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Modeling a Mandibular Functional Shift and the Resulting Temporomandibular 
Joint Dysfunction in Mice 

 

Ana Alejandra Navarro Palacios 

Abstract  

The objective of this study was to develop a novel mouse model to evaluate functional 

adaptation of the temporomandibular joint to malocclusion. We intended to determine the 

effect of a mandibular functional shift on the size, shape, and symmetry of the craniofacial 

skeleton utilizing three-dimensional (3D) semi landmarks and geometrics morphometrics 

(GM) as well as to analyze histologically the cellular and molecular changes in the 

temporomandibular joint (TMJ) and in the mandibular condylar cartilage (MCC). A mouse 

model of a mandibular functional shift was created by extracting 3 molars from the 

maxillary right quadrant in FVB/NJ wildtype mice. Teeth were extracted at 3 weeks old, 

and samples were collected at 6 weeks so that mice developed a functional shift during 

a maximal growth period from weaning to sexual maturity. The experimental group 

consisted of 11 mice (5 females and 6 males), and the control group was composed of 

10 mice (4 females and 6 males). Micro CT (μCT) was performed on the entire heads of 

experimental and control mice. The TMJs on both the extraction and non-extraction sides 

in the experimental animals were compared to the control (with no teeth extracted) for the 

following variables: (1) geometric morphometric analysis of the size and shape of 

craniofacial skeleton, including the cranium, cranial base, maxilla, and mandible; (2) 

changes in bone volume and density of the TMJ condyle were determined using the μCT 

data, and (3) the TMJ and MCC were analyzed histologically and by in situ hybridization 

for specific markers. Overall, the size and shape of the cranial skeleton was not affected 

in the extraction model; however, there were changes in the mandibular shape. In the 



 iv 

mandible, the molar alveolus height was increased on the extraction side compared to 

non-extraction and control. The condylar head and neck width were narrower, and the 

superior surface of the condylar head was more convex on both the extraction side and 

the non-extraction side in the experimental animals compared tocontrols. Furthermore, 

the bone volume of the condylar process on both the extraction side and the non-

extraction side in the experimental animals was decreased by 15%, and the bone density 

was increased by 5% compared to condyles from control animals. Finally, the MCC was 

thinner in both the extraction and non-extraction sides in the experimental group, and the 

expression of Col2 and Col10 was increased, suggesting an expansion in maturation 

stage and hypertrophic chondrocytes, and there was ectopic expression of Col1 in the 

MCC, suggesting a pro-osteogenic response in the extraction condyle samples compared 

to controls.  

 Our results suggest extraction of the molars in one quadrant in our mouse model 

resulted in a presumed shift in the mandible and degenerative adaptations in the condylar 

shape. There was loss of bone volume in the condylar process and apparent deposition 

of bone with increased mineral density near the condylar head surface in both condyles  

of the extraction mice compared to controls. At the cellular level, there was an increase 

in maturation stage and hypertrophic chondrocytes and osteoblasts in the MCC that may 

have contributed to the remodeling and bone deposition at the condylar surface. This 

phenotype is suggestive of osteoarthritic changes in that thinning of the MCC and 

increased bone deposition at the condylar surface was observed. These data further 

elucidate the tissue and cellular changes in the condyle due to a functional shift, which 

furthers our understanding of the pathology of this malocclusion.      
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Introduction 
 
 
Structure and development of the mammalian temporomandibular joint  

The temporomandibular joint (TMJ) is a complex skeletal structure that is essential 

for jaw movement in mammals. It is a ginglymoarthrodial joint, meaning a joint that is able 

to perform both rotational and translational movements (Purcell et al. 2009). The TMJ is 

composed of the mandibular condyle that fits into the mandibular fossa of the temporal 

bone of the skull. Separating these two bones from direct contact is the articular disc. The 

morphology of the disc matches the condylar head and the mandibular fossa. In the frontal 

view, the disc is concave inferiorly, designed to fit over the condylar head and convex 

superiorly to fit the concave surface of the mandibular fossa of the temporal bone (Laskin 

et al. 2006). In the sagittal plane, it can be divided into three regions according to 

thickness. The central area is the thinnest while the anterior and posterior regions are 

much thicker in comparison. From the anterior view, the disc is thicker medially than 

laterally. The articular portion of the disc is comprised of dense fibrous connective tissue 

devoid of any nerves and vessels while the posterior attachment of the disc is innervated 

and richly vascularized. The fibrocartilaginous articular disc divides the joint cavity into 

two compartments, and specific tendons and muscles are associated with each 

compartment (Li et al. 2014; Owtad et al. 2013). Furthermore, the tendons of the pterygoid 

muscle and various surrounding ligaments are associated with the TMJ (Bravetti et al. 

2004). The disc is attached to the condyle both medially and laterally by collateral 

ligaments. The articular disc is attached posteriorly to a region of loose connective tissue, 

known as retrodiscal tissue, which is innervated and highly vascularized. Rotational 

movement occurs between the condyle and the inferior surface of the disc during early 
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opening, and translation takes place in the space between the superior surface of the disc 

and the fossa during lateral opening. Synovial fluid facilitates movement within the joint; 

it also serves as a medium for the transportation of nutrients and waste products from the 

articular surfaces of the condyle and glenoid fossa (Soydan et al. 2014).  

 The embryonic development of the TMJ is similar across various mammalian 

species, including mice and humans, however, it differs significantly from that of other 

synovial joints (Li et al. 2015). In contrast to the formation of long bone joints by cleavage 

or segmentation within a single skeletal condensation, the TMJ develops from two distinct 

and widely separated mesenchymal condensations: the glenoid fossa blastema and the 

condylar blastema (Li et al. 2014). The glenoid fossa blastema is derived from the otic 

capsule and undergoes intramembranous ossification (Wang et al. 2011; Gu et al. 2008). 

The condylar blastema develops towards a rectangular cell condensation located lateral 

and superior to Meckel's cartilage, and it is subsequently attached medially by the lateral 

pterygoid muscle as a result of rapid cellular proliferation (Bravetti et al. 2004). 

Simultaneously, the condylar blastema develops from the secondary condyle cartilage of 

the mandible and forms bone via endochondral ossification, subsequently extending in 

an anterior/medial direction and capping the condylar blastema (Merida et al. 2009; 

Yokohama-Tamaki et al. 2011).  

 The mesenchyme between the glenoid fossa and condylar blastemas condenses, 

prior to the separation of the two primordia of the TMJ, to form an articular disc (Wu et al. 

2014). As the condyle develops continuously upward approaching the glenoid fossa, the 

mesenchyme differentiates into layers of fibrous tissue, ultimately separating the upper 

and lower synovial cavities in a process termed cavitation (Gu et al. 2014). Via cellular 
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processes of proliferation and differentiation, the condyle anlage is configured into a 

typical secondary cartilage and superficially covered with a thick layer of flat fibrous cells 

(Vinkka-Puhakka et at. 1993; Kenzaki et al. 2011). The glenoid fossa exhibits 

intramembranous ossification, which occurs at the same time as condylar differentiation 

(Wang et al. 2011). During the development of the skeletal elements of the TMJ, 

morphogenesis of the soft tissues surrounding the joint continues. Following the 

completion of cavitation, the TMJ exhibits marked ossification and growth of the condyle 

and glenoid fossa, functional remodeling of the articular disc via an avascular event, and 

substantial condensation (Owtad et al. 2011). Furthermore, bones of the joint and the 

articular disc are encapsulated by the joint capsule, and the development of the muscles 

and ligaments associated with the joint proceeds (Liu et al. 2013; Ricks et al. 2013). 

Although the structure and function of the TMJ has been well characterized, the molecular 

and cellular mechanisms underlying its formation and development remain unclear. 

 

Mandibular condylar cartilage 

 The mandibular condylar cartilage (MCC) is unique in that it is a secondary 

cartilage, meaning that it develops after bone, while primary cartilage in limbs is replaced 

by bone, and secondary cartilage remains cartilage throughout the life of the animal. The 

major role of the MCC is to support and distribute functional loads, allowing for frictionless 

motion and prevention of the breakdown of the cartilage (Orajarvi et al. 2018). In addition, 

the MCC acts as a site of growth for the mandible, thus, acting as a growth plate and 

articular cartilage in one, unlike in other joints in which the growth plate and articular 
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surface are separated, and the epiphysis (growth plate) fuses upon the completion of 

growth.  

 Although it does not develop an epiphysis, the MCC is organized in a growth plate-

like structure that is subdivided along its main axis into four distinct layers. Interestingly, 

the MCC is composed of cells only partially differentiated along the chondrogenic pathway 

which are alkaline phosphatase positive and express type I and type II collagen, 

suggesting they may differentiate into chondrocytes or osteoblasts. The MCC is a 

fibrocartilage, and unlike hyaline cartilage, expresses type I collagen. The most superficial 

layer is called the articular or superficial zone; it forms the outermost functional surface, 

and it is found adjacent to the to the joint cavity. This zone is responsible for dissipating 

shearing and frictional loads generated by jaw functions, and it expresses superficial zone 

protein (SZP) which is a large proteoglycan that is synthesized and secreted into synovial 

fluid. SZP is known to function as a boundary lubricant by reducing the coefficient of 

friction of the MCC surface and the strain energy of the synovial fluid (Ohno et al. 2006; 

Jay et al. 2007). The second layer is the polymorphic (PM) progenitor cell zone. This zone 

is mainly cellular with undifferentiated mesenchymal tissue. The cartilage cells in this 

zone are large and enclosed in lacunae. There is no organization of formation or 

arrangement of chondrocytes in this zone. This tissue is responsible for the proliferation 

of articular cartilage in response to the functional demands placed on the articular surface 

during loading and unloading. This zone is characterized by the expression of Sox9 and 

the absence of the expression of Col2. The third layer is the flattened chondrocyte (FC) 

zone. The cartilage cells in this region are highly mature, yet these cells have not lost 

their ability to proliferate. In this zone, the collagen fibrils are arranged in bundles in a 
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crossing pattern. The cartilage shows a random orientation, providing resistance against 

compressive and lateral forces. Cells in this zone are characterized by the expression of 

Sox9, Indian hedgehog (Ihh), Col1, and Col2. The fourth and deepest layer is the 

hypertrophic chondrocyte (HC) zone. In this zone the chondrocytes become hypertrophic, 

undergo cell death, and have their cytoplasm evacuated, forming bone within the 

medullary cavity. Cartilage breakdown occurs and cartilaginous spicules undergo 

calcification with hydroxyapatite crystals. The surface of the extracellular matrix 

scaffolding provides an active site for remodeling activity as endosteal bone growth 

proceeds. The bony trabeculae are arranged randomly and not perpendicular to the 

articulating surface. Cells in this zone are characterized by the expression of Spp1 

(encoding osteopontin), Ihh, and Col10. It is well known that the extracellular matrix 

(ECM) surrounding the chondrocytes, which undergoes adaptive remodeling with 

mechanical stimulation, is the most abundant component of cartilage and can endow the 

cartilage with the unique capacity to bear load and resist compression (Shibukawa et al. 

