency interval Δu_{B} at a frequency ω_{0}. We suppose that

$$
\begin{equation*}
\Delta \omega_{B} \ll \omega_{0} . \tag{2:1}
\end{equation*}
$$

The source-detector separation is described by a vector $\underset{\sim}{X}$ from a fixed point in the source to a fixed point in the detector. Arbitrary points in source and detector are designated by vectors $\underset{\sim}{s}$ and $\underset{\sim}{u}$, respectively, measured from the fixed reference points [See Fig. l]. The linear dimensions of the source (detector) are characterized by the parameter $I_{s}\left(I_{\alpha}\right)$ while the corresponding areas are written as Σ_{s} and Σ_{d}. We imagine that source and detector have small angular apertures in the sense that

$$
\begin{equation*}
I_{\mathrm{s} / \mathrm{Y}} \ll I, I_{\mathrm{d} / \mathrm{Y}} \ll I . \tag{2:2}
\end{equation*}
$$

The photon flux (number of photons $/ \mathrm{cm}^{2} / \mathrm{sec}$) at a point $\underset{\sim}{y}=\underset{\sim}{y}+\underset{\sim}{u}$ at a point in the detector is

$$
\begin{equation*}
T(\underset{\sim}{y})=R_{B} / 4 \pi y^{2} \tag{2:3a}
\end{equation*}
$$

where R_{B} is the equivalent isotropic source intensity. The corresponding differential flux at frequency ω, in $\bar{\alpha} \omega$, is

$$
\begin{equation*}
\mathrm{dF}=F(\underset{\sim}{y}) g(\omega) d \omega \tag{2:3b}
\end{equation*}
$$

where the spectral function, $g(\omega)$, is normalized to unity:

$$
\begin{equation*}
\int d \omega g(\omega)=1 \tag{2:4}
\end{equation*}
$$

The spectral width of the source, $\triangle a_{B}$, is defined, in terms of g by

$$
\begin{equation*}
\frac{I}{\Delta 0_{E}}=\int d \omega[g(\omega)]^{2} \tag{2:5}
\end{equation*}
$$

[The definition of Aa_{B} is somewhat arbitrary: for a Lorentz shape $\left.g(\omega)=(\Gamma / 2 \pi)\left[\left(\omega-\omega_{0}\right)^{2}+\Gamma^{2} / n\right]^{-1}: \Delta_{3}=\Gamma \pi\right]$.

Following the notation of our earlier papers, we represent the detector [celled detector "I" since we shall shortly introduce a second detector " 2 "] by the combing rote operator at time T.

$$
\begin{equation*}
G_{1}\left(T_{1}\right)=\int_{-\infty}^{\infty} d \hbar_{1} I_{1}\left(T_{1}-t_{1}\right) \int_{1} d_{y_{1}}^{3} \gamma_{1}\left(y_{1}\right) \sum_{i=1}^{n} e^{i K_{2} t_{1}} \delta\left(y_{\sim}-z_{i}\right) e^{-i K_{2} t_{1}} \tag{2:6}
\end{equation*}
$$

Here the sum on l runs over the n photons emitted by the source during the time interval T of a given observation. The quantity ${\underset{\sim}{x}}_{\ell}$ is the space coordinate of the ℓ th photon, and K_{ℓ} is its Kinetic energy operator. The integral on ${\underset{\sim}{1}}$ runs over the volume of detector " 1 ". We shall assume that γ_{1}, a factor taking into account the efficiency and calibration of the counter, is a constant. Finally, J_{1} is the transient response function of the counter, which we write as

$$
\begin{align*}
& L_{1}(\tau)=\int_{-\infty}^{\infty} \frac{\frac{\alpha}{2 \pi}}{2 \pi} \cdot B_{1}(\Omega) e^{-i \Omega \tau} ; \tag{2:7}\\
& L_{1}(\tau)=0, \text { for } \tau<0 .
\end{align*}
$$

A characteristic response time, $\Delta \tau$, for the detector is defined by the expression

$$
\begin{equation*}
\frac{I}{\Delta \tau_{r}}=\int_{-\infty}^{\infty} \frac{d \Omega}{2 \pi}\left|B_{I}(\Omega)\right|^{2} \tag{2:8}
\end{equation*}
$$

[For a simple $R-C$. filter, where $L(\tau)=\exp \{-\tau / R C\} / R C, \Delta \tau_{r}=2$ RC.]
The wave function at time t for the n-photon system is [See Eq. (2:1) of II]

$$
\begin{equation*}
\Psi(t)=\int_{i=1}^{n} \Phi_{i}\left(\underset{\sim i}{x_{i}}, t\right) \tag{2:9}
\end{equation*}
$$

where Φ_{i} is that for the ith photon. The symbol means to take the symmetrized product of the Φ^{\prime} s. As in I and $I I$, we are interested in the ensemble average of many observations, each conducted for a time interval T. We suppose that on performing the ensemble average, the Φ_{i} have random phases and are effectively orthogonal. Mean beam properties such as the photon flux are considered to remain constant during the interval T. There are some delicacies associated with a coordinate space representation of photons which we shall not go into here. They are of no quantitative significance.

