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Mental stress appears in our daily life and affects our well-being and working perfor-

mance. Previous studies have shown that mental stress, especially under chronic situations, can

be related to obesity, heart disease, depression, or even suicide. Thus, mental stress has been

recognized as the top proxy killer. However, mental stress is not something we should necessarily

avoid. When under an adequate stress level, the human performance of cognitive tasks or sports

is promoted. Therefore, it is essential to monitor stress levels in daily life. This dissertation aims

to build a brain-computer interface for online mental stress monitoring in the real world. We

first investigated the Electroencephalography features reported in previous studies and found
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many artifacts in data recorded in real-world scenarios. Hence, we moved on to investigate

artifact removal methods and evaluate the performance of Artifact Subspace Reconstruction

(ASR) using Independent Component Analysis (ICA). Next, we further evaluated ASR’s brain

signal reconstruction ability and explored human behaviors in a visual-oddball task conducted in

a virtual environment. We implemented ASR into our stress detection algorithms with all the

results we obtained and proposed an IC projection method to remove eye activities in real time

without performing ICA. Finally, to reduce the manufacturing cost and setup time of deployment,

we investigated the effect of recording channel reduction on our stress detection algorithms. We

found our stress detection algorithm with Linear Discriminant Analysis (LDA) can reach a 77%

balanced accuracy in an online scenario with only 11 recording channels placed in the frontal

region.
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Chapter 1

Introduction

1.1 Background

Stress is a reaction that happened when the demands from environments exceed the

adaptive capacity of an organism, resulting in physiological and biological changes [1]. These

demands are named stressors and can be further categorized into physical/ environmental stres-

sors or mental/ task-related stressors as shown in Table 1.1 [2]. In our daily life, we faced

various challenges and experienced different levels of mental stress. However, people usually

underestimate the effect of mental stress on our well-being, both physically and mentally. When

experiencing low-level stress, people might have upset stomach [3], dizzy [4], increased heart

rate [5], or muscle tension [6]. As the level of stress increases, the symptoms can be more severe.

Nowadays, more and more researchers have shown that mental stress is related to immune

disorders [7], obesity [8], and, heart diseases [9]. Moreover, people undergoing chronic stress

conditions are prone to depression [10], anxiety [11], and stroke [12]. In the worst cases, mental

stress can even lead to substance abuse and suicide [13]. Therefore, mental stress has also been

recognized as the top proxy killer disease [14].

While recognizing the negative influence of mental stress, it is not something necessarily

to be avoided [15]. Back in 1908, Yerkes and Dodson have already proposed a model to explain

the relationship between arousal and task performance [16, 17]. As we can see in Fig. 1.1,

the performance increases as the arousal increases in simple task conditions, e.g. focused
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Table 1.1. Example of stressors.

Physical / Environmental Mental / Task related
Painful stimuli Cognitive capacities demanded task

Strenuous physical activity Rapid change task instructions
Extreme temperature condition Conflicting task instructions

Low oxygen levels Inconsistent reward
reinforcement schedule

Figure 1.1. The relationship between arousal and task performance.

attention, flashbulb memory, and fear conditioning. On the other hand, the relationship between

arousal and task performance is an inverted-U shape in difficult task conditions, e.g. divided

attention, working memory, and decision-making. Stress can have a similar model since arousal

increases when stress increases. There are studies showing that proper amounts of mental stress

can increase performance in competitive sports [18] and some attention-related tasks [17]. In

real-world scenarios, most of the tasks we encounter are in the category of difficult tasks. As a

result, monitoring mental stress to remain at optimal task performance in daily life becomes an

important problem.

Questionnaires and self-reports have been used to measure one’s stress level in the field

of psychology for a long time [19, 20, 21, 22]. These measurements usually serve as the ground
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Table 1.2. The frequency range of each brainwave.

Name Frequency range
δ below 4Hz
θ 4Hz - 8Hz
α 8Hz - 13Hz
β 13Hz - 32Hz
γ 32Hz - 100Hz

truth of the stress level in stress-related studies [23, 24, 25]. However, it is impossible to monitor

mental stress in real time with questionnaires and self-reports. Moreover, these measurements

are subjective and might suffer from anchoring effects [26].

In contrast, physiological signals provide an objective measurement for stress detection.

The Automatic Nervous System (ANS) controls the involuntary movements of the body such as

skin conductivity, heart rate, and pupil dilation [27, 28, 29]. Since stress causes dynamic changes

in ANS, there are several measurements to detect stress level changes [2, 28]. The most commonly

used physiological signals in stress detection are Heart Rate (HR), Heart Rate Variability (HRV),

Galvanic Skin Response (GSR), Blood Pressure, and Respiration Rate [30]. Previous studies

have shown that, under stressful conditions, HR, GSR, Blood Pressure, and Respiration Rate

increase, and the R-peak-to-R-peak interval in HRV shorten [2, 28]. Nevertheless, though HR

has been wildly used in previous studies, HR might be irrelevant to mental stressors once there

are body movements during measurements as the HR increases during exercises.

Electroencephalography (EEG), an non-invasive brain signals measurement, is another

commonly used measurement for stress detection [28]. Since EEG has a high temporal resolution

and low cost compared to other brain signals measurements, it has been widely used in the

fields of neuroscience [31, 32], clinical assessment [33], and brain-computer interfaces [34]. An

ordinary way to investigate EEG signals is to separate the signals into different brainwaves using

different frequency ranges as shown in Table 1.2. Most common reported EEG features used in

stress detection include θ power increases [35, 36], α power decreases [35, 36, 37], β power

increases [36, 37], and α asymmetry [38, 39].
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Table 1.3. Previous studies of stress detection.

Study Stimuli Biosignals used Accuracy
Xia et al.[41] Mental Arithmetic Task EEG, ECG 79.54%
Minguillon et al.[42] Montreal Imaging Stress Task EEG, ECG, EMG, EDA 94.60%
Asif et al.[43] Music Tracks EEG 98.76%
Saeed et al.[39] No stimuli EEG 85.20%

To focus on deploying mental stress detection in the real world, we selected EEG as

the measurement for stress detection in this dissertation. Because the human brain determines

whether a situation is stressful, mental stress influences the human brain the most [40]. We

hypothesized EEG can reveal information in addition to arousal and thus have a more robust

measurement in real-world scenarios.

1.2 Problem statement

There are many studies that demonstrate the capability of detecting stress in laboratory

environments. Nevertheless, stress detection in realistic environments is still in early exploration.

Table 1.3 shows the previous studies in stress detection. As we can see in the table, most of the

studies induce mental stress by extra stimuli except for Saeed et al. [39].

In this dissertation, we emphasize deploying BCI for mental stress monitoring in the

real world. As a result, we focused on three main problems. First, the BCI must be robust, i.e.

removing non-brain signals while preserving brain signals. Second, the BCI needs to be online

capable. Third, the BCI needs to be easy to set up. While we do not build a commercialized BCI

for mental stress monitoring, we do provide a potential solution by improving the robustness of

BCI and reducing the difficulty of deployment.
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Chapter 2

Mental Stress Detection

2.1 Introduction

To approach online mental stress monitoring, instead of continuous stress measurement,

we simplified the problem into a binary mental stress detection, i.e. stress level increases or

remains. In this chapter, we built two stress detection algorithms without any preprocessing of

the EEG signals. We first introduced the dataset used in building our stress detection algorithms.

Next, we explained the processes of data labeling, feature extraction, and feature preprocessing.

Finally, we introduced the models used in our algorithms and the metrics to evaluate their

performance. We found that EEG signals are highly contaminated by non-brain signals and

thus damage the performance of the algorithms. The performance of our algorithms has been

improved in Chapter 5 after implementing our results in Chapter 3.

2.2 Data acquisition and preprocessing

To detect mental stress in the real world, we used a dataset recorded from a longitudinal

stress and fatigue experiment in a classroom [44]. In this experiment, students were asked

to participate in their lectures with their EEG and ECG recorded for two semesters. At the

beginning of the lectures, students were asked to complete a Depression, Anxiety, Stress Scales-

21 (DASS-21) questionnaire [22] as subjective reports. Next, we recorded an eye-open session

for about 5 mins. Afterward, the students attended their lectures normally for about 60 mins.
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At the end of the lectures, students were asked to perform another eye-open resting for 5 mins.

We also recorded another DASS-21 report after the eye open resting in the second semester.

Eighteen subjects participated in the first semester and eight subjects participated in the second

semester. Each subject recorded 4 to 13 sessions on different days. The EEG and ECG data were

recorded using a 32-channel NeuroScan System at 1000 Hz sampling rate. In this study, we

analyzed the first semester only since there were insufficient self-reports in the second semester.

To classify mental stress levels using non-task related data, we first extract the 5 mins eye open

resting at the beginning of the experiment. Then, we performed bandpass filtering from 1Hz to

50Hz to remove high-frequency noise.

2.3 Data labeling, feature extraction, and feature prepro-
cessing

2.3.1 Data labeling

In this study, we use the stress index in the DASS-21 questionnaire to quantify subjects’

stress levels. Since the stress level varied from 0 to 38 across all the sessions and the number of

sessions is not enough for regression analysis, we separated the sessions into an increased stress

level group and a normal stress level group according to DASS-21. If the sessions had a stress

index higher than 14, we assigned them to be in the increased stress level group and the rest of

the sessions to be in the normal stress level group. After the sessions without DASS-21 reports,

we ended up with 71 normal stress level groups and 21 increased stress level groups. Fig. 2.1

shows the number of sessions recorded from each subject in the first semester.

2.3.2 Feature extraction

In this study, we calculated each channel’s power spectral density (PSD) from the eye-

open resting sessions and created 50 frequency bins with a bin width equal to 1Hz. To reduce the

number of features, we selected PSD from 3Hz to 7Hz frequency bins since these frequency bins

overlapped with θ band which shows high correlations with cognitive state changes in previous
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Figure 2.1. Number of sessions recorded from each subject. The increased stress level sessions
are indicated in red. The normal stress level sessions are indicated in blue.

studies [35, 36]. Though some studies report the power of α band decreases under stressful

conditions, we observed an increase instead. Hence, we did not cover α frequency range for

feature extraction. A detailed analysis is provided in Section 5.5.1. We did not include β and

γ bands because the frequency range is highly overlapped with muscle activities [45] and can

be unreliable in realistic scenarios. The number of features we have extracted is 150 which is 5

frequency bins times 30 channels.

2.3.3 Synthetic minority over-sampling technique

Training classifiers on the imbalance classes can potentially bias the classifiers’ results

toward the majority group. To overcome the imbalance classes problem, we evaluated the

performance of the synthetic minority over-sampling technique (SMOTE) [46]. First, SMOTE

randomly selects one data point out of the minority group. Next, SMOTE calculates k-nearest

neighbors in the minority group of the selected data point. Finally, SMOTE randomly selects

one of the neighbors and generates a synthetic minority data point between the selected data
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point and the neighbor. By repeating this process, the number of data points in the majority and

minority groups is equal.

2.4 Model selection and evaluation

2.4.1 Linear Discriminant Analysis

The first classification model we have investigated is Linear Discriminant Analysis (LDA)

[47]. LDA aims to find a linear combination of features to separate different classes into different

distributions. In this study, we implement LDA in scikit-learn [48], a python library, with

equal probability prior. Since LDA is sensitive to outlier [49], we further selected 3Hz to 7Hz

from Fz, FCz, and Cz out of 150 features to prevent potential outlier effects. These channels are

on the midline of the head topology (Fig. 2.4) and previous studies have shown these channels

are highly related to cognitive state changes [50].

2.4.2 Neural Network

Besides the linear classifier, we also investigated the performance of the non-linear

classifier. In this study, we built a 4-layers fully connected neural network (NN) using pyTorch

[51] and trained this NN using the features from all the recording channels. To compare NN

with LDA model, we also built another 4-layers fully connected NN with different numbers of

nodes in each layers and trained this NN using the same features as the LDA model (Fz, FCz,

and Cz). The architectures of the NN are shown in Fig. 2.2. We used ReLU as an activation

function between layers and a Sigmoid function at the output layers. The number of training

epochs is 1000 and the loss function for backpropagation is binary cross-entropy loss.

