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Integration and calibration of UBCSAND model for drained monotonic and 
cyclic triaxial compression of aggregates 

Elia Voyagaki a,b, Tadahiro Kishida a, Rusul Falah Aldulaimi a, George Mylonakis a,b,* 

a Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates 
b University of Bristol, Bristol, UK   
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A B S T R A C T   

We report on results from triaxial drained monotonic and cyclic compression tests for four different aggregates 
(gabbro, limestone, demolished concrete, steel slag), and discuss the applicability of UBCSAND model for 
simulating the relevant non-linear stress-strain curves. First, UBCSAND is integrated analytically for the elastic 
and plastic volumetric and deviatoric strains, leading to a pair of novel closed-form solutions expressed in terms 
of hypergeometric functions. These solutions are inherently free of numerical errors and can be used for the 
evaluation of results from numerical integration. Second, three calibration techniques for the model parameters 
are presented and compared: (1) a graphical “chart” solution based on results from forward numerical simula-
tions; (2) a numerical approach based on minimization of residuals; and (3) an informed trial-and-error approach 
based on the analytical solution. Errors in numerical integration of the model are explored by comparing the 
analytical solution against results from an Euler integration. Variations in the calibrated parameters are discussed 
for drained monotonic and cyclic triaxial loading considering different types of aggregates.   

1. Introduction 

Understanding drained monotonic and cyclic behavior of ballast 
aggregates is key in railway foundation design. The UBCSAND model 
[1–3] is often employed in such analyses, as a simple alternative to more 
complex constitutive formulations for predicting monotonic and cyclic 
response of granular soil under drained and undrained conditions 
[4–23]. The specific model is employed in commercial finite difference 
and finite element software (e.g. Refs. [3,24–26]) as it realistically 
simulates volumetric and deviatoric strains in granular soils under 
monotonic and cyclic loading. The model has been applied to liquefac-
tion studies [27] and can be modified to capture stiffness degradation 
upon liquefaction due to fabric evolution [28]. Under drained condi-
tions, however, the evolution of soil fabric is limited until the volumetric 
response starts exhibiting dilatant behavior [29], so relevant adjust-
ments for stiffness degradation would not be required as long as the 
material remains in the contractive regime. 

Calibration procedures of the UBCSAND model parameters for un-
drained conditions are available (e.g. Refs. [30–34]). Elastic moduli can 
be determined from measured or estimated shear wave propagation 
velocities (Vs) and other procedures [31]. While wave methods provide 

the most rational means for establishing elastic moduli, some re-
searchers (e.g., Li et al. [35]) suggest that elastic moduli may be selected 
from isotropic compression data or the initial slope of the stress-strain 
curves from drained triaxial compression data, when the plastic poten-
tial surface follows similar patterns as the UBCSAND. As the initial slope 
of monotonic compression tests can underestimate the elastic moduli for 
cyclic loading, the aforementioned alternative approaches should be 
used with caution as their validity depends of the strain level of interest. 
Beaty [31] recommends that the stress ratios at failure (ηf) and constant 
volume (ηcv) can be selected by considering the interaction between the 
two parameters. These are established by simulating cyclic-loading 
response over the effective stress range of interest, especially in terms 
of cyclic resistance ratio, accumulation of strain, and post-liquefaction 
stiffness. These approaches determine the model parameters related to 
plastic deformations following the selection of elastic properties at low 
strains. A calibration procedure of the UBCSAND model for drained 
response is described in Ref. [32]. The specific calibration can reproduce 
available shear modulus reduction (G/Go) and equivalent damping ratio 
values (ξ) as a function of cyclic shear strain amplitude (γ) [36–40]. 

The study at hand develops and compares three novel methodologies 
for calibrating the UBCSAND model to data from drained monotonic and 
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cyclic triaxial compression tests. To this end, an experimental campaign 
was carried out in the Geotechnical Materials Lab at Khalifa University 
on four types of aggregates: gabbro, limestone, demolished concrete and 
steel slag. These aggregates have different mineralogy and exhibit 
different material behavior under compression and shearing. UBCSAND 
is first integrated analytically to furnish a set of novel closed-form so-
lutions for shear and volumetric strains. Contrary to numerical inte-
gration approaches, these solutions are free of computational errors and, 
thereby, can provide insight on the role of the various model parameters 
and their calibration against experimental data. Three calibration 
techniques are then developed: (1) a graphical “chart” solution based on 
results from forward numerical simulations; (2) a numerical approach 
based on minimization of residuals; (3) a trial-and-error graphical 
approach based on the analytical solution. These calibration procedures 
are applied to data from drained strain- and stress-controlled monotonic 
triaxial compression tests obtained by the authors. The performance of 
the model with number of cycles is discussed against data from cyclic 
compression tests. 

2. Model overview 

2.1. Formulation 

The elastic shear and bulk moduli (Ge, Ke) can be established by 
means of Eqs. (1) and (2), as functions of the mean effective stress p’ and 
Poisson’s ratio ν [31] 

Ge = ke
G

(
p′

M

pa

)ne

pa (1)  

Ke =
2(1 + ν)
3(1 − 2ν)G

e (2)  

where ke
G is a dimensionless elastic shear modulus parameter, pa is the 

atmospheric pressure (usually taken equal to 100 kPa) and p′

M =

(σ′

1 +σ′

3)/2 is the familiar MIT mean effective stress. In Eq. (1), the 
elastic shear modulus exponent ne is often taken equal to around 0.5 
based on experimental observations of small-strain shear moduli (e.g. 
Refs. [37,38,40]). 

The incremental elastic stress-strain relation can be cast in terms of 
Ge and Ke as shown in Eq. (3). 
[

dp′

dq

]

=

[
Ke 0
0 2Ge

][
dεe

v

dγe

]

(3)  

where p’ and q are the corresponding Cambridge stress invariants 
defined as p′

= (σ′

1+σ′

2 +σ′

3)/3 , q = σ′

1 − σ′

3 under triaxial loading, and 
dεe

v, dγe are the corresponding incremental volumetric and shear strains 
dεe

v = dεe
a + 2dεe

r , dγe = dεe
a − dεe

r . Since UBCSAND employs the MIT 
stress path parameters p′

M = 1
2 (σ

′

1 +σ′

3) and qM = 1
2 (σ

′

1 − σ′

3), Equation 
(3) can be recast in the following alternative forms: 
[

dp′

M

dqM

]

=

[
Ke Ge/3
0 Ge

][
dεe

v

dγe

]

(4a)  

[
dεe

v

dγe

]

=

[
1/Ke − 1/3Ke

0 1/Ge

][
dp′

M

dqM

]

(4b) 

With reference to elastoplastic response, the yield surface is defined 
as 

f = η − ηmob = 0 (5)  

where η = qM/p′

M is the stress ratio. Yielding occurs when η reaches the 
mobilized stress ratio ηmob. An advantage of the specific formulation 
over models based on the Cambridge stress path parameters is that the 

stress ratio at failure is independent of the intermediate stress σ2’, hence 
the model can be applied without modification to different stress paths 
including triaxial compression and extension. While Eq. (5) is obviously 
an approximation of true soil response, it provides a simple and cost- 
effective yield criterion for frictional materials. 