The mean rate of counting photons is then

$$
\begin{equation*}
\left\langle G_{I}\right\rangle=\left\langle\left(\psi(0), G_{I}\left(T_{1}\right) \psi(0)\right)\right\rangle \tag{2:10}
\end{equation*}
$$

where $\langle.$. 〉 denotes the ensemble average. By assumption this rate is independent of T_{I} and has the form [see ${ }^{I 0}$. Eq. (2:15), III]

$$
\begin{equation*}
\left\langle G_{I}\right\rangle=B_{I}(0) \sum_{I} \eta_{I} F(\underset{\sim}{Y}{\underset{Y}{1}}) . \tag{2:11}
\end{equation*}
$$

Here Σ_{1} is the area of the active detector volume and η_{1} the detector efficiency. Actually Eq. (2:11) is just a definition of η_{1} since all of the other factors must enter into the counting rate. In our previous papers we assumed either

$$
\begin{equation*}
B_{1}(0)=1 \tag{2:12a}
\end{equation*}
$$

$$
\begin{equation*}
B_{I}(0)=0, \tag{2:12b}
\end{equation*}
$$

corresponding to placing a dc. blocking filter in the detector output. The latter choice is convenient when discussing fluctuation experiments so it is worthwhile to define the mean counting rate in the absence of a blocking filter, namely,

$$
\begin{equation*}
\left\langle G_{1}\right\rangle_{0}=\left\langle G_{1}\right\rangle / B_{1}(0) . \tag{2:13}
\end{equation*}
$$

An explicit evaluation of the counting rate, Eq. (2:10), in terms of the wave function of the system, Eq. (2:9), yields

$$
\begin{equation*}
\left\langle G_{I}\right\rangle=B_{I}(0) \Sigma_{I} w_{I} \gamma_{I} \bar{n} \chi(I) \tag{2:14}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{n}=\langle n\rangle, \tag{2:15}
\end{equation*}
$$

W_{1} is the detector thickness, and See Eq. (2:19), III

$$
\begin{align*}
x(1) & =\left\langle\left(\Phi_{i}^{*}\left({\underset{\sim}{1}}_{1}, t_{1}\right) \Phi_{i}\left(y_{1}, t_{1}\right)\right)\right\rangle \\
& =\frac{R_{B}}{4 \pi c y_{1}{ }^{2}} \tag{2:16}
\end{align*}
$$

with c the velocity of light. The point y_{1} may be taken anywhere in the detector volume because we have assumed that $X(1)$ is constant over the detector and also independent of the time t_{I} in deducing Eq. (2:14). By comparing our two counting rate expressions, Eqs. (2:11) and (2:14), we complete the definition of the efficiency η_{I} or as we prefer to use it, γ_{1} :

$$
\begin{equation*}
\gamma_{I}=\frac{c}{w_{I}} \eta_{I} . \tag{2:17}
\end{equation*}
$$

Although the counter thickness w_{1} doesn't enter into our results in a critical way, it is worthwhile saying a little about it. Since our counting rate operator G_{I} defined by Eq. (2:6) does not take into account the stopping of photons in the detector, we interpret w_{1} as a measure of the depth of penetration of the photons into the counter, assuming this to be less than the actual counter thickness.

We turn now to the description of an intensity correlation experiment, schematically illustrated in Fig. 2. Here we have added a second detector, referred to as " 2 ". This will be described by a counting rate operator, Eq. (2:6), etc., but distinguished by a subscript " 2 ". In a correlation experiment, both detectors are used simultaneously to count photons from the source. We imagine the instantaneous output from detector " 1 " to be fed into a delay line and then mixed with that from " 2 " in a correlator which multiplies the two outpuits. The correlator output in turn is represented by the operator

$$
\begin{equation*}
G_{12}(\tau)=G_{12}\left(T_{2}, T_{1}\right)=G_{2}\left(T_{2}\right) G_{1}\left(T_{1}\right) \tag{2:18}
\end{equation*}
$$

Here $\tau=T_{2}-T_{I}$ is the delay deliberately introduce by our delay line. In writing Eq. (2:18) we are tacitly assuming that the counting operators G_{1} and G_{2} commute. This not rigorously true but this particular quantum mechanical effect does not lead to quantitatively important corrections. A precise formulation of the theory of correlated counting rates is given in an earlier paper. ${ }^{3}$

A special case of the experiment just described is that in which a single detector is used. In this case we imagine that the detectors "I" and "2". referred to in Eq. (2:18) coalesce into one. To do such an experiment, one might split the detector output into two equal signals, pass one through a delay line and then mix them in a correlator. [A specific example, will be discussed in section IV.] Formally we may go from the general two detector analysis to the single detector case by equating the subscripts " 1 " and " 2 " at an appropriate point.

If the correlator in Fig. 2. were a simple square law device and if the signals were added linearly ahead of it, the relevant quantity for our intensity correlation experiment would become

$$
\begin{align*}
G_{S I}\left(T_{2}, T_{1}\right) & =\left[G_{1}\left(T_{1}\right)+G_{2}\left(T_{2}\right)\right]^{2} \tag{2:19}\\
& =\left[G_{1}\left(T_{1}\right)\right]^{2}+\left[G_{2}\left(T_{2}\right)\right]^{2}+2 G_{12}\left(T_{2}, T_{1}\right)
\end{align*}
$$

Evidently all of the terms in Eq. (2:19) may be obtained from suitable specialization of $G_{12}\left(T_{2}, T_{1}\right)$, for example by setting " 2 " equal to " 1 " and getting $G_{I}{ }^{2}$.

For subsequent order of magnitude estimates we shall feel free to set

$$
\begin{align*}
& \Sigma_{1} \approx \Sigma_{2} \approx \Sigma_{d}, \\
& w_{1} \approx w_{2} \approx w \tag{2:20}\\
& B_{1} \approx B_{2} \approx B \\
& Y_{1} \approx Y_{2} \approx Y
\end{align*}
$$

although in practice this is entirely unnecessary.
The average correlator output during an interval T, as obtained I and $I I$, in the notation of $I I^{I l}$, is

$$
\begin{equation*}
\left.\left\langle G_{12}(\tau)=\left\langle G_{1}\right\rangle\left\langle G_{2}\right\rangle+\frac{\bar{n}^{2}}{2} \int(1) \int(2)\right| x(12)\right|^{2} \tag{2:2I}
\end{equation*}
$$

