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The Role of Cross-cutting Systems of Categories in Category-based Induction
Neil A. Smith (neil.smith@louisville.edu)

Department of Computer Engineering & Computer Science
University of Louisville

Patrick Shafto (p.shafto@louisville.edu)
Department of Psychological & Brain Sciences

University of Louisville

Abstract

Prediction is arguably the most fundamental problem that peo-
ple face. Having discovered that some object possesses a par-
ticular feature, how is it that people are able to accurately in-
fer that another object exhibits the property? Psychologists
have actively studied this reasoning process; yet, current mod-
els of induction cannot provide an explanation for the entirety
of the related phenomena. One reason may be that current
models fail to account for people’s ability to assess multiple
categories when making an inference. Building on previous
research (Shafto et al., 2006), we present a model of induc-
tive reasoning based on cross-cutting knowledge representa-
tion. We present an experiment that investigates the ability
of this model to account for known inductive phenomena. We
show that a model which assesses multiple kinds of knowledge
explains the flexibility of human inference, better than models
relying on a single kind of knowledge.

Keywords: Category-based induction; Bayesian model;
Cross-categorization.

One of the most remarkable features of human reasoning is
the ability to predict unobserved aspects of the world. For in-
stance, consider learning that mammals have sesamoid bones.
Based on this knowledge, people reliably predict that wolves
are more likely to have this property than are oxen (Sloman,
1993). What knowledge supports these systematic predic-
tions?

To understand the underlying knowledge, psychologists
have studied people as they reason about novel properties
(like “has sesamoid bones”). These efforts have uncovered
a variety of systematic patterns, which constrain models de-
scribing how knowledge supports inference. For instance,
Osherson et al. (1990) describe a “monotonicity” effect, that
occurs when people are asked to reason about a novel prop-
erty possessed by some object; for instance, consider learn-
ing that penguins have a novel property. When people are
asked to predict whether another specimen or other speci-
mens, such as all birds, will have the property, the strength
of their prediction depends on the number of examples that
have the property. So, if told that both penguins and finches
have the property, people tend to predict that all birds are
more likely to have it, than if only told about penguins. Inter-
estingly, while this inference may appear to be quite tenable,
observe that if the additional exemplar was changed from
finches to dolphins, it would seem to temper a willingness
to generalize the property to all birds, a phenomenon called
“non-monotonicity”.

In an attempt to explain this category-based induction, psy-
chologists have developed computational models; however,
extant models have yet to account for the entirety of the char-
acteristic phenomena. One reason may be that previous mod-
els rely on a single kind of knowledge, but there is evidence
that people use multiple kinds of knowledge to guide predic-
tion (e.g. Ross and Murphy, 1999). For example, an attribute
possessed by penguins and dolphins seems unlikely to be true
of all birds because there is an alternative categorization that
would explain the shared property; namely, aquatic creatures.

Building off of work by Shafto et al. (2006), we propose
a novel model of category-based induction based on cross-
cutting categories. We contrast this model with a well-known
account of category-based induction, the feature-based induc-
tion model (FBIM; Sloman, 1993). We present an experiment
comparing the performance of the model in predicting peo-
ple’s inferences on a number of known phenomena. Finally,
we conclude by discussing implications of the findings for
categorization, inductive reasoning, and learning.

Category-based Induction
Studies in category-based induction typically follow a
paradigm introduced by Rips (1975), in which participants
are asked to rate the strength of arguments of the form:

Zebras have sesamoid bones
Hippos have sesamoid bones

All mammals have sesamoid bones

The statements above the line indicate the premises of the
argument, which are assumed to be true. The task is to as-
sess the likelihood that the category below the line, the con-
clusion, has the property. The most often-cited literature on
category-based induction makes use of so-called blank prop-
erties, such as “secretes uric acid crystals” or “travels in
groups”. The assumption in their use is that blank proper-
ties carry minimal a priori knowledge to guide people’s in-
ferences. In this paper, we choose an even more generic at-
tribute for our stimuli, namely, “Property X”. We use this
not simply for convenience, but because evidence has shown
that the blank properties may be influential in people’s judge-
ment making. For example, when Heit and Rubenstein (1994)
asked people to reason about an anatomical or physiologi-
cal property of animals (e.g. “secretes uric acid crystals”),
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people made stronger inferences when the animals were tax-
onomically related; however, when asked to reason about a
behavioral property (e.g. “travels in groups”), people were
more confident when the animals shared an ecological niche.
Furthermore, we make use of a notation inspired by Tenen-
baum, Kemp, and Shafto (2007), that denotes syllogisms,
concisely as P1, . . . Pn

prop−−→C. Here, Pn represents the nth
premise, prop is the property used, and C denotes the con-
clusion. Using this notation, the above argument would be
represented as: zebras,hippos sesamoid bones−−−−−−−−→ mammals.

