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The first measurements of the production of muons and electrons from heavy-flavour hadron decays in 
Xe–Xe collisions at √sNN = 5.44 TeV, using the ALICE detector at the LHC, are reported. The measurement 
of the nuclear modification factor RAA is performed as a function of transverse momentum pT in several 
centrality classes at forward rapidity (2.5 < y < 4) and midrapidity (|y| < 0.8) for muons and electrons 
from heavy-flavour hadron decays, respectively. A suppression by a factor up to about 2.5 compared to 
the binary-scaled pp reference is observed in central collisions at both central and forward rapidities. 
The RAA of muons from heavy-flavour hadron decays is compared to previous measurements in Pb–Pb 
collisions at √sNN = 5.02 TeV. When the nuclear modification factors are compared in the centrality 
classes 0–10% for Xe–Xe collisions and 10–20% for Pb–Pb collisions, which have similar charged-particle 
multiplicity density, a similar suppression, with RAA ∼ 0.4 in the pT interval 4 < pT < 8 GeV/c, is 
observed. The comparison of the measured RAA values in the two collision systems brings new insights 
on the properties of the quark-gluon plasma by investigating the system-size and geometry dependence 
of medium-induced parton energy loss. The results of muons and electrons from heavy-flavour hadron 
decays provide new constraints to model calculations.

© 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A state of strongly-interacting matter in which quarks and 
gluons are deconfined, the quark–gluon plasma (QGP), is cre-
ated in ultra-relativistic heavy-ion collisions at high energy den-
sity and high temperature [1–5]. Due to their large masses (mc ≈
1.5 GeV/c2, mb ≈ 4.8 GeV/c2 [6]), charm and beauty quarks (heavy 
quarks) are mostly produced via hard partonic scattering processes 
in the initial stages of the collision, with typical time scales smaller 
than the QGP formation time (∼ 1 fm/c [7]). Furthermore, addi-
tional thermal production, as well as annihilation rates, of charm 
and beauty quarks in the strongly-interacting matter are expected 
to be small even at LHC energies [8,9]. Therefore, charm and 
beauty quarks are a valuable probe for a detailed characterisation 
of this deconfined medium. During their propagation through the 
QGP, they lose energy via radiative [10,11] and collisional [12,13]
processes due to the microscopic interactions with the medium.

In order to quantify the effect of parton energy loss, we employ 
the nuclear modification factor RAA defined as the ratio of the pT-
and y-differential particle yield (d2 NAA/dpTdy) in nucleus-nucleus 
collisions of a given centrality to the corresponding pT- and y-
differential production cross section (d2σpp/dpTdy) in pp collisions 

� E-mail address: alice -publications @cern .ch.

at the same centre-of-mass energy, scaled by the average nuclear 
overlap function 〈TAA〉:

RAA(pT, y) = 1

〈TAA〉 · d2NAA/dpTdy

d2σpp/dpTdy
, (1)

where 〈TAA〉 is defined, for a given centrality class, as the aver-
age number of binary nucleon-nucleon collisions per A–A collision 
in that class, divided by the inelastic nucleon-nucleon cross sec-
tion [14–16].

A wealth of results on the measurement of open heavy-flavour 
production at the LHC was obtained in Pb–Pb collisions at 

√
sNN =

2.76 TeV and 5.02 TeV. The results from the ALICE, ATLAS and 
CMS Collaborations show a clear evidence of a strong suppres-
sion of open heavy-flavour yields compared to the binary-scaled 
pp reference in central collisions (see [17] and references therein, 
and [18–24] for recent publications). The measurements of the 
production of electrons and muons from heavy-flavour hadron de-
cays at midrapidity (|y| < 0.8) and forward rapidity (2.5 < y < 4), 
respectively, show a suppression up to a factor of about 3 in the 
10% most central collisions [23,24]. The nuclear modification factor 
of electrons from charm and beauty-hadron decays [25,26] and of 
D mesons [27] in p–Pb collisions at 

√
sNN = 5.02 TeV was found to 

be consistent with unity within uncertainties. From this, one can 
conclude that the strong suppression observed in Pb–Pb collisions 
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is due to substantial final-state interactions of heavy quarks with 
the QGP formed in heavy-ion collisions.

The study of open heavy-flavour production in different col-
lision systems with similar collision energies can provide more 
insight on the role of initial state effects, like the modification 
of the parton distribution functions (PDF) inside bound nucleons 
[28], and on the production mechanisms of final-state particles, 
like hadronisation via fragmentation and coalescence [17,29]. Fur-
thermore, such measurements can be used to test the path-length 
dependence of the heavy-quark energy loss [30]. Previous mea-
surements of the system-size dependence of open heavy-flavour 
production were performed at RHIC, comparing results from Au–
Au and Cu–Cu collisions, both at 

√
sNN = 200 GeV. The PHENIX 

collaboration measured a significant suppression of muons from 
heavy-flavour hadron decays at forward rapidity (1.4 < y < 1.9) 
for pT > 2 GeV/c in the 20% most central Cu–Cu collisions at √

sNN = 200 GeV [31]. The nuclear modification factor of elec-
trons from heavy-flavour hadron decays measured at midrapidity 
(|y| < 0.35) in Cu–Cu collisions at 

√
sNN = 200 GeV/c is found 

to be in agreement with that obtained in Au–Au collisions at √
sNN = 200 GeV/c, when the two are compared at similar number 

of participating nucleons 〈Npart〉 [32]. The LHC delivered for the 
first time collisions of xenon ions (129Xe54+) at a centre-of-mass 
energy per nucleon pair 

√
sNN = 5.44 TeV during a pilot run of 6 

hours at the end of 2017. This allows one to complement the find-
ings in Pb–Pb collisions and to study the dependence of particle 
production on the size of the collision system and of the produced 
medium. A remarkably similar suppression was observed in Pb–Pb 
and Xe–Xe collisions for charged particles, in terms of their nu-
clear modification factor compared in event classes with similar 
charged-particle multiplicity density 〈dNch/dη〉, possibly indicating 
similar medium densities and sizes in the two collision systems 
under that condition [33,34]. The CMS collaboration reported a 
slightly smaller RAA for charged particles measured in Xe–Xe colli-
sions than in Pb–Pb collisions when the comparison is performed 
for centrality classes with a similar number of participating nu-
cleons [33]. A good agreement was also found between the RAA

of inclusive J/ψ measured in Pb–Pb and Xe–Xe within uncertain-
ties [35].