Here we have written

$$
\begin{equation*}
(1) \ldots=\int_{-\infty}^{\infty} d t_{1} L_{1}\left(T_{1}-t_{1}\right) \int_{1} d^{3} y, y_{1} \ldots, \tag{2:22}
\end{equation*}
$$

and similarly for "2", and [compare Eq. (2:16)]

$$
\begin{align*}
x(12) & =\left\langle\Phi_{i}^{*}\left({\underset{\sim}{1}}_{1}, t_{1}\right) \Phi_{i}\left({\underset{\sim}{2}}_{2}, t_{2}\right)\right\rangle \\
& =\frac{R_{B}}{4 \pi c \bar{n}} \cdot \int_{S} \frac{a^{3} s}{V_{s} D_{1}(\underset{\sim}{s}) D_{2}\left(s_{\sim}\right)} \int d \omega g(\omega) \tag{2:23}\\
& \times \exp \left\{i \omega\left[\frac{1}{c}\left(D_{2}(\underset{\sim}{s})-D_{1}(\underset{\sim}{s})\right)-\left(t_{2}-t_{1}\right)\right]\right\}
\end{align*}
$$

where

$$
\underset{\sim}{D}(\underset{\sim}{s})=\underset{\sim}{{\underset{\sim}{1}}^{1}}-\underset{\sim}{s},
$$

$$
{\underset{\sim}{\sim}}_{2}(\underset{\sim}{s})=\underset{\sim}{y_{2}}-\underset{\sim}{s},
$$

and the integral over source points extends over the source volume V_{s}. For analytical (and presumably practical) convenience we shall assume that the experimental geometry is so chosen that [here $\lambda=2 \pi c / \omega_{0}$, and strictly speaking $\left|Y_{1}-Y_{2}\right|$ should be replaced by $\left.\max \left|y_{1}-y_{2}\right|\right]$

$$
\begin{equation*}
\frac{\Sigma_{s}\left|Y_{1}-Y_{2}\right|}{\lambda Y^{2}} \ll 1 \tag{2:25a}
\end{equation*}
$$

and.

$$
\begin{equation*}
\frac{\Delta \omega_{B}}{c} \theta_{d}\left(\Sigma_{s}\right)^{\frac{1}{2}} \ll 1 \tag{2:25b}
\end{equation*}
$$

where θ_{d} is the angular spacing of the two detectors as seen from the source or simply the angular size $\left(\Sigma_{\mathrm{d}}\right)^{\frac{1}{2}} / Y$ in the case of a single detector). It is also true that except in oscillating exponentials the replacement

$$
\begin{equation*}
D_{1} \approx Y_{1}, \quad D_{2} \approx Y_{2}, \tag{2:25c}
\end{equation*}
$$

is harmless.
It follows from the conditions (2:25) that the fundamental quantity $X(12)$ defined by Eq. (2:23) may be split into a purely geometrical factor and one which depends intrinsically on the beam spectral function $g(\omega)$. [See Eqs. (2:26), III for further discussion]. We find

$$
\begin{equation*}
x(12) \cong x_{p}(12) Q(12) \tag{2:26a}
\end{equation*}
$$

where

$$
X_{p}(12)=\frac{R_{B}}{4 \pi c \bar{n} Y_{1} Y_{2}} \int 2 \omega g(\omega) \exp \left\{i \omega\left[\frac{1}{c}\left(y_{2}-y_{1}\right)-\left(t_{2}-t_{I}\right)\right]\right\}(2: 26 b)
$$

and

$$
\begin{equation*}
Q(12)=\int_{S} \frac{d^{3} s}{V_{s}} \exp \left\{i \frac{\omega_{0}}{c}\left(\hat{y}_{\sim}-\hat{y}_{2}\right) \cdot{\underset{\sim}{s}}\right\} \tag{2:26c}
\end{equation*}
$$

We may now express the average correlator output, $\left\langle G_{12}(\tau)\right\rangle$, Eq. (2:21), in the form

$$
\begin{equation*}
\left\langle G_{12}\right\rangle=\left\langle G_{1}\right\rangle\left\langle G_{2}\right\rangle+\frac{\bar{n}^{2}}{2} I_{s} \int(1) \int(2)\left|x_{p}(12)\right|^{2}, \tag{2:27}
\end{equation*}
$$

where [see Eq. (2:31), III]

$$
\begin{equation*}
I_{s}=\int_{1} \frac{d^{2} v_{1}}{\Sigma_{1}} \int_{2} \frac{d^{2} v_{2}}{\Sigma_{2}}|Q(12)|^{2} \tag{2:28}
\end{equation*}
$$

 to Y_{\sim}, etc. I_{S} is a function of the dimensionless quantity $\sigma=Y^{2} \lambda^{2} / \Sigma_{s} \Sigma_{d}$ (taking $Y_{1} \approx Y_{2} \approx Y$ here) and has the limiting values

$$
\begin{align*}
I & =1, \sigma \gg 1 \tag{2:280}\\
& =\frac{Y^{2} \lambda^{2}}{\sum_{\Sigma}^{\Sigma_{d}}}, \quad \sigma \ll 1 . \tag{2:28c}
\end{align*}
$$

We shall henceforth assume that $\sigma \ll 1$, so that the limit Eq. (2:28c) applies.