2.4.3 Model evaluation

To evaluate the performance of our model, we performed leave-one-session out (LOO)

cross-validation after model training. LOO cross-validation first picks out a test session from the

dataset and then trains the model on the rest of the sessions. Next, the trained model is applied to
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(a)

(b)

Figure 2.2. The architectures of the Neural Network used in this study. The number of nodes is
indicated by the number in each layer. All the layers are fully connected to the next layer. (a)
The NN model uses the features from all the recording channels. (b) The NN model uses the
features from Fz, FCz, and Cz.
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the test session. LOO cross-validation performs the same procedure for all of the sessions and

finally reports the prediction results of all the sessions.

Since our dataset is imbalanced, containing more normal stress level groups than in-

creased stress level groups, the accuracy calculated over all the sessions is 77.17%. Therefore,

instead of using accuracy as an indicator of performance, we used balanced accuracy shown in

eq. 2.1 which gives us a random probability of 0.5. We also used F1-score shown in eq. 2.2 to

indicate the harmonic balance between recall and precision.

Balanced Accuracy =
1

Nclass

Nclass

∑
i=1

Number o f correct prediction in class i
Number o f samples in class i

(2.1)

F1 = 2
precision · recall

precision+ recall
(2.2)

2.5 Results and discussion

Fig. 2.3 shows the PSDs of Fz, FCz, and Cz which are the selected channels used in LDA

stress detection. We found there is no significant difference between the Increased stress level

group and the Normal stress level group in the feature frequency for all the feature channels.

Moreover, the scale of the PSD goes up to 20 dB which is higher than empirical observations.

Table. 2.1 shows the performance of our stress detection algorithms using bandpass-

filtered data. The LOO Acc. increases with SMOTE for LDA stress detection while decreases in

NN stress detection. On the other hand, LOO Balanced Acc. and F1 increase after SMOTE in

both stress detection algorithms. These results show that SMOTE increases the ability to detect

minority groups which is the increased stress level group in our study. However, the results are

not satisfying enough since our LOO Acc. is lower than the 77.17% chance level accuracy which

predicts all sessions into the majority class, and our LOO Balanced Acc. is slightly above 50%.

Fig. 2.4 shows an example of EEG signals with contamination from artifacts, i.e. non-
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Figure 2.3. PSD features of selected channels after bandpass filtering. The results of the normal
and increased stress level groups are shown in blue and red respectively. The solid lines indicate
the mean and the shaded area indicates the standard deviation across sessions. The cross dots
show the significant difference between the two groups (p < 0.05). The dashed line indicates the
frequency range used in the analysis.

Table 2.1. Stress detection using bandpass filtered data. BP refers to bandpass filtering.

LOO Acc. LOO Balanced Acc. F1
LDA (w/o SMOTE) 68.48% 62.81% 0.43
LDA (w/ SMOTE) 72.83% 67.30% 0.49
NN (w/o SMOTE) 75.00% 56.98% 0.30
NN (w/ SMOTE) 73.91% 62.98% 0.43

brain signals. We can see there are several artifacts caused by eye blinks and there is an artifact

caused by jaw clenching at around 74.5 sec. Previous studies have shown muscle-related artifacts

contaminates EEG PSD from 8Hz and upwards, especially having high powers in the range

of 20Hz to 60Hz [52], and eye-related artifacts contaminate EEG PSD from 0Hz to 12Hz

[53]. These artifact-contaminated frequency range overlapped with the frequency range of the

features used in this study. Based on the results, we hypothesize the classification performance is

deprecated because EEG signals are contaminated by artifacts.

2.6 Conclusion

This study aims to detect mental stress in the real world. We built two stress detection

algorithms using the PSD features calculated from eye-open resting EEG signals. However, the

EEG signals are strongly contaminated by the artifacts. Therefore, we removed artifacts before
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Figure 2.4. Example of artifact contaminated EEG recordings after bandpass filtering. The 30
channel locations are shown in the lower right corner with Fz, FCz, and Cz marked in the red
circle.

building our stress detection algorithms.
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Chapter 3

Artifact removal

3.1 Introduction

One of the greatest challenges that hinder the decoding and application of EEG data is

that EEG recordings are almost always contaminated by artifacts such as electrode impedance

changes caused by headset motion as well as eye blink, eye-movement, neck muscle, and scalp

muscle activities. Traditionally, these artifacts were removed manually by visual inspection

[54], which could be time-consuming, laborious, subjective, and incompatible with online and

real-time applications [55].

To automate the artifact removal process, earlier methods have used channel-based

statistical thresholding approaches to remove abnormal activities [56, 57] or adaptive filters

with additional reference channels to regress out targeted artifacts [58, 59]. Unfortunately,

these methods either cannot reconstruct clean data from spatially outspread artifacts or require

auxiliary channels for specific artifacts.

Another popular approach is to separate artifacts from brain signals using blind source

separation (BSS), especially independent component analysis (ICA) [54, 55]. Since BSS cannot

identify artifact components automatically, a classifier is needed to identify and reject the artifact-

related components. Most of the classifiers are pre-trained and are not adaptive to different

datasets [60, 61, 62, 63] or they require pre-recorded target-artifact sections [64] or auxiliary

channels [65]. Moreover, the ICA-based methods are usually less effective in removing transient,
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non-biological artifacts such as abrupt impedance changes from headset motions.

Recently, joint blind source separation (JBSS) [66, 67] and embedded empirical mode

decomposition (EEMD) [68, 69] have shown great performance in removing muscle artifacts

and high-amplitude artifacts. However, JBSS-based methods and EEMD-based methods are

unavailable for real-time applications due to their high computational cost. Singular spectrum

analysis (SSA) is another effective method for separating artifacts in single-channel recordings

[70]. However, SSA-based methods require users to manually select a threshold for decom-

position and may not be online-capable when applied to multi-channel recordings due to the

computation of singular value decomposition for each channel.

To address the challenges the above methods encountered, Kothe and Jung [71] proposed

artifact subspace reconstruction (ASR), which is an automatic, online-capable, component-based

artifact removal method for removing transient or large-amplitude artifacts in multi-channel EEG

recordings. Table 1 summarizes the state-of-the-art automatic, online-capable artifact removal

methods for multi-channel EEG recordings [72]. ASR is similar to principal-component-analysis-

based (PCA-based) methods in which large-variance components are rejected and channel data

are reconstructed from remaining components. The main difference is that ASR automatically

identifies and utilizes clean portions of data as a reference to determine thresholds for rejecting

components.

In the EEG community, there has been increasing use of ASR as a powerful, automatic

data-cleaning method [32, 73, 74, 75, 76]. In addition, recent studies on EEG artifact removal

have used ASR as a benchmark for comparison, such as Kilicarslan et al. [59], Gabard-Durnam

et al. [77], and Ojeda et al. [78]. However, they used a suboptimal parameter (current default

value) of ASR, which motivate the current study.

This study systematically evaluates the effectiveness of ASR using twenty actual EEG

recordings where various artifacts were present. We first characterize the effects of ASR on

overall signal reduction with different cutoff parameters. Next, extending from the previous

study [79], this study applies ICA and further employs a recently-developed, automatic IC
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classifier (ICLabel) [80] to separately identify brain activities and various types of artifact signals.

This allows quantitative and objective assessment of ASR’s effectiveness in removing different

artifacts and preserving brain activity. Finally, the results of dipole fitting to decomposed ICs

after ASR cleaning are reported to provide evidence that ASR could improve the quality of

ICA decomposition. The online and real-time capability and shortcomings of ASR are also

discussed. Collectively, this study provides a guideline for choosing an optimal ASR parameter

and demonstrates that ASR can be an effective automatic, online-capable artifact removal method.
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3.2 Dataset and data preprocessing

3.2.1 Experiment and data collection

To evaluate ASR, we used twenty EEG recordings from 10 subjects performing a sus-

tained attention task in a driving simulator [83]. The simulated driving experiment had subjects

driving in a real car mounted on a motion platform with a 360-degree virtual reality environment

and real steering-wheels control, hoping to realistically simulate the actual driving scenario. In

the 90-minute experiments, subjects reacted to randomly occurring lane-departure events by

steering the car back to the center of their lane. Therefore, there were intermittent artifacts in the

EEG data from electrical interference, EEG headset motions, and activities from neck and scalp

muscles, eye blinks, and eye movements. For each subject, 32-channel EEG data were recorded

using a NeuroScan System at 500 Hz sampling rate. Wet electrodes (Ag/AgCl) were placed on

the scalp following the international 10-20 system [84].

3.2.2 Data preprocessing

To remove high-frequency noise, the EEG data were cleaned using a band-pass FIR

filter (0.5-100 Hz) and then were down-sampled to 250 Hz. Next, we used clean rawdata, and

EEGLAB plugin function [85], to remove channels with negligible activity (flat line threshold: 5),

noisy signals (noisy line threshold: 4), or a poor correlation with adjacent channels (correlation

threshold: 0.8).

3.3 Artifact Subspace Reconstruction (ASR)

This section describes the ASR algorithm with emphasis on the key aspects and advan-

tages of ASR. A more detailed description of ASR is available in [71].

The underlying concept is that the data segment Xt can be decomposed into latent compo-

nents St using the mixing matrix Mr: Xt = MrSt . Artifact rejection is performed in the principal

component (PC) space Yt =V T
t Xt =V T

t MrSt , and thus the clean latent components (St)clean can
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Figure 3.1. Flow chart for ASR.

be reconstructed using the pseudoinverse of the truncated V T
t Mr: (St)clean = (V T

t Mr)
+
truncYt =

(V T
t Mr)

+
truncV T

t Xt where A+ is the pseudoinverse of A. Projecting (St)clean back to channel-space

using Mr yields the cleaned data in Eq. 3.1.

The ASR process consists of three steps: (1) extracting reference data from raw data,

(2) determining thresholds for identifying artifact components, and (3) rejecting the artifact

components and reconstructing the resulting data. Fig. 3.1 shows an overview of the three steps.

The concepts and implementation details are described as follows.

3.3.1 Extract reference data

ASR automatically selects clean portions of EEG data based on the distribution of signal

variance. Specifically, ASR calculates channel-wise root-mean-square (RMS) values on 1-second

windows, z-scores the values across all windows from each individual channel identifies clean

windows in which the z-scored values are within -3.5 and 5.5 1, and concatenates the clean

windows to obtain reference data Xr. A tolerance value, here we used 7.5%, is set to allow a
1The RMS values are fit into a truncated Gaussian distribution.
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small percentage of bad channels to remain in Xr otherwise the criteria for choosing Xr is too

restrictive and there will not be enough reference data to calibrate ASR. It is worth noting that

the length of the reference data found will vary with the noise level of the data.

3.3.2 Determine thresholds for identifying artifact components

ASR applies a carefully-designed IIR filter to the reference data Xr to suppress specific

frequency-band activities typically associated with brain oscillations, obtaining X̃r. ASR com-

putes the mixing matrix Mr, i.e. the square root of Cov(X̃r), and the eigenvalue decomposition

of Mr to obtain the eigenvectors matrix Vr and eigenvalues vector Dr. Each column in Vr is the

eigenvector corresponding to the eigenvalue in Dr. Once the data are projected onto the PC space

Ỹr = V T
r · X̃r, ASR calculates the mean µi and standard deviation σi of RMS values across all

0.5-second windows of Ỹr for each component i, and defines rejection thresholds Γi = µi + k ·σi

where k is the user-defined cutoff parameter.

3.3.3 Reject artifact components and reconstruct cleaned data

ASR applies an eigenvalue decomposition to the covariance matrix taken across channels

of the IIR-filtered uncleaned EEG segments Cov(X̃t) =VtDtV T
t along a sliding window with a

window size of 0.5 seconds and a step size of 0.25 seconds. The IIR filter here is the same as

in step (2). For each window, ASR identifies whether jth PC (Vt) j with variance (Dt) j is larger

than the rejection thresholds Γi projected from Vr onto Vt : (Dt) j > ∑i(Γi(Vr)i
T (Vt) j)

2. If the

inequality holds, then the values of that component’s activities are replaced with zero vectors:

(V T
t Mr)trunc. Finally, ASR reconstructs the cleaned data segment using the equation:

(Xt)clean = Mr(V T
t Mr)

+
truncV

T
t Xt (3.1)

The MATLAB scripts for performing ASR are available as an open-source plug-in

function clean rawdata in EEGLAB [85]. While many settings can be optimized, the most
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important user-defined parameter is the cutoff parameter k for determining the rejection thresholds

in units of standard deviations. This study aims to characterize the effectiveness of ASR in

removing artifacts and how k affects its performance.