The hardening rule can be expressed in differential form using the 
total derivative: 

dγp =
1

Gp* dηmob =
1

Gp*p′

M

(
− ηmobdp′

M + dqM
)

(6)  

where Gp* is a dimensionless plastic shear modulus relating dγp and dη. 
In the realm of the specific model, Gp* is estimated from the empirical 
relation in Eq. (7): 

Gp* = kp
G

(
p′

M

pa

)np(

1 −
ηmob

ηf

/
Rf

)2

(7)  

where kp
G is a dimensionless plastic shear modulus parameter (equal to 

Gp* at p′

M = pa and ηmob = 0), and ηf is the stress ratio at failure. Rf is the 
failure ratio adjustment for preventing the over-prediction of strength at 
failure [2,41]. The plastic shear modulus exponent np is usually selected 
in the range 0.4–0.7 [28] The specific value can be determined from the 
undrained stress path and the quasi steady-state locations with different 
consolidation stress [42,43]. 

The flow rule is of the non-associative type and is given by the 
following simple formula: 

dεp
v

dγp = ηcv − ηmob (8)  

where ηcv is the stress ratio under constant volume. A graphical illus-
tration of the UBCSAND hardening and flow rules, mathematically 
expressed by Eqs. (6) and (8) respectively, is provided in Fig. 1. 

By combining Eqs. (6) and (8), the plastic strain increment can be 
expressed as 
[

dεp
v

dγp

]

=
1

Gp*p′

M

[
− ηmob(ηcv − ηmob) ηcv − ηmob

− ηmob 1

][
dp′

M

dqM

]

(9) 

Adding Eqs. (4b) and (9), the combined elastic and plastic volumetric 
and shear strain increments are obtained from the equation: 
[

dεv
dγ

]

=

[
C11 C12
C21 C22

][
dp′

M

dqM

]

(10)  

where 

C11 =
1

Ke +
− ηmob(ηcv − ηmob)

Gp*p′

M
(11a)  

C12 =
− 1
3Ke +

ηcv − ηmob

Gp*p′

M
(11b)  

C21 =
− ηmob

Gp*p′

M
(11c)  

C22 =
1

Ge +
1

Gp*p′

M
(11d) 

are the elements of the compliance matrix. Explicit formulae ob-
tained upon substituting Eq. (7) into Eq (11) are provided in Appendix C. 

Since parameters ν, ne and np are often selected empirically [28,31, 
37,38,40,42–46], without a rigorous calibration, the above model in-
volves four main dimensionless parameters that need to be calibrated 
against problem-specific data: kp

G, kp
G/ke

G, ηf/Rf and ηcv. Parameter ηcv is 
exclusively related to the plastic volumetric strain increment dεp

v as 
evident from Eq. (9). 

The stress increments are obtained from the stiffness formulation in 
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Eq. (12): 
[

dp′

M

dqM

]

=

[
D11 D12
D21 D22

][
dεv
dγ

]

(12)  

where 

D11 =
1
H

[
1

Ge +
1

Gp*p′

M

]

(12a)  

D12 =
1
H

[
1

3Ke −
(ηcv − ηmob)

Gp*p′

M

]

(12b)  

D21 =
1
H

[
ηmob

Gp*p′

M

]

(12c)  

D22 =
1
H

[
1

Ke −
ηmob(ηcv − ηmob)

Gp*p′

M

]

(12d)  

in which 

H =
1

GeKe −
ηmob(ηcv − ηmob)

GeGp*p′

M
+

3 − ηmob

3KeGp*p′

M
(12e)  

in the above equations D11, D12, D21 and D22 are the elements of the 
stiffness matrix D (inverse of matrix C in Eq. (10)). Explicit formulae 
obtained by substituting Eqs. (1) and (7) into Eq (12) are provided in 
Appendix C. For drained triaxial compression δqM = δp’M; the overall 
volumetric strain increment can then be obtained from dγ as follows: 

dεv =

(
D22 − D12

D11 − D21

)

dγ (13) 

The initial shear modulus (Go) of isotropically consolidated samples 
under triaxial drained compression (dqM = dp’) can be obtained from 
terms C21 and C22 in Eq. (10) as Go = dqM/dγ = 1/(C21 + C22). This yields 
the following solution 

Go =
ke

Gkp
G

kp
G

(
p′M
pa

)1− ne
+ ke

G

(
p′M
pa

)− npp′

M (14)  

where pM’ (= pc’) is the isotropic confining stress. Evidently, since ηmob is 
assumed equal to 0, there is no purely elastic regime so that elastic and 
plastic strains coexist even at zero deviatoric stress. Accordingly, a 
combination of parameters kG

e and kG
p control the value of Go; hence kG

e 

and kG
p cannot be uniquely defined by measuring the mechanical prop-

erties of the specimen at small strains. Moreover, this finding may 
explain the dependence of Vs measured using wave methods to the level 
of the imposed shear strain (recall that dq and dpM’ are proportional for 

all oblique stress paths). This finding is in contrast to the calibration 
procedure suggested by Beaty [31] in which kG

e is determined directly 
from Vs values obtained experimentally at low (non-zero) strains. 
Further, setting ηmob = 0+ allows for an elastic region in the limit sense, 
prohibiting plastic deformations (kG

P →+ ∞). Imposing this condition to 
Eq. (14) yields the anticipated result Go = Ge according to Eq. (1). 