It will be convenient to assume in what follows that we put a de. blocking filter in the detector outputs which means

$$
\begin{equation*}
B_{1}(0)=B_{2}(0)=0, \tag{2:29}
\end{equation*}
$$

so that $\left\langle G_{1}\right\rangle=\left\langle G_{2}\right\rangle=0$ [see Eqs. (2:11) and (2:13)]. Then

$$
\begin{equation*}
\left\langle G_{12}\right\rangle=\left\langle\Delta G_{12}\right\rangle_{p} I_{s}, \tag{2:30a}
\end{equation*}
$$

where [as given in Eq. (2:30 III)]

$$
\begin{gather*}
\left\langle G_{12}\right\rangle_{p}=\frac{\left\langle G_{1}\right\rangle_{0}\left\langle G_{2}\right\rangle_{0}}{2} I_{c} \tag{2:30b}\\
I_{c}=\int_{1} \frac{d^{3} y_{1}}{\Sigma_{1} W_{1}} \int_{2} \frac{d^{3} y_{2}}{\Sigma_{2} W_{2}} \int d \omega \int \alpha \omega^{\prime \prime} g(\omega) g\left(\omega^{\prime}\right) B_{1}\left(\omega^{\prime}-\omega\right) B_{2}\left(\omega-\omega^{\prime}\right) \tag{2:31}\\
\times \exp \left\{i\left(\omega-\omega^{\prime}\right)\left[\frac{1}{c}\left(y_{2}-y_{1}\right)-\left(T_{2}-T_{1}\right)\right]\right\}
\end{gather*}
$$

It should be possible and it is desirable to design sufficientiy thin detectors, well enough aligned, so that we may set $y_{2}-y_{1}=Y_{2}-Y_{1}$ in the exponential of Eq. (2:31). The precise tolerances involved here clearly depend on both the electronic and spectral bandwidths, but they do not appear too severe. We shall assume in what follows that it is legitimate to write in place of Eq. (2:31)
$I_{c}=\int d \omega \int d \omega^{\prime} g(\omega) g\left(\omega^{\prime}\right) B_{1}\left(\omega^{\prime}-\omega\right) B_{2}\left(\omega-\omega^{\prime}\right) \exp \left\{i\left(\omega-\omega^{\prime}\right)\left[\frac{I}{c}\left(Y_{2}-Y_{1}\right)-\left(T_{2}-T_{1}\right)\right]\right\}$

We note in passing that the average value of the square law correlator output, $G_{S L}$ is obtained from Eq. (2:30) in the form

$$
\begin{equation*}
\left\langle G_{S L}\right\rangle=\frac{I_{S}}{2}\left\{\left\langle G_{I}\right\rangle_{0}^{2} I_{c 1}+\left\langle G_{2}\right\rangle_{0}^{2} I_{c 2}+2\left\langle G_{I}\right\rangle\left\langle G_{0}\right\rangle_{0} I_{c}\right\} \tag{2:32}
\end{equation*}
$$

where

$$
\begin{align*}
& I_{c 1}=\int \partial \omega \int \partial \omega^{\prime} \cdot g(\omega) g\left(\omega^{\prime}\right)\left|B_{1}\left(\omega^{\prime}-\omega\right)\right|^{2} \\
& I_{c 2}=\int \partial \omega \int \partial \omega^{\prime} \cdot g(\omega) g\left(\omega^{\prime}\right)\left|B_{2}\left(\omega^{\prime}-\omega\right)\right|^{2} \tag{2:33}
\end{align*}
$$

The signal-to-noise ratio is of vital importance in analyzing a correlation experiment of the sort under consideration. To discuss this we first define, as in III, the quantity

$$
\begin{equation*}
G_{a v}(\tau)=\int_{0}^{T} d T_{1} G_{12}\left(T_{1}+\tau, T_{1}\right) \tag{2:34}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\left\langle G_{a v}(\tau)\right\rangle=T\left\langle G_{12}(\tau)\right\rangle \tag{2:35}
\end{equation*}
$$

The fluctuations in $G_{a v}$ have been computed in III 12 . from

$$
\begin{equation*}
\left\langle G_{a v}^{2}\right\rangle=\left\langle\left(\psi(0), G_{a v}{ }^{2}(\tau) \Psi(0)\right)\right\rangle \tag{2:36}
\end{equation*}
$$

The result obtained there for the large source case, $\sigma \ll 1$, Eq. (2:28c), is

$$
\begin{equation*}
\left\langle G_{a v}^{2}\right\rangle-\left\langle G_{a v}\right\rangle^{2}=T\left\langle G_{1}\right\rangle_{0}\left\langle G_{2}\right\rangle_{0} \mathrm{M} \tag{2:37}
\end{equation*}
$$

where

$$
\begin{equation*}
M=\int \frac{\alpha \Omega}{2 \pi}\left|B_{1}(\Omega)\right|^{2}\left|B_{2}(\Omega)\right|^{2}\left[\frac{\sin (\Omega w / 2 c)}{\delta \pi / 2 c}\right]^{4}, \tag{2:38}
\end{equation*}
$$

and we have set $B_{1}(0)=B_{2}(0)=0$. according to Eq. (2:29). Under the conditions that our previous replacement of $y_{2}-y_{1}$ by $Y_{2}-Y_{1}$ [i.e. going from Eq. (2:31) by Eq. (2:30c)] is justified we can take for M,

$$
\begin{equation*}
M \sim \frac{I}{\Delta \tau_{r}} \tag{2:39}
\end{equation*}
$$

where $\Delta \tau_{r}$ is the detector response time. Then we find for the signal to noise ratio

$$
\begin{align*}
\frac{\tilde{S}}{\mathbb{N}} & =\frac{\left\langle G_{a v}(\tau)\right\rangle}{\left\{\left\langle G_{a v}^{2}\right\rangle-\left\langle G_{a v}\right\rangle^{2}\right\}^{\frac{1}{2}}} \tag{2:40}\\
& =\frac{I_{c} I_{s}}{2}\left\{\Delta \tau_{r} T\left\langle G_{I}\right\rangle_{0}\left\langle G_{2}\right\rangle_{0}\right\}
\end{align*}
$$

III. THE BROAD BAND LIMIT

Let us suppose that $g(\omega)$ describes a spectraliline of width $\Delta \omega_{L}$ at frequency ω_{0} superimposed on a background of low intensity, as is illustrated in Fig. 3. Since we are interested in measuring the line shape we, of course, assume that $\Delta \omega_{L}$ is less than $\Delta \omega_{B}$, the frequency band passed by the filter. In this section we are concerned with the limiting case

$$
\begin{equation*}
\Delta \tau_{r} \Delta \omega_{L} \ll 1 \tag{3:I}
\end{equation*}
$$

corresponding to the band width ahead of the correlator being broader than the spectral line width. This is the best situation for tracing out the line shape, but one may in practice have to be content with $\Delta \tau_{r} \Delta u_{L} \sim I$.