This letter presents the first measurement of the production 
of open heavy-flavour hadrons via the muon and electron de-
cay channels at forward rapidity (2.5 < y < 4) and midrapidity 
(|y| < 0.8) in Xe–Xe collisions at 

√
sNN = 5.44 TeV with the AL-

ICE detector at the LHC. The pT-differential yield and the nuclear 
modification factor are presented in several centrality intervals 
expressed in terms of percentages of the inelastic Xe–Xe cross 
section, namely 0–10%, 10–20%, 20–40% and 40–60% (0–20% and 
20–40%) for the muon (electron) analysis. The upper limit of the 
pT range available for the measurements sits between 6 and 8 
GeV/c, depending on the centrality class and decay channel. In the 
midrapidity region, electrons from heavy-flavour hadron decays are 
measured, for the first time at the LHC, down to pT = 0.2 GeV/c in 
the 20–40% centrality interval thanks to the reduced magnetic field 
of 0.2 T in the ALICE solenoid magnet, as compared to the nominal 
field of 0.5 T for Pb–Pb collisions. The comparison between Pb–Pb 
collisions and the smaller Xe–Xe system is extended to the open 
heavy-flavour sector with the measurement of the RAA of muons 
from heavy-flavour hadron decays at forward rapidity in both sys-
tems. Comparisons with transport model predictions are reported. 
The measurements can add to our understanding of the initial state 
and the parton in-medium energy loss mechanisms. In particular, 
the results discussed in this letter can bring additional constraints 
on the model parameters sensitive to the path-length dependence 
of in-medium energy loss.

2. Experimental apparatus

The ALICE detector is described in detail in [36,37] and refer-
ences therein. The apparatus consists of a central barrel at midra-
pidity with pseudorapidity coverage |η| < 0.9, a muon spectrome-
ter at forward rapidity (−4 < η < −2.5) and a set of detectors for 
triggering and event characterisation installed in the forward and 
backward rapidity regions. The central barrel detectors are embed-
ded in a solenoid, which provided a magnetic field of 0.2 T parallel 
to the beam direction during the Xe–Xe data taking.

At midrapidity, the Inner Tracking System (ITS) and the Time 
Projection Chamber (TPC) are used for track reconstruction. The 
ITS detector consists of six cylindrical silicon layers surrounding 
the beam pipe: the Silicon Pixel Detector (SPD), the Silicon Drift 
Detector (SDD) and the Silicon Strip Detector (SSD). Along with the 
momentum measurement, the TPC, the SDD and the SSD also pro-
vide specific ionisation energy loss (dE/dx) information, used for 
charged-particle identification (PID). The particle identification is 
completed by the information provided by a Time-Of-Flight (TOF) 
detector based on multi-gap resistive plate chambers.

The muon spectrometer [38], as seen from the interaction point, 
consists of a 10 nuclear interaction length (λI) front absorber fil-
tering hadrons, electrons, photons and reducing the yield of muons 
from light-flavour hadron decays, five tracking stations with the 
third one placed in a dipole magnet with a field integral of 3 
T·m, a 1.2 m thick iron wall (7 λI) and two trigger stations. Each 
tracking station is composed of two planes of cathode pad cham-
bers. The iron wall stops secondary hadrons escaping from the 
front absorber as well as residual low momentum muons from 
light-hadron decays. Each trigger station consists of two planes 
of resistive plate chambers. A conical absorber protects the muon 
spectrometer throughout its full length against secondary particles 
produced by the interaction with the beam pipe of primary parti-
cles at large η values.

The V0 detector consists of two arrays of 32 scintillator tiles 
each, covering the pseudorapidity intervals 2.8 < η < 5.1 (V0A) 
and −3.7 < η < −1.7 (V0C). It serves as trigger detector and is 
used for the centrality estimation. The latter is performed through 
a Glauber Monte Carlo (MC) fit of the signal amplitude in the two 
scintillator arrays [39,40]. The centrality intervals are defined as 
percentiles of the hadronic Xe–Xe cross section [41]. The Zero De-
gree Calorimeters (ZDC), located on both sides of the interaction 
point at z = ± 112.5 m, are used, both online and offline, for 
the rejection of electromagnetic interactions and the timing infor-
mation from both the V0 and ZDC is employed offline to reject 
beam-induced background.

The Forward Multiplicity Detector (FMD), made of three sets 
of silicon strip sensors covering the η intervals −3.5 < η < −1.8
and 1.8 < η < 5, provides a measurement of the charged-particle 
multiplicity density at forward rapidity.

The minimum bias (MB) trigger required at least a hit in each 
of the V0A and V0C, and at least one neutron detected by the 
ZDC on each side of the interaction point. The measurement of 
the production of electrons from heavy-flavour hadron decays at 
midrapidity was performed on a sample of events characterized 
by the MB trigger condition. In addition, only events with a re-
constructed primary vertex with |vz| < 10 cm, where vz is the 
longitudinal coordinate along the beam axis, are used in the anal-
ysis.