3.4 Evaluating performance of ASR using independent
component analysis

ASR is a general-purpose automatic artifact removal method that can be used as a

preprocessing step. It is therefore important to maximize the artifact signals rejected while

minimizing the brain activities removed. Without the ground truth in actual experimental EEG

data, we propose to use this trade-off between removal of artifact and brain signals, separated by

ICA and identify by an automatic IC classifier (ICLabel) [80], as an objective and quantitative

measure of the performance of artifact removal method.

3.4.1 Independent Component Analysis (ICA)

ICA has been widely used for separating stereotyped brain processes and various types

of artifacts such as muscle, eye-blink, and lateral eye-movement activities [54]. ICA assumes

EEG data, x, can be modeled as a linear mixture A of statistically independent sources, s, and

learns an unmixing matrix, W , such that the independent components (IC) recover the original

sources, y.

x = As

y = Wx ≈ s

In this study, we employ extended Infomax ICA [86], which is available in the runica function

in EEGLAB, an open-source Matlab Toolbox.
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3.4.2 Changes in spatial distribution and temporal activities of indepen-
dent components

With the ICA decompositions of ASR-cleaned data, we can quantitatively assess the

extent to which ASR affects the activities of the brain and artifactual ICs in two ways. First,

we compute the component-wise correlation coefficients of the best-matched ICs across ICA

decompositions of EEG data with and without ASR cleaning, that is, rearranging the order of

ICs to maximize ∑i Corr((A(k))i,(A(∗))i) where A refers to the linear mixing matrix of ICA, k

refers to ASR’s cutoff parameter, ∗ refers to no ASR cleaning, and i is the column index. The

matching process was performed using the Hungarian method [87] in the matcorr function in

EEGLAB. This enables assessment of the stability of ICs across different ASR thresholds (k)

by examining whether ICs disappear, change, or remain the same. Second, we apply the spatial

filter W (∗) = (A(∗))+, obtained from the ICA decomposition of raw data, to ASR-cleaned data

X (k). Then we calculate the IC activities,

Y (k) =W (∗)X (k) (3.2)

and compare the mean power reduction for the IC activities.

Power reduction = Mean(Var(Y (k)))−Mean(Var(Y (∗))) (3.3)

Since ASR removes artifacts based on the variance of component activities, it could remove both

brain and artifact activity, especially when an aggressive threshold is applied. By examining the

power reduction of the activities of brain-related and non-brain-related ICs, we can reveal the

effectiveness of ASR for removing non-brain signals while retaining brain-related signals and

provide guidelines for choosing the cutoff parameter k.
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3.4.3 IC classification

To summarize the ICA results across subjects, we classify the ICs from each decompo-

sition using an automated IC classifier. We utilize the iclabel function in EEGLAB [80] to

classify ICs into 7 classes: Brain, Eye, Muscle, Heart, Line noise, Channel noise, and, a class for

ICs which do not fit into the first 6 classes: Other.

3.4.4 Changes in dipole fitting result of ICs

The quality of an ICA decomposition can be measured by the number of dipolar ICs,

whose spatial distribution over the scalp can be modeled by a current dipole in the brain, as

suggested by Delorme et al [88]. Dipolar ICs are important because EEG is assumed to capture

brain signals from near-synchronous cortical patches, generated by well-aligned pyramidal cells.

With this assumption, it is reasonable to model each brain component in EEG recordings as

an equivalent current dipole in the cortex [89]. Since large-amplitude artifacts usually disrupt

ICA decompositions, we expect that ICA will find more dipolar ICs if the artifacts are removed

from the data. In this study, we employ the dipfit function in EEGLAB [90] and consider ICs

with residual variance, the mismatch between IC’s spatial distribution over the scalp and the

projection of fitting dipole, lower than 5% to be “dipolar sources” [91, 88].

3.5 Results

3.5.1 Data modification and variance reduction through ASR cleaning

Fig. 3.2 shows the percentage of data points modified by ASR (i.e. rejecting at least one

component) and the average variance reduction of the data before and after ASR cleaning using

different cutoff parameters k. The average portion of the reference data selected by ASR across

twenty EEG recordings is 43.9% with a standard deviation of 14.6%.

In Fig. 3.2(a), when the cutoff parameter k = 100, less than 3% of data was modified while

still reducing variance by more than 20%. When k is between 5 and 7 as previously suggested in
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[73], ASR modified nearly 80% of data and reduced 80% of signal variance.

Fig. 3.2(b) shows that the percentage of data modified and variance reduced started to

increase when k≤ 30. When k is between 5 and 7, ASR modified 50% of reference data and

reduced the signal variance by 30%. One thing to note is that, by visual inspection, there are still

some eye and muscle activities in the reference data and ASR starts to reduce variance when the

threshold falls below k = 1000 in Fig. 3.2(b).

3.5.2 Stability of ICs across choices of the ASR parameter

We examined the stability of IC by calculating component-wise correlation coefficients

across ICA decompositions of the EEG data with and without ASR cleaning.

Through visual inspection of the results shown in Fig. 3.3, we found that those ICs which

were preserved by ASR with k = 1 (shown in the green box in Fig. 3.3(b)) were likely to be

associated with brain activities (IC2, IC4 and IC5). These ICs were visually characterized by

spatially homogeneous scalp maps [88]. Interestingly, the ICs accounting for eye-blink (IC7)

and eye-movement (IC3) activities were also consistently present when different values of k

were used. On the contrary, those ICs which disappeared when the value of k was smaller than

70 were likely to account for artifacts due to single-channel noise (IC25 and IC29) or localized

muscle activities (IC27 and IC28), visually characterized by scalp maps with sparse and localized

activity.

To quantify the above results across subjects, Fig. 3.4(a) depicts the percentage of

preserved ICs at each ASR threshold from all twenty EEG recordings, categorized into 5 groups

using ICLabel classifications (see Section 3.4.3) and IC dipolarity (see Section 3.4.4). Fig. 3.4(a)

shows that, when k = 5, ASR altered 50% of ICs. However, the ratio of Dipolar brain sources in

preserved ICs increased, compared to the ratio in ICs without ASR cleaning, from 20% to 30%.

Fig. 3.4(b) shows the percentage of preserved ICs within each group at each ASR

threshold. When k = 100, almost 20% of ICs in the Eye and Muscle classes were removed. When

k ≥20, 90% of Dipolar brain ICs were preserved while less than 70% of ICs in the other four
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Figure 3.2. The percentage of data modified (blue) and variance reduced (red) by ASR with
different cutoff parameters with respect to the same data with no ASR cleaning. The shaded area
shows one standard deviation across twenty EEG recordings. Fig. 3.2(a) shows the result on
the entire data and Fig. 3.2(b) only shows the result on the reference data, which ASR used to
determine the value of thresholds.
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classes were preserved. When using k between 5 and 7, less than 60% of Eye ICs and 50% of

Muscle and Other ICs remained, but also removed 15%–25% Dipolar brain ICs.

3.5.3 Source power reduction by ASR cleaning

To further quantify how different types of signals were removed by ASR, we calculated

the ICA decomposition of EEG data without ASR cleaning and applied the learned spatial filters

(i.e. the IC scalp maps) to the same data after ASR-cleaning data, and computed their source

activities retained after ASR cleaning with different cutoff parameters.

Although eye-blink ICs (IC7) and eye movements ICs (IC3) were still present as reported

in Section 3.5.2, Fig. 3.5(a) shows that their power was reduced to the same level as those of

brain sources when k is between 5 and 7. Moreover, Fig. 3.5(b) shows that, when k is between 5

and 7, eye-related and likely-artifact ICs only retained 5% of their power after ASR cleaning. On

the other hand, 70% and 90% of the power of the brain-related ICs (IC2, IC4, IC5) were retained

when k = 5–7 and 30, respectively. Even though IC1 was preserved when k = 1 in Fig. 3.3, ASR

removed 65% and 40% of IC1’s power with k = 5 and k = 30, respectively.

These single-subject results were also seen across subjects. Fig. 3.5(c) plots the source

power of each of the 3 classes (Brain, Eye, and Muscle) averaged over all ICs in the same

class across all twenty EEG recordings. To prevent the shaded area from exceeding the range

of percentages (0 through 100), the shaded area shows 10% through 90% quantiles instead of

standard deviation. The source power of ICs in the Eye class was 10 times larger than those in

the Dipolar brain class in the data without ASR cleaning. However, when k ≤10, the source

power of the Eye class and Dipolar brain class were comparable. On the other hand, the source

power of ICs in the Muscle class was comparable to the source power of ICs in the Dipolar brain

class in data without ASR cleaning when k was large, but became 9 times smaller when k ≤100.

Fig. 3.5(d) shows that when k = 100, ASR removed on average 30% of the source power of

ICs in the Muscle class, and 10%-90% quantiles show that ASR’s effectiveness varied drastically

across Muscle ICs. When k ≥30, ASR retained 90% of the power of Dipolar brain ICs, while
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only retaining 50% of the power of Eye and Muscle ICs. When using ASR with k between 5 and

7, the retained power in Eye and Muscle ICs were 10% and 30% respectively. However, 40% of

the source power of Dipolar brain ICs was removed as well.

3.5.4 Improvement of ICA decomposition

Fig. 3.3 and 3.4 provide qualitative and quantitative results of which ICs survive ASR

cleaning. To further assess ASR’s effect, Fig. 3.6(a) reports the total number of dipolar ICs

present after different levels of ASR cleaning. When k ≤50, the ICA decomposition of the ASR-

cleaned data found significantly more dipolar sources, which indicates a better decomposition

according to [88]. Furthermore, Fig. 3.6(b) shows that the number of Dipolar brain sources

increased, on average, by 10% when k = 5 and 5% when k = 20.

3.6 Discussion

Artifact Subspace Reconstruction is an automatic, online-capable artifact removal method

that has been increasingly used in EEG pre-processing. However, ASR has not been properly

validated and the optimal user-defined cutoff parameter is unknown. This study aims to systemat-

ically evaluate and quantitatively assessed the effectiveness of ASR on real EEG data using ICA

decomposition with the following measures: (1) percentage of data modification versus variance

reduction, (2) percentage of reference data that are affected, (3) how many artifact ICs remain

and how much their powers are reduced, and (4) how many brain ICs are preserved and their

source activities are affected.

The empirical results show that the effectiveness of ASR heavily depends on the choice

of its cutoff parameter k. As shown in Fig. 3.2(a), a mild threshold (k = 100) could remove sparse

(1% of data) yet large-amplitude artifacts (20% of the variance). When k was 20, ASR started to

affect the reference data, indicating that even the clean data ASR used to determine thresholds

were modified. With the previously suggested values (k between 5 and 7) [73], ASR modified

70% of data and removed up to 80% of the variance, which may affect brain signals and distort
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Figure 3.6. (a) The average percentage of all dipolar sources in ICA decomposition of EEG
data with (solid line) and without (dashed line) ASR cleaning. The shaded area represents one
standard deviation across subjects. The statistical significance between the number of dipolar
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residual variance < 5% were considered dipolar.
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experiment results.

To assess the types of signals removed by ASR, we decomposed the ASR-cleaned EEG

signals using ICA and classified the ICs as Brain, Eye, and Muscle-related sources. We found

that more Muscle, Eye, and Other ICs disappeared than the Dipolar brain ICs did after ASR

cleaning (Fig. 3.4(b)). When k ≤20, more Dipolar brain ICs were affected and the ratio of

removing artifact ICs versus Dipolar brain ICs deteriorated. Although some Muscle and Eye

ICs were still present after ASR cleaning, their powers were strongly reduced (Fig. 3.5). The

retained power from the Eye ICs went from 80% (k = 100) to below 20% (k = 10); the retained

power from the Muscle ICs went from 93% (k = 1000) to 40% (k = 10). When k ≥30, 90% of

power from the Brain ICs was still preserved, but the retained power decreased to 50%–60%

with k between 5 and 7.

Given the above observations, the recommended ASR cutoff parameter k is between 20

and 30. ASR with a conservative threshold k = 30 removed 25% of the Eye and Muscle ICs and

reduced almost 50% of the power of the Eye and Muscle activities while only affecting less

than 10% of the Dipolar brain ICs and removing only 10% of their power. ASR with a lower

threshold of k = 10 further removed 15%–30% of Eye and Muscle activities, but at the cost of

reducing 15% more Brain signal power. The previously suggested value of k between 5 and 7 is

too aggressive in removing both artifact and brain signals and is not recommended.