Researchers studying category-based induction have iden-
tified a number of phenomena, which have been used as
benchmarks by which to compare the performance of models.
Osherson et al. (1990) identified arguments as one of three
types: general, specific, or mixed. The general class is said to
be formed by those arguments, whose conclusion categories
properly include all of their premise categories. For exam-
ple, when reasoning about a blank property and given a con-
clusion category of all dogs, having the premise categories
of german shepards and chiuauas would make the argument
a general one. An argument is specific, if any natural cate-
gory that properly includes one of the premise or conclusion
categories, properly includes the others. To demonstrate, the
previous example could be changed into a specific argument
by replacing the category all dogs with dalmations. Finally,
a mixed argument is any argument that is neither general nor
specific. For instance, an argument with premise categories
of dolphins and octopuses, and having a conclusion category
of all mammals would be considered mixed.

Premise typicality. The more representative the premise
categories are of the conclusion category, the stronger the ar-
gument. Since eagles are a typical bird, relative to ostriches,
the argument eagles X−−−−→ birds, is considered stronger than
the argument would be with ostriches as its premise.

Premise diversity. Argument strength is thought to in-
crease as the diversity between the premises increases. For
example, compare: sheep,dolphin X−−−−→mammals to the ar-
gument: sheep,leopards X−−−−→ mammals. sheep and leop-
ards do not represent the variety of mammals well—as their
taxonomic relation is pronounced—thus, the former argu-
ment appears to be weaker than the latter. Historically, diver-
sity has been a principle in the philosophy of science, which
essentially states that a more diverse range of evidence better
confirms a hypothesis than does the same amount of similar
evidence.

Conclusion specificity. In cases where the conclusion cat-
egory properly includes the premise categories, the argument
with the more specific conclusion category will be considered
stronger. For example, finches X−−−−→ birds is considered
stronger than the argument with animals as the conclusion
category.

Premise monotonicity. Argument strength will tend to
increase with the addition of a premise, such that this
premise is chosen from the lowest-level category that in-
cludes both the categories of the other premises, and the
conclusion. To demonstrate: bats X−−−−→ mammals and
bats,leopards X−−−−→ mammals.

Non-monotonicity. Some arguments can be made weaker
by adding a premise that converts them into mixed arguments.
For example, given the argument penguins X−−−−→ dolphins,
if one were to add finches as a premise it may reduce the
perceived strength of the argument.

Premise-conclusion asymmetry. Originally discovered by
Rips (1975), this phenomenon occurs when an argu-
ment’s premise and conclusion categories are inverted. So,
bats X−−−−→ leopards would become leopards X−−−−→ bats.
It was found that the strength of each argument was not
evenly rated.

Inclusion fallacy. A person commits an inclusion fallacy
when they reason that an argument with a general conclu-
sion category, is more cogent than one whose conclusion cat-
egory is more specific. This phenomenon is termed a fal-
lacy because it does not appear normatively rational. For
example, observe the arguments: crows X−−−−→ birds and
crows X−−−−→ ostriches. Notice, birds is superordinate to os-
triches, yet, people tend to rate the former argument stronger.

Premise-conclusion identity. Argument strength is abso-
lute when the premise and conlcusion are identical. That is,
when the argument is of the form q X−−−−→ q.

Premise-conclusion inclusion. An argument whose
premise categories are superordinate to the conclu-
sion category is absolute. For example, the argument
animals X−−−−→ birds demonstrates this effect.

Feature exclusion. Premises having no overlapping fea-
tures with the conclusion will have no effect on the per-
ceived cogency of the argument (Sloman, 1993). Observe
the following: leopards,monkeys X−−−−→ sheep. When peo-
ple were asked to choose the stronger argument between
one like that above, and an argument whose second premise
included a less similar exemplar, such as dolphins, people
tended to choose the former as the stronger argument. This
phenomenon demonstrates a boundary condition on the diver-
sity principle; though an added premise may lead to more di-
verse evidence, if the additional premise shares fewer salient
features with the conclusion, it will fail to strengthen the ar-
gument.