A sample of muon-triggered events was considered for the 
measurement of muons from heavy-flavour hadron decays. The 
muon trigger condition [36] required the coincidence of at least 
one hit in each of the V0A and V0C, and at least one track seg-
ment in the muon trigger system, with a pT above the threshold 
of the online trigger algorithm. The trigger setting provides a ∼50% 
efficiency for muons with pT ≈ 0.5 GeV/c.
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Table 1
Number of analysed Xe–Xe events in different centrality intervals and trigger con-
figurations. The corresponding 〈TAA〉 values are also reported. The MB and muon-
triggered samples are used for the measurement of electrons from heavy-flavour 
hadron decays at midrapidity and muons from heavy-flavour hadron decays at for-
ward rapidity.

Centrality MB trigger Muon trigger 〈TAA〉 (mb−1)
(electrons) (muons)

0–10% – 1.79 · 105 12.33 ± 0.71
10–20% – 1.62 · 105 7.465 ± 0.520
0–20% 0.3 · 106 – 9.896 ± 0.620
20–40% 0.3 ·106 2.48 · 105 3.466 ± 0.350
40–60% – 1.29 · 105 1.008 ± 0.131

The probability for multiple interactions in a single bunch 
crossing (pile-up) was negligible (about 10−4) for both event sam-
ples, due to the very low interaction rate. The number of events 
analysed with different trigger samples and centrality intervals is 
summarised in Table 1, together with the corresponding values of 
the average nuclear overlap function 〈TAA〉 [16,41]. The integrated 
luminosity amounts to about 0.30 μb−1 and 0.33 μb−1 for the MB-
and muon-triggered data samples.

3. Data analysis

The pT-differential yield of electrons (muons) from semi-
leptonic heavy-flavour hadron decays is obtained by measuring 
the inclusive yields and subtracting the contribution of electrons 
(muons) that do not originate from open heavy-flavour hadron de-
cays.

3.1. Muons from heavy-flavour hadron decays

Standard criteria are applied to select track candidates recon-
structed with the muon spectrometer using the tracking algorithm 
described in [42]. Tracks are required to be within the pseudora-
pidity interval −4 < η < −2.5 and their polar angle at the end 
of the front absorber (θabs) should satisfy the condition 170◦ <

θabs < 178◦ . The θabs selection reduces the impact of multiple scat-
tering by rejecting tracks crossing the high-density region of the 
front absorber. Reconstructed tracks that match a track segment 
in the muon trigger system are identified as muons. Finally, the 
distance of the track to the primary vertex (DCA) weighted by 
its momentum (p) is required to be smaller than 6 times the 
width of the weighted DCA distribution obtained considering all 
reconstructed tracks [43]. This selection reduces the fraction of 
fake tracks and beam-induced background tracks. After the selec-
tion criteria are applied, the main background contributions in the 
region 3 < pT < 8 GeV/c which need to be estimated and fur-
ther subtracted consist of i) muons from primary charged-pion 
and charged-kaon decays, ii) muons from secondary charged-pion 
and charged-kaon decays originating from the interaction of light-
charged hadrons with the material of the front absorber and iii) 
muons from J/ψ decays. Therefore, the differential yields of muons 
from heavy-flavour hadron decays in a given centrality class are 
obtained as

d2Nμ±←HF

dpTdy
= d2Nμ±

dpTdy
− d2Nμ±←π

dpTdy
− d2Nμ±←K

dpTdy

− d2Nμ±←sec.π/K

dpTdy
− d2Nμ±←J/ψ

dpTdy
, (2)

where d2Nμ±
/dpTdy stands for the differential yield of inclusive 

muons corrected for acceptance, and tracking and trigger efficiency 
(A × ε), and normalised to the equivalent number of MB events, 

while d2 Nμ±←π/dpTdy, d2Nμ±←K/dpTdy, d2Nμ±←sec.π/K/dpTdy
and d2 Nμ±←J/ψ/dpTdy represent the corresponding estimated dif-
ferential yields of muons from charged-pion decays, muons from 
charged-kaon decays, muons from secondary charged-pion and 
kaon decays and muons from J/ψ decays.

In order to evaluate the equivalent number of MB events in 
the triggered-muon sample a normalisation factor Fnorm needs to 
be determined. This factor corresponds to the inverse probability 
of having a triggered muon in a MB event. It is calculated using 
two different procedures as detailed in [24,44], either applying the 
muon trigger condition in the analysis of MB events or from the 
relative trigger rates. The obtained value is Fnorm = 2.428 ± 0.024. 
The quoted uncertainty is systematic, the statistical one is found to 
be negligible. The systematic uncertainty is obtained by comparing 
the results obtained from the two methods.

The correction factors for A × ε are estimated in the same way 
as in [24], using simulated muons from heavy-flavour hadron de-
cays generated with pT and y distributions based on a fixed order 
with next-to-leading-log resummation model (FONLL) [45] and a 
realistic description of the detector conditions. The effect of the 
detector occupancy on the muon tracking efficiency as a function 
of centrality in Pb–Pb collisions was studied in [24] by embed-
ding simulated muons from heavy-flavour hadron decays in real 
MB-triggered events. This analysis uses the centrality-dependent 
efficiency scaling factors obtained from simulation in [24] for Pb–
Pb centrality intervals with similar charged-particle multiplicity 
density at forward rapidity (〈dNch/dη〉2.5<y<4) [46,47] as the con-
sidered Xe–Xe centrality intervals. This results in a ∼3% decrease 
of the efficiency in the 10% most central Xe–Xe collisions compared 
to the most peripheral collisions (60–80% centrality interval), inde-
pendent of pT. The obtained values of A ×ε vary between 84% and 
87%, depending on the selected centrality class, with no significant 
pT dependence in the interval of interest.