2007). 

We have learned a great deal about the genes involved in TMJ development 

utilizing mouse models. For example, Runx2 and Sox9 are necessary for the 

development of the MCC since the MCC does not develop in mice with deletion of these 

genes (Shibata et. al 2004, Mori-Akiyama 2003). Mice with deletion of Foxc1 have 

sygnathia and bifurcated condyle and do not develop a disk or glenoid fossa (Inman et 

al. 2013), and mice lacking Alk2 present with complete TMJ agenesis (Dudas et al. 2004), 

suggesting a role for these genes in TMJ development. The MCC is underdeveloped, and 

the TMJ disc does not form in mice deficient in Ihh (Shibukawa et al. 2007). Thus, mouse 
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studies have shed light on genes involved in TMJ development; however, more work is 

necessary to fully understand the signaling involved in the development and maintenance 

of the TMJ and MCC and ultimately identify therapeutic targets for clinical interventions, 

such as treatment of TMJ disorders. 

 

Posterior crossbite and functional shift 

          Posterior crossbite is defined as a reverse occlusion, in which at least one 

mandibular posterior tooth from canine to molar occludes outside of the maxillary teeth. 

In patients with unilateral crossbite, the mandible often shifts toward the crossbite side 

when teeth occlude from rest to the intercuspal position, which is termed a mandibular 

functional shift (MFS). In some cases, the mandible remains deviated to the crossbite 

side at rest. Unilateral crossbite is a malocclusion encountered frequently in the 

orthodontic clinic with a prevalence ranging from 2.7% to 23.3% (Servert et al. 1997; 

Nerder et al. 1999; Ishizaki et al. 2010; Bishara et al. 1994; Proffit 1991). MFS is a 

common condition among this patient population since it has a prevalence of 80% to 90% 

in this group of patients with posterior crossbite (Kutin et al. 1969; Kurol et al. 1992). 

Clinically, MFS is characterized by facial asymmetry and dental midline discrepancy. It 

has been suggested that uncorrected mandibular functional shift in growing patients 

disrupts neuromuscular patterns and alters growth of the mandible, particularly in the 

condylar region (McNamara 1975). Accordingly, MFS in a unilateral posterior crossbite 

patient may lead to asymmetrical condylar growth and thus, potentially result in the 

development of facial asymmetry, which can only be treated surgically in adolescence or 

adulthood (Sato et al. 1989; Epker et al. 1999).  
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 Despite the potentially challenging outcomes of MFS, posterior crossbites can be 

corrected with expansion of the palatal suture in growing patients in primary or mixed 

dentition. Since only 10% of posterior crossbites identified in the primary dentition will 

self-correct during the transition to the mixed dentition (Dimburg et al 2013), it is important 

to diagnose and treat this malocclusion early, during the primary or mixed dentition stage. 

Petren et al., (2003), in a systematic meta-analysis of published articles between 1966 

and 2002 on early treatment of posterior crossbites, concluded that primary and early 

mixed dentition intervention has a very high success rate using various fixed and 

removable maxillary expansion appliances. Fixed lingual archwire designs had 90-100% 

reported success rates in the correction of posterior crossbites during primary and mixed 

dentitions. Fixed maxillary jackscrew appliances were reported at close to 100% success 

rates in the correction of posterior crossbites during the primary and mixed dentitions. 

Removable splint-acrylic type appliances had somewhat lower success rate at 60-70% in 

both primary and mixed dentitions (Petren et al. 2003). Thus, there are many effective 

treatment modalities for posterior crossbite and MFS, and it is important to diagnose and 

treat in the primary or mixed dentition in order to avoid the development of asymmetry 

during adolescence and adulthood.  

 How posterior crossbite and MFS affect growth in patients at the tissue and cellular 

level is not well understood. Furthermore, the shift results in the condyle on the side 

opposite the direction of the shift to be displaced anteriorly, or protruded, while the 

condyle on the side toward the shift is more stable positionally and is likely to be slightly 

retruded (Fuentes et al 2003; Nakano et al. 2004). How the altered position of the condyle 

affects the shape and function of the TMJ in patients is not fully understood.  
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There is some evidence showing the effect of posterior crossbite and MFS on 

mandibular growth and the TMJ in various animal studies. A number of animal studies 

suggest that proliferation and growth in the MCC is altered after a change in the postural 

position of the mandible using intraoral positioners designed to shift the mandibular 

postural position asymmetrically (Fuentes et al. 2003; Takenobu et al. 2008), maxillary 

occlusal splints to shift the mandible laterally during closure (Nakano et al. 2004), and 

grinding mandibular and maxillary molars to create a lateral shift (Poileka et al. 1997; 

Poileka et al.2000). According to these reports, growth of the MCC adapts to its local 

functional-biomechanical environment and differential changes in the MCC occur on the 

non-protruded and protruded sides. Yotsuya et al., (2020) evaluated the role of 

mechanical loading in the progression of TMJ osteoarthritis in surgical instability arising 

from unilateral partial discectomy (UPD) in a murine model. They found that on the side 

where the UPD was performed, late-stage degeneration of the cartilage showed a 

significant reduction with diminished fibrillation and erosion of the articular cartilage, cell 

clustering, and hypocellularity, suggesting that select and specific late-stage changes in 

TMJ osteoarthritis were likely due to the changes in local mechanical environment on the 

joint (Yotsuya et al 2020). Studies in rats have also shown that inducing a lateral shift 

using inclined crowns cemented on the maxillary incisors results in changes in growth of 

condylar head and in trabecular structure and mineralization of the condylar bone 

(Nakano et al. 2003).  

Clinically, unilateral posterior crossbite and MFS can result in asymmetric growth 

of the mandible and alterations in the MCC in patients, which has been further supported 

by studies of mouse models with altered occlusion. However, how mandibular growth is 
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affected is not well understood, and furthermore, very little is known about the effect on 

shape and function of the TMJ and the molecular response of the MCC as a result of 

alteration in the habitual position of the mandible.  

 

Geometric morphometrics and its use in orthodontics 

Technological advances have made three dimensional orthodontic diagnostic tools 

much more accessible in the last several decades. We now have 3D images of the 

craniofacial skeleton from CBCT imaging, dental casts from intraoral and standard 

scanners, and 3D facial photographs from stereophotogrammetry camera sets, all 

available in digital format. We are, therefore, in the position to measure and evaluate what 

interests us most as orthodontists, namely facial shape, in ways that were not possible in 

the past (Klingerberg et al 2010; Polychronis et al 2013). Potentially, it is a turning point 

in orthodontic diagnosis. Since 3D data are not a mere extension of 2D data to an extra 

dimension but require new tools to fully exploit their 3D nature, we can now take this 

opportunity to improve our diagnostic tools. 

Geometric morphometrics (GM) combines geometry, multivariate morphometrics, 

computer science, and imaging techniques for a powerful and accurate study of 

organismal forms (Cardini et al. 2013). GM has been traditionally applied to the field of 

biology to study developmental differences between species (Klingerberg, 2010). 

Morphometrics is defined as a branch of biology that deals with the characterization of 

organismal form and quantification of morphological variation. It is derived from the Greek 

word which means measuring form. Morphometrics is used to quantify the morphological 

structure of organisms and then present and explain the shape differences.  
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Geometric morphometrics principles 

GM is a special method to measure shape as it does not use traditional angles and 

linear distances. By selecting specific angles or linear measurements, we arbitrarily 

choose which part of the shape to measure. In fact, the selection of some measurements 

and exclusion of others can lead to biased results as you consider just one specific part 

of the shape rather than the whole of it. With GM, the whole of the shape can be analyzed. 

The following are basic principles of GM: 

1) An object is a collection of landmarks. Objects such as bones and faces need to 

be reduced to a set of landmarks before analysis can proceed, as the basic tools 

of GM cannot work directly on curves or surfaces. Objects of the same class (e.g. 

faces) must have the same number of landmarks, and these have to be 

homologous (e.g. each landmark must represent the same anatomical or 

functional feature). 

2) Shape of an object can be measured only in relation to another object (e.g. shape 

measurement is actually the comparison between two measurements of shape 

difference).  

3) The “shape” is the morphologic entity that remains after position and size 

differences have been removed from the analyzed objects (as dimensional 

differences are not considered when comparing shapes). 

 

When analyzing a collection of objects, the main purpose is to find the average 

shape of the objects and then analyze the variability of shape in the group with regard 

to the average shape. The variability is analyzed through Principal Component 
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Analysis (PCA). In a biological system, such as the craniofacial complex, shape 

variability can be translated into shape patterns. GM can reveal these patterns and 

measure the relative contribution of each to the total shape variability (Webster et al. 

2010; Bookstein et al. 1997; Mitteroecker et al. 2009). 

 

From Cartesian coordinates to the shape-space system 

The procedure that GM follows to compute average shape and shape variability is a 

sequence of the following actions: 

1) Landmarks are placed on the objects at homologous positions. When all 

landmarks are placed, we can call the group of landmarks that describe an 

object as a landmark configuration. 

2)  The landmark configurations are aligned and scaled using best-fit procedures 

that minimize differences between them. This step is called Procrustes 

superimposition. After Procrustes superimposition, we lose all information 

about size, and we deal only with shape. 

3) The Cartesian coordinates (x,y,z) of the scaled/aligned objects are called 

Procrustes coordinates. The Procrustes coordinates of an object define its 

position in a system known as shape-space. 

4) The shape-space extends along many dimensions since each object has many 

landmarks. For 3D objects, the number of dimensions of the shape-space is 

equal to three times the number of landmarks minus seven (degrees of 

freedom). 
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5) Each object can be considered as a single point in shape-space. The distance 

between two objects in shape-space is equal to their shape difference. 

6) The average shape of all the objects is the shape at the center of the shape-

space and can be easily computed by averaging the Procrustes coordinates of 

each landmark. 

7) To determine the shape patterns of the population, the shape-space is rotated 

in such a way that is main axes are aligned with the direction of major variability 

of the population. This is achieved by applying PCA. PCA describes differences 

between shapes through determination of the main sources of variability when 

comparing different shapes (Bookstein et al. 1997).  

 

Landmark identification and placement 

GM is based on landmark data. A morphological landmark is defined as a point 

that can be located precisely on each specimen under study and clearly correspond in a 

one-to-one manner from specimen to specimen (Drydent et al. 2002). When applying GM 

to objects of interest, such as bone surfaces, we cannot study curves and surfaces 

directly, but we need to place landmarks on them. Thus, a challenging problem in GM is 

determining how many landmarks to place, where to place the landmarks, how densely 

to cover each surface with landmarks, and finally how to confirm that landmarks are 

homologous from one object to another. This last question is particularly important since 

in orthodontics we come across some extensive areas that do not possess any 

distinguishing/non-ambiguous markers. To manage this problem Bookstein developed a 

classification based on anatomical and geometric criteria and proposed three different 
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types of landmarks: 

          1- Type I landmarks are those that are located at the juxtaposition of anatomical 

features, such as the confluence of three structures meeting at one point. These 

landmarks are defined by features in their immediate vicinity and can be confidently 

assumed homologous at least in anatomical sense (e.g., Nasion: the most anterior point 

of the frontonasal suture on the curve at the bridge of the nose). 

