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Abstract

In this paper we present a second-order accurate adaptive algorithm for solving
multiphase, incompressible flows in porous media. We assume a multiphase form of
Darcy’s law with relative permeabilities given as a function of the phase saturation.
The remaining equations express conservation of mass for the fluid constituents.
In this setting the total velocity, defined to be the sum of the phase velocities, is
divergence-free. The basic integration method is based on a total-velocity splitting
approach in which we solve a second-order elliptic pressure equation to obtain a
total velocity. This total velocity is then used to recast component conservation
equations as nonlinear hyperbolic equations. Our approach to adaptive refinement
uses a nested hierarchy of logically rectangular grids with simultaneous refinement
of the grids in both space and time. The integration algorithm on the grid hierarchy
is a recursive procedure in which coarse grids are advanced in time, fine grids are
advanced multiple steps to reach the same time as the coarse grids and the data at
different levels are then synchronized. The single grid algorithm is described briefly,
but the emphasis here is on the time-stepping procedure for the adaptive hierarchy.
Numerical examples are presented to demonstrate the algorithm’s accuracy and
convergence properties and to illustrate the behavior of the method.
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1 Introduction

Multicomponent and multiphase flows in the subsurface are often character-
ized by localized phenomena such as steep concentration gradients or satu-
ration fronts. Accurately resolving these types of phenomena requires high
resolution in regions where the solution is changing rapidly. For this reason,
the development of some type of dynamic gridding capability has long been
of interest in the porous media community.

Heinemann [11] and Ewing et al. [10] have considered dynamic local grid re-
finement approaches. More recent papers by, for example, Sammon [19] and
Christensen et al. [6], discuss development of adaptive techniques in the con-
text of unstructured grids. An alternative approach to local refinement is based
on structured-grid adaptive mesh refinement. This type of approach, based on
the strategy introduced for gas dynamics by Berger and Colella [4], was first
applied to porous media flow by Hornung and Trangenstein [13] and by Propp
[17]. Additional developments are discussed in Trangenstein [20], Trangenstein
and Bi [21], and Hoang and Kleppe [12]. In this approach, regions to be re-
fined are uniformly subdivided in both space and time. Related approaches
were developed by Nilsson et al. [15,16] uses a spatially anisotropic refine-
ment strategy with no temporal refinement and by Edwards [9] who uses a
cell-by-cell refinement strategy.

The focus of this paper is on developing a structured adaptive mesh refine-
ment (AMR) algorithm for porous media flow. Our approach is similar to the
approach introduced by Hornung and Trangenstein [13] and to the approach
discussed by Propp [17]. In this approach, the solution is represented on a
hierarchical sequence of nested grids with successively finer spacing in both
time and space. Increasingly finer grids are recursively embedded in coarse
grids until the solution is sufficiently resolved. An error estimation procedure
based on user-specified criteria evaluates where additional refinement is needed
and grid generation procedures dynamically create or remove rectangular fine
grid patches as resolution requirements change. The method presented here
uses subcycling in time so that all levels are advanced at the same CFL num-
ber, thus reducing the numerical dissipation of the explicit upwind advection
scheme used to advance the solution. The major difference between the ap-
proach adopted here and that of Hornung and Trangenstein is that the current
method does not require a global, multilevel pressure solve at each fine-grid
time step. Instead, when advancing a given level, we solve the pressure on
that level with boundary conditions obtained from the coarser levels. This
approach avoids the computational expense of the global solve but introduces
additional complexity into the synchronization step of the algorithm in which
inconsistencies between different levels are corrected. The synchronization ap-
proach used here is based on the algorithm developed by Almgren et al. [1] for
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incompressible flows. The methodology is implemented in parallel using the
BOXLIB framework discussed in Rendleman et al. [18] and Crutchfield [7]. A
similar approach was used by Propp; however, his algorithm used a different
approach to synchronization and was limited to two dimensions.

Before describing the adaptive algorithm we will briefly review the total ve-
locity splitting approach and briefly discuss our basic fractional step scheme
for a single grid. In the third section we describe, in detail, the recursive
time-stepping procedure for the adaptive algorithm and other aspects of the
adaptive algorithm. The fourth section shows convergence results and presents
computational examples illustrating both the performance and parallel scaling
of the method.

2 Total velocity-splitting algorithm

Here we consider multiphase, multicomponent incompressible flow in hetero-
geneous porous media. The basic void fraction of the medium is referred to as
the porosity, φ, and the fraction of that void occupied by a particular phase
is referred to as the phase saturation, uα. (Here, Greek subscripts refer to
mobile phases.) The multicomponent mixture is composed of N components
(or lumped pseudo-components). We define n ≡ (n1, . . . , nN) as the vector
of component densities per unit pore volume, and nα as the subset of n in
phase α.

The equations that describe the flow represent mass conservation, energy con-
servation, and Darcy’s law. Darcy’s law expresses the volumetric flow rate, vα,
of each phase in terms of the phase pressure, pα, namely,

vα = −λα(∇pα − ρα~g) , (1)

where λα ≡ Kkr,α/µα is the phase mobility. Here K is the permeability dis-
tribution of the medium, kr,α is the relative permeability, which expresses
modification of the flow rate due to multiphase effects, µα is the phase viscos-
ity, ρα is the phase density, ~g is the gravitational acceleration. The pressure
in each phase is related to a reference pressure, p, by a capillary pressure,
pc,α = pα − p, which is a function of saturation.