2.2. Analytical integration 

The UBCSAND hardening and flow rule differential in Eqs. (6) and 
(8) can be integrated analytically for different stress paths. Considering 
triaxial compression and drained conditions, the mean effective stress 
can be expressed as p′

M = p′

c + qM, where p′

c is the effective confining 
pressure at zero deviatoric stress. As the stress ratio η is equal to qM/p′

M, 
the mean effective stress and the deviatoric stress at the plane of loading 
can be expressed as functions of η via the equations: 

p′

M =
1

1 − ηp′

c (15)  

qM =
η

1 − ηp
′

c (16) 

Combining Eq. (16) with Eqs. (1) and (4b), and after some trivial 
algebraic manipulations, the elastic shear strain increment can be 
expressed as 

dγe =
dqM

Ge =
1

ke
G(1 − η)2− ne

(
p′

c

pa

)1− ne

dη (17) 

Integrating the above equation over η yields the elastic shear strain in 
closed form 

γe =
− 1

ke
G (1 − ne)

[

1 −
1

(1 − η)1− ne

](
p′

c

pa

)1− ne

(18) 

expressed as a function of five dimensionless parameters: ke
G, η, ν, ne 

and p′

c/pa. 
In the same vein, using Eq. (15) and Eq. (7), Eq. (6) can be expressed 

in terms of η to give the plastic shear strain increment 

dγp =
1

kp
G

(
p′c
pa

)np(
1 − η

ηf/Rf

)2(1 − η)npdη (19) 

The above equation can be integrated analytically for the plastic 
shear strain 

Fig. 1. (a) Hardening rule; (b) Yield criterion and flow rule for UBCSAND model (modified after [27]).  
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γp =
1

kp
G

(
p′c
pa

)np
(1 − np)

⎡

⎢
⎢
⎢
⎣

(1 − η)(1+np)

(
1 −

η
ηf/Rf

)2 2F1

⎡

⎢
⎢
⎣1, 2, 2 − np,

1 − 1
ηf/Rf

1 −
η

ηf/Rf

⎤

⎥
⎥
⎦

− 2F1

[

1, 2, 2 − np, 1 −
1

ηf
/

Rf

]

⎤

⎥
⎥
⎥
⎦

(20)  

where 2F1 is the Gaussian hypergeometric function [47]. The hyper-
geometric function is a special form of power series in a single inde-
pendent variable x (last term in brackets 2F1[a,b,c,x], with a known 
general term, which allows analytical integration and differentiation of 
the function. Due to the complexity of the series and except for a limited 
number of special cases, no straightforward conclusions as to the 
behavior of the function can be gleaned by simple inspection of pa-
rameters a, b, c, x without direct numerical evaluation of the series. This 
can be easily done using standard mathematical software. More infor-
mation is provided in Appendix D. 

The elastic volumetric strain can be obtained in a similar manner as 
the elastic shear strain, by combining Eqs. (15) and (16) with Eq. (4b) to 
get 

dεe
v =

dp′

M

Ke −
dqM

3Ke =
2p′

c

3Ke(1 − η)2 dη (21) 

Substituting Eqs. (1) and (2) in the above formula and integrating 
over η, εe

v is obtained as:  

which is a function of the same dimensionless parameters as γe in Eq. 
(18). 

Finally, the plastic volumetric strain can be derived analytically from 
the flow rule. Indeed, substituting Eq. (19) in Eq. (8) and integrating 
over η, one gets 

εp
v =

∫ η

0

a(1 − η)np
(ηcv − η)

kp
G

(
p′c
pa

)np(
1 − η

ηf/Rf

)2 dη (23)  

where a is a fitting parameter typically taken equal to 1. The solution to 
the above integral is 

εp
v =

a ηf

/
Rf

kP
G

(
p′c
pa

)np (X1 − X2 − X3) (24)  

where, 

X1 = −

(
1 −

ηcv
ηf/Rf

)

(
1 − 1

ηf/Rf

)

⎧
⎪⎪⎨

⎪⎪⎩

1 −

⎡

⎢
⎢
⎣1+

(
1 − 1

ηf/Rf

)

np
(

1 −
ηcv

ηf/Rf

)

⎤

⎥
⎥
⎦2F1

[

1, 1, 1 − np, 1 −
1

ηf
/

Rf

]

⎫
⎪⎪⎬

⎪⎪⎭

(25a)  

X2 = −

(
ηf

/
Rf
)(1+np)

(
1 −

ηcv
ηf/Rf

)

(1 − np)
(

1 −
η

ηf/Rf

)1− np 2F1

⎡

⎢
⎢
⎣1 − np, − np, 2 − np,

(
1 − 1

ηf/Rf

)

(
1 −

η
ηf/Rf

)

⎤

⎥
⎥
⎦

(25b)  

X3 = −

(
ηf

/
Rf
)(1+np)

np
(

1 −
η

ηf/Rf

)− np 2F1

⎡

⎢
⎢
⎣ − np, − np, 1 − np,

(
1 − 1

ηf/Rf

)

(
1 −

η
ηf/Rf

)

⎤

⎥
⎥
⎦ (25c)  

are dimensionless functions. Like in the solution in Eq. (20), no general 
conclusions can be gleaned as to the behavior of functions X1, X2, X3 
without numerical evaluation of the relevant series. A graphical illus-
tration of Eq. (25) is provided in Appendix D. 

The above analysis can be readily extended to other stress paths 
(such as triaxial extension) but this lies beyond the scope of this work. 

As a final remark, integrating over η implies a monotonic increase of 
η from zero (or a finite value). This stress-controlled loading implies no 
η-softening. To account for such softening (which is a common trait of 
the response of dense sands under drained loading), modifications in the 
analysis would be required which lie beyond the scope of this work. 

2.3. Parameter selection 

As mentioned in Section 2.1, the dimensionless parameters involved 
in the model are: kp

G, ke
G, ηf/Rf , ηcv, ν, ne and np. The last three, ν, ne and 

np, are often selected empirically and for the purposes of these study we 
have assumed ν = 0.2, ne = 0.5, np = 0.4 based on the following brief 
discussion. 

The elastic Poisson’s ratio ν is typically selected in the range 0 to 0.2 
[2,31] based on studies of small strain elastic response of sands [44]. 
Recent laboratory experiments have confirmed that ν ranges from 0.1 to 
0.3 for different granular materials [45,46]. In this light, the value ν ≈

0.2 seems reasonable. 
In the ensuing, np has been taken equal to 0.4 based on the tested 

materials and stress conditions. This value is in the range of 0.35–0.65 to 
include quasi-steady state effects [42,43]. 

2.4. Errors in numerical integration 

Apart from allowing a robust calibration of the model, the analytical 
treatment at hand allows assessing the error encountered in numerical 
integration procedures. 

To evaluate the numerical errors accumulated using incremental 
Euler-type methods, a standard Taylor expansion can be employed as 
follows: 

f (x)= f (x)+ f ′

(x)(x − x)1
+

f ′′(x)
2!

(x − x)2
+…+

f (N− 1)(x)
(N − 1)!

(x − x)(N− 1)
+ RN

(26)  

where x denotes the independent variable, x denotes the expansion 
point and RN the residual. 