          2-Type II landmarks are defined as the maximal curvature of an anatomical 

structure (e.g., the anterior nasal spine defined as the point of the highest curvature of 

the maxillary outline). 

3-Type III landmarks are defined as points along a curve or surface, in relation to 

some other more distant structure. For example, the menton is located on the mandibular 

outline but needs other structures (e.g., the Frankfurt horizontal) or an external vertical 

direction (e.g., the true vertical) to define its precise location (Bookstein 1997a; Bookstein 

1997b).   

Landmarks should cover the entire structure under study in as regularly placed 

intervals as possible so that all changes can be detected. Removal of one landmark may 

alter the entire result. On the other hand, too many landmarks may not provide relevant 

information about variation in the whole structure. 

Curves or surfaces that do not provide explicit information for precise location of 

landmarks are ubiquitous. The simple solution is to place landmarks at predetermined 

intervals along the curve. Points placed with such criteria that stay on the curve/surface 

are called semi-landmarks. The geometry is easier for curves in 2D than 3D, but it is not 

so easy to define semi-landmarks since placement is not guaranteed to be 100% 
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homologous. Semi-landmarks are placed in the appropriate position and density until the 

additional shape variability is reduced to the minimum possible. This is achieved by sliding 

the semi-landmarks in the direction that reduces shape variance while always 

constraining them on the curve or surface. Once in the position, the semi-landmarks can 

be considered homologous points, and the shapes are ready to be analyzed by PCA 

(Mitteroecker et at. 2009; Gunz et al. 2005). 

 

Advantages and disadvantages of GM 

When using GM, we remove any information on size since all the shapes are 

“averaged”, and size information is left out of the Procrustes space. This fact can be seen 

as a disadvantage as only change in shape patterns can be analyzed through GM. 

However, this limitation may also be considered an advantage. There is no need to 

arbitrarily select a special part of the shape to measure as all parts can be compared as 

long as landmarks fit the area. Another important aspect is that in orthodontics we usually 

compare anatomical features between patients and controls, assuming that controls are 

“normal”. However, what can be considered normal or not normal is controversial and 

difficult to determine. With GM, variation in shape is determined from the population in an 

unbiased manner. Variability analysis via PCA allows us to determine shape patterns and 

can therefore dictate which measures are important in defining the shape.  

 

Applications of geometric morphometrics in orthodontics 

Recently, GM has been widely used in medical fields, as well as orthodontics since 

orthodontics is focused on the size and shape of the face and its components. 
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Widespread use of 3D imaging modalities has generated extensive and large volumes of 

data. Tools for interpreting and organizing these data have not kept pace with the 

development of more sophisticated imaging. Craniofacial research increasingly utilizes 

aspects of these data to answer complex questions. While several tools have been used 

to measure size, proportions, and relationships between anatomical components, shape 

has been mainly described by esthetic criteria. GM can be used as a specific tool to 

analyze shape variation between individuals and to identify patterns of variation of 

orthodontic interest as well as quantify shape-related changes of skeletal tissues in 

disease and understand the variation in facial morphology in large populations in 3D, 

which is more accurate than the traditional application of points and lines for 

measurement in 2D (Guyomarch’h et al. 2014).  

During the last century, most research done in orthodontics was based on 

conventional 2D images and cephalometric analysis. This method is user-friendly and 

simple which explains why it continues to be in routine clinical use. One of the key 

advantages of CBCT over 2D radiographs is its ability to provide 3D volume, surface, and 

sectional information about the craniofacial structures. CBCT has provided orthodontists 

and researches the ability to overcome the substantial limitations of 2D radiographs, 

including geometric distortions and superimposed structures (Kapila et al. 2015). Unlike 

2D superimpositions provided by conventional cephalometric radiography, CT/CBCT 

images can provide sophisticated 3D superimpositions and treatment assessment when 

necessary (Cevidanes et al. 2006).  

Translation of methodology developed in two dimensions to three is not 

straightforward and involves many additional challenges. Traditional use of lines and 



 16 

cephalometric analysis is inadequate as it does not provide an accurate or complete 

description of the morphology or the covariation of related structures in 3D. The good 

news is that methods for statistical shape analysis, such as PCA, are readily applicable 

to landmarked 3D data sets to classify morphology (Solem, 2017). This explains why the 

use of GM is a powerful tool to study shape and growth differences, and its use has 

increased in popularity during the last decade. 

 More recent orthodontic studies published in the last 20 years have used GM for 

their data analysis. For example, McIntyre in 2003 described the advantages and 

disadvantages of GM, its utility in orthodontics, and how it can overcome conventional 

cephalometric analysis deficiencies (McIntyre et al. 2003). Ghislanzoni et al. in 2017 

described how to measure 3D shape in orthodontics using GM, providing a workflow and 

explaining how to apply this new method as part of the routine orthodontic diagnosis 

(Ghislanzoni et al. 2017). Pan and his colleagues evaluated deformations that contribute 

to Class III mandibular configuration employing GM analysis. They found that the thin 

plate spline (TPS) analysis revealed an anteroposterior elongation of the mandible, which 

leads to the appearance of a concave profile with a prognathic mandible (Pan et al. 2006). 

In 2016 Freudenthaler et al. evaluated the role of craniofacial shape in malocclusion by 

applying GM to a set of two dimensional landmarks and semi-landmarks obtained from 

lateral skull radiographs. This research group found that craniofacial shape was clearly 

associated with dental malocclusion and showed considerable variation (Freudenthaler 

et al. 2017). Tessler et al. compared craniofacial differences between twins discordant for 

surgically repaired unilateral cleft lip and palate (UCLP) at multiple developmental stages, 

testing the effect of zygosity on the shape and size of the craniofacial skeleton by means 
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of TPS analysis. They found that GM showed that surgically repaired UCLP does not 

produce significant shape or size differences in the craniofacial features of monozygotic 

or dizygotic twins discordant for UCLP (Tessler et al. 2011). Latif and his colleagues 

compared facial morphology in subjects with unrepaired complete bilateral clefts and 

unaffected controls using GM. PCA showed that facial variation in subjects with clefts 

occurred in the anteroposterior direction, whereas in controls it was mostly in the vertical 

direction. These differences in the direction of facial variability suggest that individuals 

with bilateral clefts can have an intrinsic growth impairment affecting facial morphology 

later in life (Latif et al. 2020).  

Finally, Chang et al. studied the cranial base morphology of Asians and its 

relationship with class III malocclusion due to mandibular prognathism. This group tested 

the hypothesis that developmental heterogeneity in cranial base morphology increases 

prevalence of class III malocclusion and mandibular prognathism in Asians. TPS analysis 

of lateral cephalograms of the cranial base and the upper midface configuration were 

compared between one European-American group and four Asian ethnic groups of young 

adults with clinically acceptable occlusion and facial profiles. TPS analysis showed that 

the greatest differences in the Asian populations were the horizontal compression and 

vertical expansion in the anterior portion of the cranial base and upper midface region. 

The most posterior cranial base region also showed horizontal compression between the 

basion and Bolton point with forward displacement of articulare. Facial flatness and 

anterior displacement of the temporomandibular joint resulted in a relative retrusion of the 

nasomaxillary complex and relative forward position of the mandible. These features that 

tend to cause prognathic mandible and/or retruded midface indicated a morphologic 
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predisposition of Asian populations for class III malocclusion (Chang et al. 2014).  
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Central Hypothesis 

Inducing a functional shift in our mouse model by extracting molars in the maxillary right 

quadrant will result in changes in the shape of the mandible, in particular the condyle, 

differences in bone volume and density of the condylar head, and degeneration of the 

MCC, including disorganization and alterations in the chondrocyte populations in the MCC 

compared to control.  
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Specific Aims 

Aim 1: To determine the effect of a mandibular functional shift on the size, shape, 

and symmetry of the craniofacial skeleton in an extraction mouse model. I 

hypothesize that inducing a functional shift in our mouse model by extracting molars in 

the maxillary right quadrant will result in asymmetric growth of the craniofacial skeleton, 

including changes in the shape of the mandible compared to control. We will perform 

geometric morphometric analysis on the complete skull, including the maxilla, mandible, 

and cranium, of experimental and control mice. We will also analyze the bone volume 

and density of the condylar processes. The analysis proposed in Aim 1 will show whether 

a mandibular functional shift during growth does indeed affect the shape of the cranial 

skeleton, in particular the mandible, and bone volume and density in a mouse model. 

Aim 2: To analyze the histologic cellular and molecular changes in the 

temporomandibular joint (TMJ) and mandibular condylar cartilage (MCC) in a 

mandibular functional shift mouse model. I hypothesize that a mandibular functional 

shift in our extraction mouse model will result in degeneration of the MCC, including 

disorganization and alterations in the chondrocyte populations in the MCC, decreased 

chondrocyte proliferation and increased cell death in the MCC, and alterations in 

osteoblast and osteoclast activity in the MCC on the experimental side. In Aim 2, I will 

analyze (1) the gross changes in MCC thickness, (2) changes in cell morphology and 

organization, (3) differences in cell proliferation and death, and (4) osteoblast and 

osteoclast markers in the MCC in the experimental and control mice.  
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Materials and Methods 

 

Animals: 

FVB/NJ mice from Jax Lab were utilized for the experiments in this study. At 3 weeks of 

age, all 3 molars from the maxillary right quadrant were extracted under anesthesia with 

ketamine and xylazine in the experimental mice. Experimental and control littermates with 

no teeth extracted were euthanized and mouse heads were collected at 6 weeks old. The 

experimental group consisted of 11 mice (5 females and 6 males), and the control group 

was composed of 10 mice (4 females and 6 males). For the morphometric analysis of the 

skull, the scan for one of the experimental female skulls was distorted, and so only 10 

experimental mice (4 females and 6 males) were analyzed. All animal procedures were 

performed following approval from the Institutional Animal Care and Use Committee.  

 

Micro-computed tomography: 

Micro-computed tomography (μCT) was performed on the entire skull of the experimental 

and control mice. 6 week-old experimental and control mice were collected, and the 

heads were removed, fixed in 4% paraformaldehyde (PFA), and dehydrated in 70% 

ethanol. Samples were scanned with the SF VA Medical Center Bone Imaging Core 

Facility using a MicroCT50 (Scanco Medical), 55kVp, 109µA, 6W. Heads were scanned 

at 20µm voxel size, with a 500ms integration time and a 20.5mm field of view. The number 

of slices per sample was 600. The scanner was calibrated for bone using an AL 0.5m 

filter calibrated to 55kVp, 0.5mm AI, BH: 1200mg HA/ccm, scaling 4096. 3D image 

processing and analysis was carried out using Avizo Lite software (version 9.1.1, Thermo 
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Fisher Scientific). Bone volume and density were calculated according to grayscale 

intensity using the Material Statistics module of Avizo 9.1.1. 