Inclusion similarity. The strength of an argument whose
premise category includes the conclusion category will
vary depending upon the perceived similarity between the
premise and conclusion categories (Sloman, 1993). Slo-
man (1993) demonstrates this effect with an argument sim-
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ilar to mammals X−−−−→ bats, and asking subjects to compare
against an argument, like animals X−−−−→ leopards. Since,
leopards are more typical of the category mammals, people
tend judge the latter argument as stronger.

Non-diversity. Some arguments with more diverse
premises might be judged weaker than those with more simi-
lar premises. Consider the arguments: leopards,seals X−−−−→
dolphins and leopards,jellyfish X−−−−→ dolphins. While
leopards and seals are more similar than leopards and jelly-
fish, people tend to choose the first argument as the stronger
one. Note that this particular case cannot be attributed to a
feature exclusion effect, since salient features in the premise
categories are shared with those of the conclusion category
(e.g. seals, jellyfish and dolphins are all aquatic animals).

Models of category-based induction
A number of models have been proposed to account for the
observed phenomena (Osherson et al., 1990; Sloman, 1993;
Medin et al., 2003). These models differ in a number of ways,
including in the proposed reasoning mechanisms, and the un-
derlying knowledge representations. Here we focus on the
model that provides the most complete account of the known
phenomena within a fully specified computational model, the
feature-based induction model (Sloman, 1993).

Feature-Based Induction Model (FBIM)
The feature-based induction model (Sloman, 1993), while
theoretically expressed as a connectionist network, relies
on concepts of similarity and coverage to explain argument
strength. Because it is a connectionist model, the FBIM does
not assume an overarching category structure. Rather, the no-
tions of similarity and coverage are in relation to the features
of the premise and conclusion categories—not the whole of
each category. The features are formally represented by a
vector, F, of numerical elements, fi, such that each value en-
codes the absence or presence of a particular feature as 0 or
1. For example, the category, Robins would be encoded, as
F(Robins) = [ f1(Robins)... fn(Robins)].

In this model, similarity can be thought of as a function on
feature matches and mismatches, and coverage as the extent
to which the premise features overlap those of the conclusion
features. For single premise arguments, the strength of the
argument can be expressed as

S =
F(P1) ·F(C)
|F(C)|2

(1)

The numerator, F(P1) ·F(C), yields a scalar that is given by
the dot product between the two vectors, and the term |F(C)|,
returns the length of the vector. This can be thought of geo-
metrically, as the projection of the vector of premise features,
F(P1), onto the vector of the conclusion features, F(C).

This model can account for many of the documented phe-
nomena. For example, the FBIM inspired both the inclusion
similarity and feature exclusion effects. To demonstrate the

model, consider the argument: sheep X−−−−→ mammals, the
first step in obtaining the argument strength is to encode the
premise and conclusion categories, for example:

F(sheep) = [ f1(sheep) = “has hooves”, ...] = [1, ...]

F(mammal) = [ f1(mammal) = “is f urry”, ...] = [1, ...]

The next step, in words, is to calculate the argument strength
that is expressed as the ratio in Equation 1. This is the pro-
portion of features in F(mammals) that is also in F(sheep),
so that the larger this proportion, the stronger the argument
is perceived. Since, the premise category sheep has a larger
number of shared features with the conclusion category mam-
mals than, say, a premise category of bats, the former argu-
ment will yield a higher rating than the latter.

The FBIM can demonstrate many of the documented phe-
nomena; however, it is not without limitations. For instance,
Sloman ran correlations between his model and human judge-
ments, and found that in 3 out of 5 cases, Osherson et al.’s
Similarity Coverage Model (SCM; 1990) had stronger fit—
although, he did provide a defense for this finding (Sloman,
1993). Further, the basic FBIM cannot account for non-
monotonicity. 1

Induction by cross-categorization

Shafto et al. (2006) introduced CrossCat, a model of cross-
categorization. Given data, the model infers a partitioning of
features into different kinds, and, for each feature-kind, the
model infers a categorization of the objects. This model dif-
fers from previous models in that it considers multiple sys-
tems of categories to guide an inference, but maintains key
similarities to previous approaches. The FBIM considers the
entire set of features of the premise and conclusion categories
when assessing argument strength. The SCM (Osherson et
al., 1990) relies on a taxonomy of categories that applies in
all contexts. CrossCat strikes a balance between these ap-
proaches allowing flexible use of knowledge to guide infer-
ences like the FBIM, and allowing structured representations
to guide inference like the SCM.