The determination of the contribution of muons from primary 
charged-pion and charged-kaon decays relies on a data-driven sim-
ulation of the different contributions, as described later. Since the 
charged-pion and charged-kaon spectra are not available, the fol-
lowing strategy is developed. The procedure is based on the π±
and K± spectra measured with ALICE at midrapidity up to pT = 20
GeV/c in Pb–Pb collisions at 

√
sNN = 5.02 TeV for various central-

ity intervals [48], which are scaled by the measured ratio of the 
charged-particle pT distribution in Xe–Xe collisions to that in Pb–
Pb collisions [34,49]. The obtained spectra in Xe–Xe collisions at √

sNN = 5.44 TeV are used as input for the background estimation. 
The extrapolation to the forward rapidity region assumes that the 
RAA of charged pions and charged kaons is independent of rapidity 
up to large y, y > 4 [24]. This leads to
[

d2Nπ±(K ±)

dpTdy

]
AA

= 〈Ncoll〉 · [Rπ±(K ±)
AA ]mid−y · [F π±(K±)

extrap (pT, y)]pp

·
[

d2Nπ±(K ±)

dpTdy

]mid−y

pp
. (3)

Finally, replacing the midrapidity nuclear modification factor 
[Rπ±(K ±)

AA ]mid−y by its expression, Eq. (3) simplifies as

[
d2Nπ±(K ±)

dpTdy

]
AA

= [F π±(K±)
extrap (pT, y)]pp ·

[
d2Nπ±(K ±)

dpTdy

]mid−y

AA
. (4)

In these equations, 
[

d2 Nπ±(K±)

dpTdy

]mid−y

AA
and 

[
d2 Nπ±(K±)

dpTdy

]
AA

are 

the midrapidity spectra in Xe–Xe collisions and the y-extrapolated 
ones, respectively. The pT-dependent rapidity factor

[F π±(K±)
extrap (pT, y)]pp, used to extrapolate the midrapidity π± and 
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K± spectra in pp collisions to the forward rapidity region, is esti-
mated by means of pp simulations at 

√
s = 5.44 TeV using PYTHIA 

8.2 [50].1 The procedure employed to perform the rapidity ex-
trapolation and to account for its pT dependence is described 
in [24,44]. The systematic uncertainty due to the assumption that 
the RAA remains unchanged from midrapidity up to y = 4 will 
be presented in section 3.3. Finally, the pT and y distributions of 
decay muons are generated via a fast detector simulation of the 
decay kinematics and absorber effects, using the y-extrapolated 
charged-pion and charged-kaon distributions. For each centrality 
class, the yields are normalized to the equivalent number of MB 
events and subtracted from the inclusive muon distribution. The 
estimated fraction of muons from charged-pion and charged-kaon 
decays depends on pT and collision centrality. It decreases from 
about 14% at pT = 3 GeV/c down to 5% at pT = 8 GeV/c in the 
0–10% centrality class, while in the 40–60% centrality class it de-
creases from about 20% to 8% for pT increasing from 3 GeV/c to 
7 GeV/c.

The contribution of muons from secondary light-hadron decays 
is estimated by means of HIJING v1.383 simulations [51] with the 
GEANT3 transport code [52]. These simulations indicate that the 
fraction of muons from secondary π± and K± decays with respect 
to muons from primary π± and K± decays amounts to about 9%, 
independently of pT in the kinematic region of interest, and of the 
centrality selection. The fraction of muons from secondary π± and 
K± decays is obtained from the estimated contribution of muons 
from primary π± and K± decays. The resulting fraction of muons 
from secondary π± and K± decays with respect to inclusive muons 
decreases from about 1.3% at pT = 3 GeV/c to about 0.4% at pT = 8
GeV/c in the 0–10% centrality class.

Differential measurements of the J/ψ production at forward ra-
pidity are not available in Xe–Xe collisions [35]. The estimation of 
the background component of muons from J/ψ decays relies on 
the measurements in Pb–Pb collisions [24] in centrality intervals 
with a comparable average charged-particle multiplicity as in Xe–
Xe collisions. This is achieved by extrapolating the J/ψ pT- and 
y-differential spectra measured by ALICE in the dimuon channel 
at forward rapidity (2.5 < y < 4) and pT < 12 GeV/c [53,54] to 
a larger kinematic range. A power-law function is used for the 
pT-dependence and a Gaussian function for the rapidity depen-
dence. Then, the decay muon distributions are estimated with a 
fast detector simulation. The fraction of muons from J/ψ decays 
in the Pb–Pb collision centrality class corresponding to an average 
charged-particle multiplicity similar to that in central (0–10%) Xe–
Xe collisions, for 2.5 < y < 4, lies in the interval 1–4%, depending 
on pT. The maximum of the distribution of muons from J/ψ decays 
is located at intermediate pT (4 < pT < 6 GeV/c).

After the subtraction of the background sources, the corrected 
and normalized yields of muons from heavy-flavour hadron decays 
in each pT interval are further divided by the width of the pT in-
terval and the rapidity coverage.

3.2. Electrons from heavy-flavour hadron decays

Candidate electron tracks are required to fulfil basic selection 
criteria similar to those reported in [23]. The rapidity interval used 
in the analysis is restricted to |y| < 0.8 to exclude the edges of 
the detector acceptance, where the systematic uncertainties related 
to particle identification increase. Only tracks that have hits on 
both SPD layers are accepted, in order to reduce the contamina-
tion of electrons from photon conversions in the detector material. 

1 It was checked that simulations with PYTHIA 6.4 and PHOJET, which were also 
performed for the rapidity extrapolation [44], give compatible results within uncer-
tainties.