 

Geometric morphometric analysis: 

μCT data was imported into Avizo Lite (version 9.1.1, Thermo Fisher Scientific), 

where the craniums and mandibles were manually separated. Using consistent 

thresholds, isosurfaces were generated for each anatomical region. Isosurfaces were 

brought into Landmark (Institute for Data Analysis and Visualization) where the cranium, 

mandible, and condyles were landmarked. Three landmark schemes were utilized: 

scheme one included 44 landmarks to capture the cranium morphology (Supplemental 

Figure 1) (Hill et al. 2009); scheme two consisted of 26 bilateral landmarks for the 

mandibles (Figure 1B) (Hassan et al. 2019); and set three included four arrays of 40 

sliding semi-landmarks designed to recapitulate the structure of the condylar processes 

(Figure 2A), and the arrays were placed on the medial and distal sides of each condyle 

(Figure 2A’). For the semi-landmarking, each array included 9 landmarks (Figure 2A’) 

which bounded the equidistantly placed semi-landmarks. The landmark coordinates were 

exported as text files and imported into MorphoJ (Version 2, Apache License, 

Klingenberg, C.P. 2011) (Klingenberg et al. 2011) for statistical evaluation of shape 

differences. Centroid size, defined as the square root of the sum of squared deviations of 

landmarks from their centroid, was examined between control and experimental groups 

for each anatomical region using a Student’s T-Test; no significant differences were 

found. To eliminate orientation, size, and position, a Procrustes superimposition was 

performed on the landmark data. To examine the major differences in shape between the 
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control and extraction groups, a principal component analysis (PCA) was conducted. PCA 

is a method that preserves information while simplifying higher dimensional data into 

mutually orthogonal dimensions called principal components. Wireframes of the 

maximum, average, and minimum shape variants were generated to visualize the full 

spectrum of shape variation recapitulated by a principal component. Canonical variate 

analysis (CVA) or a linear discriminant analysis (for this data) was also performed for 

each anatomical region between control and extraction groups. CVA is a method of 

multivariate analysis designed to maximally separate predefined groups based off of their 

intragroup variation. From this analysis, the Procrustes and Mahalanobis distances 

among groups were found and permutation (10,000 permutations) tests were conducted 

to generate p-values.  

 

Histological analysis: 

Heads were collected from experimental and control animals, fixed in 4% 

paraformaldehyde overnight at 4°C, demineralized in EDTA (0.5M) for 1 week, paraffin 

processed and embedded, and sectioned at 7μM on a Leica microtome in order to 

perform histological analysis of the TMJ and MCC. Hematoxylin and eosin (H&E) and 

safranin O staining was performed on sections following standard protocols. To assess 

cell death, TUNEL staining (In Situ Cell Death Detection Kit, TMR red, Roche 

12156792910) was performed following kit protocols, and TUNEL positive cells were 

imaged and quantified. RNAscope (ACD Diagnostics), an in situ hybridization assay for 

detection of target RNA within intact cells, was performed following standard 

manufacturers protocols with specific mouse probes against Col1a1 (#537048), Col2 
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(#407228), Col10 (#426181), and Mmp13 (#427601). Sections were imaged on a DMi8 

upright microscope.    
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Results 

 

Extraction of molars in the maxillary right quadrant resulted in changes in the 

shape of the mandible and condyle. 

 The experimental design of the project was to extract the three molars from the 

maxillary right quadrant of mice at postnatal day (P) 21 at the time of weaning, when the 

molars are just erupting (Figure 1A). We then allowed the mice to develop normally until 

P42 or six weeks when the mice reach sexual maturity and then euthanized both the 

experimental mice with teeth extracted and control littermates with no tooth extractions. 

Heads were μCT scanned, isosurfaces were generated and landmarked (landmarks for 

mandible shown in Figure 1B, condyle Figure 2A’, and cranium Supplemental Figure 1), 

and geometric morphometric analysis was performed on the skull (cranium, cranial base, 

and maxilla), mandible, and condylar head.  

Procrustes superimposition was completed, and no significant difference in 

centroid size of the skulls between the control and extraction groups was noted, and so 

there was no need to account for size difference in the data (Supplemental Table 1). To 

investigate the role of sex in our data, canonical variate analysis (CVA) was executed on 

all anatomical regions of interest and delineated by sex. For every region, the Procrustes 

distance was calculated between males and females, and no statistically significant 

differences were found (Supplemental Table 1). PCA was also performed comparing the 

control and experimental samples by sex, and it clearly illustrated that the data clustered 

by experimental group and not sex (Supplemental Figure 2).   
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We observed significant changes in the shape of the mandible after extraction of 

maxillary right molars (Supplemental Table 1). Overall, the control and extraction groups 

separated completely, and the majority of the variation between the groups was 

accounted for by principal component (PC) 1 (41.84%) and PC2 (13.44%; Figure 1C, 

Supplemental Table 2). CVA was also performed and showed clear separation between 

experimental and control samples (Supplemental Figure 3A).  

A major difference in the mandibular body shape was the height of the alveolar 

bone which was significantly increased in the right (extraction side) mandible compared 

to the left (non-extraction side) mandible of the extraction mice or control mice. Due to 

the extraction of the maxillary right molars on the right side, there was compensatory 

eruption of the opposing mandibular molars on the right, as expected, and so the molars 

hyper-erupted as seen in the wireframe and isosurface images (Figure 1D, D’). Linear 

measurements also showed a significant difference in the alveolar height of the right 

mandible and not of the left mandible in the experimental mice compared to control 

(Supplemental Figure 4). Otherwise, the shape of the right (extraction) and left (non-

extraction) mandibles were fairly similar, when comparing both sides together (Figure 1C-

D’).  

When we compare the right (extraction side) mandible to control only, we see 

separation of control and extraction samples along PC1 (46.67%) and PC2 (17.02%; 

Figure 1E, Supplemental Table 2). There were significant shape differences in the right 

extraction mandible compared to control (Supplemental Table 1, Supplemental Figure 

3B) as shown by the PC1 Max in the wireframe (Figure 1F) and isosurface (Figure 1F’) 

including, as mentioned the increase in alveolar bone height, increased height at the 
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lower border of the mandible, decreased length of the angular process, and increased 

posterior-inferior tip of the condylar process. The left, non-extraction side mandible also 

separated significantly from the control (Supplemental Table 1, Supplemental Figure 3C) 

along PC1 (47.01%) and PC2 (13.24%; Figure 1G, Supplemental Table 2), and there 

were similar differences in the shape of the lower border of the mandible, angular process, 

and condylar process compared to control (Figure 1H, H’). Thus, interestingly, although 

the extraction was only done on the right hemi-mandible, we observed changes in the 

mandibular shape in both the right and left hemi-mandibles compared to control.   

The isosurfaces of the right and left mandibles in the extraction mice showed 

significant changes in the condylar head that were not entirely captured by the mandibular 

landmarks (Figure 1F’, H’). In order to more precisely measure the changes in shape of 

the condylar head and neck, we added additional landmarks and semi-landmarks on the 

condylar process (Figure 2A, A’) and performed geometric morphometric analysis. On the 

right (extraction side), the extraction condyle separated completely from the control 

(Supplemental Table 1, Supplemental Figure 3D) along PC1 (50.05%) and PC2 (10.09%; 

Figure 2B, Supplemental Table 2). The wireframe diagram shows that the condylar head 

and neck were narrower in the extraction condyle compared to control (Figure 2C). In 

addition, the condylar head surface was more convex in the extraction model compared 

to control (Figure 2C). These differences are exemplified in the representative isosurfaces 

of the right extraction and control condyles (Figure 2C’). Similarly, the left (non-extraction) 

condyle significantly separated from control (Supplemental Table 1, Supplemental Figure 

3E) along PC1 (50.05%) and PC2 (11.19%; Figure 2E, Supplemental Table 2), although 

there was more variability among the control and extraction groups since the data did not 
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cluster as tightly compared to the right side. We observed similar changes in the shape 

of the condyle on the left side as the right, with decreased condylar head and neck lengths 

and increased convexity at the condylar surface in the left (non-extraction) side in the 

experimental animals compared to control (Figure 2F, F’). In addition, linear 

measurements were taken to measure the condylar head and neck widths, and both the 

right and left condylar processes had significantly narrower condylar heads and necks 

compared to control (Figure 2D, G).   

We also analyzed the skull (cranium, cranial base, and maxilla) to determine 

whether extraction of molars in the maxillary right quadrant resulted in asymmetric growth 

of the skull. We found there was a significant difference in the shape of the cranium 

between control and extraction mice (Supplemental Table 1). This shape difference 

appears to be primarily in the alveolar process length (distance between most mesial 

point of the first molar (points 30 and 31 in Supplemental Figure 1A’) and most distal point 

of the third molar (points 32 and 33 in Supplemental Figure 1A’)), however, these points 

were difficult to reliably landmark in the right quadrant of the experimental mice in which 

the molars were extracted. Thus, the biological significance of this finding is not clear, 

and there do not appear to be any other clear shape changes in the cranium of the 

experimental mice compared to control. Although we extracted at 3 weeks and allowed 

the mice to grow during a major growth period, it is possible that this period of time was 

not long enough to see changes in the skull morphology. It will be interesting to follow up 

on these results by examining the skulls of mice 6 months after extraction at which time 

there may be compensatory, asymmetric growth in the skull in response to changes in 

the mandibular growth. 
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Thus, both the right (extraction side) and left (non-extraction side) mandibles in the 

experimental mice differed significantly in shape compared to control. Furthermore, there 

were significant changes in the shape of both the right and left condylar processes in the 

extraction model compared to control, including narrowing of the condylar head and neck 

and increase in convexity of the condylar surface. These results show that the extraction 

of molars in the maxillary quadrant results in significant changes in the shape of the 

mandible and particularly in the condylar process.  

 

The condylar process bone volume was decreased and density increased in the 

extraction model compared to control. 

 We next wanted to determine whether extraction of the maxillary molars resulted 

in changes in the bone volume and density of the condylar process. We hypothesized 

that the extraction may result in osteoarthritic type changes in which total bone volume 

would decrease, and bone of increased density would be deposited in the condylar 

process. Indeed, the total bone volume of the condylar process on the right (extraction 

side) was decreased by 14.86% and left (non-extraction side) by 16.17% in the extraction 

mice compared to control (Figure 3A, A’, C, C’). This loss of bone volume further suggests 

degenerative changes in the condyles with extraction. 

 Although the total bone volume of the condylar processes in the extraction model 

was decreased, the bone density was increased compared to control. Renderings of the 

condylar processes with the color representing the relative bone mineral density show 

that overall, the right and left condylar processes in the extraction model had denser bone 

than control (Figure 3A, A’). In particular, near the condylar head surface, the bone was 
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denser (more green than blue) in the extraction model condyles, both right and left, 

compared to control (Figure 3A, A’). Quantification of the relative bone mineral density of 

the condylar processes confirmed that the bone mineral density of the right and left 

condylar processes in the extraction mice was significantly increased by 4.96% and 

5.60%, respectively, compared to control (Figure 3B, B’). Of note, we also quantified the 

bone density in the entire skull and mandible, and there was no significant difference 

between extraction and control mice, and so the alterations in bone density appear to be 

specific to the condylar process. These data suggest there was loss of total bone volume 

in the condylar processes and deposition of bone of increased density near the condylar 

head surface in both the right and left condyles of the experimental mice compared to 

control.    