Considering up to second derivatives, shear strain can be approxi-
mated as 

γ(η+ dη)≈ γ(η)+ ∂γ(η)
∂η dη +

1
2

∂2γ(η)
∂η2 dη2 (27) 

Since Eq. (10) only involves first derivatives, the numerical error is 
approximately 

εe
v =

∫ η

0

1
ke

G(1 − η)2− ne
(1 − 2ν)
(1 + ν)

(
p′

c

pa

)1− ne

dη= − 1
ke

G (1 − ne)

[

1 −
1

(1 − η)1− ne

]
(1 − 2ν)
(1 + ν)

(
p′

c

pa

)1− ne

(22)   
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dγerror ≈
1
2

∂2γ(η)
∂η2 dη2 (28) 

By establishing the relevant derivatives from Equations (6) and (17), 
the following formula is obtained: 

dγerror ≈

⎡

⎢
⎢
⎢
⎣

2 − ne
2

(1 − η)ne− 3

ke
G

(
p′

c

pa

)1− ne

+
(1 − η)np

2kp
G

(
p′c
pa

)np

2
ηf/Rf

− np
1− η

(
1 − η

ηf/Rf

)

(
1 − η

ηf/Rf

)3

⎤

⎥
⎥
⎥
⎦

dη2

(29) 

The above equation indicates that the prediction error increases both 
with increasing dη and decreasing ke

G, kp
G. 

The prediction error in assessing εv using Eq. (10) can be likewise 
approximated from Eqs. (22) and (23) as follows:   

Evidently, the error in εv also increases with increasing dη and 
decreasing ke

G, kp
G. Fig. 2 shows a comparison of numerical and analytical 

solutions for (a) qM vs. γ and (b) εv vs. γ, respectively. These results are 
obtained from Eq. (10) using Euler integration, and Eqs. (18), (20), (22) 
and (24) for the analytical solution. The figure confirms that the nu-
merical solution deviates from the analytical one as the numerical step 
in the stress ratio dη increases, yet the error is small for dη less than 10− 2 

or so. 
The errors predicted using the approximate approach summarized in 

Eqs. (29) and (30), are compared to the errors observed in Fig. 2 by 
comparing the full numerical solution to the analytical. 

Fig. 3(a, c) and (b, d) provides the γerror and εverror, respectively, 
against η, for two sets of input parameters. γerror and εverror cannot be 
normalized with ηf/Rf, which is also evident from the form of Eqs. (29) 
and (30). The γerror is positive (Fig. 3a, c), which means that the nu-
merical solution underestimates the analytical one. This is anticipated 
because the tangent stiffness decreases with η. The εverror is negative 
(Fig. 3b, d) showing that the numerical solution overestimates the 
volumetric strains. This trend is also anticipated by inspecting Eq. (8) in 
which volumetric strains decrease with η. 

The γerror substantially increases when η = 0.5–0.57 and 0.4–0.5 with 
dη = 0.01 and 0.03, respectively (Fig. 3a, c). This observation indicates 
that the more accurate results are obtained with dη = 0.01 with higher η. 

Similar trends are observed in εverror with η in Fig. 3(b,d). The εverror 
substantially increases when η = 0.5–0.57 and 0.4–0.5 with dη = 0.01 
and 0.03, respectively (Fig. 3a, c). These observations indicate that the 
selection of dη becomes important as η increases. 

Fig. 4 illustrates this comparison with the predicted errors plotted 
versus the observed errors in the x- and y-axes respectively. Model pa-
rameters vary as follows: kp

G from 75 to 300, ηf/Rf from 0.51 to 0.75, and 
ηcv from 0.50 to 0.65. Fig. 4(a) shows that Equation (29) overestimates 
the observed error when dγerror/dη2 is smaller than 1. On the other hand, 
Fig. 4(b) shows that Eq. (30) deviates from the observed error when |dεv- 

error|/dη2 is smaller than 0.1. These observations indicate that higher 
order approximations via Taylor’s expansion are required to assess the 
numerical error in the integration of the model. Nevertheless, Eqs. (29) 
and (30) predict reasonably well the numerical errors when the afore-
mentioned dimensionless ratios are greater than 0.1. 

Fig. 5(a) and (b) depict the variation of dη against η for numerical 
prediction errors dγerror = 10− 4 and dεv-error = 10− 4, respectively, 
calculated using Eqs. (29) and (30). Four kp

G values were considered: 30, 
100, 250, 500, while kp

G/ke
G, ηf/Rf and ηcv were kept constant at 0.83, 

0.75 and 0.55, respectively. The figure shows that dη decreases as kp
G 

decreases and that the variation differs between the prediction errors for 
shear and volumetric strain. For example, Fig. 5(a) shows that dη =
0.004 and 0.018 when kp

G = 30 and 500, respectively, for η = 0.6. On the 
other hand, Fig. 5(b) shows that dη = 0.013 and 0.054 when kp

G = 30 and 
500, respectively, for η = 0.6. The peak value observed around 0.43 
corresponds to the point where f(η) = 0 as dεverror ≈ f(η)dη2 is, by defi-
nition, greater than zero. Using Eqs. 29 and 30 and Fig. 5, the dη value 
can be selected to limit the numerical error in the integration of UBC-
SAND via Eq. (10). 

3. Calibration procedures 

3.1. Chart solution 

A graphical solution is proposed for calibrating kp
G, kp

G/ke
G, ηf/Rf and 

ηcv from isotropic consolidated drained monotonic compression tests. In 
the calibrations, three parameters are kept constant: ν = 0.2, ne = 0.5, 
and np = 0.4. Fig. 6 shows stress-strain (η vs. γ) curves obtained by 
numerical integration of Eq. (10) for different combinations of kp

G, 

Fig. 2. Comparison between analytical (solid lines) and numerical (dots) solutions for different sizes of the numerical step dη: (a) qM vs. γ, (b) εv vs. γ; ηf/ Rf = 0.747, 
kp

G/ke
G = 0.83, kp

G = 250, ηcv = 0.55, ν = 0.2, ne = 0.5, np = 0.4, p’c = 50 kPa. 

dεverror ≈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(2 − ne)(1 − 2ν)
2(1 + ν)

(1 − η)ne− 3

ke
G

(
p′

c

pa

)1− ne

−
a(1 − η)np[ np

1− η (ηcv − η) + 1
]

2kp
G

(
p′c
pa

)np(
1 − η

ηf/Rf

)2 +

a(1 − η)np
(

ηcv − η
ηf/Rf

)

kp
G

(
p′c
pa

)np(
1 − η

ηf/Rf

)3

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

dη2 (30)   
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Fig. 3. Numerical errors in shear (a, c) and volumetric (b, d) strains for different sizes of the numerical step dη (kp
G = 250 (a, b) and 75 (c, d), ke

G = 300, ν = 0.2, ne =
0.5, np = 0.4, p’c = 50 kPa, ηcv = 0.55, ηf/Rf = 0.747). 