CrossCat is formally defined as a model that takes as in-
put a list of features, F , a list of objects, O, and an O×F
object-feature matrix, D. Each entry, (o, f ) ∈ D, encodes
the value of feature f for object o. For example, given that
o1 =“crow” and f1 =“has a beak”, then D(o1, f1) = 1. The
goal is to make inferences about two kinds of situations that
correspond to specific and general arguments. We deal with
specific arguments first. For specific arguments, the goal is,
for a novel feature y, with some observed entries yobs and
some unobserved entries yunobs, predict the unobserved en-
tries based on the observed data D and observed entries yobs.
Under the model, this prediction is mediated by inferences

1An extended model to address this issue was proposed but not
tested.
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about the likely cross-categorized representations, r,

P(yunobs|D,yobs)∝ ∑
r

P(yunobs|r)P(r|D,yobs). (2)

That is, representations r, that are probable given the data
provide the most weight when predicting yunobs.

These predictions rely on inferring likely cross-categorized
representations, r. Under the model, r is composed of two
parts: a vector z, of length F , where z f designates the kind k
of feature f , and a set of vectors, {w}, where wk contains the
categories for kind k. Given a data set, D, the model infers
likely combinations of z and {w}, by approximating the pos-
terior probability of P(z,{w}|D,y). The model is specified
generatively, by first choosing a partition of the features z,
then for each kind k ∈ z, choosing a categorization of the ob-
jects wk, and prior probabilities for each feature in that kind,
and then generating the data Dk that correspond to that kind.
In a departure from the Shafto et al. (2006) model, we in-
clude hyperpriors on the strength s and balance b of feature
values. Following Kemp, Perfors, and Tenenbaum (2007), we
assume an exponential distribution on the strength parameter,
providing a strong expectation that each feature’s value will
tend to be the same within a category, and a uniform balance.

Formally, given a data set, D, the model infers z, a parti-
tion of features into kinds, and {w}, where wk contains the
categories for kind k, subject to

P(z,{w}|D,s,b)∝ P(z,{w},D,s,b) (3)

= P(z)
K

∏
k=1

P(Dk|wk,s,b)P(wk)P(sk)P(bk)

(4)

where K is the number of feature-kinds in z, Dk is the por-
tion of D that must be explained by system k, and P(Dk|wk)
is the process that generates the data for each feature-kind.
The prior distribution on feature partitions, and the prior on
objects into categories are denoted by P(z) and P(wk), respec-
tively. Finally, sk and bk represent hyperpriors on the feature
values. To evaluate the posterior probability, we must specify
each component of Equation 4.

Assignments of features to partitions z are evaluated via a
chinese restaurant process (CRP) prior

P(zi = k|z1, ...,zi−1) =

{
nk

i−1+α
, if nk > 0

α

i−1+α
, k is a new class.

(5)

This process depends on a parameter α, which controls the
strength of the preference for a small number of partitions.
As α→ 0, the process tends to produce small numbers of cat-
egories. Throughout, we set this parameter to .5, a moderate
preference for simpler structures. Assignments of objects to
categories for each kind wk, are also evaluated via the CRP.

In this paper, we consider only binary features, and we
therefore choose a Beta-Bernoulli model evaluating the prob-
abilities of feature values. For simplicity, a feature is assumed

to be a priori independent, and for a given feature, values in
different categories are independent. Thus, the probability of
D(o ∈ c, f ) depend only on the number of true and false val-
ues of the feature for those objects, and the parameters s and
b,

P(D(o ∈ c, f )|w,z) = Beta(#true+ sb,# f alse+ s(1−b))
Beta(sb,s(1−b))

(6)
where s and b represent the strength (measured in number of
prior observations) and balance (the expected proportion of
true values), and Beta represents the Beta function.

We used Markov Chain Monte Carlo (MCMC) to gener-
ate predictions. The algorithm proposes moving features be-
tween kinds, objects between categories, and changing the
values of s and b. In each iteration, the algorithm tends to
prefer values that improve on the current state. Although
we believe roughly similar heuristics may be used by people,
we emphasize that our main claim is about the importance
of cross-cutting category structure, not the behavior of this
particular inference algorithm.

For specific arguments, the model predicts that, for a novel
property, objects in the same category for that property’s kind
will be more likely to have the same feature.