For this system, conservation of mass for each component is given by

φ
∂n

∂t
+∇ ·

∑
α

nα
uα
vα = ∇ · D +R, (2)

where D represents diffusive terms that include multiphase molecular diffu-
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sion and dispersion, and R is the reaction source term. The diffusive term
associated with capillary pressure is implicitly included in the definition of
the phase velocities. The diffusion terms can be quite complex, depending on
the particular problem; see [22] for a detailed discussion of these terms.

The component conservation equations specify the change in total mass of
each component resulting from the transport and diffusion of that component
distributed across the phases. The phase behavior of the system specifies how
the components are apportioned into phases and the volume occupied by those
phases. In this paper, we consider only simple incompressible systems without
mass transfer between phases. We can then define a total velocity

vT ≡
∑
α

vα = −
∑
α

λα(∇pα − ρα~g), (3)

which is divergence-free. This divergence-free condition then leads to a second-
order elliptic equation:

∇ · vT = −∇ ·
∑
α

λα(∇(p+ pc,α)− ρα~g) = 0, (4)

since pα = p + pc,α. We can rewrite (3) to express ∇p in terms of vT , then
using (1) we can express vα in terms of the total velocity,

vα =
λα
λT
vT + λα(ρα −

∑
β

λβρβ
λT

)~g − λα(∇pc,α −
∑
β

λβ∇pc,β
λT

) ,

where λT =
∑
α λα is the total mobility. Writing the conservation equations

in terms of the total velocity yields the fractional flow form of the component
conservation equations, given by

φ
∂n

∂t
+∇ · F (n, vT ) = ∇ · (H∇Pc) +∇ · D +R, (5)

where

F (n, vT ) =
∑
α

nα
uα

λα
λT
vT + λα(ρα −

∑
β

λβρβ
λT

)~g

 ,
and

H∇Pc =
∑
α

nα
uα
λα(∇pc,α −

∑
β

λβ∇pc,β
λT

).

In the absence of diffusive terms the total velocity defines a splitting that
decomposes the dynamics into an elliptic pressure equation and a system of
hyperbolic conservation laws. We note that we are assuming here that the
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system φ∂n
∂t

+∇ ·F (n, vT ) = 0 is hyperbolic. This is a condition on the model
specification; some models for three-phase flow use relative permeability mod-
els that lead to non-hyperbolic behavior and the resulting problems are ill-
posed in the zero-viscosity limit (see [3]). For purposes of exposition, we will
set D = 0 and R = 0 for the remainder of the discussion.

2.1 Single grid algorithm

In this subsection, we discuss the single grid algorithm, giving an overview
of the time stepping procedure. The discretization uses a volume of fluid ap-
proach in which nnijk denotes the average value of n over cell-ijk at time tn; n
and p are defined on cell centers while F and vT are defined on cell edges. The
temporal discretization fits into the basic framework of IMPES- type methods
in which the pressure equation is solved implicitly and the saturation (com-
ponent) equations are solved explicitly. Here the basic algorithm is modified
so that the overall splitting approach is second-order accurate in time and we
treat the diffusion terms semi-implicitly so that diffusive terms, ∇ · D and
H∇Pc, do not limit the time step.

The major steps of the algorithm are:

Step 1: Solve the pressure equation, (4), rewritten in the form

D ·
∑
α

λα(Gp) = D ·
∑
α

λαρα~g −D ·
∑
α

λα(Gpc,α) ,

for p with properties evaluated using nn. We then use equation (3) to define
a total velocity vnT . Here D and G are second-order accurate discretizations
of the divergence and gradient operators, respectively. The divergence opera-
tor returns a cell-centered divergence from face-centered values; the gradient
operator differences cell-centered values to return normal gradients on faces.

Step 2: Use (5) to advance the solution from time tn to time tn+1 using vnT .
We use a second-order Godunov scheme to compute the hyperbolic fluxes and
a Crank-Nicolson discretization of the diffusive terms, so that

φ
nn+1,∗ − nn

∆t
+GF n+

1
2 (n, vnT ) = 1

2

(
D(HnGP n

c ) +D(Hn+1,∗GP n+1,∗
c )

)
(6)

with a suitable linearization of the coefficients of the diffusion term; here we
use Hn+1,∗ and P n+1,∗

c to denote H and Pc, respectively, which are functions
of n, evaluated at nn+1,∗. We note here that although we have dropped D
and R terms from the equations for clarity of exposition, additional diffusion
terms can be added analogously to the capillary pressure term. If reactions are
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included in the system they can be included using the operator-split formalism

discussed in Day and Bell [8]. In this step, F n+
1
2 (n, vnT ) denotes time-centered

fluxes computed using the Godunov procedure but with the total velocity
evaluated at tn.

Step 3: Using the nn+1,∗ data, re-solve the pressure equation (4) to compute

a new total velocity vn+1
T from (3). Define v

n+
1
2

T = 1
2
(vnT + vn+1

T ).

Step 4: Use (5) to re-advance the solution from time tn to time tn+1, this

time using v
n+

1
2

T to obtain values of nn+1,

φ
nn+1 − nn

∆t
+GF n+

1
2 (n, v

n+
1
2

T ) = 1
2

(
∇ ·HnGP n

c +D ·Hn+1GP n+1
c

)
(7)

again with a suitable linearization of the coefficients of the diffusion term.