Interestingly, ICA decompositions of the ASR-cleaned data found more Dipolar Brain

sources when a smaller cutoff parameter was applied. Because ICA is sensitive to large-amplitude

artifacts, applying ASR before ICA can increase the quality of an ICA decomposition, as shown

by the increase in the number of dipolar EEG sources found (Fig. 6). In addition, we examined

whether the newly found Dipolar Brain sources were “novel” — different from the ones found

in ICA without ASR cleaning — by comparing the correlation of their spatial topographies.

We found that several ICs from the “Non-dipolar Brain” and “Other” classes became “Dipolar

Brain” classes after ASR cleaning while most of the Dipolar Brain ICs remained the same. We

conceive that spatially diffused or mixed signals originally explained by one IC could be further
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decomposed into a few more localized ICs when ASR cleaning was applied. Furthermore, we

examined the percentage of ICs with dipole locations outside versus inside the MNI head model.

The empirical result shows that only when aggressive ASR thresholds (equal or below 5) were

used, the number of ICs outside of the head model reduced, implying more artifact components

were removed.

Compared to other existing artifact removal methods, the benefit of ASR is that it can

automatically adapt its thresholds based on the statistics of the EEG data. Moreover, ASR can

remove transient, large-amplitude artifacts which ICA-based methods are usually incapable

of dealing with. In fact, the combined use of ASR and ICA might be even more effective in

removing different types of EEG artifacts [92].

Even though ASR effectively removes large-amplitude artifacts, its limitations and

potential solutions should be considered. Firstly, without aggressive cutoff parameters, ASR

might be limited in removing regularly-occurring yet large-amplitude artifacts, such as eye

blinks and temporalis muscle activities, for these signals would be inevitably included in the

automatically-extracted reference data. As a possible remedy, especially for eye-related artifacts,

one can use a user-defined, artifact-free data segment as reference data, or use a subsequent

ICA-based artifact removal methods to complement ASR cleaning, as proposed in [92]. Secondly,

ASR could also remove brain signals if they are not present in the reference data, which can

happen in an online application. One potential solution is incorporating a clean portion of the

incoming data to reference data and having an adaptive ASR threshold.

Another limitation of ASR is that it cannot be applied to single-channel EEG recordings

and its performance might be impaired when the number of channels is small. Unlike EEMD-

and SSA-based methods, which can exploit the temporal or spectral information in single-

channel EEG, ASR requires the covariance of multi-channel signals to obtain artifact rejection

threshold and reconstruct the clean signals. The effect of channel count on ASR performance is

an important topic that applies to all component-based methods like ICA. From our empirical

observation, ASR could achieve effective artifact removal for standard 20-channel EEG.
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ASR can also be a powerful tool for online, near-real-time, automatic artifact removal,

which has been implemented and disseminated in BCILAB [93] and in the Real-time EEG

Source-mapping Toolbox (REST) [94]. Some important considerations of using ASR in the

online application include: (1) online application of ASR requires user-defined reference data; we

suggest users record an artifact-free section before the experiment. (2) Bad channels (e.g. with

high impedance) should be removed before applying ASR. (3) The computation bottleneck of

ASR is the eigenvalue decomposition of the sample covariance matrix, which has the complexity

of O(nw) where n is the number of channels and 2 < w < 3 depending on the implementation of

the algorithm. In case of increased channel counts, a longer time window can be used to achieve

real-time capability. More details of the online aspect of ASR can be found in [92].

3.7 Conclusion

This study demonstrates that Artifact Subspace Reconstruction is an effective automatic

artifact removal approach, quantifies ASR’s effectiveness in removing different types of signals

as shown using Independent Component Analysis, and provides insights into the optimal choice

of ASR’s cutoff parameter.

Our empirical results suggest using a cutoff parameter between 20 and 30 rather than

the previously suggested and default values between 5 and 7 [73] where brain activities were

excessively removed. This study also found that ASR improves the quality of ICA decomposition

as evidenced by an increased number of dipolar independent components.

Offline and online versions of the ASR code have been made available in EEGLAB and

BCILAB. With an appropriate choice of the cutoff parameter, ASR can be a powerful artifact

removal approach for subsequent data analysis such as ICA and its online capability enables

real-time artifact rejection for brain-computer interfaces and clinical applications.
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Chapter 4

Electroencephalography in Mobile Virtual
Environments

4.1 Introduction

The fixation-related potential (FRP) technique is part of a broader class of event-related

EEG methods whereby segments of time-series EEG associated with distinct classes of exper-

imentally relevant events are aligned and averaged. In the basic ERP paradigm, time-locking

events usually coincide with the presentation of some type of stimulus, such as a sound, an image,

a video, and so forth. In the case of FRPs, the time-locking event is the onset of visual fixation.

This method has been used extensively to study reading and visual search, among other

human abilities, in part because it allows for more ecologically valid measures of neurocognitive

processing. In classic ERP language paradigms, for instance, the individual words comprising a

text are presented serially on a computer monitor – one item at a time – allowing experimenters

to time-lock to brain activity elicited by each individual word. However, because the FRP

technique accomplishes time-locking through information about a reader’s gaze rather than

the onset of a stimulus, it is possible to present full blocks of text at once in FRP paradigms,

approximating more natural reading conditions. This approach allows researchers to study the

effect of parafoveal words (e.g., the words immediately to the right of a currently fixated foveal

word) on foveal word processing [95, 96]. Analogously, FRP-based visual search paradigms

allow researchers to dissociate brain activities elicited during the natural scanning of targets
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versus distractors within a single complex visual scene [97].

Crucially, successfully deriving FRPs from time-series EEG depends on the accurate and

precise demarcation of fixations from time-series gaze points. A significant challenge stems

from the fuzziness of boundaries between saccades and fixations. Efforts to parse these two

fundamental components of gaze can lead to variable outcomes depending on the parameters and

structure of the parsing algorithm and noise in the signal. Many FRP protocols include the use of

chin rests or other restraints to curtail the intrusion of head movement, which can result in data

loss or distortion due to shifting of the head outside of the headbox in the case of remote eye

trackers or slippage in the case of mobile systems [97]. Further, head movement can complicate

the parsing of fixations and saccades due to vestibular-ocular reflex (VOR), which allows an

individual to maintain their gaze on a fixed object under conditions of head movement using

compensatory eye movements. Under conditions of such VOR-based responses, the change of

the position of the eye-in-head during fixation can actually exceed the change of eye position

that occurs during small saccades [98], rendering dispersion-based classifications algorithms

– which rely on changes in the location of gaze points – ineffective. For these reasons, many

eye-tracking studies take careful precautions to minimize head movement, often confining their

tracking area to the 2D display on a computer monitor.

As head-mounted virtual reality (VR) with integrated mobile eye tracking has become

more widely available, new possibilities for studying unconstrained, free viewing in 3D space

have emerged. In head-mounted VR, visual scenes are presented binocularly via a flat screen

system embedded inside a goggle-style face covered with the stereoptic simulation of depth cues.

By continuously tracking the position and orientation of the user’s head, the device can update

the visual scene in response to the user’s movements. Further, in addition to the user’s head

position and orientation, the distance between the user and objects and other features of the game

world is known at all times, making it possible to compute gaze points as 3D vectors. A gaze

intersection point (GIP) is the nearest point in the virtual environment that is intersected by the

vector-based gaze ray. Thus, in virtual paradigms, it is possible to parse fixations according to
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either traditional methods that measure changes in visual angle between eye position coordinates

or alternatively, by relying on GIP-based approaches.

The present study evaluates the feasibility of a new event-related measure derived by

time-locking to EEG data that coincide with periods when the user’s gaze intersects with an

object of interest – the so-called gaze-related potential (GRP). We simultaneously recorded

EEG and eye-tracking data while healthy adults performed a simple target detection task in an

immersive virtual scene. In VR, participants were asked to fixate on a central marker and then

either to saccade to a target appearing in one of four locations in the near periphery (5 degrees

from the central marker) or make a head turn and a saccade to targets in one of four locations in

the far periphery (30 degrees from the central marker). Embedded in each target was either a

standard cue (occurring on 80% of trials) or a deviant cue (occurring on 20% of trials), yielding

a classic oddball paradigm. Participants were instructed to classify cues by pulling the trigger of

their controller.

Our research goals were twofold. First, we aimed to characterize the interaction between

head and eye movement when participants directed their gaze to far peripheral targets. Secondly,

we aimed to compare the effectiveness of FRP versus GIP time-locking approaches in detecting

visual P300 oddball effects under conditions of head movement. To our knowledge, this study is

one of the first of its kind to examine gaze-based approaches to EEG analysis in 3D, immersive

VR with free head movement.

4.2 Experiment and data acquisition

4.2.1 Data acquisition

In this study, we used a head-mounted VR system, an HTC VIVE Pro Eye, HTC Corp.,

New Taipei, Taiwan), to display the visual oddball task in a virtual environment and track the

movements of the head and eyes. In the head-mounted virtual reality system, the head movements,

including head locations and head rotations, were recorded using the inertial measurement unit
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(IMU), and the eye tracking data, including pupil directions and gaze intersection points (GIPs),

were recorded using the integrated camera-based eye trackers. Both head movements and eye

tracking data were recorded at a 90Hz sampling rate. We elaborate on the definition of GIP in

section 4.2.2. We recorded the EEG signals simultaneously using a 22-channels Smarting semi-

dry headset (mBrainTrain LLC, Belgrade, Serbia) with salt-water-soaked sponge electrodes and

a 500Hz sampling rate for the first 6 subjects, and a 64-channel BioSemi wet headset (BioSemi

B.V., Amsterdam, Netherlands) with gel electrodes and a 512Hz sampling rate for the other 8

subjects. Both headsets have their electrodes placed on the scalp following the international

10-20 system [84]. We also recorded subjects’ responses using an HTC VIVE controller. The

virtual environment was built in the Unity game engine.

4.2.2 Gaze Intersection Point (GIP)

Gaze Intersection Point (GIP) indicates where and what a subject is looking at by

reporting the intersection points of the gaze vector and the virtual environment. For each eye,

the eye tracker describes eye movements by the location of the pupil. To take the blink into

consideration, the eye tracker uses an eye openness index to indicate eye tracking reliability.

Next, the eye tracker defines a 3D pupil vector that starts at the center of the modeled eyeball

(perfect sphere) and points outward through the pupil for both eyes independently. The pupil

vector reports -1, pointing inward when the eye is closed. In normal situations, these two pupil

vectors collide when the subject looks at objects. Gaze vector is defined as the vector pointing

from the middle of two eyes toward the colliding point. Finally, the eye tracker extends the gaze

vector until it hits objects or boundaries in a virtual environment, and defines the intersection

point as GIP. Fig. 4.1 illustrates the definition of GIP. Since the source code is unavailable, we

hypothesize the eye tracker will use the pupil vector with a higher eye openness index than the

gaze vector.
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GIP

Gaze vector

Pupil vector

Figure 4.1. Illustration of Gaze intersection point.

4.2.3 Virtual environment

Two scenarios in the virtual environment correspond to two conditions in the experiments.

For both scenarios, there is a blue cube displayed in front of the subject at the height of eye level

which serves as a central fixation point for the experiment. Two possible concentric rings of

target positions were arranged around the central fixation point perpendicular to the subject, with

a low-excursion ring with a radius equal to 0.0875 meters and a larger, high-excursion ring with

a radius equal to 1.1548 meters. Depending on the condition, visual targets would appear on

either of these rings at 90° coordinate intervals: up, right, down, and left. Fig. 4.2 shows the

representation of the visual field of the two conditions. For the low-excursion ring condition,

subjects were asked to stand 1 meter away from the central fixation point, creating a visual angle

of 5 degrees between the central fixation point and target cubes. For the high-excursion ring

condition, subjects were asked to stand 2 meters away from the central fixation point, creating a

visual angle of 30 degrees between the central fixation point and target cubes. All of the cubes in

the experiment have a width of 11.04 cm.
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(a)

(b)

30

5

R = 0.875 m

R = 1.1548 m

1 m

2 m

Figure 4.2. The representation of the visual field in the virtual environment. Fig. 4.2(a) shows the
locations of the central fixation point (blue cube) and possible target positions (green cubes) for
both low-excursion and high-excursion rings. Fig. 4.2(b) shows the top view of the representation
and indicates the visual angles corresponding to the subjects (orange head).
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4.2.4 Experiment design

To characterize the relationship between the eye and head movements, we designed a

visual oddball task with cued eye and/or head movements inside a virtual environment. The

oddball task is commonly used in ERP studies [99]. In an oddball task, a sequence of repetitive

stimuli (standard stimuli) with a few different stimuli (deviant stimuli) randomly inserted is

presented to subjects. Once subjects receive deviant stimuli, their brain will generate an ERP

named P300 [100]. In our experiment, we used P300 as the ground truth brain signal.