Fig. 4. Prediction errors of the numerical approach (Eq. (10)) against analytical solutions (Eqs. (29) and (30)) for different sizes of the numerical step dη: (a) dγerror/ 
dη2, (b) |dεv-error|/dη2. ηf/Rf , kp

G/ke
G and ηcv range from 0.51 to 0.75, 0.25 to 1.0, and 0.50 to 0.65, respectively; ν = 0.2, ne = 0.5, np = 0.4, p’c = 50 kPa and ke

G = 300. 

Fig. 5. Variation in dη against η with different kp
G for numerical prediction errors in strain using second-order Taylor expansion (Eq. (29), (30)): (a) dγerror = 10− 4, (b) 

dεv-error = 10− 4. ηf/Rf = 0.747, kp
G/ke

G = 0.83, ηcv = 0.55, ν = 0.2, ne = 0.5, np = 0.4, p’c = 50 kPa. 
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kp
G/ke

G, and ηf/Rf values. The failure strength is controlled by ηf/ Rf , 
while kp

G and kp
G/ke

G control the shape of the curves and do not signifi-
cantly affect ηf/Rf . Accordingly, one only needs to determine ηf/Rf from 
the experimental results in order to properly calibrate the other model 
parameters using the chart solution. 

An example of the proposed chart solution is illustrated in Fig. 7. 
Fig. 7(a) shows the variation in secant shear modulus (G) at γ = 0.5% 
and 2% for different kp

G/ke
G values, p’c = 100 kPa, and ηf/Rf = 0.64. Fig. 7 

(b) shows the variation of G(γ = 0.5%)/Go for different values of kp
G/ ke

G. 
Both Fig. 5 (a) and (b) were created numerically from Eq. (10). 

The ratio kp
G/ke

G can be uniquely determined if G is available (i.e. 

from experimental data) at γ = 0.5% and 2% from Figure 7(a). This 
indicates that G at different strains can be normalized with kp

G/ke
G for a 

range of kp
G values, which is anticipated in light of Eqs (10), (11), (18) 

and (20). The Go value can then be readily determined from Fig. 7(b) and 
the known value of G at γ = 0.5%. Once kp

G/ke
G and Go are determined the 

parameter kp
G can be obtained from Eqs. (14) and (15) for η = 0, which is 

re-arranged here as follows 

kp
G =

Go

p′

c

[
kp

G

ke
G

(
p′

c

pa

)1− ne

+

(
p′

c

pa

)− np]

(31) 

Fig. 7(c) shows the variation in ηcv with the estimated approximate 
value ηcv for different kp

G/ke
G ratios. ηcv is an approximate index obtained 

from the stress-strain curves using Eq. (8) as follows: 

ηcv =
εv
(
η = 0.95ηf

/
Rf
)
− εv

(
η = 0.55ηf

/
Rf
)

γ
(
η = 0.95ηf

/
Rf
)
− γ

(
η = 0.55ηf

/
Rf
) + 0.75ηf

/
Rf (32) 

As the influence of kp
G on ηcv is minor, Fig. 7(c) properly represents 

the normalized response. The figure shows that the relation between ηcv 

and ηcv varies slightly with kp
G/ke

G. Evidently, ηcv decreases for a given ηcv 

as kp
G/ke

G increases, because elastic strains become larger relative to 
plastic. Since kp

G/ke
G is available from the η – γ relationship in Fig. 7(a), 

ηcv can be readily obtained from Fig. 7(a) and Eq. (32). A step – by – step 
methodology for the proposed chart solution is provided in Table 1. 

Additional charts are provided in Appendix B for different values of 
ηf/Rf , p

′

c, k
p
G/ke

G, and ηcv. Using these charts, the parameters ηf/Rf , kp
G, 

kp
G/ke

G, and ηcv can be determined for a wide range of isotropically 

Fig. 6. Variations of stress-strain curves for drained compression for (a) ηf/Rf , (b) kp
G/ke

G, and (c) kp
G; In all simulations p’c = 100 kPa.  

Fig. 7. (a) Estimation of kp
G/ke

G from variations in normalized secant modulus; (b) Estimation of Go; (c) Estimation of ηcv. In all simulations p’c = 100 kPa.  

Table 1 
Step-by-step UBCSAND calibration methodology using the proposed chart 
solution.  

Steps  

1 Select values for ν, ne, np 
2 Determine ηf/Rf from laboratory test results 
3 In Appendix B choose the chart solution corresponding to the determined ηf/

Rf 

4 Determine G(γ = 0.5%), G(γ = 2%) from laboratory test results. Determine 
kp

G/ke
G from Figures (a)a in Appendix B. 

5 For the determined kp
G/ke

G and known G(γ = 0.5%) determine Go from Figures 
(b)a in Appendix B. 

6 From Eq. (31) and using the values of kp
G/ke

G and Go (from steps 4 & 5) 
calculate kp

G 
7 Calculate ηcv from Eq. (32) and from Figures (c) in Appendix B determine ηcv  

a Figures (a) and (b) in Appendix B were numerically created from Eq. (10). 
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consolidated drained compression tests. 

3.2. Numerical calibration 

The prediction errors discussed in the numerical integration section 
can be minimized and the robustness of the numerical calibration can be 
improved. Fig. 8 presents a flowchart of the proposed procedure. For 
stress-controlled tests, the input variables are the vectors of qM values 
obtained from experimental results. For strain-controlled tests, the input 
variables are the vectors of γ values. The experimental data need to have 
small sampling steps to produce stress increments dη smaller than the 
minimum value established by Eqs. (28) and (29). 

Initially, the soil response is numerically predicted by Eqs (10) and 
(12). The parameters kp

G, kp
G/ke

G, ηf/Rf and ηcv are then re-determined by 
minimizing the prediction errors. A check is included at the end, that the 
expected errors are smaller than a predetermined threshold value. In this 
procedure the selection of ηcv is independent of the selection of ηf , 
because ηcv is uniquely determined from the ηf/Rf ratio. This framework 
is different from the calibration procedure suggested by Beaty [31] 
which focuses on cyclic rather than monotonic behavior. 

Fig. 8. Flowchart of proposed calibration algorithm of parameters ηf/Rf , k
p
G/ke

G, kp
G, ηcv.  