 

There was an increase in maturation stage and hypertrophic chondrocytes and 

osteoblasts in the MCC in the extraction mice compared to control. 

 In order to further understand the degenerative changes in the condyle in the 

experimental compared to control mice at the tissue and cellular level, we completed 

histological analyses of the TMJ in the extraction and control model. H&E staining of 

coronal sections of the TMJ showed that compared to control, the MCC was thinner on 

both the extraction and, to a lesser extent, on the non-extraction side in the experimental 

mice (Figure 4A-C’). In both condyles of the mice with extractions, the width of the MCC 

was decreased and the cells appeared to be more tightly packed together from the 

superficial to deeper surface compared to control (Figure 4A’-C’). Similarly, Safranin O 

staining showed that the MCC (stained red) in the extraction condyle in the experimental 
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mice was indeed thinner than the control (Figure 5A,B). Furthermore, the staining on the 

experimental condyle is lighter and more diffuse compared to control suggesting a loss 

of proteoglycans form the remaining cartilage which are key markers of cartilage. These 

data show that extraction of the maxillary molars resulted in a thinning of the MCC 

compared to control.  

We also wanted to determine whether cell proliferation or apoptosis was altered in 

the MCC in the extraction model compared to control. With the samples collected for this 

project, immunofluorescence staining with antibodies against Ki67 or PH3, both markers 

of proliferation, revealed very few proliferative cells in the condyle at the 6 week timepoint 

in both the extraction and control samples. It was not clear whether the tissue preparation 

(long term EDTA treatment to demineralize the samples) disrupted the antigens. We were 

not able to collect convincing data on the proliferation levels in the condyle, and in the 

future, we plan to inject additional mice with BrdU, a thymidine analog that is incorporated 

into the newly synthesized DNA in proliferating cells, as a more robust marker of 

proliferation to determine the proliferation levels in the condyle and whether there were 

differences in the extraction model compared to control.  

We collected preliminary data on the level of apoptosis in the condylar heads of 

extraction and control mice using TUNEL staining. We found that while there was no 

significant difference in the number of TUNEL+ cells in the condylar head in the extraction 

side compared to control, there was a significant 52% decrease in TUNEL+ cells on the 

non-extraction side compared to the extraction side and control (Figure 6A-D, N=3 control 

and 3 extraction mice). Thus, the level of cell death was similar on the extraction side and 

control, however, there was a significant decrease on the non-extraction side. Further 
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experiments with additional samples will be necessary to confirm these preliminary data. 

A possible hypothesis is the altered position of the non-extraction side condyle may result 

in decreased force on the condyle and decreased cell death; however, additional 

experiments will be necessary to test this hypothesis.  

 Considering the alterations in the MCC in the extraction model, we wanted to 

further determine whether the cellular composition of the MCC was altered due to 

extraction. We decided to explore the levels of chondrocyte markers Col2 and Col10, 

osteoblast and fibroblast marker Col1, and osteoclast activity marker Mmp13 at the RNA 

level using RNA Scope, a method of in situ hybridization. We observed an expansion in 

the MCC of expression of Col2 and Col10 in both condyles of the experimental mice, 

which suggests an increase in maturation stage and hypertrophic chondrocytes, 

respectively, in the MCC of the condyles of the extraction mice compared to control 

(Figure 7A-F). Interestingly, there was a broad expansion of Col1 expression in the 

extraction condyles compared to control (Figure 7G-I). Col1 was expressed in the 

developing bone in the condyle, inferior to the MCC, in the control, however, in the 

extraction and non-extraction condyle of the extraction mice, Col1 was expressed more 

broadly in the bone and in the MCC (Figure 7G-I). These data suggest there may be Col1 

which is a marker for osteoblasts and fibroblasts in the MCC and head of the condyle in 

the extraction mice. Finally, the expression of Mmp13 was increased in the condylar head 

region, inferior to the MCC, in the condyles of the extraction mice compared to control 

(Figure 7J-L), suggesting increased osteoclasts and bone turnover in the condylar heads 

of the experimental mice compared to control. We also explored markers of less 

differentiated and proliferative chondrocytes, such as Sox9 and Runx2, however, we did 
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not see differences in expression in the condyles in the extraction and control mice (data 

not shown). Overall, these data suggest that, in the extraction model, the chondrocytes 

of the MCC were further differentiated, with an increase in maturation stage and 

hypertrophic chondrocytes compared to control. Furthermore, there was an increase in 

osteoblast and osteoclast marker expression in the extraction model suggesting an 

increase in bone deposition and remodeling in the condylar head. However, these cell 

marker data do not definitely prove cell type or activity, and further work is necessary to 

determine differences in chondrocyte, osteoblast, and osteoclast numbers and activities 

in the extraction model. 
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Discussion 

Here, we developed a model of a mandibular functional shift by extracting molars 

from the maxillary right quadrant in rapidly growing 3 week-old mice in order to better 

understand the effect of this malocclusion on the mandible and TMJ at the tissue and 

cellular level. We found that extraction of the maxillary right posterior teeth resulted in 

changes in the shape of the mandible, most strikingly in the condylar process, which was 

narrower at the head and neck and more convex at the condylar surface. Furthermore, in 

both condylar processes of the experimental group, the total bone volume was decreased 

in the extraction model by 15%, and there was a 5% increase in bone density compared 

to the control group. The MCC was thinner in the extraction model, and there was a shift 

to markers of more differentiated maturation stage and hypertrophic chondrocytes and an 

increase in osteoblast and osteoclast markers in the MCC in the extraction model, 

suggesting possible bone deposition and remodeling at the condylar head due to the 

extraction.  

We believe this extraction mouse model is useful in that it models a functional shift 

which can be utilized to study the pathology resulting from this malocclusion, which is 

common in the orthodontic clinic. In addition, it is a mouse model in which a malocclusion 

results in derangement and osteoarthritic-like changes in the TMJ, including thinning of 

the MCC. There are many models of TMJ osteoarthritis including inflammatory models, 

caused by injection of chemical irritants such as carrageenan, ovalbumin (Denadai et al. 

2009; Habu et al. 2002); monosodium isoacetate (Kapila et al. 1995), and complete 

Freund’s adjuvant (CFA) injection (Mazzier et al. 1967), and other malocclusion models 

like forced mouth opening (Kaul et al. 2016) and unilateral anterior crossbite (Zhang et 
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al. 2013). We believe this model has the advantage in the simplicity of extraction of teeth, 

rather than bonded appliances (Fuentes et al. 2003; Takenobu et al. 2008; Nakano et al. 

2004, Poileka et al. 1997; Poileka et al. 2000), and it more directly links malocclusion with 

changes in the joint. Furthermore, this model will be useful in the study of tooth 

hypereruption and extrusion, since we do see hypereruption of the mandibular right 

molars. With this model, we can look more closely at the cellular behavior in the PDL and 

surrounding tissue at the root of the erupting tooth and also further understand alveolar 

bone remodeling around the erupting teeth. 

There are, however, limitations to this model. It is a rather complex system in that 

extraction results in many compensations in muscle attachment and bone remodeling. 

Further study at multiple timepoints will be necessary to understand the compensatory 

changes happening due to the postural change of the mandible in this model. For 

example, is the mandible postured forward, and if so, is the increased stretch of the 

masseter inducing bone deposition on the lower border of the mandible? Furthermore, 

we do not entirely understand the forces that are placed on the mandible and TMJ in this 

model on either the extraction or non-extraction sides. We hypothesize that the mandible 

is shifting forward and to the right, however, additional studies such as ultrasound imaging 

while the mouse is functioning during chewing and direct measurements on the force in 

the joint would clarify the function of the altered system. 

A striking finding in the study were the cellular changes at the MCC with molar 

extraction. There was an increase in maturation stage and hypertrophic chondrocytes in 

the MCC, suggesting a shift towards differentiated chondrocytes. In addition, there was 

an expansion in expression of Col1 in the MCC, suggesting an increase in osteoblasts or 
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fibroblasts. These data suggest that cells differentiate and deposit bone in the condyle in 

the extraction condyle at an increased level compared to control. Furthermore, there 

appeared to be ectopic osteoblast expression and bone deposition in MCC at the condylar 

surface, supported by both expression of Col1 and increase in bone density in that region. 

Whether the osteoblasts are moving into the MCC or chondrocytes in the MCC are 

transforming into osteoblasts, as has been shown in the condyle (Jin et al. 2015), is not 

clear. It would be interesting to trace chondrocytes and ostetoblasts with Col2CreER or 

Col1CreER drivers to answer this question and better understand cellular differentiation and 

activity in the MCC during this process.  

The deposition and remodeling of bone in a normally cartilaginous region is 

suggestive of osteoarthritis, and so this model may be useful in further understanding 

cellular and signaling changes with the development of osteoarthritis in the TMJ. 

Furthermore, this phenotype appears to mimic “cortication”, or deposition of bone, that 

we see in clinical CBCTs in juvenile idiopathic arthritis (JIA) patients once the 

degeneration of the condyle stabilizes (Billiau et al. 2007). This process is not well 

understood, and if we could better understand the mechanism, in this mouse model for 

example, the findings could be translated to the clinic to promote cortication or “burn out” 

of disease or even regenerate a more physiological MCC in these patients.     

Furthermore, this study is directly clinically relevant in that the extraction mouse 

model tested the relationship between occlusion and adaptive responses in the TMJ. The 

results of our study support the widely held notion that the local biomechanical-functional 

environment can alter the overall shape of the mandible and growth of the MCC. Our 
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study also showed a relationship between malocclusion and the resulting adaptative 

response of the TMJ.  

The malocclusion which was modeled with this extraction mouse model was a 

mandibular shift, which can potentially cause a skeletal crossbite in patients. Skeletal 

crossbites, usually associated with older adolescents and adults, are characterized by 

mandibular lateral displacements, asymmetric mandibles, symmetric joint spaces, and no 

lateral shifts from centric relation to maximum intercuspation (Bishara et al. 1994). A 

functional crossbite, on the other hand, is characterized by an asymmetric shift of the 

mandible. Children in the deciduous and mixed dentition with functional unilateral 

crossbites also have condyles on the crossbite site positioned relatively more superiorly 

and posteriorly in the glenoid fossa than the condyles on the non-crossbite side. They 

also have asymmetric postural muscle activity with greater resting activity on the non-

crossbite site (Hesse et al. 1997). In the present study, the extraction of the molars in the 

upper quadrant caused a lateral shift of the mandible which resulted in compensatory 

changes in the morphology of the condyles and the entire mandible as well as changes 

in bone volume and density at the condylar surface and cell composition of the MCC. 

Thus, our results are consistent with clinical observations in a functional shift and this 

mouse model may be utilized to further understand mechanisms of the compensatory 

response.  