The band pass characteristic $B_{1} \approx B_{2} \approx B$ is illustrated schematically in Fig. 4. We have again taken $B(0)=0$. We suppose $B \subseteq 1^{13}$ in the interval $\Delta \delta_{\ell}<\Omega<\left(\Delta \tau_{r}\right)^{-1}$, where we assume

$$
\begin{equation*}
\Delta \delta_{\ell} \ll \Delta \omega \omega_{I} \tag{3:2}
\end{equation*}
$$

Let us first consider the case that the filter is so chosen that $\Delta \omega_{B} \approx \Delta \omega_{L}$. Then we obtain from Eq. (2:30c)

$$
\begin{equation*}
I_{c}=I_{c b b}(P) \equiv \left\lvert\, \int d \omega g(\omega) e^{\left.i \omega P\right|^{2}}+O\left(\frac{\Delta \delta_{\ell}}{\Delta \omega_{I}}\right)\right. \tag{3:3a}
\end{equation*}
$$

where

$$
\begin{equation*}
P \equiv \frac{1}{c}\left(Y_{2}-Y_{1}\right)-\left(T_{2}-T_{1}\right) . \tag{3:4}
\end{equation*}
$$

Because of the condition (3:2) we shall drop the terms of order $\Delta \delta_{r} / \Delta \omega_{L}$. We may also write I_{c} as

$$
\begin{equation*}
I_{c b b}(P)=\left|\int d \omega: g(\omega) e^{i\left(\omega-\omega_{0}\right) P^{2}}\right|^{2} \tag{3:3b}
\end{equation*}
$$

where ω_{0}, the central line frequency, is defined by

$$
\begin{equation*}
\omega_{0}=\int d \omega \omega g(\omega) . \tag{3:5}
\end{equation*}
$$

In the measurement of the autocorrelation function with a single detector [where P reduces to $-\left(T_{2}-T_{1}\right)$] or the use of two detectors, the measured quantity, in fact, is $I_{c b b}(P)$. Unfortunately, an observation of $I_{c b b}(P)$ is not sufficient to determine the spectral function $g(\omega)$ uniquely, since the phase of the integral over $g(\omega)$ is unspecified. This "phase problem" arises in a number of contexts, most notably in X-ray structure analysis. It has been discussed in the present context by Wolf. ${ }^{14}$ It was argued in I that the observation of $I_{\text {cbb }}$! can be used to deduce a finite set of $g(\omega)$. It is possible that the correct one of these can be found from physical considerations, such as the non-negative character of $g(\omega)$. This seems to be usually the case in X-ray structure analysis.

On the other hand, there are a number of features of the line that are independent of the phase question, and are therefore best suited to an initial exploration of intensity interferometry. For example, the second moment of the line is determinable from the dependence of the correlation function on P for small P, as illustrated by

$$
\begin{align*}
& \left.\frac{d I_{c b b}}{d P}\right|_{P=0}=0, \tag{3:6}\\
& \left.\frac{d^{2} I_{c b b}}{d P^{2}}\right|_{P=0}=-2 \int d \omega\left(\omega-\omega_{o}\right)^{2} g(\omega),
\end{align*}
$$

where we recail the previous definition of ω_{0}, Eq. (3:5).
A probably useful example can be discussed, in which a collision broadened line is further doppler broadened in the center. Such a line may be observed in the emissions from a hot plasma; we can simulate its shape (for a narrow line) by

$$
\begin{equation*}
g(\omega)=\frac{\Gamma \alpha}{2 \pi^{3 / 2}} \int \frac{e^{-\alpha^{2} \epsilon^{2}}}{\left(\omega-\omega_{0}-\epsilon\right)^{2}+\Gamma^{2} / 4} d \epsilon \tag{3:6a}
\end{equation*}
$$

where

$$
\alpha^{2}=\frac{\mathrm{Mc}^{2}}{2 \omega_{0}^{2} \mathrm{kT}}
$$

is the doppler broadening parameter. For this shape, according to Eq. ($3: 3 \mathrm{~b}$) the correlation function is

$$
\begin{equation*}
I_{c b b}(P)=e^{-\Gamma P-\frac{P^{2}}{2 \alpha^{2}}} \tag{3:6b}
\end{equation*}
$$

so that both the Lorentzian parameter P and the doppler parameter α are directly determined by a measurement of the correlation function.

It is sometimes convenient to write $I_{c b b}(P)$ as a Fourier integral in which case we have

$$
I_{c b b}(P)=\int_{-\infty}^{\infty} d \omega, j(\omega) e^{i \omega P}
$$

with

$$
\phi(\omega)=\int_{0}^{\infty} d \omega^{\prime} g\left(\omega^{\prime}+\omega\right) g\left(\omega^{\prime}\right) ;
$$

It is easy to see that if $g(\omega)$ is concentrated in a line of width $\Delta \omega_{L}, G(\omega)$ has practically zero amplitude outside the interval $-2 \Delta \omega_{I}<\omega<+2 \Delta \omega_{I}$. It is this feature that makes intensity : correlation experiments less sensitive to the geometrical alignment problems than are classical interferometric techniques.