Fig. 9. Photographs of tested materials (a) gabbro, (b) limestone, (c) demol-
ished concrete, (d) slag. 
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4. Application to drained monotonic & cyclic tests 

4.1. Test materials 

The experiments carried out in the Geotechnical Materials Lab at 
Khalifa University involved four different types of aggregates: (a) gab-
bro; (b) limestone; (c) demolished concrete; and (d) electric arc furnace 
(EAF) slag. Gabbro is a coarse grain igneous rock that is rich in iron, 
magnesium and calcium, and is extracted at the border between UAE 

and Oman. It is a strong material which is suitable for construction. 
Limestone is a sedimentary rock made of calcium carbonate, and is 
available throughout the UAE. It is weaker than gabbro, but also suitable 
for construction and provides excellent drainage when used as ballast. 
Demolished concrete is a recycled material - a mixture of cement and 
aggregates. The cement is weak and crushable. More than 29 million 
tons of cement are produced annually in the UAE [48]. Slag is a 
by-product of smelting generated as industrial waste during 
steel-making process. Slag is stronger and more resilient than the other 
three materials. More than 800,000 tons of slag are annually produced in 
the UAE [49]. 

Fig. 9 shows photographs of the particles of the tested aggregates. 
Gabbro and demolished concrete particles are rounded, whereas lime-
stone and slag have sharp angular shapes. Fig. 10 and Table 2 present 
grain-size distribution curves and their characteristics. The angularity of 
the particles was determined based on sphericity-roundness comparison 
chart [50]. All materials show uniform gradations. The effective grain 
size (D10) ranges from 4.6 to 12.8 mm, whereas the coefficient of uni-
formity (Cu) ranges from 1.3 to 1.7. Such uniform gradations are suitable 
for construction materials as the exhibit dilatant behavior under both 
static and cyclic loads [51]. 

4.2. Test procedure 

Triaxial tests were conducted using a GCTS Testing System device 
(Model No.: SSC-2K-0000). The specimen diameter was 70 mm that is 
more than 5 times larger than the maximum particle size. Although the 
particle diameter is large compared to the size of the specimen this is not 
unusual when gravelly aggregates are tested where d/D varies from 1/4 
to 1/5.7 [52]. The specimen height was 150 mm and was built under 20 
kPa vacuum, enclosed in a rubber membrane with 0.6 mm thickness. All 
samples were prepared with the void ratio ranging from 0.5 to 0.8, and 
were saturated under back pressure with a B-value greater than 0.95. 
The membrane penetration correction was conducted assuming 
isotropic behavior during the consolidation stage [53]. The tests were 
conducted in three stages: 

Stage 1) Isotropic consolidation under confining stress σ′
c = 50 kPa. 

Fig. 10. Grain size distribution curves of tested materials.  

Table 2 
Summary of tested materials.  

Material D10 

(mm) 
Cu Particle 

shape 
Mineralogy 

Gabbro 9.7 1.3 Sub- 
rounded 

Coarse-grained silicate 

Limestone 4.6 1.7 Angular Calcium carbonate 
Demolished 

concrete 
6.7 1.4 Sub- 

rounded 
Calcium carbonate, silicate 
aggregate 

EAF Slag 12.8 1.3 Sub- 
angular 

Calcium and iron oxide  

Fig. 11. Drained cyclic compression test results: (a) Gabbro, (b) Limestone, (c) Demolished concrete, (d) Slag. In all tests σ′
c = 50 kPa, qM = 50 kPa.  
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Stage 2) Drained cyclic loading with qM = 50 kPa with a loading 
frequency of 1 Hz. The applied number of cycles (N) varied from 50 
to 200. 
Stage 3) Triaxial compression under drained conditions. 

The specimen diameter and height were updated for each stage. 

4.3. Experimental drained cyclic and monotonic compression 
measurements 

Fig. 11 shows the cyclic loading responses between qM and axial 
strain (εa) for each material from 1 to 50 cycles. The gabbro testing 
displayed stiff behavior, whereas slag demonstrated ratcheting. The 
residual εa and volumetric strain (εv) against N, is presented in Fig. 12(a) 
and (b) εa and εv gradually increase with N, where the slag and the 
gabbro show the largest and smallest strains, respectively. Limestone 
and demolished concrete exhibit an intermediate behavior. The accu-
mulation of εa and εv is similar indicating that the radial strain is limited 
during cyclic compression. This observation is consistent with previous 
studies [54], where the radial strain was limited when the amplitude of 
cyclic load is less than 70% of the static peak strength. In fact, the 
amplitude of cyclic qM (Fig. 11) applied in this study was approximately 
40% of the static peak strength (Fig. 13). Fig. 13(a) shows a drained 
monotonic compression response in terms of deviatoric shear stress qM 
versus shear strain γ. Limestone exhibits the highest strength (~160 
kPa), whereas the other three materials have similar strengths in the 
range 120–150 kPa. Fig. 13(b) plots εv versus γ. The largest and smallest 
dilatancies were observed in gabbro and demolished concrete, 
respectively. 

Fig. 12. Cyclic drained compression test results for different materials: (a) εa vs. N, (b) εr vs. N (d) γ vs. N. In all tests σ′
c = 50 kPa, qM = 50 kPa.  

Fig. 13. Monotonic drained compression test results for different materials (a) qM vs. γ (b) εv vs. γ.  

Table 3 
Calibrated UBCSAND parameters against drained monotonic triaxial compres-
sion data for four different ballast aggregates using the three methods described 
in this paper (σ′

c = 50 kPa).  

Material Method kp
G kp

G/ke
G ηf/Rf ηcv 

Gabbro Analytical 500 2.00 0.75 0.42 
Chart 234 2.00 0.73 0.36 
Numerical 620 2.77 0.74 0.41 

Limestone Analytical 400 0.10 0.77 0.50 
Chart 720 0.02 0.77 0.53 
Numerical 410 0.10 0.77 0.50 

Demolished concrete Analytical 1000 0.10 0.70 0.60 
Chart 1640 0.02 0.71 0.55 
Numerical 980 0.05 0.68 0.59 

EAF Slag Analytical 300 0.50 0.68 0.42 
Chart 700 0.02 0.68 0.53 
Numerical 320 0.05 0.68 0.44 

ne, np, and v values are fixed at 0.5, 0.4, and 0.2, respectively. 
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4.4. Calibration of UBCSAND model to the experimental data 

UBCSAND models were calibrated both numerically and analytically 
using the aforementioned experimental data from drained monotonic 
compression tests. The numerical procedure for strain-controlled con-
ditions follows Fig. 8. Table 3 provides UBCSAND parameters estimated 
by employing the three different calibration approaches presented in 
this study: analytical, chart based, numerical. Fig. 14(a)-(h) presents the 
calibrated responses of η vs. γ and εv vs. γ computed following these 
approaches. It is demonstrated that the main aspects of the drained 
monotonic compression response are reproduced adequately by all three 
methods relative to the experimental data in Fig. 13. The analytical and 
numerical solutions work best for strains above 1% while the chart so-
lution works best for strains less than 1%. 