We postulate that Step 1 may not be critical; it may be acceptable to replace
vnT with the final vT computed in Step 3 of the previous time step without
significant loss of accuracy, thus allowing us to avoid the computational cost
associated with Step 1. In this case, vnT is computed with nn,∗ instead of nn. We
shall demonstrate with some examples in Section 4 that this has no noticeable
effects on our solution. For clarity, we shall denote a time step using Step 1 as
a full solve and one without as a partial solve.

3 Adaptive Mesh Refinement

In this section we present the extension of the algorithm described above to an
adaptive hierarchy of nested rectangular grids. First we describe the creation of
the grid hierarchy and the regridding procedure used to adjust the hierarchy
during the computation. Next we discuss the adaptive time step algorithm
with subcycling in time, focusing on the synchronization between different
levels of refinement.

3.1 Creating and Managing the Grid Hierarchy

The grid hierarchy is composed of different levels of refinement ranging from
coarsest (` = 0) to finest (` = `max). Each level is represented as the union
of rectangular grid patches of a given resolution. In this implementation, the
refinement ratio is always even, with the same factor of refinement in each
coordinate direction, i.e. ∆x`+1 = ∆y`+1 = ∆z`+1 = 1

r
∆x`, where r is the
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refinement ratio. (We note here that neither isotropic refinement nor uniform
base grids are requirements of the fundamental algorithm; see the section on
future work.) In the actual implementation, the refinement ratio, either 2 or
4, can be a function of level; however, in the exposition we will assume that r
is constant. The grids are properly nested, in the sense that the union of grids
at level ` + 1 is contained in the union of grids at level ` for 0 ≤ ` < `max.
Furthermore, the containment is strict in the sense that, except at physical
boundaries, the level ` grids are large enough to guarantee that there is a
border at least one level ` cell wide surrounding each level ` + 1 grid. (Grids
at all levels are allowed to extend to the physical boundaries so the proper
nesting is not strict there.)

The initial creation of the grid hierarchy and the subsequent regridding op-
erations in which the grids are dynamically changed to reflect changing flow
conditions use the same procedures as were used by Bell et al. [2] for hyperbolic
conservation laws. The construction of the grid hierarchy is based on error es-
timation criteria specified by the user to indicate where additional resolution
is required. The error criteria are currently based on tracking component den-
sity gradients for one of the components; however, more sophisticated criteria
based on estimating the error can be used (see, e.g., [4]). Given grids at level
` we use the error estimation procedure to tag cells where the criteria for fur-
ther refinement are met. The tagged cells are grouped into rectangular patches
using the clustering algorithm given in Berger and Rigoustsos [5]. These rect-
angular patches are refined to form the grids at the next level. The process
is repeated until either the error tolerance criteria are satisfied or a specified
maximum level is reached. The proper nesting requirement is imposed at this
stage.

At t = 0 the initial data is used to create grids at level 0 through `max.
(Grids have a user-specified maximum size, therefore more than one grid may
be needed to cover the physical domain.) As the solution advances in time,
the regridding algorithm is called every k` (also user-specified) level ` steps to
redefine grids at levels `+1 to `max. Level 0 grids remain unchanged throughout
the calculation. Grids at level `+1 are only modified at the end of level ` time
steps, but because we subcycle in time, i.e. ∆t`+1 = 1

r
∆t`, level `+ 2 grids can

be created and/or modified in the middle of a level ` time step if k`+1 < r.

When new grids are created at level ` + 1, the data on these new grids are
copied from the previous grids at level ` + 1 if possible, or interpolated in
space from the underlying level ` grids otherwise. After regridding we always
recalculate vT from the new data, thus the first fine time step after regridding
is always a full solve rather than a partial solve. We note here that while there
is a user-specified limit to the number of levels allowed, at any given time in
the calculation there may not be that many levels in the hierarchy, i.e. `max
can change dynamically as the calculation proceeds, as long as it does not
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exceed the user-specified limit.

3.2 Overview of Time-Stepping Procedure

The adaptive time stepping approach uses temporal subcycling so that each
level is advanced independently at its own time step (∆t`+1 = 1

r
∆t`), requiring

no interlevel communication other than the supplying of Dirichlet data from
a coarse level to be used as boundary conditions at the next finer level. When
coarse and fine data reach the same time point, then the data at the different
levels are synchronized. The synchronization approaches are based on the same
set of algorithmic ideas as those developed in Almgren et al. [1]

The adaptive time-step algorithm can most easily be thought of as a recursive
procedure, in which to advance level `, 0 ≤ ` ≤ `max the following steps are
taken:

• Advance level ` in time as if it is the only level. Supply boundary conditions
for component densities and pressure from level ` − 1 if level ` > 0, and
from the physical domain boundaries.
• If ` < `max
· Advance level (`+ 1) r times with time step ∆t`+1 = 1

r
∆t`. Use boundary

conditions for component densities and pressure from level ` and from the
physical domain boundaries.
· Synchronize the data between levels ` and `+1, and interpolate corrections

to higher levels if `+ 1 < `max.