The electron identification is mainly based on the measurement of 
the specific ionisation energy loss in the TPC (dE/dx), similarly to 
the procedure followed in [55,56]. The selection variable is defined 
as the standard deviation of dE/dx from the parameterised Bethe-
Bloch [57,58] expectation value for electrons, expressed in units of 
the dE/dx resolution, nTPC

σ ,e [37]. In addition, the TOF and the ITS 
detectors are used to separate electrons from kaons and protons, 
imposing the criteria |nTOF

σ ,e | < 3 and −4 < nITS
σ ,e < 2 reduce the 

hadron contamination. The nTOF
σ ,e and nITS

σ ,e are defined as the devia-
tion of the time-of-flight in the TOF and the dE/dx in the ITS from 
the expected values for electrons normalised to the respective de-
tector resolutions. The inclusive electron sample is finally extracted 
with the requirement −1 < nTPC

σ ,e < 3, which corresponds to a 84% 
efficiency. The residual hadron contamination is estimated fitting 
the full nTPC

σ ,e distribution of the selected tracks with an analytic 
function including contributions for each particle species in differ-
ent momentum intervals [59]. The residual hadron contamination 
reaches a maximum value of 20% (15%) for momentum equal to 6 
GeV/c in the 0–20% (20–40%) centrality class.

The selected inclusive electron sample does not only contain 
electrons from open heavy-flavour hadron decays, but also from 
different sources of background. The dominant background sources 
are electrons from Dalitz decays of light neutral mesons, mainly 
π0 and η, and from photon conversions, which largely dominate 
the inclusive electron yield for pT < 1.5 GeV/c. The ratio of the 
signal to the background electron contributions, measured in Xe–
Xe collisions at 

√
sNN = 5.44 TeV, is about 0.2 at pT = 0.5 GeV/c

and is observed to increase with pT, reaching a value of about 
4 at pT > 3 GeV/c. Other sources of background, like the di-
electron decays of light vector mesons (ρ0, ω, φ), electrons from 
W and Z/γ ∗ decays, di-electron decays of quarkonia and electrons 
from weak decays of kaons, are observed to be negligible in the 
pT interval of interest for this analysis [60]. The contribution of 
electrons from Dalitz decays of π0 and η and from photon con-
versions is estimated via an invariant mass analysis of unlike-sign 
pairs formed by pairing selected electron (positron) tracks with 
opposite-charge tracks identified as positrons (electrons). The latter 
are called associated electrons in the following. The combinatorial 
background is subtracted using the like-sign invariant mass dis-
tribution. In order to maximise the probability to find the electron 
(positron) partner, the associated electrons are selected with looser 
criteria with respect to the ones applied for the inclusive electron 
selection [55,56]. Due to the detector acceptance and inefficien-
cies and the decay kinematics, not all Dalitz and conversion elec-
trons in the inclusive electron sample are tagged with this method. 
Therefore, the raw yield of tagged electrons from the background 
sources is corrected for the efficiency to find the associated elec-
tron (positron), called tagging efficiency. The generated π0 pT dis-
tributions are weighted in order to match the measured pT spectra. 
The weights are defined as the product of the ratio of charged 
particles in Xe–Xe and Pb–Pb collisions and the charged-pion spec-
tra measured in Pb–Pb collisions [34,48,49]. For the η meson, the 
weights are determined via the mT-scaling [61,62] of the computed 
pion-pT spectra. The electron tagging efficiency increases with the 
electron pT, starting from a value of about 40% at pT = 0.2 GeV/c
and reaching a value of about 80% at pT = 6 GeV/c. It was observed 
in a previous analysis [23,55] that the contribution from J/ψ decays 
reaches a maximum of about 4% in the region 2 < pT < 3 GeV/c in 
central Pb–Pb collisions, decreasing to a few percent in more pe-
ripheral events. At lower and higher pT, this contribution decreases 
quickly and becomes negligible. Hence, the contribution from J/ψ
decays is not subtracted in the present analysis and its contribu-
tion is accounted in the systematic uncertainties, as it was done 
for a previous measurement [23]. Due to the significantly different 
level of suppression between heavy-flavour particles and kaons at 
low pT [23,63], and due to the tight tracking requirements applied 
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in the analysis, which suppress long-lived particle decays, the con-

tribution from the weak decay K0/± → e±π∓/0 (−)

νe is expected to 
be negligible in this system, hence it is not subtracted.

After the statistical subtraction of the hadron contamination 
and background of electrons from Dalitz decays and from photon 
conversions, the obtained yields of electrons from heavy-flavour 
hadron decays in each pT interval are divided by i) the geomet-
rical acceptance times the reconstruction and PID efficiencies, ii) 
the number of analysed events and iii) the width of the pT inter-
val and of the covered y interval in order to obtain the corrected 
and normalised differential yields of electrons from heavy-flavour 
hadron decays.

The efficiencies are computed using a Monte Carlo sample 
where the underlying Xe–Xe events are simulated using the HI-
JING v1.383 generator [51] and the heavy-flavour signal, obtained 
using the PYTHIA6 generator [64], is embedded. The efficiency of 
the TPC electron identification selection criterion is determined us-
ing a data-driven approach based on the nTPC

σ ,e distribution [26,65]. 
The total reconstruction efficiencies increase with pT, starting from 
a value of about 10% at pT = 0.2 GeV/c and reaching a value of 
about 25% at pT = 6 GeV/c.

3.3. Systematic uncertainties

In the muon analysis, the systematic uncertainties on the yield 
of muons from heavy-flavour hadron decays include contributions 
from the inclusive muon yield, the background contamination and 
the normalisation of muon-triggered events to the equivalent num-
ber of minimum bias events. The systematic uncertainty related to 
the inclusive muon yield is extensively discussed in [24,44]. It is 
evaluated considering the following contributions: i) muon track-
ing efficiency (1%), ii) muon trigger efficiency (2.2%), including the 
intrinsic efficiency of the muon trigger chambers and the response 
of the trigger algorithm, iii) choice of the χ2 cut implemented in 
the matching between tracks reconstructed in the tracking cham-
bers and trigger chambers (0.5%) and iv) resolution and alignment 
of the tracking chambers (0.5% for 7 < pT < 8 GeV/c and negligi-
ble for pT < 7 GeV/c). Finally, the systematic uncertainty arising 
from the procedure used to take into account the dependence of 
the muon tracking efficiency on the collision centrality, related to 
the detector occupancy, reaches 0.5% in the 10% most central col-
lisions.