The question of whether malocclusion causes TMJ dysfunction is long debated 

and controversial one in orthodontics. The presence of mandibular shifting in posterior 

crossbites has been related to muscular compensations and asymmetric postural activity 

with potential implications to TMJ dysfunction. As to the implications of posterior 



 38 

crossbites to long term TMJ dysfunction, cross sectional studies indicate that there may 

be some association between the presence of posterior crossbite and symptoms of TMJ 

dysfunction. However, no direct cause and effect relationship between the two has been 

established (Thilander et al. 2002; Egermark et al. 2003; Mohlin et al. 2007). Several 

studies suggest that the high adaptability of the TMJ structures in growing patients 

appears to lessen the impact of functional posterior crossbites on long-term TMJ function 

(De Vis et al 1984; Alarcon et al. 2000; Throckmorton et al. 2001; Tecco et al. 2010). In 

a systematic review of the literature from 1970 to 2009, Thilander and his colleagues 

found no association between signs and symptoms of TMD with posterior crossbite 

patterns since they found an association between TMD and posterior crossbite was 

reported as often as an absence of such a relationship (Thilander et al. 2012). Thus, 

overall, there is still not a clear consensus in the literature on whether there is a correlation 

between functional posterior crossbite and TMJ dysfunction, and so more studies are 

necessary. Our study in a mouse model suggests a correlation between changes in 

occlusion and morphology of the TMJ; however, further study is necessary in this model 

to understand the mechanism of this relationship. 

There is potential to utilize this model to further understand the mechanisms of 

mandibular and condylar development and remodeling and MCC growth and 

maintenance. This work would have tremendous potential to translate to the clinic. By 

understanding the mechanism of MCC growth and signaling involved, for example, we 

may identify therapeutic targets to modulate growth. Clinically, this information may 

translate into increasing growth at the condyle in a class II patient with micrognathia. 
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There are many clinical concerns to address, and first, a fundamental understanding of 

the mechanisms of TMJ development and maintenance is necessary. 
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Conclusion 

 The goal of the Master’s thesis work presented here was to understand the effect 

of a mandibular shift malocclusion on the TMJ. We generated a model of a mandibular 

functional shift by extracting molars from the maxillary right quadrant in 3 week old 

developing mice in order to better understand the effect of this malocclusion on the 

mandible and TMJ at the tissue and cellular level. We found that extraction resulted in 

changes in the shape of the mandible, most strikingly in the condylar process, which was 

narrower at the head and neck and more convex at the condylar surface. Furthermore, 

the total bone volume of the condylar process was decreased in the extraction model by 

15%, and there was a 5% increase in bone density in the condylar process compared to 

control. The MCC was thinner in the extraction model, and there was a shift to markers 

of more differentiated maturation stage and hypertrophic chondrocytes and an increase 

in osteoblast and osteoclast markers in the MCC in the extraction model, suggesting 

possible bone deposition and remodeling occurred at the condylar head due to the 

extraction. In this model, malocclusion resulted in derangement changes of the TMJ and 

an osteoarthritic phenotype in this joint. Further studies are necessary to fully understand 

the biomechanical environment resulting in the cellular and signaling changes in the 

MCC, and ultimately further our understanding of the link between occlusion and TMJ 

disorders.    

 

 
 
 
 
 
 



 41 

References 
 

1. A.G Mazzier, D.M Laskin, H.R CatchpoleAdjuvant induced arthritis in the 

temporomandibular joint of the rat Arch Pathol Lab Med, 83 (1967), p. 543. 

2. Alarcon JA, Martin C, Palma J. Effect of unilateral  posterior crossbite on 

electromyographic activity of human masticatory muscles. Am J Orthod 

Dentofacial Orthop. 2000;118:328–334. 

3. Benjamin M, Ralphs JR: Biology of fibrocartilage cells. Int Rev Cytol 233:1–45. 

Rev Cytol 233:1–45, 2004.  

4. Billiau AD, Hu Y, Verdonck A, Carels C, Wouters C. Temporomandibular joint 

arthritis in juvenile idiopathic arthritis: prevalence, clinical and radiological signs, 

and relation to dentofacial morphology. J Rheumatol. 2007;34(9):1925-1933. 

5. Bishara SE, Burkey PS, Kharouf JG. Dental and facial asymmetries: a review. 

Angle Orthod 64:89-98, 1994. 

6. Bishara SE, Burkey PS, Kharouf JG. Dental and facial asymmetries: a review. 

Angle Orthod 1994;64:89-98.  

7. Bookstein FL. Landmark methods for forms without landmarks: morphometrics of 

group differences in outline shape. Med Image Anal. 1997;1(3):225–43.  

8. Bookstein, F.L. 1997a. Landmark methods for forms without landmarks: 

morphometrics of group differences in outline shape. Medical Image Analysis 

1(3), pp. 225–243. 

9. Bookstein, F.L. 1997b. Morphometric tools for landmark data: geometry and 

biology.Cambridge: Cambridge University. 



 42 

10. Bravetti P, Membre H, El Haddioui A, Gérard H, Fyard JP, Mahler P and Gaudy 

JF: Histological study of the human temporo-mandibular joint and its surrounding 

muscles. Surg Radiol Anat 26: 371-378, 2004. 

11. Cardini A, Loy A. On growth and form in the “computer era”: from geometric to 

biological morphometrics. Virtual Morphology and Evolutionary Morphometrics in 

the New Millennium. Hystrix, the Italian Journal of Mammalogy. Associazione 

Teriologica Italiana; Rome, Italy. pp. 1–5. 2013.   

12. Cevidanes L.H., Styner M.A., Proffit W.R. Image analysis and superimposition of 

3-dimensional cone-beam computed tomography models. Am. J. Orthod. 

Dentofac. Orthop. 2006;129:611–618. doi: 10.1016/j.ajodo.2005.12.008 

13. Chang, H.-P., Liu, P.-H., Tseng, Y.-C., Yang, Y.-H., Pan, C.-Y. and Chou, S.-T. 

2014. Morphometric analysis of the cranial base in Asians. Odontology / the 

Society of the Nippon Dental University 102(1), pp. 81–88.  

14. Cleall JF, BeGole EA, Chebib FS. Craniofacial morphology: a principal 

component analysis. Am J Orthod. 1979;75(6):650–66.  

15. De VisH, De Boever JA, Epidemiologic survey of functional conditions of the 

masticatory system in Belgian children aged 3-6 years. Community Dent Oral 

Epidemiol. 1984;12:203–207.  

16. Denadai-Souza A, Camargo Lde L, Ribela MT, Keeble JE, Costa SK, Muscar. MN 

(2009). Participation of peripheral tachykinin NK1 receptors in the carrageenan-

induced inflammation of the rat temporomandibular joint. Eur J Pain 13:812-819.  

17. Dimburg et al.Malocclusions in children at 3and 7 years of age—a longitudinal 

study. Eur J Orthod. 2013;35:131–137.  



 43 

18. Dudas M, Sridurongrit S, Nagy A, Okazaki K, Kaartinen V. Craniofacial defects in 

mice lacking BMP type I receptor Alk2 in neural crest cells. Mech Dev. 

2004;121(2):173–182. doi:10.1016/j.mod.2003.12.003 

19. Egermark I, Magnusson T, Carlsson GE. A 20-year follow-up of signs and 

symptoms of temporomandibular disorders and malocclusions in subjects with 

and without orthodontic treatment in childhood. Angle Orthod. 2003;73:109–115. 

136. 

20. Epker BN, Stella JP, Fish LC. Dentofacial deformities: integrated orthodontic and 

surgical correction. 2nd ed. St Louis: Mosby 1959-2095, 1999. 

21. Freudenthaler et al. Geometric morphometrics of different malocclusions in lateral 

skull radiographs. J Orofac Orthop (2017) 78:11-20. 

22. Fuentes M, Opperman L, Buschang P, Bellinger L, Carlson D, Hinton R. Lateral 

functional shift of the mandible: part II. Effects on gene expression in condylar 

cartilage. Am J Orthod Dentofacial Ortho 123:160-6, 2003. 

23. Ghislanzoni et al. 2017. Measuring 3D shape in orthodontics through geometric 

morphometrics. Progress in Orthodontics (2017) 18:38 DOI 10.1186/s40510-017-

0194 

24. Gu S, Wei N, Yu L, Fei J and Chen Y: Shox2-deficiency leads to dysplasia and 

ankylosis of the temporomandibular joint in mice. Mech Dev 125: 729-742, 2008. 

25. Gu S, Wu W, Liu C, Yang L, Sun C, Ye W, Li X, Chen J, Long F and Chen Y: 

BMPRIA mediated signaling is essential for temporomandibular joint development 

in mice. PLoS One 9: e101000, 2014. 



 44 

26. Gunz P, Mitteroecker P, Bookstein FL. Semilandmarks in 3D. In: Slice DE, editor. 

Modern morphometrics in physical anthropology developments in primatology: 

progress and prospects. New York: Kluwer Academic 

27. Guyomarc’h P, Dutailly B, Charton J, Santos F, Desbarats P, Coqueugniot H. 

Anthropological facial approximation in three dimensions (AFA3D): Computer-

assisted estimation of the facial morphology using geometric morphometrics. J 

Forensic Sci. 2014;59:1502-1516.  

28. Habu M, Tominaga K, Sukedai M, Alstergren P, Ohkawara S, Kopp S, Fukuda J 

(2002). Immunohistochemical study of interleukin-1beta and interleukin-1 receptor 

antagonist in an antigen-induced arthritis of the rabbit temporomandibular joint. J 

Oral Pathol Med 31:45-54.  

29. Hassan MG, Vargas R, Zaher AR, et al. Altering calcium and phosphorus levels in 

utero affects adult mouse mandibular morphology. Orthod Craniofac Res. 

2019;22(Suppl. 1):113-119 

30. Hesse KL, Artun J, Joondeph DR, Kennedy DB. Changes in condylar position and 

occlusion associated with maxillary expansion for correction of functional 

unilateral posterior crossbite. Am J Orthod Dentofacial Orthop 1997;111:410-8.  

31. Hill CA, Sussan TE, Reeves RH, Richtsmeier JT. 2009. Complex contributions 

of Ets2 to craniofacial and thymus phenotypes of trisomic “Down syndrome” mice. 

Am J Med Genet Part A 149A:2158–2165 

32. Inman KE, Purcell P, Kume T, Trainor PA. Interaction between Foxc1 and Fgf8 

during mammalian jaw patterning and in the pathogenesis of syngnathia. PLoS 

Genet. 2013;9(12):e1003949. doi:10.1371/journal.pgen.1003949 



 45 

33. Ishizaki K, Suzuki K, Mito T, Tanaka EM, Sato S. Morphologic, functional, and 

occlusal characterization of mandibular lateral displacement malocclusion. Am J 

Orthod Dentofacial Orthop 137:454.e1-9, 2010. 

34. Isotupa KP, Carlson DS, Makinen KK. Influence of asymmetric occlusal 

relationships and decreased maxillary width on the growth of the facial skeleton in 

the guinea pig. Ann Anat 1992;174:447-51. 