Before describing the steps of the synchronization in detail, we first discuss,
in general terms, how to synchronize the data at different levels so that the
solution as computed on each level sequentially can most closely approximate
the solution which would be found using composite solves. During the advance
of each level, for each operator we supply Dirichlet boundary data for the fine
grids from the next coarser grid. This implies that the values at both levels are
consistent, but the computed fluxes at the coarse/fine interfaces are not. The
synchronization solves correction equations that account for discrepancies in
fluxes between levels. The corrections equations reflect the type of operator
being corrected. For hyperbolic equations the correction of flux discrepancies
is a simple explicit flux correction as discussed in Berger and Colella [4]. For a
self-adjoint elliptic operator, the discrepancy in the fluxes represents a discon-
tinuity in normal derivative at the coarse/fine boundary and the correction
equation takes the form of an discrepancy layer potential problem (see [1]).

After the level `+1 data have been advanced to the same point in time as the
level ` data, there are three sources of discrepancy in the composite solution
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that need to be corrected in the synchronization step.

(D.1) The data at level ` that underlie the level ` + 1 data are not synchronized
with the level `+ 1 data.

(D.2) The composite total velocity computed from the pressure equation, defined
as the time-averaged (over a level ` time step) level `+ 1 advection velocity
on all level ` + 1 faces including the `/(` + 1) interface, and the level `
advection velocity on all other level ` faces, does not satisfy the composite
divergence constraint at the `/(` + 1) interface. This mismatch results in
spatially constant advected quantities with no source terms not remaining
constant.

(D.3) The advective and diffusive fluxes from the level ` faces and the level `+ 1
faces do not agree at the `/(`+1) interface, resulting in a loss of conservation.

The aim of the synchronization steps is to correct the effects of each mismatch.
Discrepancy (D.1) is easily corrected by averaging the level ` + 1 data onto
the level ` data beneath. We denote this correction by (S.1). The second
discrepancy, (D.2), is discretely manifested as a non-zero difference between
the coarse grid total velocity and the effective time-averaged fine grid total
velocity at the coarse/fine interface. This difference results from not having
satisfied the elliptic matching conditions at the coarse/fine interface during the
pressure solve. An elliptic solve is necessary to correct for the discrepancy. We
perform a level ` “pressure sync solve,” (S.2) with the right-hand-side defined
as the divergence of the mismatch between the level ` and the time-averaged
level `+ 1 total velocity. From this solve we define a total velocity correction
field that is used to modify the explicit dependence of the hyperbolic flux
terms on the total velocity. These “re-advection corrections,” as well as the
interpolation of these corrections to all higher levels, are combined with the
refluxing corrections to modify the solution as described below.

In the case of zero viscosity/diffusivity, the re-advection corrections described
immediately above, and the correction for (D.3), which is simply a hyperbolic
refluxing step, are added directly to the new-time solution. The refluxing cor-
rections modify the solution only on the coarse grid cells immediately outside
the fine grids; the re-advection corrections modify the solution at all cells
at level ` and higher. However, in the case of non-zero viscosity/diffusivity,
the modification of the solution by the re-advection and refluxing corrections
requires solving additional elliptic equations (S.3).

In the single grid algorithm, hyperbolic and diffusive fluxes are not added
directly to the solution update; rather, they form part of the right-hand-sides
for the parabolic solves associated with the Crank-Nicolson discretization of
the diffusive terms. Similarly, in the synchronization step, the hyperbolic and
diffusive flux discrepancies, as well as the re-advection corrections, define the
right-hand-sides for the refluxing solves. The solutions to the elliptic refluxing
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equations at level ` will modify the new-time total velocity and component
densities on all grids at level `, and the interpolation of these corrections will
modify the new-time data on all grids at all higher levels.

3.3 Details of Time-Stepping Procedure

Assume now that we are advancing level `, 0 ≤ ` ≤ `max, one level ` time step.
We now add the level index, `, to the superscript of each quantity, defining,
for example, nn,` as the component density on level ` at time tn. We define
∆t` as the time step of the level ` grid, A` as the area of a face at level ` and
Vol ` as the volume of a grid cell at level `.

3.3.1 Advancing a single level

To advance the data on level ` one level ` time step, we follow the time-
stepping procedure as described for the single grid algorithm in the previous
section. For the level ` advancement we advance all the grids at that level
simultaneously. Explicit advection work is decoupled except for the exchange
of boundary conditions. When a coarse/fine boundary does not coincide with
a physical domain boundary for the level ` advection step, level ` − 1 data
are interpolated linearly in time to specify Dirichlet boundary conditions at
the coarse-fine boundary. The procedures used for these interpolations are the
same as those discussed in Almgren et al. [1]

3.3.2 Computing the Coarse-Fine Discrepancy

Over the course of a level ` time step, we must accumulate several quantities
at the `/(` + 1) interface in order to correctly capture the flux discrepancies
at the end of the level ` time step. We refer to the face-based data structures
that contain these quantities as registers. The total velocity and flux registers
accumulate the discrepancies between the level ` and level ` + 1 face-based
total velocity vT and fluxes F , respectively.

These registers are defined only on the `/(`+ 1) interface and are indexed by
level ` indices. Note that in d dimensions, one level ` face contains rd−1 level
`+ 1 faces; the sums over faces below should be interpreted as summing over
all level ` + 1 faces which are contained in the level ` face. The sums over k
should be understood as summing over the r level `+ 1 time steps contained
within a single level ` time step.