The all important signal-to-noise ratio may be obtained from our general expression, Eq. (2:40). We use[from Eqs. (211); (2:3a), and $(2: 28 c)]$

$$
\begin{aligned}
\left\langle G_{I}\right\rangle_{0} & \approx\left\langle G_{2}\right\rangle_{0} \approx \eta \Sigma_{\alpha} R_{B / 4 \pi Y^{2}} \\
I_{s} & =\frac{Y^{2} \lambda^{2}}{\Sigma_{S} \Sigma_{0}}
\end{aligned}
$$

and also set $I_{c} \approx 1$. We find

$$
\begin{equation*}
\frac{S}{N} \cong\left(\frac{S}{N}\right)_{b b} \equiv \frac{\eta}{2}\left(T \Delta \tau_{r}\right)^{\frac{1}{2}} \frac{\lambda_{i}^{2} R_{B}}{4 \pi \Sigma_{S}} . \tag{3:7a}
\end{equation*}
$$

This expression may appear surprising, since it does not depend on the source-detector distance, Y, or on the detector area Σ_{D}. The reason is that we have assumed the limit $\sigma \ll 1$ in Eq. (2:28c). For large enough $Y, I_{S} \cong 1$ and S / \mathbb{N} becomes

$$
\begin{equation*}
\frac{S}{\mathbb{N}}=\frac{\eta}{2}\left(T \Delta \tau_{r}\right)^{\frac{1}{2}} \frac{R_{B} \Sigma_{D}}{4 \pi Y^{2}} \tag{3:7b}
\end{equation*}
$$

It is clear that to maximize the ratio S / N one should choose $\Delta \tau_{r}$ as large as possible consistent with the restriction $\Delta \tau_{r} \Delta \omega_{I} \ll 1$. Had we considered the case $\Delta \omega_{L} \gg I$ we should have found that S / \mathbb{N} was reduced by a factor $\left(\Delta \tau_{r} \Delta \omega_{L}\right)^{-I}$; so that the maximum signal-to-noise ratio is obtained for $\Delta \tau_{r} \Delta \omega_{1} \approx 1$.

For a source with black body (BB) intensity on the spectral line of frequency ω_{0} and temperature θ we find from (3:7a)

$$
\begin{equation*}
\frac{\frac{S}{N}}{B B}=\frac{\Delta \omega_{L}}{2 \pi} \quad \eta\left(I \Delta \tau_{r}\right)^{\frac{1}{2}}\left[\exp \left\{\hbar \omega_{0} / \theta\right\}-I\right]^{-1} \tag{3:8}
\end{equation*}
$$

As another example, let us assume the mercury arc source of Forrester; et. al. ${ }^{15}$. We take $\Delta \tau_{r}=10^{-10} \mathrm{sec} ., R_{B} / 4 \pi \Sigma=2 \times 10^{15}$ photons/ $\mathrm{cm}^{2} / \mathrm{sec} ., \lambda \stackrel{\because}{=} 5.48 \times 10^{-5} \mathrm{~cm}$ and obtain

$$
\frac{S}{N} \approx 50 \quad \eta \sqrt{T}
$$

where T is measured in seconds.
Up to this point we have assumed that $\Delta \omega_{B} \approx \Delta \omega_{I}$. Another case of interest is where the electronics is still fast in so far as the line is concerned [i.e. $\Delta \tau_{r} \Delta \omega_{B} \ll 1$] but that $\Delta \omega_{B}$ is so broad that

$$
\begin{equation*}
\Delta \tau_{\mathrm{r}} \Delta \omega_{\mathrm{B}} \gg 1 \tag{3:10}
\end{equation*}
$$

We now write

$$
\begin{equation*}
g(\omega) \cdot=g_{\mathrm{I}}(\omega)+g_{\mathrm{c}}(\omega) \tag{3:11}
\end{equation*}
$$

where g_{I} represents the line spectrum and g_{c} the continuous background contribution passed by the filter. The spectral width of g_{C} is $\Delta \omega_{B}$. We suppose the line to be much more intense than the background.

Our basic quantity I_{c}, Eq. $(2: 30 c)$, involving both the electronics and source characteristics, becomes

$$
\begin{equation*}
I_{c}=I_{c L}+I_{c c} \tag{3:12}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{c I}=\left.1 \int d \omega g_{\mathrm{I}}(\omega) e^{i \omega P}\right|^{2} \tag{3:13}
\end{equation*}
$$

Making use of our assumptions about $\Delta \tau_{r} \Delta \omega_{L}$ and $\Delta \tau_{r} \Delta \omega_{B}$, Eqs. (3:1) and (3:10), we have, approximately,

$$
\begin{align*}
I_{c c} & \cong\left[\int \alpha \omega g_{L}(\omega) e^{i \omega P}\right] \int \alpha \omega^{\prime} g_{C}\left(\omega^{\prime}\right) B_{1}\left(\omega^{\prime}-\omega_{0}\right) B_{2}\left(\omega_{0}-\omega^{\prime}\right) e^{-i \omega^{\prime} P}+c . c . \\
& \approx \frac{f}{\Delta \tau_{r} \Delta \omega_{B}}\left[\int d \omega g_{L}(\omega) e^{i \omega P}\right]+c . c .,
\end{align*}
$$

where f is the [small] ratio of continuun to line intensity. Thus to the extent that $f / \Delta \tau_{r} \Delta \omega_{B} \ll I$,

$$
\begin{equation*}
I_{c} \cong I_{c l} \tag{3:16}
\end{equation*}
$$

and the background gives a negligible contribution to the observation.
The condition on the electronic resolving time imposed by the requirement $\Delta \tau_{r} \Delta \omega_{B} \ll I$ is a severe one. If no gain is required between the detectors and the correlator, wave guide or coaxial line couplings might be used to achieve $\Delta \tau_{r}$ as small as $10^{-11} \mathrm{sec}$. If
gain is required, there are available photodetectors followed by traveling wave amplifiers having bandwidths of about $10^{10} \operatorname{cps}^{16}$. We conclude that with "conventional electronic techniques" the method described in this section is restricted to the analysis of line widths not much broader than