Fig. 15 shows the example responses of UBCSAND for drained cyclic 
compression tests of gabbro and slag, using the parameters of numerical 
calibration in Table 3. The slag simulation exhibits the largest residual εa 
compared to gabbro, which is consistent with the experimental obser-
vations in Fig. 11. However, the rate of strain accumulation is constant 
for UBCSAND, which is different from the experimental findings. Fig. 16 
shows the residual values of εa and εv for drained cyclic compression 
computed with UBCSAND using the parameters in Table 3. Comparing 
the results from Figs. 12 and 16, it is fair to mention that the model 
parameters should be different for cyclic versus monotonic loading, 
which complicates its application for combinations of static and dy-
namic loads (a common case in earthquake engineering). 

Moreover, the rate of increase of volumetric and shear strains with 
number of cycles is linear, hence cannot realistically reproduce results 

Fig. 14. Calibrated monotonic drained compression tests for four different aggregate materials using the analytical, numerical and chart solutions. The UBCSAND 
parameters for each case are provided in Table 3. (a) η vs. γ, (b) εv vs. γ for gabbro, (c) η vs. γ, (d) εv vs. γ for limestone, (e) η vs. γ, (f) εv vs. γ for demolished concrete, 
(g) η vs. γ, (h) εv vs. γ for slag. 
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for excess pore pressures under undrained loading. This is evident in 
Fig. 17 where different calibrations are needed for different number of 
cycles. These observations are important when trying to apply the spe-
cific model to dynamic problems – notably for soil liquefaction analysis. 

The UBCSAND model was calibrated against drained cyclic 
compression tests for different number of loading cycles. Table 4 shows 
the calibrated parameters for N from 0 to 2, 0 to 10, and 0 to 50 cycles 
for different materials, respectively. The calibration procedure follows 
Fig. 8 for stress-controlled conditions. The parameters kp

G/ ke
G and ηf/ Rf 

are fixed from Table 3 for drained monotonic conditions. The kp
G/ ke

G 

ratio was fixed because the calibrated value was very large (i.e. small ke
G) 

due to the plastic deformations developing during successive unloading 
cycles. ηf/Rf was fixed because it does not provide a reliable value due to 
the low amplitude of cyclic loads to determine the failure parameters. 
Table 4 shows that the kp

G parameter increases as the number of cycles 
increases. ηcv similarly increases as the number of cycles increases when 
the material exhibits contractive behavior. 

Fig. 17 shows the residual strains εa and εv for slag under drained 
cyclic tests compared with the calibrated UBCSAND for different loading 
conditions. The results suggest that the UBCSAND model can be 

Fig. 15. Example of qM vs. εa cyclic drained response predicted using UBCSAND model based on the calibrated parameters in Table 3: (a) gabbro, (b) slag.  

Fig. 16. Examples of residual axial and volumetric strains predicted using UBCSAND for drained cyclic compression response using the calibrated parameters in 
Table 3: (a) εa vs. N; (b) εv vs. N (σ′

c = 50 kPa, qM = 50 kPa). 

Fig. 17. Comparison of residual strains of slag between experimental and UBCSAND models calibrated based on different loading conditions: (a) N vs. εa, (b) N vs. εv; 
σ′

c = 50 kPa, qM = 50 kPa. 
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reasonably fitted by adjusting the calibration range. The figure also 
shows that the calibrated parameters against drained monotonic 
compression tests only predict the cyclic compression responses well 
when N is not larger than 1–4 cycles. Evidently, there is no single set of 
parameters which can reproduce well both monotonic and cyclic 
drained conditions. 

5. Conclusions 

The popular UBCSAND constitutive model was reviewed and inte-
grated analytically for monotonic and cyclic drained triaxial compres-
sion. A novel closed form solution for the elastic and plastic shear and 
volumetric strains was developed. Three new methodologies for cali-
brating the model parameters to experimental data were proposed: (1) a 
graphical “chart” solution; (2) a numerical approach based on minimi-
zation of residuals; and (3) a trial-and-error approach based on the 
analytical solution. It has been demonstrated that:  

(1) The analytical solution in Eqs. (18), (20), (22), (24) and (25) 
provides an excellent tool, free of numerical errors, for calibrat-
ing the UBCSAND parameters against laboratory data.  

(2) The proposed methodology in the flowchart of Fig. 8, efficiently 
minimizes the errors in the numerical calibration and can be 
applied for both monotonic and cyclic tests. For good perfor-
mance it was shown that the experimental data need to have 
small sampling steps, on the order of 10− 2 or less in η.  

(3) The “chart” solution allows for the graphical determination of the 
UBCSAND parameters from drained monotonic compression 
data. For given ν, ne and np values the dimensionless parameters 
that need to be calibrated are four: kp

G, kp
G/ke

G, ηf/ Rf and ηcv. ηf/ Rf 

and kp
G/ke

G can be uniquely determined from the failure strengths 

and the secant modulus. A simple approach to estimate kp
G and ηcv 

was also proposed.  
(4) Results from the numerical calibration against both monotonic 

and cyclic test data show that the parameters of UBCSAND are 
different between monotonic and cyclic drained compression 
conditions. The calibrated parameters against monotonic tests 
only predict the cyclic compression responses well when N is less 
than 1–4 cycles. Therefore, UBCSAND models should be cali-
brated against the target loading conditions and number of 
cycles. 

It is fair to mention that the model parameters should be different for 
cyclic versus monotonic loading, which makes its application for com-
binations of static and dynamic loads (a most common case in earth-
quake engineering) difficult. Further, the rate of increase of volumetric 
and shear strains with number of cycles is always linear, hence cannot 
realistically reproduce results for excess pore pressures under undrained 
loading. These observations are important when trying to apply the 
specific model to dynamic problems – notably in soil liquefaction 
analysis. 
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Table 4 
Numerically calibrated UBCSAND parameters against drained cyclic compres-
sion tests (σ′

c = 50 kPa, qM = 100 kPa).  