Our experiment has two conditions: (1) eye-shifting condition using the low-excursion

ring, where subjects were asked to use their eyes to position their gaze without head movements.

(2) head-turning condition using the high-excursion ring, where subjects can naturally position

their gaze with both eye and head movements.

At the beginning of each trial, subjects were asked to stand 1 or 2 meters away from the

central fixation point (blue cube) for eye-shifting and head-turning conditions respectively with

their gaze fixated on the blue cube. After 2 seconds, a green target cube popped up at one of the

four possible positions. Subjects were asked to position their eye gaze on the target cube as soon

as possible and fixate their eye gaze on it. A triangle or a circle is printed on the target cube,

representing deviant and standard events respectively. Subjects were asked to pull the trigger on

the controller whenever they could justify that the shape of the target cube is a circle. There are

20 deviant events and 80 standard events for both conditions. The target cubes disappeared after

2 seconds and subjects were asked to position their eye gaze back to the central fixation point to

finish the trials. The conditions are presented in order of eye-shifting and then head-turning with

a break between them. Fig. 4.3 shows the pipeline of one trial in the visual oddball task.
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2 seconds
Standard trial

Trial starts

Deviant trial

Trial ends

2 seconds

Figure 4.3. The pipeline of one trial in the visual oddball task.

4.3 Data preprocessing and methods

4.3.1 Eye tracking and behavioral data

The eye movements were calculated from the normalized pupil directions, defined as a

vector pointing from the center of the eyeball to the pupil. To reduce the noise in eye movements,

we preprocessed the data following the Tobii pipeline [101]. First, we determined the unreliable

data based on eye openness, ranging from 0 to 1. Once the eye openness is smaller than 0.1,

we labeled the period of data as gaps. If the latency of a gap is shorter than 75 ms, we linearly

reconstruct the eye movements within the gap. Otherwise, the gap is defined as a blink or data

missing when it has a latency between 75 ms to 150 ms or longer than 150 ms respectively.

Then, We smoothed the rest of the data with a 40 ms window to get a robust estimation of eye

movements. We also smoothed the head movements and GIPs with a 40 ms window, and no

further preprocessing is applied.

4.3.2 EEG data

To remove high-frequency noise, we clean the EEG data using a band-pass FIR filter

(1Hz - 50Hz). Then, we re-referenced the data to mastoids. Since two EEG recording systems

have different sampling rates, we downsample the data to 250Hz. Next, we implemented
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clean rawdata, an EEGLAB plugin function [85], to remove channels with negligible activities

(flat line threshold: 5), strong line noise (noisy line threshold: 4), or a poor correlation with

adjacent channels (correlation threshold: 0.7). Once bad channels were removed, we applied

Artifact Subspace Reconstruction (ASR) with a burst threshold of 10 using the same function

[102]. Lastly, we performed Independent Component Analysis [54] and rejected artifact-like

components labeled by ICLabel [80] (probability threshold: 0.8).

4.3.3 Dispersion- and Velocity-based fixation detection

Since eye movements have plenty of types, such as blink, fixations, saccades, and smooth

pursuits, there is a wide variety of eye movement classifiers [103]. In this study, we focus on

fixation detection to investigate the relationship between fixation onset timing and the oddball

response of the brain and behavior. Most of the popular fixation detection algorithms use a

threshold-based method on dispersion and/or the velocity of eye movements [104, 105].

We built a fixation detection algorithm based on the Tobii I-VT fixation filter [101].

First, we calculated the angular dispersion and the angular speed of eye movements. Next, we

applied a threshold to determine the before-merged fixations. The optimal type and value of

threshold choosing vary across different studies and tasks. [106, 107, 108] We implemented an

angular-speed-based threshold of 30 degrees per second. After we calculated the before-merged

fixations, we merged the adjacent fixations if the latency between them is shorter than 75 ms and

the angle difference between them is smaller than 1 degree. Finally, we removed the fixations

shorter than 200 ms after merging.

4.3.4 Event-related potential with different time locking

We extracted three types of event-related potential (ERP) with different event onset and

epoch lengths. First, we extract the stimulus-locked ERP with an epoch length of 200 ms before

and 2000 ms after stimulus onset. Next, we extract the GIP-locked ERP using the GIP onset,

when GIP first collides with target cubes after stimulus onset. The GIP-locked epoch length is set
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to 1000 ms before and after GIP onset. Finally, we extract the fixation-locked ERP using the first

fixation onset after stimulus onset. The fixation-locked epoch length is equal to the GIP-locked

epoch length. We used the conventional stimulus-locked ERP as a benchmark to compare with

other types of ERP. All the ERPs in the same trials removed the same baseline (200 ms before

stimulus onset). We further removed bad epochs if the latency between GIP onset and stimulus

onset is shorter than 100 ms or longer than 1000 ms.

4.3.5 1D representation of 3D eye tracking and behavioral data

To investigate the dynamics of head movements and eye movements under head-turning

conditions, we first projected 3D eye tracking and behavioral data onto the vectors pointing from

the subject toward the target cubes for each trial independently. Next, we calculated the angle

for head-turning directions, pupil vectors, and gaze vectors. The angle is created by the vectors

before and after stimulus onset. At the beginning of each trial, all the angles remain zero (facing

and looking at the central fixation point). When subjects turn their head toward the target cube,

a positive angle is created. The definition of positive angle is the same for pupil vectors and

gaze vectors. Finally, we calculated the angular velocity using a 40-ms sliding window. We

also recorded the distance between GIP and the target cube to check if the distance reaches its

minimum at GIP onset.

4.4 Results

4.4.1 Relationship among behaviors

Fig. 4.4 and Fig. 4.5 show the angle and angular velocity of 1D-projected behavioral

data. The results of eye-shifting and head-turning conditions are shown in the left and right

columns respectively. The events are time-locked to stimulus onset, GIP onset, and fixation

onset from the top to the bottom. Since we found no significant difference between the results

of standard trials and deviant trials, we presented the results from standard trials only. Fig. 4.4
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shows subjects’ gaze rested at 4 and 23 degrees after GIP onset in the eye-shifting and head-

turning conditions respectively. We can also verify that subjects had no head movements in the

eye-shifting condition according to Fig. 4.4 (a, b, c), and the distance between GIP and target

cubes reaches the minimum at GIP onset for both conditions.

In Fig. 4.4 (a, d), we observe that subjects initiated their movements around 100 ms after

stimulus onset for both conditions. Fig. 4.4 (d) further shows that subjects first use their eyes to

locate the target cube, then turn their head to face toward the target cube. In Fig. 4.4 (e, f), we see

the angle of eye movement starts to decrease while the angle of head movement increases after

GIP onset. On the other hand, both angles of the eye and head movement stop changing after

fixation onset. We can visualize this phenomenon more obviously in Fig. 4.5 (e, f). The sign of

angular velocity of the pupil vector and head-turning direction are opposite after GIP onset in

Fig. 4.5 (e), and the angular velocity drops to nearly zero after fixation on set in Fig. 4.5 (f).

4.4.2 Event onset and latency

Fig. 4.6 shows the probability distribution of GIP onset, fixation onset, and response

onset. The results in eye-shifting and head-turning conditions are shown in Fig. 4.6 (a) and (b)

respectively. Since there is no significant difference between standard and deviant trials, we only

present the results from deviant trials for clarity. All three event onsets happen significantly later

in the head-turning condition compared to the eye-shifting condition.

To investigate how gaze affects response time, we compare the probability distribution of

the latency between events in Fig. 4.7. The results of eye-shifting and head-turning conditions are

shown in the left and right columns respectively. The first row (a, d) shows the latency between

fixation onset and GIP onset. The second row (b, e) shows the latency between response onset

and GIP onset. The third row (c, f) shows the latency between response onset and fixation onset.

In the eye-shifting condition, the mean of the latency between fixation and GIP onset

is -15 ms as shown in Fig. 4.7 (c) and both events have a followed response onset of around

300 ms. In the head-turning condition, the mean of the latency between fixation and GIP onset
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Figure 4.6. The probability distribution of GIP onset (black), fixation onset (blue), and response
onset (cyan) in eye-shifting and head-turning conditions.

increases to 200 ms. The latency between response and GIP onset significantly increases to 464

ms, while the latency between response and fixation onset significantly decreases to 264 ms in

the two-sample t-test.

4.4.3 Event-related potential with different time-locks

Fig. 4.8 and Fig. 4.9 show the event-related potential (ERP) time locking to stimulus

onset, GIP onset, and fixation onset on Cz and O2 channels respectively. The results of eye-

shifting and head-turning conditions are shown in the left and right columns respectively. The

first row (a, d) shows the ERP time locking to stimulus onset. The second row (b, e) shows the

ERP time locking to GIP onset. The third row (c, f) shows the ERP time locking to fixation onset.

All the statistical significance described in this section is calculated using a two-tails paired-wise

t-test with alpha equal to 0.05.

Fig. 4.8 (a) shows there is a stimulus-related potential between 100 ms and 300 ms for

both standard and deviant trials in eye-shifting conditions. The amplitude of deviant trials is

significantly lower around 400 ms and significantly higher around 800 ms after event onset
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compared to the standard trials. In Fig. 4.8 (b) and (c), the amplitude of deviant trials is

significantly lower 200 ms before the event onset and significantly higher around 500 ms after

event onset when time-locked to GIP and fixation. Out of our expectation, though the amplitude

of deviant trials seems to be higher around 300 ms after event onset in Fig. 4.8 (b) and (c), the

difference between standard and deviant trials does not reach statistical significance. In the

head-turning condition, there is no clear stimulus-related nor GIP-related potential in Fig. 4.8 (d)

and (e). However, Fig. 4.8 (f) shows the amplitude of deviant trials is significantly higher around

380 ms after fixation onset.

We also investigate if we can capture fixation-related potential (FRP), a more well-studied

ERP, on O2 channel. Fig. 4.9 (a, b, c) shows there is clear stimulus-related, GIP-related, and

fixation-related potential in the eye-shifting condition. The FRP shown in Fig. 4.9 (b) is similar

to those found in previous studies which a negative drop followed by a positive peak around 100

ms after fixation onset [109]. However, the peak of FRP shown in Fig. 4.9 (c) is not as sharp as

in (b). Moreover, instead of having a single peak, there seems to be a consecutive peak of around

200 ms. In head-turning condition, we can still observe the initial stimulus-related potential

between 100 ms and 200 ms in Fig. 4.9 (d), and GIP-related potential in Fig. 4.9 (e). However,

the signals are much noisier and no FRP is found in Fig. 4.9 (f).

One important thing is that after applying Holm-Bonferroni correction [110] for multiple

comparisons, there is no significant difference between standard and deviant trials at the Cz and

O2 channels in all conditions.

4.5 Discussion

Eye movements are an important indicator of human attention and interest and have been

widely used in the fields of behavioral research, marketing, and neuroscience. One of the most

informative features of eye movement is fixations, which have previously been shown to provide

precise timing references for neuroscience research under lab conditions where the subjects
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have no head movement. However, when it comes to more realistic conditions involving natural,

unconstrained head and body movement, methods for parsing saccades and fixations and using

these segmentations to analyze other modalities of simultaneously recorded physiological data

are still in their infancy. This study has two aims. First, characterize the interaction between head

and eye movement when participants directed their gaze to the far peripheral targets. Secondly,

compare the effectiveness of FRP versus GIP time-locking approaches in detecting visual P300

oddball effects under conditions of head movement.

To characterize the interaction between head and eye movement, we first have to verify

our eye-tracking system and algorithm are reliable. We observed three pieces of evidence to

support the reliability in Fig. 4.4 and Fig. 4.5. First, the minimum distance between the target

cube and GIP happens at GIP onset. Second, the subjects’ gaze rested around the desired visual

angles after GIP onset. Third, no head movement is found in the eye-shifting condition and no

eye movement is found after fixation onset. Subjects’ gaze does not rest exactly at the desired

angle because they stop moving their gaze once they reach the edge of the target cubes.