$$
\frac{\Delta \omega_{I}}{2 \pi} \sim 10^{10} \mathrm{cps} .
$$

IV. THE NARROW BAND LIMIT

Let us suppose that a single photoelectric detector is followed by a tuned circuit and then by a square law detector, as illustrated in Fig. 5. The two detector situations may be similarly analyzed. The function $B_{1}(\Omega)=B_{2}(\Omega) \equiv B(\Omega)$ will peak at the resonance frequency Ω_{0} and will be taken to have a band width $\delta \delta$. We suppose that $\delta \delta$ is very much less than either $\Delta \omega_{L}$ or $\Delta \omega_{B}$. In this case we set $Y_{1}=Y_{2}$ and $T_{1}=T_{2}$ in the expression for I_{c}, Eq. (2:30c), which becomes

$$
\begin{align*}
I_{c} & =\int \partial \omega \int \partial \omega^{\prime} g(\omega) g\left(\omega^{\prime}\right) B\left(\omega^{\prime}-\omega\right) B_{2}\left(\omega-\omega^{\prime}\right) \\
& =\int \partial \omega \int d \Omega_{0} g\left(\omega+\frac{\Omega}{2}\right) g\left(\omega-\frac{\delta}{2}\right)|B(\Omega)|^{2} \tag{4:1}\\
& \cong\left[\int \alpha \omega g\left(\omega+\frac{\Omega_{0}}{2}\right) g\left(\omega-\frac{\delta_{0}}{2}\right)\right] \int d \Omega|B(\Omega)|^{2} \\
& \equiv \oiiint\left(\Omega_{0}\right)\left(\Delta \tau_{r}\right)^{-1}
\end{align*}
$$

where we have introduced the previously defined function $\phi\left(\Omega_{0}\right)$, and our old definition of the resolving time $\left(\Delta \tau_{r}\right)^{-1}$, Eq. (2:8). We expect that $\left(\Delta \tau_{r}\right)^{-1} \sim \delta \Omega$.

The function $H\left(\Omega_{0}\right)$ can thus be measured by varying the frequency, Ω_{0}, of the tuned circuit. ${ }^{17}$. As we have noted, $\$\left(\Omega_{0}\right)$ is just the Fourier transform of $I_{c b b}(P)$ so that measurement of 0 is
in principle equivalent to measuring $I_{c b b}$ [see equations following (3:6)].

The signal to noise ratio is again obtained from Eq. (2:40) but now with I_{c} given by (4:1). For macroscopic sources and detectors [i.e. $I=\sigma \ll I]$ we have

$$
\begin{equation*}
\frac{S}{N}=\left(\frac{S}{N}\right)_{b b} \frac{\int\left(\Omega_{0}\right)}{\Delta \tau_{r}}, \tag{4:2}
\end{equation*}
$$

where $(S / \mathbb{N})_{b b}$ is the broad-band ratio given by Eq. (3:7a).
In conducting the experiment described in this section, one might use a resonant cavity to provide the tuned circuit illustrated in Fig. 5. Both the photo detector and the square law detector would then be coupled to the cavity. By such means it seems feasible to study line widths up to $10^{11} \mathrm{cps}$. The choice of $\delta \Omega$ will depend on the precision with which it is desired to measure $\phi\left(\Omega_{0}\right)$ and on the acceptable counting times. Since $\phi\left(\Omega_{0}\right)$ has a width of the order $\Delta \omega_{B}$ and $g(\omega)$ has magnitude $\sim\left(\Delta \omega_{B}\right)^{-1}, \notin\left(\Omega_{0}\right) \sim\left(\Delta \omega_{B}\right)^{-1}$ [recal] that $\left.f=\int d \omega g\left(\omega+\delta_{0}\right) g(\omega)\right]$ and also $\Delta \tau_{r} \sim I / \delta \Omega$, so we may write (4:2) roughly as

$$
\begin{equation*}
\frac{S}{N} \sim\left(\frac{S}{N}\right)_{\mathrm{bb}}\left(\frac{\delta \Omega}{\Delta \omega_{B}}\right) \tag{4:3}
\end{equation*}
$$

V. USE OF SUPPLEMENTARY OFIICAL INSITRUMENIS

Such optical devices as half-silvered mirrors, lenses, and diffraction gratings may be inserted between source and detectors, as may be convenient, in intensity correlation experiments. To take account of these we need only replace $x(12)$, as defined by Eqs. (2:26), by
$X(12)=\frac{R_{B}}{4 \pi \bar{n} Y_{1} Y_{2}} \int_{S} \frac{d^{3} s}{V} \int d \omega \cdot g(\omega) \exp \left\{i \omega\left[\frac{1}{c}\left(V_{2}-V_{1}\right)-\left(t_{2}-t_{1}\right)\right]\right\}$,
where [here $\mu(\underset{\sim}{y})$ is the refractive index at point $\underset{\sim}{y}$]

$$
\begin{equation*}
V_{I}=\int_{\underset{\sim}{s}}^{\underset{\sim}{y} 1} \mu(\underset{\sim}{x}) d x \tag{5:2}
\end{equation*}
$$

etc., is the optical path length integral (eikonal) ${ }^{18}$ taken along the ray path leading from point $\underset{\sim}{s}$ in the source to point ${\underset{\sim}{y}}_{\underset{1}{ } \text { in }}$ detector " 1 ". The appropriate distances. Y_{1} and Y_{2} in Eq. (5:1) may be deduced from the photon intensity at the detectors, or from an analysis of the geometry used [in principle these are given by the eikonal treatment].