At the end of the level ` time step, the velocity register (δv`T ) holds the area-
weighted difference between the total velocity at level ` and the time average
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over one level ` time step of the space average over the area of the level ` face
of the total velocity at level `+ 1 :

A`δv`T = −A`v
n+

1
2
,`

T +
1

r

r∑
k=1

∑
faces

(A`+1v
k+

1
2
,`+1

T ).

The flux registers δF hyp,` and δF visc,` contain the area-weighted differences in
the hyperbolic and diffusive fluxes calculated at level ` and the time average
over the level ` time step of the space average over the area of the level ` face
of the advective fluxes at level `+ 1 :

A`δFhyp,` = −A`Fhyp,` +
1

r

r∑
k=1

∑
faces

(A`+1Fhyp,k,`+1),

A`δFvisc,` = −A`Fvisc,` +
1

r

r∑
k=1

∑
faces

(A`+1Fvisc,k,`+1),

where

Fhyp,` =F n+
1
2
,`(nn+

1
2
,`, v

n+
1
2
,`

T ),

Fvisc,` = 1
2

(
Hn,`GP n,`

c +Hn+1,`GP n+1,`
c

)
,

as computed in Step 4 of the algorithm discussed above. In these formulae,
the k index indicates the subcycled time steps at the finer level.

We note here that the signs of the quantities added to the flux registers actually
depend on the orientation of the normal facing away from the fine grid. We
follow the convention below that the signs are given for the faces at which the
fine grid is in the direction of the lower coordinate indices.

3.3.3 Synchronization of data

The first synchronization step, (S.1), has already been described in Section 3.2.
Here we give the details of the other two steps of the synchronization.

The discrepancy in the total velocity, (D.2), is captured in δv`T ; the divergence
of δv`T defines the right-hand-side for the level ` elliptic sync solve (S.2). We
solve

−D
(
λTG(δe`)

)
= D̃(δv`T )

on all grids at level ` for the correction δe`. Recall δv`T is defined only at the
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coarse/fine interface; here D̃ is defined to be the discrete divergence operator
evaluated only on the level ` cells adjacent to the interface but not underlying
any level ` + 1 grids. (At level ` cells underlying level ` + 1 grids the right-
hand-side is zero.) Boundary conditions on physical no-flow boundaries are

homogeneous Neumann (∂(δe)`

∂n
= 0); on outflow δe` = 0. If ` > 0, the boundary

conditions for δe` are given as homogeneous Dirichlet conditions on the level
`−1 cells outside the level ` grids. We then define the correction velocity field
from δe` :

v`,corrT = −λTG(δe`).

We now use the correction velocity field to define flux corrections at all level `
faces. Because of memory considerations we do not store all the time-centered
face states, so we must redefine these on all level ` faces: we recreate Fhyp,`

using v
n+

1
2
,`

T for upwinding, identically to the procedure used in forming the
update, and define F corr,`vT

as

F corr,`vT
= F hyp,n+

1
2
,`(nn, v

n+
1
2
,`

T )− F hyp,n+
1
2
,`(nn, v

n+
1
2
,`

T + v`,corrT ) .

Because we must diffuse the re-advection and refluxing corrections before
adding them to the new-time solution, we do not add them directly to the so-
lution. Rather, the divergence of the re-advection flux corrections is added to
the advective and viscous/diffusive flux mismatches to define the cell-centered
right-hand-sides for the refluxing solves (S.3):

RHS`sync = −DF corr,`vT
− A`

Vol `
(δFhyp,` + δFvisc,`). (8)

Then, we solve for the correction to the solution, n`sync

φn`sync −
∆t

2
D(HsGP s

c ) = RHS`sync . (9)

where Hs = H(nn+1 + n`sync) and P s
c = Pc(n

n+1 + n`sync).

If ` > 0, we must now modify the level `−1 velocity registers and flux registers
to account for the corrections to the solution due to the re-advection correc-
tions as well as the diffused corrections. This is analogous to the accumulation
of advective and diffusive fluxes during the advance of a single level. To do
this, we set
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A`−1δv`−1
T :=A`−1δv`−1

T +
1

r

∑
faces

A`v`,corrT ,

A`−1δFhyp,`−1 :=A`−1δF hyp,`−1 +
1

r

∑
faces

A`F corr,`,

A`−1δFvisc,`−1 :=A`−1δFvisc,`−1 +
1

r

∑
faces

{
1

2
A`HsGP s

c

}
.

The corrected solution at level ` is then given by

nn+1,` := nn+1,` + n`sync.

If ` < `max, we interpolate the correction onto the fine grids at all finer levels,
q, ` < q ≤ `max using conservative interpolation:

nn+1,q := nn+1,q + Interpcons(n
`
sync).

This completes the synchronization steps for scalar quantities.