35. Jay GD, Torres JR, Warman ML, Laderer MC, Breuer KS. The role of lubricin in 

the mechanical behavior of synovial fluid. Proc Natl Acad Sci; 104:6194–9, 2007. 

36. Kapila et al. CBCT in orthodontics: assessment of treatment outcomes and 

indications of its use. Dentomaxillofacial Radiology (2015) 44, 29140282. 

37. Kaul R, O'Brien MH, Dutra E, Lima A, Utreja A, Yadav S. The Effect of Altered 

Loading on Mandibular Condylar Cartilage. PLoS One. 2016;11(7):e0160121. 

Published 2016 Jul 29. doi:10.1371/journal.pone.0160121 

38. Kendall DG. The diffusion of shape. Adv Appl Probab. 1977;9:428 

39. Kendall, D.G. 1989. A Survey of the Statistical Theory of Shape. Statist. Sci.4(2), 

pp. 87–99. 

40. Kenzaki K, Tsuchikawa K and Kuwahara T: An immunohistochemical study on the 

localization of type II collagen in the developing mouse mandibular condyle. 

Okajimas Folia Anat Jpn 88: 49-55, 2011. 

41. Klingenberg CP, Wetherill L, Rogers J, et al. Prenatal alcohol exposure alters the 

patterns of facial asymmetry. Alcohol. 2010;44(7–8):649–57.2. 

42. Klingenberg CP. Visualizations in geometric morphometrics: how to read and how 

to make graphs showing shape changes. Hystrix. 2013;24(1):1–10.  



 46 

43. Klingenberg, C. P. 2011. MorphoJ: an integrated software package for geometric 

morphometrics. Molecular Ecology Resources 11: 353-357 

44. Klingenberg, C.P. 2010. Evolution and development of shape: integrating 

quantitative approaches. Nature Reviews. Genetics 11(9), pp. 623–635. 

45. Klingenberg, C.P. 2011. MorphoJ: an integrated software package for geometric 

morphometrics. Molecular ecology resources 11(2), pp. 353–357. 

46. Kurol J, Bergland L. Longitudinal study and cost-benefit analysis of the effect of 

early treatment of posterior crossbite in the primary dentition. Eur J Orthod 

14:173-9, 1992.  

47. Kutin G, Hawes R. Posterior crossbite in the deciduous and mixed dentition. Am J 

Orthod 56:491-504, 1959. 

48. Laskin, GC.; Hylander, W. TMD’s: an evidence-based approach to diagnosis and 

treatment. Chicago: Quintessence; 289-94, 2006. 

49. Latif et al. Morphological variability in unrepaired bilateral clefs with and without 

cleft palate evaluated with geometric morphometrics. J Anat (2020) 236, pp 425-

433. 

50. Lele, S. 1991. Some Comments on Coordinate-Free and Scale-InvariantMethods 

in Morphometrics. American Journal of Physical Anthropology 85, pp. 407–417. 

51. Lele, S. and Richtsmeier, J.T. 1995. Euclidean distance matrix analysis: 

confidence intervals for form and growth differences.  American Journal of 

Physical Anthropology 98(1), pp. 73–86. 



 47 

52. Li Q, Zhang M, Chen YJ, Zhou Q, Wang YJ and Liu J: Psychological stress alters 

microstructure of the mandibular condyle in rats. Physiol Behav 110-111: 

129-139, 2013. 

53. Li X, Liang W, Ye H, Weng X, Liu F and Liu X: Overexpression of Shox2 leads to 

congenital dysplasia of the temporomandibular joint in mice. Int J Mol Sci 15: 

13135-13150, 2014. 

54. Li X, Liang W, Ye H, Weng X, Liu F, Lin P and Liu X: Overexpression of Indian 

hedgehog partially rescues short stature homeobox 2-overexpression-associated 

congenital dysplasia of the temporomandibular joint in mice. Mol Med Rep 12: 

4157-4164, 2015. 

55. Li X, Liu H, Gu S, Liu C, Sun C, Zheng Y and Chen Y: Replacing Shox2 with 

human SHOX leads to congenital disc degeneration of the temporomandibular 

joint in mice. Cell Tissue Res 355: 345-354, 2014. 

56. McIntyre, G.T. and Mossey, P.A. 2003. Size and shape measurement in 

contemporary cephalometrics. European Journal of Orthodontics 25(3), pp. 231–

242.  

57. McNamara JA. Functional adaptations in the temporomandibular joint. Dent Clin 

North Am 1975;19:457-7. 

58. Mérida Velasco JR, Rodríguez Vázquez JF, De la Cuadra Blanco C, Campos 

López R, Sánchez M and Mérida Velasco JA: Development of the mandibular 

condylar cartilage in human specimens of 10-15 weeks' gestation. J Anat 214: 

56-64, 2009. 

59. Mitteroecker P, Gunz P. Advances in geometric morphometrics. Evol Biol. 



 48 

60. Mohlin B, Axelsson S,etal. TMD inr elation to malocclusion and orthodontic 

treatment.Asystematic review. Angle Orthod. 2007;77:542–548.  

61. Mori-Akiyama et al. Sox9 is required for determination of the chondrogenic cell 

lineage in the cranial neural crest. Proc Natl Acad Sci USA (2003) 100 (16):9360-

5.  

62. Nakano H, Maki K, Shibasaki Y, Miller AJ. Three-dimensional changes in the 

condyle during development of an asymmetrical mandible in a rat: a 

microcomputed tomography study. Am J Orthod Dentofacial Orthop 126:410-20, 

2004. 

63. Nakano H, Watahiki J, Kubota M, Maki K, Shibasaki Y, Hatcher D, et al. Micro x-

ray computed tomography analysis for the evaluation of asymmetrical condylar 

growth in the rat. Orthod Craniofacial Res 6 (Suppl 1):168-72. 2003.  

64. Nerder PH, Bakke M, Solow B. The functional shift of the mandible in unilateral 

posterior crossbite and the adaptation of the tempormandibular joints: a pilot 

study. Eur J Orthod 21:155-66, 1999. 

65. Ohno S, Schmid T, Tanne Y, Kamiya T, Honda K, Ohno-Nakahara M:  Expression 

of superficial zone protein in mandibular condyle cartilage. Osteoarthritis Cartilage 

2006;14:807–13, 2006. 

66. Owtad P, Park JH, Shen G, Potres Z and Darendeliler MA: The biology of TMJ 

growth modification: A review. J Dent Res 92: 315-321, 2013. 

67. Owtad P, Potres Z, Shen G, Petocz P and Darendeliler MA: A histochemical study 

on condylar cartilage and glenoid fossa during mandibular advancement. Angle 

Orthod 81: 270-276, 2011. 



 49 

68. Pavoni C, Paoloni V, Ghislanzoni LTH, Laganà G, Cozza P. Geometric 

morphometric analysis of the palatal morphology in children with impacted 

incisors: a three-dimensional evaluation. Angle Orthod. 2017;87(3):404–8. 

69. Petren S, Bondemark L,Stierfeldt B. A systemic review concerning early 

orthodontic treatment of unilateral posterior crossbite. Angle Orthod. 

2003;73:588–596. 

70. Poikela A, Kantomaa T, Pirttiniemi P. Craniofacial growth after a period of 

unilateral masticatory function in young rabbits. Eur J Oral Sci 105:331-7, 1997.  

71. Poikela A, Pirttiniemi P, Kantomaa T. Location of the glenoid fossa after a period 

of unilateral function in young rabbits. Eur J Orthod 22:105-12. 2000.  

72. Polychronis G, Christou P, Mavragani M, Halazonetis DJ. Geometric 

morphometric 3D shape analysis and covariation of human mandibular and 

maxillary first molars. Am J Phys Anthropol. 2013;152(2):186–96.Klingenberg CP. 

Evolution and development of shape: integrating quantitative approaches. Nat 

Rev Genet. 2010;11(9):623–35  

73. Polychronis G, Halazonetis DJ. Shape covariation between the craniofacial 

complex and first molars in humans. J Anat. 2014;225(2):220–31. 15.  

74. Proffit WR, Turvey TA. Dentofacial asymmetry. In: Proffit WR, White RP Jr., 

editors. Surgical-orthodontic treatment, 2nd ed. St Louis: Mosby Year Book; 1991. 

p. 532-6.Publishers-Plenum Publishers; 2005. p. 73–98. 

75. Purcell P, Joo BW, Hu JK, Tran PV, Calicchio ML, O'Connell DJ, Maas RL and  

Tabin CJ: Temporomandibular joint formation requires two distinct 

hedgehog-dependent steps. Proc Natl Acad Sci USA 106: 18297-18302, 2009. 



 50 

76. Richtsmeier, J.T. and Lele, S. 1993. A coordinate-free approach to the analysis of 

growth patterns: models and theoretical considerations. Biological Reviews of the 

Cambridge Philosophical Society 68(3), pp. 381–411. 

77. Ricks ML, Farrell JT, Falk DJ, Holt DW, Rees M, Carr J, Williams T, Nichols BA, 

Bridgewater LC, Reynolds PR: Osteoarthritis in temporomandibular joint of 

Col2a1 mutant mice. Arch Oral Biol 58: 1092-1099, 2013. 

78. Sato S, Takamoto K, Fushima K, Akimoto S, Suzuki Y. A new orthodontic 

approach to mandibular lateral displacement malocclusion— importance of 

occlusal plane reconstruction. Dent Jpn 1989;26:81-5. 

79. Severt TR, Proffit WR. The prevalence of facial asymmetry in the dentofacial 

deformities population at the University of North Carolina. Int J Adult Orthod 

Orthognath Surg 12:171-6, 1997. 

80. Shibata et al. Runx2-deficient mice lack mandibular condylar cartilage and have 

deformed Meckel’s cartilage. Anat Embryol (2004) 208:273-280. 

81. Shibukawa Y, Young B, Wu C, Yamada S, Long F, Pacifici M, et al. 

Temporomandibular joint formation and condyle growth require Indian hedgehog 

signaling. Dev Dyn 236:426–34, 2207. 

82. Solem, C. Utilizing three-dimensional data in orthodontic practice and research. 

Orthodontics and Craniofacial Research 2017;20 (Suppl.1):114-118.  

83. Soydan SS, Deniz K, Uckan S, Unal AD and Tutuncu NB: Is the incidence of 

temporomandibular disorder increased in polycystic ovary syndrome? Br J Oral 

Maxillofac Surg 52: 822-826, 2014. 

84. Takenobu I, Hideharu Y. Influence of extraoral lateral force loading on the 



 51 

mandible in the mandibular development of growing rats. Am J Orthod Dentofacial 

Orthop 134:782-91, 2008. 

85. Tecco S,Tete S,Festa F. Electromyographic evaluation of masticatory, neck, and 

muscle activity in patients with posterior crossbites. Eur J Orthod. 2010;32:747–

752. 

86. Tessler, A.Y., Franchi, L., McNamara, J.A. and Baccetti, T. 2011. Morphometric 

analysis of craniofacial features in mono- and dizygotic twins discordant for 

unilateral cleft lip and palate. The Angle orthodontist 81(5), pp. 878–883.  