Let us write $V_{1}{ }^{0}$ and V_{2}^{0} for the respective values of V_{I} and V_{2} when the point $\underset{\sim}{s}$ is chosen to be $\underset{\sim}{s}=0$, the fixed reference point in the source. Then for a source of small aperture we have

$$
\begin{equation*}
v_{I} \cong-s \cdot \hat{y}_{I}^{0}+v_{I}^{0}, \tag{5:3}
\end{equation*}
$$

$$
\mathrm{v}_{2} \cong-\mathrm{s} \cdot \hat{\mathrm{y}}_{2}^{0}+\mathrm{v}_{2}^{0},
$$

where $\hat{y}_{7}{ }^{0}$ and \hat{y}_{2}^{0} are the respective directions of those ray paths from $\underset{\sim}{ }=0$ to the points ${\underset{\sim}{1}}$ and ${\underset{\sim}{2}}$. This permits us to write, as in Eqs. (2:26),

$$
\begin{equation*}
x(12)=x_{p}(12) Q(12), \tag{5:4a}
\end{equation*}
$$

$X_{p}(12)=\frac{R_{B}}{4 \pi c \bar{n} Y_{1} Y_{2}} \int d \omega g(\omega) \exp \left\{i \omega\left[\frac{1}{c}\left(V_{2}{ }^{0}-V_{1}{ }^{0}\right)-\left(t_{2}-t_{1}\right)\right]\right\}(5: 40)$
$Q(12)=\int_{s} \frac{d^{3} s}{V} \exp \left[i \frac{D_{0}}{c}\left({\underset{\sim}{v}}_{1}^{0}-\hat{y}_{2}^{0}\right) \cdot s\right] \quad$.
On interpreting Σ_{s} and Σ_{α} as "effective areas" defined by the ray paths and on replacing Eq. (3:4) by

$$
\begin{equation*}
P \equiv \frac{1}{c}\left(V_{2}^{0}-v_{1}^{0}\right)-\left(T_{2}-T_{1}\right), \tag{5:5}
\end{equation*}
$$

we see that the discussion given in Sections II, III, and IV is unchanged, except for detail.

We illustrate this with the example shown in Fig. 6. An ideal lens is placed between the source and the two thin detectors, with the source near the focal point of the lens. A point on the source is a
distance $\underset{\sim}{d}$ from the center of the lens. A point on detector " 1 " is at $I_{\sim 1}+{\underset{\sim}{u}}$, where ${\underset{\sim}{I}}^{I_{1}}$ is the vector from the center of the lens to a fixed point on detector " 1 ". An image of the source point $\underset{\sim}{d}$ is at I, a distance S from the lens center. The phase of a wave arriving at ${\underset{\sim}{u}}^{\sim}$ from $\underset{\sim}{d}$ is $\frac{\omega}{c} V_{1}$, where

$$
\begin{equation*}
V_{1}=(\mu-1) H \sec \alpha+(\alpha+s)-q_{1} \tag{5:6}
\end{equation*}
$$

Here μ is the refractive index and H is the thickness of the lens at its center, α is the angle between $\underset{\sim}{d}$ and the direction of ($-I_{1}$), and q_{1} is the distance from the image to u_{1}. Assuming that S is very large and that the source and detectors are small, we obtain again Eqs. $(2!30)$ for the correlated counting rate, but with Y replaced by the focal length of the lens in Eqs. (2:28).

A different arrangement is to focus the source on a single detector. In this case we obtain, instead of Eq. (5:1),

$$
\begin{aligned}
& X(12)=\frac{R_{B}}{4 \pi \overline{\operatorname{cn} Y_{1} Y_{2}}} \int_{S} \frac{d^{3} s}{V}{ }_{S} \int d \omega g(\omega) e^{i \omega\left(t_{1}-t_{2}\right)} \\
& X\left[\frac{J_{1}\left(\frac{\omega D}{2 c} \sin \alpha_{1}\right)}{\frac{\omega D}{2 c} \sin \alpha_{1}}\right]\left[\frac{J_{1}\left(\frac{\omega D}{2 c} \sin \alpha_{2}\right)}{\frac{\omega D}{2 c} \sin \alpha_{2}}\right]
\end{aligned}
$$

9. We used the term "incoherent" in II and III to describe what is often called "quasi-coherent" radiation in optics. In this paper we revert to the more conventional notation.
10. We use the notation Eq. (2:15), (III) to indicate Eq. (2.15) of reference III, etc.
11. See, Eq. (2:37, II).
12. The quantity $\left\langle G_{a v}^{2}\right\rangle$ was given in I for the limit of "narrow band electronics."
13. The actual scale factor by which B should be multiplied is irrelevant.
14. E. Wolf, Proc. Phys. Soc. 80, 1269 (1962).
15. Forrester; Gudmundsen, and Johnson, Phys. Rev. 99, 1691 (1955).
16. See, for example, D. E. Caddes and B. J. McMurtry, Electronics, April 6, 1964, for a review of wide bendwiath light demodulators.
17. The observation of $H\left(\Omega_{0}\right)$ has been suggested by L. Mandel in Electromagnetic Theory and Antennas, ed. by E. C. Jordan (MacMillan Co., New York, 1963), p. 811, Part 2. A related suggestion has been made by Forrester, reference 8 .
18. See, for example, reference 5, p. 109, or Steven Weinberg, Phys. Rev. 126, 1899 (1962), for a very general discussion of the eikonal treatment.

Fig. I. Schematic illustration of photon counting.
Fig. 2. An intensity correlation experiment.
Fig. 3. Spectral function for a single line.
Fig. 4. Electronic response function.
Fig. 5. Use of a tuned circuit in counting photons.
Fig. 6. Illustration of the use of an optical system.

Filter

MUB-7723

MUB-7724
-36-

MUB-7726

MUB-7727

MUB-7728

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