A first contribution to the systematic uncertainty on the es-
timated contribution of muons from charged-pion (kaon) decays 
varying from about 5% (9.5%) at pT = 3 GeV/c to 6% (13%) at pT = 8
GeV/c in the 0–10% centrality class comes from i) the measured 
midrapidity pT distributions of charged pions (kaons) in Pb–Pb 
collisions and ii) the ratio of the charged-particle spectrum mea-
sured at midrapidity in Xe–Xe collisions to that in Pb–Pb collisions. 
A second contribution of 9% (6%) for muons from charged-pion 
(kaon) decays is due to the rapidity extrapolation of the midrapid-
ity pion and kaon distributions in pp collisions, needed to estimate 
the charged-pion (kaon) distributions in Xe–Xe collisions at for-
ward rapidity. The pT dependence of the rapidity extrapolation 
introduces a maximum uncertainty of 3% (1.5%) at pT = 8 GeV/c
for muons from charged-pion (kaon) decays. These two systematic 
uncertainties are obtained by comparing the results from PYTHIA 8 
with various colour reconnection options [44,66]. A third contribu-
tion is attributed to the simulation of hadronic interactions in the 
front absorber and amounts to 4%, independently of the mother 
particle. The total systematic uncertainty is obtained by adding in 
quadrature the contributions listed above, which gives a system-
atic uncertainty going from 10.5% (12%) at pT = 3 GeV/c to 13% 
(16%) at pT = 8 GeV/c for charged-pion (kaon) decay muons. Fi-
nally, the systematic uncertainty due to the assumption that the 
suppression pattern of π± and K± is independent of rapidity up to 

y = 4 is estimated by changing the corresponding yields by ±50%. 
The assigned uncertainty is the difference between the yields of 
muons from heavy-flavour hadron decays obtained in the two ex-
treme cases, divided by 

√
12, which corresponds to the RMS of 

a uniform distribution. Moreover, in order to take into account 
possible effects of the transport code, the yields of muons from 
secondary charged-pion (kaon) decays are varied by ±100% and 
the difference between the yields of muons from heavy-flavour 
decays obtained in the two extreme cases, divided by 

√
12, is as-

signed as uncertainty.
The systematic uncertainty of the background due to muons 

from J/ψ decays is estimated considering the measured spectra at 
forward rapidity in Pb–Pb collisions at 

√
sNN = 5.02 TeV and their 

extrapolation to a larger pT and rapidity range. It varies within 4 
and 8%, depending on pT, in central collisions.

The systematic uncertainty of the normalisation factor, Fnorm, 
of 1% is obtained by comparing the results obtained either using 
the relative trigger rates or applying the muon trigger condition in 
the analysis of MB events [35], see also section 3.1.

The various systematic uncertainties are propagated to the 
measurement of muons from heavy-flavour hadron decays and 
added in quadrature.2 The resulting systematic uncertainty de-
creases with increasing pT from about 5.5% (pT = 3 GeV/c) to 3% 
(pT = 8 GeV/c) in the 0–10% centrality class and it varies within 
the range 4–6% in peripheral collisions (40–60% centrality inter-
val).

In the electron analysis the systematic uncertainties are eval-
uated considering the following contributions: i) subtraction of 
electrons originating from Dalitz decays and photon conversions, 
including variation of the number of hits for electron candidates 
in the SPD, ii) matching efficiency of tracks reconstructed in the 
ITS and TPC, iii) matching of reconstructed tracks between the 
TOF and TPC, iv) track-reconstruction and identification procedure, 
v) space-charge distortions in the TPC drift volume, vi) residual 
hadron contamination, and vii) electron contribution from J/ψ de-
cays.

The main source of systematic uncertainty for pT < 2 GeV/c, 
where the signal to background ratio is of the order of a few per-
cent, is related to the subtraction of electrons originating from 
Dalitz decays and photon conversions. This contribution is esti-
mated as the RMS of the distribution of yields obtained by varying 
the selection criteria related to the associated particle. This sys-
tematic uncertainty has a maximum of about 25% in the inter-
val 0.2 < pT < 0.3 GeV/c (0.3 < pT < 0.5 GeV/c) in the 20–40% 
(0–20%) centrality class and it decreases to 3% at high pT. In order 
to further test the robustness of the background electron tagging, 
the requirement on the number of hits for electron candidates in 
the SPD is relaxed to increase the fraction of electrons from photon 
conversions in the detector material. A variation of 5%, assigned as 
systematic uncertainty, is observed for the measured production 
yield up to pT = 2 GeV/c for both centrality intervals, when one 
SPD hit is required for each track. For pT > 3 GeV/c, the uncertain-
ties originating from the incomplete knowledge of the matching 
efficiency of tracks reconstructed in the ITS and TPC and between 
the TOF and TPC detectors amount to 4% and 2%, respectively. The 
systematic uncertainty introduced by the track-reconstruction pro-
cedure is estimated by varying the tracking parameters, like the 
number of TPC space-points belonging to a track, and it amounts 
to 4%. The systematic uncertainty introduced by the particle iden-
tification is also evaluated varying the electron selection criteria 
and is found to be negligible. The effects due to the presence of 
non-uniformities in the correction for the space-charge distortion 
in the TPC drift volume or irregularities in the detector coverage 