For the general arguments, the goal is, for a novel feature y,
with some observed entries yobs, predict the probability that
a general category—e.g. birds—has the property. This case
is rather different because we need to predict, (a) whether
the general category birds is sensible given the data, and (b)
whether each and every bird is likely to have the property
given the category exists. Formally,

P(ygenExt |D,yobs)∝ (7)

∑
r

P(ygenExt |birds ∈ r)P(birds ∈ r|D,yobs)

(8)

where ygenExt represents the extension of the general cate-
gory, and birds ∈ r indicates that the category birds exists in
the representation r. Otherwise, the details are as described
above.

Experiment
In our experiment, we investigate how people perceive the co-
gency of one argument, relative to another. That is, when peo-
ple are given two arguments and asked to judge which of the
two is stronger, and by what magnitude. We compare the re-
sults of human judgements to CrossCat, the FBIM, and a con-
ventional infinite mixture model (IMM; Rasmussen, 2000).
The IMM differs from CrossCat in that it does not discover
systems of categories, rather, it proposes a single clustering
of the objects using the entire set of features as a basis.

Method
Participants: Fifteen subjects were recruited from the Uni-
versity of Louisville community, including both students and
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Phenomenon Stimuli Human IMM CC FBIM
Typicality 1. eagles−→birds vs. ostriches−→birds 3.43 .071 .099 .040

2. leopards−→mammals vs. bats−→mammals † .567 -.035 .228 .108
Diversity 3. sheep,dolphins−→mammals vs. sheep,leopards−→mammals -1.7 .029 .193 .033

4. eagles,penguins−→birds vs. eagles,owls−→birds .833 .051 .025 .037
Conclusion Specificity 5. finches−→birds vs. finches−→animals 4.37 .092 .649 .235

6. dolphins−→mammals vs. dolphins−→animals 5.60 .118 .602 .152
Premise Monotonicity 7. penguins,eagles−→birds vs. penguins−→birds 4.50 -.039 .233 .038

8. bat,leopards−→mammals vs. bats−→mammals 3.90 .009 .217 .053
Non-monotonicity 9. dolphins−→mammals vs. dolphins,octopuses−→mammals 4.43 .020 .041 -.019

10. penguins−→dolphins vs. penguins,finches−→dolphins † .033 .026 .033 .000
Asymmetry 11. leopards−→bats vs. bats−→leopards .467 .011 .086 .113

12. eagles−→penguins vs. penguins−→eagles .667 .011 .093 .012
Feature Exclusion 15. leopards,sheep−→monkeys vs. leopards,ants−→monkeys 3.40 .002 .037 -.016

16. leopards,monkeys−→sheep vs. leopards,dolphins−→sheep 2.97 .953 .061 -.006
Non-diversity 17. leopards,seals−→dolphins vs. leopards,jellyfish−→dolphins 4.13 .020 .004 -.027

18. finches,ostriches−→owls vs. finches,bats−→owls † .633 -.007 .049 -.010

Table 1: Mean Predictions of Human and Models.

non-students. The students were offered course credit for par-
ticipating.
Design and Materials: The dataset used to make model com-
parisons was an object-feature matrix that was filled in by
two coders for an unrelated project. The matrix consisted of
22 animals and 106 features, such that each entry (i, j) of the
matrix contained a 1 or 0, indicating whether or not feature j
was true of animal i.

Printed surveys were created for this experiment that con-
sisted of eighteen questions in total. The questions were for-
mulated to appear much like those, that elicited the docu-
mented phenomena in the subjects of Osherson et al. (1990)
and Sloman (1993)—excluding premise-conclusion identity,
premise-conclusion inclusion, inclusion similarity, and the in-
clusion fallacy. Each question consisted of two arguments,
designated A and B, and a line with eleven hatch marks. Be-
low the far-right hatch mark, a letter B was placed. Similarly,
below the far-left hatch mark the letter A was placed.
Procedure: Subjects were handed a survey and a writing
utensil. They were told that for each question they should
read both of the arguments (i.e. A and B), and evaluate which
one they believe to be stronger. Once they determined the
stronger argument, they were asked to indicate on the line
how much stronger they believed their choice to be, relative
to the alternate. They were informed that argument strength
began at the midpoint of the line and increased toward the
argument that they deemed stronger.

Results

Participant ratings for all cases of the stimuli were tallied. An
exact binomial sign test for each question, revealed that at
least one example for all cases was significant (p < .05), ex-
cluding premise diversity and asymmetry. Both of the cases

demonstrating asymmetry were marginal2 (p = .0625 for
both). The second examples of typicality, non-monotonicity,
and non-diversity were not found to be significant. These
stimuli are presented in Table 1, as number 2, number 10, and
number 18, respectively, and are denoted by †. Subject judge-
ments for our first example of premise diversity (i.e. number
3 in Table 1) were not in the expected direction.