4 Numerical Results

In this section, we examine the numerical properties of the method described
in the previous section. In the first subsection we examine the convergence
behavior of the method. While the basic discretization presented here is sim-
ilar to a traditional IMPES fractional step discretization, we have modified
the method such that the total velocity is centered in time. This makes the
method formally second-order accurate, in contrast to the standard IMPES
approach. In our first example, we use a stable one-dimensional problem based
on a two-component single-phase system to demonstrate the method’s second-
order rate of convergence and to illustrate the loss of accuracy associated with
the standard IMPES-type fractional step scheme. We then demonstrate the
second-order convergence rate of the algorithm with a two-dimensional prob-
lem and show that the partial solve algorithm maintains the overall accuracy
of the method relative to the full solve version. We also examine the effects
of centering the total velocity and compare the current approach with the
standard IMPES discretization when the flow is unstable. In the second sub-
section, we compare solutions obtained on a uniform grid with those computed
with AMR. For this purpose, we use a more complicated example involving a
three-component two-phase system. In the final two subsections, we simulate
a large three-dimensional problem using the parallelized AMR algorithm, and
present the scaling behavior. We note that for the numerical results presented
here, we neglect capillary pressure.
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4.1 Convergence

For our first study we consider a single-phase two-component system where
components 1 and 2 are completely miscible, and form a mixture with viscosity
given by

µ =
1

(1− c+M1/4c)4
, (10)

where c = n1/(n1 + n2) and M = 10. In our algorithm as presented, both
the pressure discretization and the component conservation equations are dis-
cretized to second-order accuracy. In the standard IMPES formulation, the
total velocity is not centered in time, which introduces a small first-order
temporal error. In most realistic problems, this error is typically dominated
by spatial truncation errors, so we examine the problem in the context of one
dimension where we can use fine spatial resolution. We take as initial data
c(x) = 0.5(1 + tanh((0.3 − x)/0.05) on the interval [0, 2] and impose a con-
stant pressure drop. The time step, which is fixed for each resolution, is set so
that the CFL is approximately 0.35. In addition, we turn off the flux limiting
in the advection scheme.

The L1 norm of the errors for the standard IMPES discretization and the full
solve version of the new algorithm are presented in Table 1. The new algorithm
shows clear second-order convergence whereas the standard IMPES algorithm
is only first-order accurate asymptotically. At the coarsest resolution, the two
approaches have nearly the same error and the IMPES discretization shows
nearly second-order convergence between the two coarsest discretizations. At
these coarser resolutions the temporal discretization error is dominated by the
spatial truncation error, which is second-order accurate in both cases.

Next, we examine the convergence properties of the single grid algorithm in
two dimensions. For this problem we consider a domain [0, lx] × [0, ly] where
lx = 16 and ly = 4. The domain is initially filled with component 2; component
1 is injected from the left edge of the domain at a rate given by n1(0, y; t) = τρ1

and n2(0, y; t) = (1 − τ)ρ2 where τ(t) = 0.5(1 + tanh(t/106))). The densities
of component 1 and 2 are 1000 and 800, respectively. We impose no-flow
conditions on the top and bottom edges and a pressure difference of 2 between
the inlet and the outlet. We define M = 2. The porosity is uniformly 1 while
the permeability function κ(x, y) is given by

κ(x, y) = 10−5(1 + sin(πy/ly)
4). (11)

We note that τ(t) and κ(x, y) are chosen so that the solution will be smooth.
Gravity points in the negative y direction. The calculation is run for 1.2×107s
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with ∆x = ∆y = 1/2n for n = 3, 4, 5, 6. Fixed time step and uniform grids are
used for the purpose of evaluating the convergence of the solution.

Table 2 shows the discrete L∞, L1 and L2 norms of the difference between
the solution n obtained on each grid and that obtained on the next finer grid,
and the resulting convergence rates. The rate between the two columns of
error norms is defined as log2(εl/εr) where εl and εr are the errors shown
in the left and right columns. Table 2 clearly demonstrates the second-order
convergence property of the algorithm when measured in the L1 and L2 norms.
The convergence rate of the L∞ error is less than 2; this can be attributed to
the discontinuity in the solution resulting from limited smoothness of the κ
function. Table 3 shows the same data but for calculations done using the full
solve approach. We see by comparing the two tables that the errors obtained
from the different approaches are very similar. We note that the omission of
Step 1 does not adversely affect the convergence rate of our method.

The next set of calculations compares the solution obtained using our method
to that obtained using a first-order method when the solution is no longer
smooth. The goal is to show that even though the flow is no longer in the
asymptotically second-order regime of the algorithm, the accuracy properties
of the formally second-order method still have important consequences for the
behavior of the flow. We construct the first-order method by eliminating Steps
3 and 4 from the method presented in Section 2.1, and setting nn+1 = nn+1,∗.

However, the error in the solution cannot be directly measured by taking the
norm of the difference between two solutions. We instead compare the mixing
length given by the length of the fingered zone. Following [14], we define the
mixing length, Lδ, as

Lδ = x|c̄=δ − x|c̄=1−δ (12)

where

c̄(x) =

ly∫
0

n1dy

ly∫
0

n1dy +

ly∫
0

n2dy

(13)

and δ = 1× 10−5. We first look at a stable fingering profile that allows us to
establish a hypothesis on how mixing length is related to accuracy. We then
examine an example where the flow is highly unstable.

15



For the first example, we again look at the two-component single-phase system
described in the previous section. We consider here a uniform κ(x, y) = 2.0×
10−5 and a pressure difference of 0.5 between the inlet and the outlet. We
see in Figure 1 that a stable finger extends from the inlet to the outlet at
the bottom of the simulation domain. We then measure the mixing length for
three different grid sizes and three different approaches. The grids we consider
are 512 × 128, 1024 × 256 and 2048 × 512. The approaches are first-order,
second-order with the partial solve algorithm, and second-order with the full
solve approach. The solution obtained from the 2048 × 512 grid and the full
solve approach is used as the reference solution. The simulation is run to a
final time of 8× 106s. As shown in Table 4, the mixing length increases with
accuracy, suggesting that mixing length can be used as a measure of accuracy.
We thus hypothesize that for a given resolution, the solution with a larger
mixing length at a fixed time is the more accurate solution. We note that
this metric does not extend across different resolutions, since instabilities in
the flow may behave differently at different resolutions, leading to potentially
different flow profiles — the mixing length is then no longer an appropriate
measure of accuracy.