In the eye-shifting condition, there is an offset between the angle of the eye and gaze as

shown in Fig. 4.4 (a, b, c). Theoretically speaking, these two values should be the same. There

are two possible reasons: (1) the center of the eye is closer to the center fixation point than the

center of the head, causing the eye angle to be larger than the head angle. (2) the eye tracking

system is less reliable when the pupil approaches the edge of the eyeball, causing the estimation

of the eye angle to be larger than the actual value. In the head-turning condition, we see the

eye angle starts decreasing and the head angle keeps increasing as shown in Fig. 4.4 (d, e, f).

At the same time, the gaze angle decreases at a smaller rate compared to the eye angle. This

phenomenon indicates subjects fixated their gaze while adjusting their head direction to point

toward the target cube. We hypothesize that compensatory eye movement in conjunction with

head movement is highly related to vestibular-ocular reflex (VOR), which allows an individual

to maintain their gaze on a fixed object under conditions of head movement. In Fig. 4.5 (e) and

(f), we observe that the gaze angular velocity has a negative value right before GIP and fixation
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onset, indicating the gaze has a sharp break with an overshoot when the gaze approaches near the

target cube. In both conditions, we observe subjects initiating their movements around 100 ms

after stimulus onset as shown in Fig. 4.4 (a, d), indicating that human reaction time to process

visual information from peripheral vision is independent of the visual angle.

One thing out of expectation is there is no behavioral difference between standard and

deviant trials as mentioned in Section 4.4.1 and 4.4.2. To verify if peripheral vision can detect

oddball events before fixation onset, we investigated the event onset time and the latency between

different events. In Fig. 4.6, we see that all event onsets in the head-turning condition happen

later than in the eye-shifting condition with a wilder variance. The variance of onset time might

be due to the control ability of the eyeball and neck toward different directions as different

muscle groups are involved. In Fig. 4.7, we see that the latency between fixation and GIP onset

is nearly zero. The response latency corresponding to fixation and GIP onset is almost the same

in the eye-shifting condition. The reason why the mean of the latency between fixation and GIP

onset is -15 ms might be due to the outliers since the median of the latency is 15 ms. When

comparing eye-shifting and head-turning conditions, we found the latency between response and

GIP is higher in the head-turning condition while the latency between response and fixation is

lower compared to in the eye-shifting condition. The increased latency between response and

GIP indicates that the ability to process visual information decreases when the head turns even

if the gaze is fixating on the target cube. However, this result does not mean that there is no

information being processed as the latency between response and fixation decreases, indicating

that it takes a shorter time to justify if there is an oddball event after fixation.

Lastly, we compare the ERP time locking to stimulus, GIP, and fixation onset on Cz and

O2 channels to observe the oddball response and FRP. First, we investigated whether we can

observe the P300 in an oddball task on Cz channel in Fig. 4.8. We found there is a stimulus-

related potential between 100 ms and 300 ms on Cz in the eye-shifting condition but not in the

head-turning condition as shown in Fig. 4.8. This result indicates the stimulus-related potential

might relate to controlling eye movements. In the eye-shifting condition, instead of the P300
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reported in previous studies, we found the amplitude of deviant trials is significantly lower around

400 ms but significantly higher around 800 ms in stimulus-locked ERP. Also, in Fig. 4.8 (b) and

(c), we found this negative amplitude appears right before the GIP and fixation onset. Combining

these observations and the results in Fig. 4.6, we hypothesize that negative GIP-related and

fixation-related potentials are related to peripheral visual information processing of oddball

events. Though there seems to be a positive amplitude of deviant trials as shown in Fig. 4.6 (b)

and (c), the difference does not pass the statistical test. However, we still found the amplitude of

deviant trials is significantly higher at 500 ms which is caused by the response-related potential.

In the head-turning condition, the ERP is noisier and the only significant difference we observed

is the significantly higher amplitude of deviant trials around 380 ms in the fixation-locked

potential caused by the response-related potential.

Next, we investigated whether we can observe FRPs on the O2 channel in Fig. 4.9. In

the stimulus-locked potential, we observe a positive peak at 150 ms and a negative peak at

200 ms in both conditions, indicating this ERP is related to the initiation of eye movements.

In the eye-shifting condition, we can observe FRPs at 80 ms followed by a consecutive ERP

at 150 ms in GIP-locked and fixation-locked potentials. The FRP in GIP-locked potential is

sharper and more similar to the FRP reported in previous studies. On the other hand, the FRP in

fixation-locked potential seems to be covered by the consecutive ERP. One possible origin of the

consecutive ERP might be from the sudden change of brightness in the focal region when the

subjects’ gaze is moving from a black background to green target cubes. In the head-turning

condition, the signals are noisier because the O2 channel is close to the neck muscle. However,

we can still observe FRP in GIP-locked potential with a drop of peak amplitude from 4 µV to

2 µV . There is no FRP found in fixation-locked potential. Based on these observations, we

hypothesize the FRPs reported in previous studies might be generated when the visual stimulus

moves into the focal region instead of the stop of eye movements. Further investigation and new

experiments are needed in the future.
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4.6 Conclusion

This study characterizes the interaction between head and eye movement during gaze

relocating and investigates the effect of different time locking on ERP. Our results indicate that

the reaction time for humans to process visual information from peripheral vision is independent

of the visual angle, and the visual information can be processed before the visual stimulus moves

into the focal region. Moreover, this study provides strong evidence of vestibular-ocular reflex

under the head-turning condition. Though there is no significant difference related to P300 in

the eye-shifting condition, the amplitude of deviant trials seems to be higher than the standard

trials in GIP-locked and fixation-locked potential. On the other hand, the P300 in head-turning

condition has been observed in fixation-locked potential. Our results also indicate the FRP

reported in previous studies might be generated when the visual stimulus moves into the focal

region instead of the stop of eye movements. However, new experiments and further investigation

are required to justify this claim. This study demonstrates the relationship between the eye and

head movements and the importance of choosing time locking in ERP analysis under natural

moving conditions, providing a solid foundation for future studies in a real-world scenario.
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Chapter 5

Deployment of mental stress detection

5.1 Introduction

In the previous chapters, we evaluated the performance of Artifact Subspace Reconstruc-

tion (ASR) and demonstrated its ability to signal reconstruction in the VR environment. In

this chapter, we implemented the artifact removal methods in our stress detection algorithms

and investigated two important issues of deployment: the ability of real-time detection and

the number of required recording channels. The algorithms have to be online and capable of

detecting stress continuously in daily life. Moreover, the number of recording channels has to be

as less as possible to accommodate comfortableness and the manufacturing cost. In this study,

we first compared the performance of our stress detection algorithms before and after applying

different artifact removal pipelines. Second, we proposed an IC projection method to remove

eye-related artifacts without running ICA. Third, we investigated the effect of recording channel

reduction on our stress detection algorithms. Finally, we evaluated the online ability of our stress

detection algorithms using sliding windows and a majority vote.

5.2 Dataset, feature selection, and model selection

The dataset used in this study is recorded in a classroom experiment in which students

take lectures while their EEG and ECG were recorded. We extracted the first 5 mins of eye open

resting and collected 92 sessions from all the recordings. Next, we labeled each session into
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an increased and normal stress level group based on their DASS-21 questionnaire results. In

the end, there are 21 sessions in the increased stress level group and 71 sessions in the normal

stress level group. For all the sessions, we calculated their PSD for each channel and extracted

the frequency bins 3Hz to 7Hz as features used in stress detection. There are two models used

to detect stress levels in this study. First, we implement LDA with equal probability prior. We

selected PSD features from Fz, FCz, and Cz and gathered 15 features to train our LDA. Second,

we implement a 4-layers fully-connected NN. We train our NN with the PSD features from all

the channels which is 150 features.

5.3 Artifact removal pipeline

In chapter 2, we demonstrated that bandpass filtering preprocessing is not able to remove

artifacts and thus reduces the performance of our stress detection algorithms. In this chapter, we

further preprocessed the data before training our algorithms. The first step after bandpass filtering

from 1Hz to 50Hz is to remove the bad channels which contain negligible activity, noisy signals,

or have a poor correlation with adjacent channels. Next, we implemented ASR to reconstruct

the portion where EEG signals are contaminated by muscle-related or motion-related artifacts.

Finally, we implemented ICA and rejected ICs with a probability higher than 0.8 of being

artifact-related ICs labeled by ICLabel. Example of the rejected eye-related and muscle-related

ICs are shown in Fig. 5.1 and Fig. 5.2 respectively. In the following sections, we demonstrated

the effect of our artifact removal pipeline on the performance of our stress detection algorithms.

Fig. 5.3 shows the entire algorithms of this study.

5.4 Practical issues of deployment

To deploy stress detection in the real world, several problems must be considered. In

chapter 3, we demonstrated ASR’s powerful ability to remove common artifacts caused by

muscle and motion in the real world. However, there are two critical problems that remain. First,
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Figure 5.1. Example of the rejected eye-related ICs.

Figure 5.2. Example of the rejected muscle-related ICs.
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Figure 5.3. The stress detection algorithms of this study.

we would like to monitor our stress levels in real time. Unlike the laboratory scenarios, asking

the users to wait 5 minutes before getting the results is unrealistic. Hence, online capability is

one of the most important indicators when we evaluated our stress detection. Second, we would

like to reduce the number of recording channels needed in our stress detection. EEG setup can

be time-consuming and labor-intensive. Also, the manufacturing cost can significantly increase

when including one additional channel to the recording system. Therefore, we investigated the

effect of recording channel reduction on our stress detection algorithms.

5.4.1 Real-time eye-related artifact removal

Independent component analysis can identify artifact-related ICs, especially eye-related

ICs, and remove them from the EEG signals [54, 63, 111]. However, the computational time

of ICA is too long to utilize in real-time scenarios. In this study, we proposed an IC projection

method to remove eye-related ICs without actually running ICA. We only focus on removing
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eye-related ICs because of two reasons. First, eye activities contaminate EEG signals in the

frequency range from 0Hz to 8Hz which overlaps with the frequency range of our PSD features

[112]. Second, compared to the sparse and complicated muscle activities, two kinds of the

most severe eye artifacts, blink and horizontal saccade, can be well summarized by ICA into

blink-related and saccade-related ICs as shown in Fig. 5.1. To validate whether the majority

of sessions contain blink-related and saccade-related ICs, we performed ICA for each session

independently and counted the number of eye-related ICs found in each session.

There are three steps in our proposed IC projection method. First, we performed ICA

on one single subject and recorded its ICA unmixing matrix W and its ICA mixing matrix W−1.

Next, we removed the blink-related IC and saccade-related IC from the mixing matrix W−1

by assigning the corresponding columns to 0 and recorded this new mixing matrix M∗. If the

number of recording channels between the template and the data being processed is different,

we approximated the new mixing and unmixing matrix by preserving the rows in M∗ and the

columns in W according to the channel labels. Finally, we combined the unmixing matrix and

the new mixing matrix together and created an IC decomposition template P. This template can

remove the eye-related IC activities using matrix multiplication instead of actually running ICA.

To achieve online capability, we replaced the ICA-based method in the artifact removal

pipeline with the proposed method in Section 5.4.2 and Section 5.4.3. We also evaluated whether

the proposed method can maintain its performance when using a template recorded by 30

channels to process sessions recorded by 11 channels.

y = Wx

x = W−1Wx

xwithout eye = M∗Wx

xwithout eye = Px

61



(a) (b) (c)

Figure 5.4. Montage of channel reduction. (a) shows all 30 channels. (b) shows the subselected
11 channels. (c) shows the subselected 5 channels. The red circle indicates the location of 3
feature channels.

5.4.2 Reduction of recording channels

To investigate the effect of recording channel reduction, we compared three sets of

recording channels and their stress detection performance. Besides the original 30 recording

channels, we selected 11 and 5 channels in the frontal region out of the 30 channels. Fig. 5.4

shows the location of the three channels. We selected these channels because we would like to

capture the eye-related ICs in the IC decomposition template. After the channel reduction, we

run the artifact removal pipeline with the proposed IC projection method and train our stress

detection algorithms with LDA and NN. One thing to clarify is that the number of nodes in the

input layer of NN changes from 150 to 55 and 25, corresponding to 11 channels and 5 channels,

to adapt to the change in the number of recording channels.