87. Thilander B, Bjerklin K. Posterior crossbite and temporo mandibular disorders 

(TMDs)—need for orthodontic treatment. Eur J Orthod. 2012;34:667–673. 

88. Thilander B, Rubio G,et al .Prevalence of temporo- mandibular dysfunction and its 

association with malocclusion in children and adults—an epidemiologic study 

related to specified stages of dental development. Angle Orthod. 2002;72:146–

154. 

89. Thompson DW. On Growth and Form. Cambridge University Press, Cambridge, 

UK; 1917. 20.  

90. Throckmorton G, Buschang P,e tal. Changes in the masticatory cycle following 

treatment of posterior unilateral crossbite in children. Am J Orthod Dentofacial 

Orthop. 2001;120:521–529.  

91. Vinkka-Puhakka H and Thesleff I: Initiation of secondary cartilage in the mandible 

of the Syrian hamster in the absence of muscle function. Arch Oral Biol 38: 49-54, 

1993. 



 52 

92. Wang Y, Liu C, Rohr J, Liu H, He F, Yu J, Sun C, Li L, Gu S and Chen Y: Tissue 

interaction is required for glenoid fossa development during temporomandibular 

joint formation. Dev Dyn 240: 2466-2473, 2011. 

93. Webster M, Sheets D. A practical introduction to landmark-based geometric 

morphometrics. Paleontol Soc Pap. 2010;16:163–88. 

94. Wu Y, Gong Z, Li J, Meng Q, Fang W and Long X: The pilot study of fibrin with 

temporomandibular joint derived synovial stem cells in repairing TMJ disc 

perforation. Biomed Res Int 2014: 454021, 2014. 

95. Yokohama-Tamaki T, Maeda T, Tanaka TS and Shibata S: Functional analysis of 

CTRP3/cartducin in Meckel's cartilage and developing condylar cartilage in the 

fetal mouse mandible. J Anat 218: 517-533, 2011. 

96. Zhang, X, Dai, J, Lu, L, Zhang, J, Zhang, M, Wang, Y, Guo, M, Wang, X, Wang, 

M. 2013. Experimentally created unilateral anterior crossbite induces a 

degenerative ossification phenotype in mandibular condyle of growing Sprague-

Dawley rats. J Oral Rehabil. 40(7):500–508. Jing Y, Zhou X, Han X, et al. 

Chondrocytes Directly Transform into Bone Cells in Mandibular Condyle 

Growth. J Dent Res. 2015;94(12):1668‐1675.  

 

 
 
 
 
 
 
 
 
 



 53 

 
Figure 1. Extraction of maxillary right molars results in significant changes in 
mandibular shape. (A) Schematic of experimental design. All 3 molars were extracted 
from the maxillary right quadrant at postnatal day P21, and mice were euthanized for 
geometric morphometric and histological analysis at P42. (B) Isosurface of a 
hemimandible with landmarks utilized in the study. (C) Principal Component analysis 
(PCA) comparing both mandibles shows that the control (in blue) and extraction (in red) 
samples separate along PC1 and PC2. (D) Wireframes showing average (in gray), PC1 
Min (in blue) PC1 Max (in red) of right (solid line) and left (dashed line) hemimandibles. 
(D’) Representative isosurface of control and extraction mandibles. PCA (E’), 
wireframes (F), and isosurfaces (F’) of right mandibles show increased alveolar bone 
height, increased height at the lower border of the mandible, decreased length of the 
angular process, and increased posterior-inferior tip of the condylar process in 
extraction samples compared to control. (G-H’) Similar shape differences in the lower 
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border of the mandible, angular process, and condylar process were observed in the left 
mandibles of the experimental mice compared to control. 
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Figure 2. Extraction of maxillary right molars alters the shape of the condylar processes 
significantly. (A) Isosurface of a hemimandible showing region of condylar process 
measured (demarcated by dashed line). (A’) Isosurface of condyle showing landmarks 
(large green dots) and semi-landmarks (small green dots) utilized. (B) Principal 
Component Analysis (PCA) comparing right condyles shows that the control (in blue) 
and extraction (in red) separate along PC1 and PC2. (C) Wireframes showing average 
(in gray). PC1 Min (in blue), and PC1 Max (in red) of right condyles show the extraction 
condylar head and neck were narrower and condylar surface more convex compared to 
control. (C’) Representative isosurfaces of control and extraction condyles. (D) Linear 
measurements of right condylar width and neck lengths were decreased in extraction 
compared to control. PCA (E), wireframes (F), isosurfaces (F’) and linear 
measurements (G) show left condyles were also narrower and more convex at the 
surfaces in extraction vs. control. *p<0.05 
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Figure 3. The condylar processes in the extraction model have decreased bone volume 
and increased bone mineral density compared to control. (A,A’) Renderings of the 
condylar processes with the color representing the relative bone mineral density (scale: 
red, more dense and blue, less dense) show that the right and left condylar processes 
in the extraction model had decreased bone volume and increased bone density, 
particularly near the condylar head surface, than control. (B-C’) Quantification shows a 
significant increase in bone mineral density of the left (B) and right (B’) condylar 
processes in the extraction samples compared to control and significant decrease in 
bone volume in both the left (C) and right (C’) experimental condyles compared to 
control. *p<0.05 
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Figure 4. The mandibular condylar cartilage is thinner, and the chondrocytes appear 
compacted in the extraction condyle compared to control. (A-C’) H&E staining shows 
the mandibular condylar cartilage of the non-extraction side (B,B’) and extraction side 
(C,C’) condyles in the experimental animals was thinner (demarcated by black lines) 
compared to control (A, A’). The chondrocytes appeared more tightly packed in the non-
extraction and extraction (B,B’,C,C’) condyles compared to control (A,A’).  
Scale bar= 500µm  
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Figure 5. The mandibular condylar cartilage is thinner in the extraction condyle 
compared to control. (A-B) SafrarinO staining shows that the mandibular condylar 
cartilage was thinner in the extraction side condyle in the experimental mice (A) 
compared to control (B). Scale bar= 500µm 
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Figure 6. There is decreased apoptosis in the non-extraction side condyle compare to 
the extraction side and control. (A-C) TUNEL staining showed similar levels of apoptosis 
in the extraction side condyles in the experimental mice (B) and control (A), however, 
there was a significant decrease in apoptosis in the non-extraction condyle (C) in the 
experimental mice. (D) Quantification shows a decrease in the number of TUNEL + cells 
in non-extraction compared to extraction and control condyles *p<0.05.                     
Scale bar= 500µm 
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Figure 6.

Figure 6. There is decreased apoptosis in the non-extraction side condyle 
compared to the extraction side and control. (A-C) TUNEL staining showed similar 

levels of apoptosis in the extraction side condyles in the experimental mice (B) and 

control (A), however, there was a significant decrease in apoptosis in the 

non-extraction condyle (C) in the experimental mice. (D) Quantification shows a 

decrease in the number of TUNEL+ cells in non-extraction compared to extraction and 
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Figure 7. There is an increase in expression markers of maturation stage and 
hypertrophic chondrocytes, osteoblasts and osteoclasts in the mandibular condylar 
cartilage of extraction mice compared to control. (A-C) RNA scope with probe against 
Col2 (red, counterstain with DAPI, blue) shows increased expression in both the non-
extraction (B) and extraction (C) side mandibular condylar cartilage (MCC) compared to 
control (A). (D-F) Similarly, there was increased expression of Col10 in the MCC of non-
extraction (E) and extraction (F) condyles compared to control (D). (G-I) There was a 
striking increased in Col1 expression in the MCC  and condylar head in the extraction 
mice compared to control. (J-L) There was also an increase in Mmp13 expression in the 
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condylar head of the non-extraction (K) and extraction (L) mice compared to control (J). 
Scale bar= 500µm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 62 

 
Supplemental Figure 1.  Cranium landmarks. (A) Dorsal and (A’) ventral views of the 
isosurface of the cranium with landmarks utilized for the study marked by numbered 
green dots  
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Supplemental Figure 2.  No clear sex differences are observed in control or extraction 
samples. (A) Principal Component Analysis (PCA) showed the male and female 
samples did not cluster in the control or extraction groups, suggesting the shape 
differences observed due to extraction were significantly different between males and 
females.  
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Supplemental Figure 3. Canonical variate analysis on mandibles and condyles in 
extraction mice compared to control. (A-C) Canonical Variate Analysis shows clear 
separation between both mandibles (A), the right mandible (B), the left mandible (C), 
the right condyle (D), and the left condyle (E) in control (blue) and extraction (red) 
samples.  
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Supplemental Figure 4. The alveolar height of the right mandible in the extraction mice 
is significantly increased compared to control. (A) Linear measurements of the alveolar 
height in the right mandible showing significant increase in the extraction height in the 
left mandible between control and extraction mice.  
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Supplemental Table 1. Probability values from statistical hypothesis tests using 
calculated centroid size and Procrustes distance. Bold indicated p<0.05. 

 
  p-value 
  Centroid size Procrustes Distance 
  Control/Experiment Control/Experiment Male/Female 
Both Mandibles 0.32748866 <.0001 0.4762 
Right Mandible 0.268456023 <.0001 0.4609 
Left Mandible 0.205705201 0.0006 0.3319 
Right Condyle 0.865153994 0.0001 0.3548 
Left Condyle 0.98617899 0.0001 0.382 
Cranium 0.142468966 0.0023 0.2883 
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Supplemental Table 2. Contribution of each Principal Component to the shape 
difference of the mandibles, condyles, and cranium. 
 
  Variance (%) 
Principal 
Component 

Both 
Mandibles 

Right 
Mandible 

Left 
Mandible 

Right 
Condyle 

Left 
Condyle Cranium 

1 41.837 46.671 47.071 41.43 50.047 34.046 
2 13.444 17.018 13.241 10.091 11.188 12.136 
3 9.679 10.498 9.731 8.666 8.146 9.321 
4 7.121 6.273 6.072 6.92 5.445 6.989 
5 5.498 3.544 5.439 6.081 4.939 6.562 
6 4.772 3.414 3.866 4.904 4.028 4.92 
7 3.001 2.555 3.27 3.919 2.765 4.158 
8 2.709 2.154 2.436 3.325 2.238 3.573 
9 1.945 1.592 1.784 2.829 1.759 2.946 
10 1.694 1.516 1.609 2.416 1.477 2.612 
11 1.639 1.021 1.21 1.756 1.438 2.487 
12 1.434 0.833 1.109 1.442 1.235 1.969 
13 1.156 0.707 1.089 1.254 1.172 1.661 
14 1.028 0.647 0.796 1.071 1.078 1.437 
15 0.75 0.449 0.483 1.041 0.789 1.358 
16 0.698 0.356 0.264 0.847 0.654 1.137 
17 0.554 0.328 0.218 0.705 0.494 1.02 
18 0.401 0.18 0.178 0.595 0.454 0.987 
19 0.385 0.165 0.076 0.37 0.363 0.681 
20 0.254 0.078 0.057 0.339 0.292  
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