To amplify the difference between the first-order method and the second-order
methods, we change the permeability distribution function κ(x, y) to

κ(x, y) =



1.5× 10−5, y/ly < .25;

3.0× 10−5, 0.25 ≤ y/ly < .5;

1.0× 10−5, 0.5 ≤ y/ly < .75;

2.0× 10−5, y/ly ≥ .75.

(14)

In addition, M is increased to 10. Figure 2 shows that the viscous fingers
resulting from the first-order method and the second-order methods have some
notable differences. Slight variations in the solution can develop into distinct
fingering profiles due to instabilities in the solution. To further illustrate this
point, we examine a two-component single-phase system in a domain where
κ = 105 (1 + 10−8ε) and ε is a random number between 0 and 1. Figure 3
shows that two different sets of ε lead to two different fingering profiles. This
suggests that any minor perturbation can lead to variation in the details of
the fingering. However, we again see that the omission of Step 1 does not
have significant effects on the solution. In Table 5, we list the mixing lengths
for grid sizes 512× 128 and 1024× 256 computed with the three approaches.
We clearly see that mixing length is larger for the second-order methods, in
keeping with the hypothesis proposed earlier.

Results of the subsequent sections are based on the second-order method with
the partial solve algorithm.
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4.2 Comparison between AMR and Uniform Grid

The next set of calculations compare the composite grid solution with the
uniform fine grid solution for a two-phase, three-component system. Phase α,
consisting of component 1 and 2, is injected into the domain filled with phase
β consisting of component 3. We impose the same boundary conditions as in
the previous two subsections. For this problem, we have ρ1 = ρ2 = 1000, µα =
0.175 + 0.35( n2

n1+n2
), ρ3 = 800, and µβ = 0.35. The porosity is again uniformly

1. The permeability function κ(x, y) is given by (14) and the injection rate is
given by

n1 =

 100, 0 < t < 5× 105

900, t ≥ 5× 105
;

n2 = 1000 − n1, t > 0; and n3 = 0, t > 0. Again, the flow is not in the
asymptotically second-order regime of the algorithm. The goal here is to show
that with the adaptive algorithm one can achieve accuracy comparable to that
on a uniform fine grid. The regridding criterion, which flags coarse grid cells
for refinement, is based on the magnitude of |∇n1|.

We note that although the composition for t < 5 × 105 will lead to a stable
front, the composition for t ≥ 5 × 105 will lead to a highly unstable front. A
direct comparison between the solution after t = 5×105 is then not meaningful
for reasons elucidated in the previous section. It nevertheless allows us to
examine the behavior of both propagation modes of the aqueous phase.

For the uniform grid, we use a grid size of 1024× 256. For the AMR grid, we
have three levels of refinement, and a factor of two refinement between each
level. Thus the base grid of the AMR example has size 256× 64. A particular
cell is tagged for refinement if |∇n1| > 500. For both simulations, the time step
is computed with a CFL number of 0.4. Figure 4 shows that stable solution
fronts for the uniform and the adaptive simulations are identical. However,
while the unstable fronts exhibit similar features, there are notable differences
in the fingering structure. Unstable fronts can thus develop differently even
though captured at the same effective resolution, as shown by the uniform and
adaptive solutions shown in Figure 5.

In Table 6, we compare the computational time needed to solve the current
problem on a uniform grid and an adaptive grid. We note that at 7 × 105s,
AMR approach reduces the computational time by 88%. However, as the %
of domain refined increases, the performance degrades. At 106s, the compu-
tational saving achieved by the AMR approach is reduced to 80%, when the
% of domain refined at level 2 increases to 22.5%. Thus, the efficiency gains
from using AMR will be problem-dependent.
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We note that the implementation of the AMR algorithm involves a flux cor-
rection strategy, as described in Section 3.3.3. However, the velocity vT is not
corrected as its procedure will be considerably more involved. If the correction
required is large, this can lead to large error in subsequent flux calculations
and degrade the solutions. In the above example, the required maximum cor-
rection required is only 0.2% and 0.6% of vT in the x and y-direction. This is
sufficiently small that a correction is not needed. This certainly does not rule
out the need of velocity correction for other problems, and it may be necessary
to incorporate a velocity correction procedure in the future.

4.3 A three-dimensional example

We consider the three-component two-phase system for a three-dimensional
problem. The domain is now given by [0, 16]× [0, 4]× [0, 2]. We impose no-flow
boundary conditions along the faces with normals in the y and z direction,
and a pressure difference of 2 in the x-direction. The properties of the compo-
nents are the same as in Section 4.2, and porosity is again uniformly 1. The
permeability function κ(x, y, z) here is a log-random distribution with a mean
of 1.5× 10−5, and a variance of 0.1. In addition, κ is highly correlated in the
x and y directions but not in the z direction, as shown in Figure 6.

We perform the simulation on a Cray XT4 supercomputer, with up to 4 lev-
els of refinement. At the coarsest level, the grid size is 128 × 64 × 16, and
the refinement ratio is 2 between all adjacent levels. The resulting grid and
component density of component 1 at time 1.6× 106 is shown in Figure 7.