5.4.3 Online stress detection

In previous sections, we built an online capable artifact removal pipeline and reduced

the required recording channels. In this section, we investigated two important parameters in

online use cases: the length of the sliding window for the PSD estimation and the step size to

move the sliding window forward. First, we segmented a session into multiple epochs using

different sliding window lengths and step sizes. Next, we trained our LDA stress detection model

using the rest of the sessions and applied the model to the epochs. For each window, we had a
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prediction about whether the session are in the increased stress level group or the normal stress

level group. To summarize these predictions, we used a majority vote to assign the session to the

group with a larger number of predictions. After we repeated this process for all the sessions, we

calculated the balanced accuracy for each pair of sliding window lengths and step sizes.

5.5 Results

5.5.1 Stress detection performance with and without artifact removal
and SMOTE

Fig. 5.5 demonstrated the EEG signals before and after our artifact removal pipeline. In

Fig. 5.5 (a), we can see there are several eye blinks affecting the channels in the frontal region,

and there is a muscle-related artifact caused by jaw clenching. In Fig. 5.5 (b), the eye blinks have

been removed by our artifact removal pipeline and the contamination from the jaw clenching has

been diminished.

Fig. 5.6 shows the effect of our artifact removal pipeline on the PSD features of selected

channels. On the top row, the PSD after bandpass filtering does not have a significant difference

between the increase and normal stress level groups in the feature frequency range of all the

feature channels. On the other hand, the PSD after artifact removal showing on the bottom row

shows significant differences in all three channels between the frequency range of 4Hz to 10Hz.

The scale of the PSD also drops from 20 dB to 10dB after artifact removal.

The comparisons of stress detection performance before and after artifact removal are

shown in Table 5.1 and Table 5.2 with respect to the LDA model and NN model. In both

models, we see the performance gradually increase after each artifact removal step and the

best performance appears after applying ASR with offline ICA. Our proposed IC projection

method also increases the stress detection performance after applying ASR in both models.

Moreover, there is only a 1% difference between the LOO balanced accuracy of the proposed

method and the offline ICA in the LDA model. According to the observation in Fig. 5.6, we
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(a)

(b)

Figure 5.5. Example of the performance of artifact removal. (a) shows the bandpass filtered only
data. (b) shows the data after applying our artifact removal pipeline.
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Table 5.1. The effects of artifact removal on LDA stress detection. BP refers to bandpass filtering.
Projection refers to our proposed IC projection method. sig. feat. refers to the significantly
different frequency features.

LDA LOO Acc. LOO Balanced Acc. F1
BP Only 68.48% 62.81% 0.43
BP + ASR 72.83% 70.66% 0.53
BP + ASR + ICA 79.35% 78.24% 0.63
BP + ASR + Projection 80.43% 77.26% 0.63
BP + ASR + ICA (sig. feat.) 78.26% 72.50% 0.57

Table 5.2. The effects of artifact removal on 4-layers NN stress detection. BP refers to bandpass
filtering. Projection refers to our proposed IC projection method. LDA features refer to using the
same features as LDA stress detection.

NN LOO Acc. LOO Balanced Acc. F1
BP Only 75.00% 56.98% 0.3
BP + ASR 77.17% 66.77% 0.49
BP + ASR + ICA 83.70% 74.35% 0.62
BP + ASR + Projection 80.43% 68.88% 0.53
BP + ASR + ICA (LDA features) 77.17% 61.74% 0.4

also compared the performance of LDA stress detection with a fixed frequency range (3Hz to

7Hz) and significantly different frequency bins in each channel (shown as a cross in Fig. 5.6)

features. The balanced accuracy of using significantly different frequency bin features is 6%

worse than using the fixed frequency range features. To compare the two models, we trained

our NN stress detection using the LDA features with the architecture described in Fig. 2.2 (b).

Although the NN stress detection accuracy is only 2% worse than the LDA stress detection, the

balanced accuracy of the NN stress detection is 18% worse than the LDA one.

Table 5.3 shows the effect of SMOTE on the artifact-removed data. Though the LOO

balanced accuracy increases in both models with SMOTE, the impact of SMOTE on increased

balanced accuracy drops from 5% to 1% compared to the bandpass-filtered-only data. There

is an exception when we applied SMOTE on the NN model trained with LDA features. The

balanced accuracy boosted up from 61% to 72% which is close to the performance of the NN

model trained with features from all recording channels (74%).
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Table 5.3. The effects of SMOTE on LDA and NN stress detection. LDA features refer to using
the same features as LDA stress detection.

LOO Acc. LOO Balanced Acc. F1
LDA (w/o SMOTE) 79.35% 78.24% 0.63
LDA (w/ SMOTE) 81.52% 79.64% 0.65
NN (w/o SMOTE) 83.70% 74.35% 0.62
NN (w/ SMOTE) 81.52% 76.29% 0.62
NN (LDA features w/o SMOTE) 77.17% 61.74% 0.4
NN (LDA features w/ SMOTE) 78.26% 72.50% 0.57

5.5.2 Consistency of eye-related ICs across different recordings

To evaluate the consistency of eye-related ICs across different recordings, Figure. 5.7

shows the portion of sessions with different number of eye-related ICs found. We found there

are 45.7% of sessions contain 2 eye-related ICs and 42.4% of sessions contain 3 eye-related

ICs. Moreover, only 2.2% of sessions contain no eye-related ICs. Fig. 5.8 shows an example

of the three eye-related ICs found within a session. In this example, we once again observed

blink-related IC and saccade-related IC.

Next, we examined whether we can apply the proposed method on a session recorded by

few recording channels using a template recorded by a higher amount of channels. Table 5.4

compared the effect of using different templates on the performance of our LDA stress detection.

We found there are a 13% accuracy drop and an 18% balanced accuracy drop in the 11-channels

LDA stress detection after replacing the 11-channels template with the truncated 30-channels

template.

5.5.3 Effect of recording channels reduction on stress detection perfor-
mance

After we evaluated the performance of our proposed IC projection method, we further

compared the effect of recording channel reduction on the data after artifact removal with IC

projection. Table 5.5 and Table 5.6 show the results of the LDA model and NN model respectively.

All the NN models have been preprocessed by SMOTE. In Table 5.5, we found the performance
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Figure 5.7. Histogram of the number of eye-related ICs found in each session. The histogram
has been normalized by the number of sessions.

Figure 5.8. Example of the three eye-related ICs found within a session. The left and center ICs
are corresponding to blink-related IC and saccade-related IC respectively.
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Table 5.4. The effect of different templates on the performance of LDA stress detection. BP
refers to bandpass filtering. Proj. refers to our proposed IC projection method followed by the
template used.

LDA Preprocessing LOO Acc. LOO Balanced Acc. F1
BP Only 68.48% 62.81% 0.43

30 Channels
BP+ASR+ICA 79.35% 78.24% 0.63
Proj., 30-channels template 80.43% 77.26% 0.63

11 Channels
Proj., 11-channels template 80.43% 78.94% 0.64
Proj., 30-channels template 63.04% 60.97% 0.41

Table 5.5. The effects of channel reduction on LDA stress detection. The number of channels is
first reduced to decided numbers and then the data is preprocessed by the proposed projection
method. All the models used frequency bins 3Hz to 7Hz on Fz, FCz, Cz as features.

LDA LOO Acc. LOO Balanced Acc. F1
30 Channels 80.43% 77.26% 0.63
11 Channels 80.43% 78.94% 0.64
5 Channels 67.39% 60.43% 0.40

of LDA stress detection slightly increases 1% after reducing the number of recording channels

from 30 to 11. However, once we reduced the recording channels to 5, the balanced accuracy

drastically drops from 77% to 60%. Table 5.6 shows the performance of stress detection with the

NN model trained with features from all recording channels gradually drops as the number of

recording channels decreases. On the other hand, similar to the results of the LDA model, the

performance of NN stress detection using LDA features slightly increases 1% when reducing the

number of recording channels from 30 to 11, while the balanced accuracy drops from 72% to

54% when reducing the number of recording channels to 5.

Fig. 5.9 shows the example of the template IC decomposition calculated from different

numbers of recording channels. Fig. 5.9 (a) and (b) show that the blink-related and saccade-

related ICs, highlighted in red squares, can be found in the template IC decompositions of 30

and 11 recording channels. However, there is no obvious eye-related IC in the template IC

decomposition of 5 recording channels.
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Table 5.6. The effects of channel reduction on NN stress detection. The number of channels is
first reduced to decided numbers and then the data is preprocessed by the proposed projection
method. The sizes of the input layer in the NN models trained with features from all channels
are 150, 55, and 25 corresponding to the 30-channel, 11-channel, and 5-channel models. All the
models have been preprocessed by SMOTE.

NN LOO Acc. LOO Balanced Acc. F1
30-channels model 78.26% 67.47% 0.50
11-channels model 75.00% 65.36% 0.47
5-channels model 72.83% 62.27% 0.42
LDA features, 30 channels 78.26% 72.50% 0.57
LDA features, 11 channels 79.35% 73.21% 0.58
LDA features, 5 channels 68.48% 54.43% 0.29

5.5.4 Subject variability

Besides using leave-one-session-out validation to evaluate our model, we also performed

leave-one-subject-out validation on the stress detection algorithms using LDA to evaluate if our

models are biased to some specific subjects. We summarized the performance of stress detection

with the LDA model under different numbers of channels and different preprocessing using

leave-one-session-out validation and leave-one-subject-out validation in Table 5.7 and Table 5.8

respectively. The mean operation in Table 5.8 is performed across all subjects.

To exclude the potential biases caused by subjects with only one label, we selected the

subjects who have both normal and increased stress level sessions and compared the balanced

accuracy before and after artifact removal with 11 recording channels as shown in Fig. 5.10.

We found the balanced accuracy of subject 3, 4, and 9 does not change after artifact removal.

The balanced accuracy after artifact removal increases for subject 11 and 17 while decreases for

subject 16. The mean of the balanced accuracy is 63.18% before artifact removal and 76.37%

after artifact removal.

5.5.5 Online stress detection

In this section, we evaluated the online capability of our 11-channels LDA stress detec-

tion with the IC projection method. We evaluated this model because it achieves comparable

71



Figure 5.10. Balanced accuracy of each subject before and after artifact removal with 11
recording channels. The figure only includes the subjects who have both normal and increased
stress level sessions. The dark green bars indicate the balanced accuracy before artifact removal.
The light green bars indicate the balanced accuracy after artifact removal.

performance to the model processed by offline ICA with fewer recording channels. Fig. 5.11

shows the balanced accuracy of 11-channels LDA stress detection with different pairs of sliding

window length and step size. When using a window length equal to 1 second, the balanced

accuracy of LDA stress detection is around 55%. When the window length increases to 20

seconds, the balanced accuracy reaches the best performance of 78%. When the window length

equals 5 mins, the balanced accuracy is 75% and there is a 4% decrease compared to offline

results shown in Table 5.5. Out of our expectation, the balanced accuracy drops when the window

length is between 40 seconds to 3 mins.

5.6 Discussion

Mental stress can greatly affect one’s cognitive performance. Hence, detecting stress in

daily life can benefit clinical treatments and task monitoring. However, unlike in the laboratory

environment, there are several considerable issues in the real world. In this study, we addressed
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Table 5.7. Leave-one-session-out validation of LDA stress detection. All the models used
frequency bins 3Hz to 7Hz on Fz, FCz, Cz as features. The Proj. refers to the proposed IC
projection method.

LDA Preprocessing LOO Acc. LOO Balanced Acc. F1
BP Only 68.48% 62.81% 0.43

30 Channels
BP+ASR 72.83% 70.66% 0.53
BP+ASR+ICA 79.35% 78.24% 0.63
BP+ASR+Proj. 80.43% 77.26% 0.63

11 Channels
BP+ASR 75.00% 75.42% 0.58
BP+ASR+Proj. 80.43% 78.94% 0.64

5 Channels
BP+ASR 70.65% 64.22% 0.45
BP+ASR+Proj. 67.39% 60.43% 0.40

Table 5.8. Leave-one-subject-out validation of LDA stress detection. All the models used
frequency bins 3Hz to 7Hz on Fz, FCz, Cz as features. The mean operation is performed across
all subjects. The Proj. refers to the proposed IC projection method.

LDA Preprocessing Mean Acc. Mean Balanced Acc.
BP Only 64.84% 63.18%

30 Channels
BP+ASR 68.17% 66.51%
BP+ASR+ICA 72.63% 72.93%
BP+ASR+Proj. 71.17% 71.27%

11 Channels
BP+ASR 71.35% 71.95%
BP+ASR+Proj. 77.05% 76.37%

5 Channels
BP+ASR 62.07% 61.19%
BP+ASR+Proj. 63.84% 63.75%

three important problems of deploying stress detection in the real world: (1) robust EEG

recordings using artifact removal, (2) online capability using the proposed IC projection method,

and (3) investigation of recording channel reduction.