Material # of cycles N kp
G kp

G/ke
G ηf/Rf ηcv 

Gabbro 0–2 5400 2.77 0.74 0.61 
0–10 18,500 2.77 0.74 0.32 
0–50 69,600 2.77 0.74 0.36 

Limestone 0–2 1500 0.10 0.77 0.54 
0–10 4800 0.10 0.77 0.74 
0–50 15,900 0.10 0.77 0.86 

Demolished concrete 0–2 2900 0.05 0.68 1.00 
0–10 7700 0.05 0.68 1.00 
0–50 25,300 0.05 0.68 0.99 

EAF Slag 0–2 760 0.05 0.68 0.50 
0–10 2800 0.05 0.68 0.71 
0–50 11,900 0.05 0.68 0.83 

ne, np, and v values are fixed at 0.5, 0.4, and 0.2, respectively. kp
G/ ke

G and ηf/ Rf 

values are fixed based on the monotonic compression tests.  
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APPENDIX A. List of main symbols  

Latin symbols 

F Yield surface 
G Shear modulus 
Ge Elastic shear modulus 
Gp* Dimensionless plastic shear modulus 
Go Initial (maximum) shear modulus 
Ke Elastic bulk modulus 
ke

G Dimensionless elastic shear modulus parameter 
kp

G Dimensionless plastic shear modulus parameter 
ne Elastic shear modulus exponent 
np Plastic shear modulus exponent 
p’ Cambridge mean effective stress 
pa Atmospheric pressure 
p’c Isotropic confining stress 
p′

M MIT mean effective stress in the plane of loading 
q Cambridge deviatoric stress (σa− σr) 
qM MIT deviatoric stress in the plane of loading 
Rf Failure ratio 
Vs Shear wave velocity 
Greek symbols 
γ Engineering shear strain 
γe Elastic shear strain 
γp Plastic shear strain 
dγ Shear strain increment 
dγerror Numerical error in shear strain prediction 
εv Volumetric strain 
εe

v Elastic volumetric strain 
εp

v Plastic volumetric strain 
dεv Volumetric strain increment 
dεverror Numerical error in εv prediction 
η Stress ratio (qM/p′

M) 
ηcv Stress ratio under constant volume 
ηcv Estimated ηcv (approximate value) 
ηf Stress ratio at failure 
ηmob Mobilized stress ratio 
dη Stress ratio increment 
ν Poisson’s ratio 
ξ Damping ratio 
σ’

1 Major effective principal stress 
σ’

3 Minor effective principal stress  
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APPENDIX B. “Chart”-based calibration – Additional Figures

Fig. B1. Variations in normalized secant modulus and ηcv for different values of kp
G/ke

G. (ηf/Rf = 0.50).   
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Fig. B2. Variations in normalized secant modulus and ηcv for different values of kp
G/ke

G. (ηf/Rf = 0.57).   
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Fig. B3. Variations in normalized secant modulus and ηcv for different values of kp
G/ke

G. (ηf/Rf = 0.64).   
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Fig. B4. Variations in normalized secant modulus and ηcv for different values of kp
G/ke

G. (ηf/Rf = 0.71).   
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Fig. B5. Variations in normalized secant modulus and ηcv for different values of kp
G/ke

G. (ηf/Rf = 0.77).  

APPENDIX C. Elastoplastic compliance & stiffness matrices 

The four terms of the compliance matrix, in Eqs (10) and (11) can be written in terms of the model parameters upon substituting Eq. (7) into Eq. 
(11). The corresponding formulae are: 

C11 =
1

kp
G

(
p′M
pa

)np(
1 −

ηmob
ηf/Rf

)2
p′

M

[
3(1 − 2ν)
2(1 + ν)

kp
G

ke
G

(
p′

M

pa

)1+np− ne(

1 −
ηmob

ηf

/
Rf

)2

− ηmob(ηcv − ηmob)

]

(C1a)  

C12 =
1

kp
G

(
p′M
pa

)np(
1 −

ηmob
ηf/Rf

)2
p′

M

[
− (1 − 2ν)
2(1 + ν)

kp
G

ke
G

(
p′

M

pa

)1+np− ne(

1 −
ηmob

ηf
/

Rf

)2

+(ηcv − ηmob)

]

(C1b)  

C21 =
1

kp
G

(
p′M
pa

)np(
1 −

ηmob
ηf/Rf

)2
p′

M

(− ηmob) (C1c)  

C22 =
1

kp
G

(
p′M
pa

)np(
1 −

ηmob
ηf/Rf

)2
p′

M

[
kp

G

ke
G

(
p′

M

pa

)1+np− ne(

1 −
ηmob

ηf

/
Rf

)2

+ 1

]

(C1d) 

The four terms of the stiffness matrix, in Eq (12) can be written in terms of the model parameters upon substituting Eqs. (1), (2) and (7) into Eq. 
(12). The corresponding formulae are: 
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D11 =
1

H*
ke

Gpa

(
p′

M

pa

)ne[kp
G
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(
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pa

)1+np− ne(
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D21 =
1
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ke
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(
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)ne
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1
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(
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(
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(C2d)  

where 

H*=
3(1 − 2ν)
2(1 + ν)

[
kp

G

ke
G

(
p′

M

pa

)1+np− ne(

1 −
ηmob

ηf
/

Rf

)2

+ 1 −
ηmob

3

]

− ηmob(ηcv − ηmob) (C2e)  

APPENDIX D. Graphical illustration of Eqs. 24 and 25 

Hypergeometric Functions (HF) are special forms of power series in one independent variable with a known general term an which, therefore, can 
be integrated and differentiated analytically. HF can also be viewed as solutions to linear differential equations of variable coefficients around a 
regular singular point, where the recursive relation defining the power series solution involves only two terms (say an and an+l where l is the step of the 
power series) which allows defining the general term of the series in closed form. 

All differential equations associated with the special functions of mathematical physics (such as exponential, sinusoidal, power law, Bessel, Airy 
functions, Legendre polynomials, Chebyshev polynomials, elliptic integrals etc.) of real or complex argument are expressible in terms of hypergeo-
metric functions. Since a hypergeometric function can represent any special function in mathematical physics, it is practically impossible to make a 
general statement about its behavior apart from all being invariably expressible in terms of power series with a known general term. 

The function 2F1 is the first hypergeometric function to be introduced (by Gauss in 1813) and is expressed in the general form 

2F1(a, b, c, x)=
∑∞

n=0

(a)n (b)n

(c)n

xn

n!
= 1+

a b
c

x
1!
+

a(a + 1) b(b + 1)
c(c + 1)

x2

2!
+ … (D-1)  

where (a)n, (b)n, (c)n are parameters defined by means of the rising Pochhamer symbol 

(q)n =

{
1, n = 0

q(q + 1)…..(q + n − 1), n > 0 (D-2) 

and x is the independent variable. 
The series naturally terminates if either a or b is a non-positive integer, which then reduces to a polynomial. 
Because the coefficients governing coefficients a, b and c can attain any value (integer, rational, real or complex), the function itself could exhibit 

oscillatory or exponential-like behavior depending on the values of these parameters. Apart from that, little can be said about its properties and values 
except for certain special cases. Evidently, contrary to many functions of mathematical physics (notably Bessel functions) the behavior of which mostly 
unkown, the behavior of Hypergeometric functions is not well known even to experts in applied mathematics. 

The functions arising in this study exhibit the behavior shown in Figure D1 below. 
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Fig. D1. Plastic volumetric strain evaluated by the analytical solution in Eqs. 24 and 25 and graphical illustration of the terms X1, X2, X3 of the equation involving 
hypergeometric functions. 
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