2 The systematic uncertainty on Fnorm is shown separately.
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are evaluated by repeating the analysis in different pseudorapidity 
regions. This gives a maximum systematic uncertainty of 10% in 
the interval 0.2 < pT < 0.3 GeV/c. This contribution decreases 
to 4% at pT = 0.4 GeV/c and it is negligible for pT > 2 GeV/c. The 
systematic uncertainty from the hadron contamination subtraction 
is estimated using different functional forms to fit the nTPC

σ distri-
bution and amounts to 6% for the most central collisions and to 3% 
in the 20–40% centrality interval, as in a previous publication [23]. 
Due to the non-subtraction of electrons from the J/ψ decays, an 
uncertainty of 2% is assigned for pT < 3 GeV/c. This contribution 
increases to 4% for pT > 3 GeV/c due to the growing contribu-
tion from J/ψ decays observed in previous publications [23,55]. 
The overall systematic uncertainty of the pT-differential production 
yield is calculated summing in quadrature the different contribu-
tions.

4. Derivation of production cross section of muons and electrons 
from heavy-flavour hadron decays in pp collisions at 

√
s = 5.44 

TeV

In order to calculate the nuclear modification factor of muons 
and electrons from heavy-flavour hadron decays, a reference pro-
duction cross section for pp collisions at the same centre-of-mass 
energy as Xe–Xe collisions is needed for both analyses. Since pp 
data at 

√
s = 5.44 TeV are currently not available, the pp refer-

ence is obtained by applying a pQCD-driven 
√

s-scaling [67] to the 
measured pp production cross section at 

√
s = 5.02 TeV [23,44]. 

The pT-dependent scaling factors are obtained by calculating the 
ratio of the production cross sections of electrons and muons 
from heavy-flavour hadron decays from FONLL calculations [45] at √

s = 5.5 TeV3 to those at 
√

s = 5.02 TeV. The systematic uncer-
tainty of the pp reference has two sources: the measured pp ref-
erence at 

√
s = 5.02 TeV and the pT-dependent scaling factor from √

s = 5.02 TeV to 
√

s = 5.5 TeV. The former varies between about 
3.4% (pT = 8 GeV/c) to 4.2% (pT = 3 GeV/c) for the muon case [44], 
while for the electron case it varies between 10% (pT = 0.5 GeV/c) 
and 5% (pT = 6 GeV/c) [23]. The latter is in the range 1–1.5% 
and includes the uncertainties on the parton distribution functions, 
quark masses, and factorisation and renormalisation scales, as de-
scribed in [67]. The two contributions are added in quadrature. 
In addition, the global normalisation uncertainty of 2.1% evaluated 
from the pp analysis at 

√
s = 5.02 TeV is applied [44,68,69].

For the electron analysis, the pp production cross section is 
also extrapolated in pT since the pp production cross section at √

s = 5.02 TeV was only measured for pT > 0.5 GeV/c [23], while 
in Xe–Xe collisions the electrons from heavy-flavour hadron decays 
are measured for pT > 0.2 GeV/c. The production cross section 
obtained from FONLL calculations at 

√
s = 5.5 TeV is used as the 

pp reference for pT < 0.5 GeV/c. Since the central values of the 
FONLL calculations underestimate the measurements of electrons 
from heavy-flavour hadron decays [55,60,70], the FONLL produc-
tion cross section is multiplied by a scaling factor, determined 
by fitting the data to theory ratio at 

√
s = 5.02 TeV with a sec-

ond order polynomial function in the full pT range available for 
the measurement [23]. The systematic uncertainties for pT < 0.5 
GeV/c are evaluated under the assumption that the systematic un-
certainties of the measurement are fully correlated over pT, i.e. 
by repeating the calculation of the scaling factor after shifting 
all data points consistently within their systematic uncertainties. 
The resulting systematic uncertainty is 7%. An additional system-
atic uncertainty contribution of 20% is assigned to account for the 
difference between the results from a first-order, third-order and 

3 FONLL calculations are available at √s = 5.5 TeV only. The difference with re-
spect to √s = 5.44 TeV is neglected.

fourth-order polynomial fit to the data-to-theory ratio and those 
from the second-order polynomial fit used for the central value. 
Those two contributions are summed in quadrature to obtain the 
total systematic uncertainties.

5. Results

The pT-differential production yields of muons and electrons 
from heavy-flavour hadron decays at forward and midrapidity in 
Xe–Xe collisions at 

√
sNN = 5.44 TeV are shown in the left and 

right panel of Fig. 1. The pT-differential production yields are 
derived from the corrected and normalised differential yields of 
muons and electrons from heavy-flavour hadron decays, discussed 
in section 3, which are further divided by a factor two introduced 
to obtain the charge-averaged differential yields.

The muons from heavy-flavour hadron decays are measured in 
the centrality intervals 0–10%, 10–20%, 20–40% and 40-60% for the 
interval 3 < pT < 7–8 GeV/c, while the electrons from heavy-
flavour hadron decays are measured at midrapidity in the interval 
0.2–0.3 < pT < 6 GeV/c in the 0–20% and 20–40% centrality inter-
vals. The vertical bars denote the statistical uncertainties and the 
systematic uncertainties are shown as empty boxes, except for the 
one on the normalisation factor, Fnorm, needed to determine the 
corresponding number of MB events in the muon-triggered sam-
ple (1%) which is reported separately in the legend (left panel).