The results show that our artifact removal pipeline can effectively remove artifacts

(Fig. 5.5) and improve the performance of stress detection (Table 5.1, 5.2). Since the artifacts

have been removed, we can estimate the brain signals PSD more robustly and capture the

significant difference in our PSD features between the increase and normal stress level groups,

especially in the range of 3Hz to 7Hz. Moreover, the scale of the PSD after artifact removal

aligns with the empirical observations. We used a bootstrap test as our statistical test because the

74



number of sessions are different between groups and the variances of each group are different,

especially for the PSD without artifact removal on FCz as shown in Fig. 5.6.

Each step in our artifact removal pipeline gradually increases the performance of stress

detection as shown in Table 5.1 and Table 5.2. Moreover, our proposed IC projection method

reaches a comparable balanced accuracy compared to the offline ICA. These results indicate that

contamination from eye artifacts is more severe than muscle artifacts in stress detection. We also

extract the significantly different frequency bins for each channel as features as shown in Fig. 5.6

and trained the LDA stress detection. However, the balanced accuracy of using these significantly

different frequency bin features is worse than using the fixed frequency range features. We

hypothesize that though there is a significant difference, the wide variance between 8Hz to 10Hz

in both groups make LDA difficult to find a linear combination to minimize the within-group

variance and thus reduce the accuracy.

One of the biggest assumption of our proposed IC projection method is the consistency of

eye-related ICs across recordings. The empirical result shown in Fig. 5.1 supports the consistency

of eye-related ICs as the ICs can be approximately categorized into blink-related IC and saccade-

related IC by visual inspection. Moreover, Fig. 5.7 shows that nearly 90% of the sessions in this

dataset contain 2 or more eye-related ICs, indicating that blink-related and saccade-related ICs

appear in most of the sessions. Besides blink-related and saccade-related ICs, we found some

sessions have an additional IC which might be related to small lateral eye movements or frown

as shown in Fig. 5.8. On the other hand, the muscle-related ICs are more diverse as shown in

Fig. 5.2. Because muscles consist of numerous fibers, it is challenging for ICA to summarize a

body movement in a single IC. In addition, the signals generated by muscles also have greater

power than the signals generated by brain, resulting extra demands for ICs to explain muscle

activities.

There are two problems required further investigations on this method. First, we hy-

pothesize that the IC decomposition template are consistent across datasets and thus can be

calculated from any dataset. However, we have not yet validated this hypothesis using other
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datasets. Second, we hypothesize the proposed method can be applied on the datasets with

number of recording channels less than the template’s and larger than 2. Since the proposed

method is a component-based artifact removal method, it requires at least 2 components to

explain blink and saccade independently. Nevertheless, when we applied 30-channels template

on data recorded by 11 channels, the performance of the stress detection drops. One possible

reason is the approximation error caused by truncating the mixing and unmixing matrix. The

negative influence becomes more and more severe as the difference between the template and

the number of recording channels increases as shown in Table 5.4.

Since our dataset is unbalanced, we evaluated whether SMOTE can increase the perfor-

mance of stress detection. The results show that SMOTE increases stress detection performance

with both LDA and NN models, especially for the NN model trained with LDA features. When

training the NN model with LDA features without SMOTE, we can observe a high accuracy

with low balanced accuracy, indicating the model is strongly biased to the normal stress level

group due to the imbalanced classes problem. With SMOTE feature preprocessing, the balanced

accuracy of the NN model trained with the LDA features increases to the level of the balanced

accuracy of the NN model trained with features from all channels. This result indicates that

the selected channels (Fz, FCz, and Cz) contain most of the information related to stress level

changes. However, even with the improvement after SMOTE, the balanced accuracy of the NN

model is still worse than the LDA model. One of the most possible reasons is the overfitting due

to training a model with large trainable parameters using a relatively small number of data.

In the following analysis, we only performed SMOTE on the NN stress detection algo-

rithms because the performance improvement of LDA stress detection algorithms after SMOTE

is less significant on the artifact removed data compared to the bandpass filtered only data as

shown in Table 2.1 (1% improvement versus 5% improvement). One possible explanation for

why the improvement decreases is that the features of the bandpass filtered data in feature space

are relatively sparse compared to the artifact removed data features, and thus can benefit more

from SMOTE on feature distribution estimation. Because the features of the artifact-removed
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data are already condensed, the benefit of SMOTE on distribution estimation becomes less

significant.

To reduce the time for EEG setup and manufacturing costs, we would like to include as

few recording channels as possible. Since we only selected three feature channels and ICA can

capture eye activities with channels near the frontal region, it is not necessary to cover the whole

scalp with recording channels. All the models have been preprocessed with the proposed IC

projection method. Our results show that in both LDA stress detection and NN stress detection

with LDA features can use only 11 recording channels to achieve the performance of using

30 recording channels (Table 5.5, Table 5.6). The results once again strongly support our

statement about the selected channels (Fz, FCz, and Cz). However, our IC projection method

is a component-based artifact removal method, and its performance drops once the number of

recording channels becomes too small. Our empirical results show that when the number of

recording channels drops to 5, ICA can not well summarize eye activities into blink-related and

saccade-related ICs. Alternatively, ICA obtained a mixture IC of both brain and eye activities as

shown in IC2 and IC3 in Fig. 5.9 (c). Furthermore, if we force to use this IC decomposition as

our template and reject the most possible eye-related ICs (IC2 and IC3 in this case), there are

only three ICs left for us to reconstruct the EEG signals and a huge portion of the brain signals

is rejected together with the low-quality eye-related ICs. We can clearly see the performances

decline for all the models when using only 5 recording channels (Table 5.5, Table 5.6).

When comparing the performance of NN stress detection with features from all the

recording channels and with LDA features, we found the performance with LDA features is

better. This result indicates that channel selection captures the information related to stress level

changes and prevents NN models from learning brain signals irrelevant to stress level changes.

On the other hand, when using 5 recording channels, the performance of NN stress detection with

LDA features is worse than with features from all 5 recording channels because the NN stress

detection with LDA features further removed the brain-related information from the already

damaged signals by selecting 3 channels.
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One concern of our stress detection algorithms is, instead of classifying based on the

stress level of each session, the algorithms might actually classifying based on the characteristics

of each individual subject. To examine this concern, we first compared the leave-one-session-out

validation and leave-one-subject-out validation results of our LDA stress detection algorithms. In

both validations, the performance of LDA stress detection increases after each step in our artifact

removal pipeline when using 11 and 30 recording channels while the performance decreases when

using 5 recording channels. This observation slightly reduce the concern. However, to further

diminish the concern, we investigate the balanced accuracy of the subjects with both increased

stress level and normal stress level sessions in leave-one-subject-out validation as shown in

Fig. 5.10. Though half of the subjects do not show increase or decrease in the balanced accuracy,

we found there are more subjects having increased balanced accuracy than having decreased

balanced accuracy, and the mean of the balanced accuracy across subjects also increases after

artifact removal. Moreover, the mean balanced accuracy after artifact removal is comparable to

the leave-one-session-out balanced accuracy (76.39% versus 78.94%). These results support that

our classifications are based on the stress level rather than subject variability.

Finally, based on the results shown in previous sections, we selected the 11-channel LDA

stress detection with the IC projection method and evaluated its online capability by investigating

the effect of different pairs of sliding window length and step size on the balanced accuracy. We

found the difference in the performance of stress detection with different step sizes is subtle

while the choice of window length dominated the performance. If the window length is shorter

than 20 seconds, the shorter the window length is, the worse the performance is. Moreover, when

the window length is shorter than the step size, the algorithm ignores the data points between the

window length and step size, creates a down-sampling effect, and thus decreases the performance

of stress detection. On the other hand, when the window length equals 5 mins, we found the

balanced accuracy slightly drops compared to the offline results. It may be because some sessions

have their eyes open resting longer than 5 mins. We observed the best performances of different

step sizes appear when using a window length of around 20 seconds, indicating the quality of
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PSD estimation is good enough to detect stress level changes.

One thing that caught our attention is that, instead of a monotonic increase, the balanced

accuracy drops before coming back to the expected performance when using a 5-min window

length. We hypothesize that mental stress changes do not affect EEG signals constantly but with

a repeated cycle. Therefore, the mental stress changes in a window might be diluted by the long

window length. However, getting the benchmarks for stress detection in an online scenario is

very difficult to test this hypothesis.

5.7 Conclusion

This study proposes a robust, online capable, and less recording channel required mental

stress detection algorithm for mental stress monitoring in the real world. We found after our

artifact removal pipeline, the PSD is significantly higher in the increased stress level group

between frequency bins 4Hz to 10Hz on Fz, FCz, and Cz channels. To remove eye activities

in real-time, we propose an IC projection method and reduce the required computational time

while maintaining the performance compared to using offline ICA. This study also explores the

influences of different models, feature preprocessing, and the number of recording channels. Our

empirical results show that with 15 features from Fz, FCz, and Cz channels, the proposed LDA

stress detection algorithm can achieve a 77% balanced accuracy in an imbalanced binary stress

detection problem. Moreover, only 11 required recording channels are located near the frontal

region in the proposed LDA stress detection algorithm. The findings of this study could lead to

the deployment of daily mental stress monitoring in the future.
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Chapter 6

Summary of Contributions

This dissertation aims to build a BCI to monitor mental stress in the real world.

In Chapter 2, we built two stress detection algorithms using LDA and NN with PSD

features. We demonstrated how artifacts can contaminate EEG signals and degenerate the

performance of stress detection algorithms.

In Chapter 3, we evaluated the performance of ASR, an automated, real-time-capable

artifact removal method. Although ASR has existed since 2014, there is no systematic evaluation

and the proper choice of the key parameter remains unclear. With our results, people can better

understand the mechanism of ASR and have a guideline for choosing the parameters while using

it.

In Chapter 4, we further evaluated ASR’s brain signal reconstruction ability and explored

human behaviors in a visual-tracking experiment conducted in a virtual environment. Though we

evaluated ASR in the previous chapter, the ability of brain signal reconstruction is still unclear

due to a lack of ground truth. Hence, we introduced a well-studied brain signal using a visual

oddball task. Moreover, we investigated the relationship between eye movements and head

movements and demonstrated the importance of choosing different time points for analysis in

mobile scenarios.

In Chapter 5, we improved the online capability and reduced the deployment difficulty of

our stress detection BCI. Monitoring mental stress in daily life required the pipeline of stress
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detection algorithms to be online capable. In addition, the recording channels on BCI prefer

to be as less as possible due to setup difficulty and manufacturing costs. We first proposed an

IC projection method to remove eye activities in real time. Next, we investigated the effect of

recording channel reduction on our stress detection algorithms. We found our stress detection

algorithm using LDA can have a 77% balanced accuracy in an online scenario with only 11

recording channels placed in the frontal region.

With all of these advancements, recording from BCI can be more robust and the deploy-

ment of mental stress monitoring in the real world is more feasible.

81



Bibliography

[1] Sheldon Cohen, Ronald C Kessler, and Lynn Underwood Gordon. Measuring stress: A
guide for health and social scientists. Oxford University Press on Demand, 1997.

[2] Giorgos Giannakakis, Dimitris Grigoriadis, Katerina Giannakaki, Olympia Simantiraki,
Alexandros Roniotis, and Manolis Tsiknakis. “Review on psychological stress detection
using biosignals”. In: IEEE Transactions on Affective Computing 13.1 (2019), pp. 440–
460.

[3] Shashank P Behere, Richa Yadav, and Prakash B Behere. “A comparative study of
stress among students of medicine, engineering, and nursing”. In: Indian journal of
psychological medicine 33.2 (2011), pp. 145–148.

[4] Gerhard Andersson and Lucy Yardley. “Time-series Analysis of the Relationship between
Dizziness and Stress”. In: Scandinavian Journal of Psychology 41.1 (2000), pp. 49–54.

[5] JPA Delaney and DA Brodie. “Effects of short-term psychological stress on the time and
frequency domains of heart-rate variability”. In: Perceptual and motor skills 91.2 (2000),
pp. 515–524.

[6] Ulf Lundberg, Ingela Elfsberg Dohns, Bo Melin, Leif Sandsjö, Gunnar Palmerud, Roland
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