We performed two runs of CrossCat (referenced in Table
1 as CC) and the IMM, each using 40 samples, for all of the
arguments. The results of these simulations were averaged
and are reported in Table 1. For each question, we expected
a particular argument to be rated stronger than its alternate,
consistent with the induction phenomena. For each of the
questions, the difference between the ratings of argument A
and B was calculated and averaged across participants. These
ratings were compared to the model predictions, which are
reported as log(argstrong/argweak). Here, argstrong is the argu-
ment that we expected would have the stronger rating, sim-
ilarly argweak is the weaker rated argument. This measure
provides an intuitive way of demonstrating whether a partic-
ular model was able to predict the outcome for each of our
questions, showing positive values where the model was suc-
cessful and negative values where the algorithm failed. In
Table 1, we report the results that are in the expected direc-
tion in bold font. For all, but one of the arguments found
to be statistically significant, our model is consistent with
the induction phenomena; whereas, the IMM fails to predict
the stronger argument in one of our cases—monotonicity—
and the FBIM fails for four cases—non-monotonicity, fea-
ture exclusion, and non-diversity. For the remaining statis-
tically significant argument, shown as number 3, in Table 1,

2Osherson et al. (1990) asked people to make judgements using
the same paradigm that we employed, and also used a binomial sign
test of significance. Their cases of asymmetry yielded a nonsignifi-
cant difference in the predicted direction.
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we predicted that this argument would demonstrate the diver-
sity phenomenon, as did CrossCat, the IMM, and the FBIM;
however, subjects judged the argument with the less diverse
premises to be stronger.

The FBIM cannot account for the non-monotonicity cases,
as its bounded by its mathematical definition. In words, any
added premise features can only lead to a stronger argument.
However, given the context of penguins and dolphins, fea-
tures of finches do not seem applicable; yet the FBIM con-
siders those features, and any overlap between those features
and the features of dolphins, leads to a stronger prediction.

The FBIM can explain instances of the feature exclusion
phenomenon when there is no overlap between the diversi-
fying premise category, and the conclusion category. While
Sloman (1993) was able to demonstrate this effect using the
Osherson et al. (1990) dataset, our dataset possessed overlap-
ping features between ants and monkeys, and between dol-
phins and sheep. Thus, the FBIM made stronger predictions
for the arguments having more diverse premises; whereas,
subjects rated the less diverse arguments stronger.

Finally, the FBIM fails to account for non-diversity when
the more diverse premise category shares salient features with
the conclusion category, such as leopards,seals−→dolphins vs.
leopards,jellyfish−→dolphins. We predicted that despite the
more diverse premises, the argument with premise categories
of leopards and seals would be rated stronger by subjects, and
their ratings agreed with our intuition. CrossCat can give an
account for the arguments for which other models of induc-
tion fail to explain. CrossCat tends to apply those features
that are salient, given the context. So, for instance, in the
context of penguins and finches, the likelihood of adding fea-
tures of dolphins is reduced, since features of birds are more
salient.

Discussion
People are remarkable for their ability to accurately predict
unobserved aspects of the world. Research in category-based
induction seeks to explain people’s success. Though many
previous models of induction have been proposed, none ex-
plain the extant phenomena. In this paper, we have presented
a novel model of category-based induction, based on cross-
cutting categorization. We have shown that this model out
performs two well-established models, the FBIM and IMM,
accounting for the greatest number of documented phenom-
ena.

Previous approaches have explored the extremes of knowl-
edge representation. Models such as the SCM (Osherson et
al., 1990) maintain a strict taxonomy that is applied across all
situations, and cannot explain phenomena that require more
flexibility. Models such as the FBIM have no structured rep-
resentation, and therefore cannot discern predictive features
from those that are idiosyncratic. Our approach balances
these two extremes, maintaining a strong knowledge repre-
sentation, but allowing for potentially many sets of categories
that guide inference in different contexts.

We showed that our model is able to demonstrate many
of the known phenomena that is associated with category-
based induction. While we believe that our model is a step
in the right direction, there are limitations. For instance,
CrossCat only identifies category structures, and does not dis-
cover other more richly-structured knowledge representations
found in real-world domains, such as tree structures. Further,
the model does not take into account the fact that features can
sometimes be the cause of other features, and futher use that
knowledge to guide prediction. Both of these ideas represent
important areas for future work.
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