4.4 Parallel Performance

Here, we examine the scaling of the proposed algorithm on parallel architec-
tures. The weak-scaling study we use here is based on the two-component
single-phase system with layered permeability function. By replicating the
problem in the y and z direction, we are able to scale the problem size with-
out modifying the problem characteristics. We first note that % of domain
refined, as shown in the right figure of Figure 8, holds approximately constant
at level 1, but increases only slightly at level 2 as the domain size increases.
This implies that the computational load on each CPU should be approxi-
mately constant as number of processors increases. In left figure of Figure 8,
we, however, see a slight deviation from the ideal scaling, resulting in a modest
increase in execution time as we increase the number of processors from 4 to
256. We can attribute this increase to the elliptic solver (which does not scale
well with number of processors as the explicit advection components of the
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algorithm) and the increase in the communication cost (a four-fold increase
going from 4 processors to 256 processors).

5 Conclusions and Future Work

In this paper, we have presented a structured adaptive mesh refinement al-
gorithm for incompressible flows in porous media. The method is based on a
total velocity splitting of the equations into an elliptic pressure equation and
a system of hyperbolic conservation laws for the component densities. The
resulting system is discretized using cell-centered differencing for the pressure
equation and a second-order Godunov scheme for the component conservation
equations. The adaptive algorithm uses subcycling in time, i.e., the ratio of the
time step to the mesh spacing is constant across levels of refinement. Rather
than solve a global composite equation for the pressure at every time step at
the finest level, we perform single-level solves at each fine step then use an
elliptic correction solve to synchronize the solution across levels. This leads to
a considerable improvement in computational efficiency. The method has been
implemented in parallel and shows excellent scalability up to 256 processors.

Our goal in future work will be to extend this approach to more realistic
problems. As a first step in that direction, we will extend the current approach
to include capillary pressure, diffusion and reactions. Beyond that, our target
will be to extend the approach to more realistic fluid models that include
compressibility, interphase mass transfer and thermal effects.
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Table 1
L1 errors and convergence rates of the method for a 1D two-component single-phase
system.

h IMPES rate NEW rate

2/50 1.06e-2 – 9.92e-3 –

2/100 2.86e-3 1.89 2.44e-3 2.02

2/200 1.25e-3 1.19 5.97e-4 2.03

2/400 6.07e-4 1.04 1.50e-4 1.99

2/800 3.00e-4 1.01 3.58e-5 2.07
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Table 2
L∞, L1 and L2 errors and convergence rates for n1 in a 2-D two-component single-
phase calculation with the partial solve algorithm.

n 3 rate 4 rate 5 rate 6

L∞ 7.980 1.38 3.0612 1.57 1.29 1.11 0.5960

L1 0.752 1.91 2.005e-1 1.99 5.047e-2 1.95 1.306e-2

L2 1.438 1.83 4.036e-1 1.88 1.097e-1 1.81 3.137e-2
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Table 3
L∞, L1 and L2 errors and convergence rates for n1 in a 2-D two-component single-
phase calculation, using the full solve approach.

n 3 rate 4 rate 5 rate 6

L∞ 7.978 1.38 3.061 1.29 1.250 1.08 0.5913

L1 0.752 1.91 2.006e-1 1.99 5.050e-2 1.98 1.282e-2

L2 1.439 1.83 4.039e-1 1.88 1.098e-1 1.81 3.128e-2
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Table 4
Comparing the mixing length Lδ at time 8 × 106; εr is the relative error when
compared to solution obtained for grid size 1024 × 256 with the full solve second-
order method.

grid size 512× 128 1024× 256 2048× 512

Lδ εr Lδ εr Lδ εr

1st-order 11.0313 7.23e-2 11.5000 3.29e-2 11.8828 6.57e-4

2nd-order, partial 11.0625 6.96e-2 11.5156 3.16e-2 11.8906 0

2nd-order, full 11.0625 6.96e-2 11.5156 3.16e-2 11.8906 –
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Table 5
Comparing the mixing length Lδ at time 5 × 106 for an unstable two-component
single-phase system.

grid size Lδ

512× 128 1024× 256

1st-order 7.219 7.906

2nd-order, partial 7.500 8.219

2nd-order, full 7.531 8.250

24



Table 6
Comparison of the computational cost

t = 7× 105 t = 1× 106

time taken for uniform grid 7233.5s 10461.9s

time taken for AMR grid 878.4s 2106.2s

% domain refined at level 1 26.4 45.6

% domain refined at level 2 11.9 22.5
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Figures:

Fig. 1 Solution of n1 at 8× 106.
Fig. 2 Concentration of component 1 after time 5×106 based on first order method

(top), second order method (middle), and second order method with Step
1 (bottom).

Fig. 3 Fingering details of two different perturbation profiles of κ.
Fig. 4 Concentration of water at time 7×105, solved on an uniform grid (top) and

adaptive grid (bottom).
Fig. 5 Concentration of water at time 1×106, solved on an uniform grid (top) and

adaptive grid (bottom).
Fig. 6 The permeability function used in the 3D example.
Fig. 7 The adaptive grid (left) and solution at time 1.6× 106.
Fig. 8 Parallel performance of the adaptive algorithm: Weak scaling behavior (Left)

and % of domain refined (Right).
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