Fig. 2 displays the RAA of muons from heavy-flavour hadron 
decays as a function of pT in Xe–Xe collisions at 

√
sNN = 5.44 TeV 

for the centrality intervals 0–10%, 10–20%, 20–40% and 40–60%. 
The RAA of electrons from heavy-flavour hadron decays as a func-
tion of pT in Xe–Xe collisions at 

√
sNN = 5.44 TeV for the 0–20% 

(left panel) and 20–40% (right panel) centrality intervals is shown 
in Fig. 3. For both figures, statistical (vertical bars) and systematic 
(empty boxes) uncertainties of the pT-differential yields in Xe–Xe 
collisions and of the pT-differential production cross section in pp 
collisions are propagated as uncorrelated uncertainties. The sys-
tematic uncertainty on the normalisation is indicated as a full box 
at RAA = 1. The latter is the quadratic sum of the systematic un-
certainty of i) the average nuclear overlap function (Table 1, [16]), 
ii) the normalisation uncertainty of the pp reference and iii) the 
normalisation factor of muon-triggered events to the equivalent 
number of MB events (for the muon analysis only).

It is important to stress that the results at forward and cen-
tral rapidity complement each other. In particular, the suppression 
pattern is similar for both rapidity regions, indicating that heavy 
quarks strongly interact with the medium created in heavy-ion col-
lisions over a wide rapidity interval.

In the most central events, the RAA reaches its minimum of 
about 0.4 for pT > 4 GeV/c, while moving to more peripheral 
Xe–Xe collisions the RAA gets closer to unity. In order to better 
understand the origin of the observed suppression, it is interest-
ing to note that measurements in minimum bias p-Pb collisions 
at 

√
sNN = 5.02 TeV, where the formation of an extended QGP 

phase is not expected, show a nuclear modification factor com-
patible with unity at high pT [26,75]. The comparison between the 
two systems confirms that the high-pT suppression of electrons 
and muons from heavy-flavour hadron decays is due to final-state 
effects, such as partonic energy loss in the medium, similar to the 
observation in Pb–Pb collisions [23]. The centrality dependence of 
the RAA is compatible with the hypothesis that in-medium parton 
energy loss depends on the medium density. The latter increases 
towards most central collisions and thus the amount of energy lost 
by the parton traversing the medium increases.

For pT < 3 GeV/c, the RAA of electrons from heavy-flavour 
hadron decays is observed to increase with decreasing pT. Such 
an increase is expected as it compensates for the suppression at 
higher pT, assuming the scaling of the total yield with the number 
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Fig. 1. The pT-differential production yields of muons (left panel) and electrons (right panel) from heavy-flavour hadron decays at forward and midrapidity, respectively, in 
Xe–Xe collisions at √sNN = 5.44 TeV for various centrality intervals. Statistical uncertainties (vertical bars) and systematic uncertainties (open boxes) are shown.

Fig. 2. Nuclear modification factor RAA of muons from heavy-flavour hadron decays at forward rapidity as a function of pT in Xe–Xe collisions at √sNN = 5.44 TeV for various 
centrality intervals mentioned in the figure. Statistical uncertainties (vertical bars) and systematic uncertainties (open boxes) are shown. The filled boxes at RAA = 1 represent 
the normalisation uncertainty. Comparisons with the PHSD [71] and MC@sHQ+EPOS2 [72] models are presented.

of binary nucleon-nucleon collisions in heavy-ion collisions [11,23]. 
However, the scaling can be broken due to the nuclear modifica-
tion of the parton distribution functions in Xe nuclei [28], leading 
to RAA values lower than unity also at low pT. Transport model 
calculations, in order to better describe the low pT measurements, 
have to include shadowing effects, which reduce the RAA by about 
30–40% in the interval pT < 5 GeV/c [55,76]. In addition, further 
modifications of the pT distribution due to the radial flow can also 
play a role in this region [77].

The RAA of muons and electrons from heavy-flavour hadron de-
cays is compared with predictions from the PHSD and MC@sHQ+
EPOS2 calculations [71,72]. The PHSD model considers the nu-
clear modification of the parton distribution functions and includes 
only collisional energy loss processes, while the MC@sHQ+EPOS2 
model includes also energy loss from medium-induced gluon ra-
diation. The MC@sHQ+EPOS2 calculations do not implement the 
nuclear modification of PDF for b quarks. Moreover, a contribu-
tion of hadronisation via recombination is considered in addition 
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Fig. 3. Nuclear modification factor of electrons from semileptonic heavy-flavour hadron decays as a function of pT in Xe–Xe collisions at √sNN = 5.44 TeV for the 0–20% (left 
panel) and 20–40% (right panel) centrality intervals. Statistical uncertainties (vertical bars) and systematic uncertainties (open boxes) are shown. The filled boxes at RAA = 1 
represent the normalisation uncertainty. Comparisons with the PHSD [71], MC@sHQ+EPOS2 [72] and Djordjevic [73,74] models are displayed.

Fig. 4. Comparison of the pT-differential nuclear modification factor of muons from heavy-flavour hadron decays at forward rapidity in Xe–Xe collisions at √sNN = 5.44 
TeV (centrality class 0–10%) and Pb–Pb collisions at √sNN = 5.02 TeV for the 0–10% (left) and 10–20% (right) centrality classes. Statistical uncertainties (vertical bars) and 
systematic uncertainties (open boxes) are shown. The filled boxes at RAA = 1 represent the normalisation uncertainty. Comparisons with PHSD [71] and MC@sHQ+EPOS2 [72]
model predictions are also displayed.

to the fragmentation mechanism. The MC@sHQ+EPOS2 calculations 
are displayed with their theoretical uncertainty band evaluated 
considering pure elastic and elastic+radiative energy loss together 
with the uncertainty on shadowing. The MC@sHQ+EPOS2 model 
provides a fair description of the RAA of muons and electrons from 
heavy-flavour hadron decays within the experimental uncertain-
ties in the full measured pT interval in all centrality intervals. The 
PHSD model is consistent with the data at central rapidity, while 
at forward rapidity the model has difficulties to reproduce the cen-
trality dependence of the measured RAA and tends to overestimate 
the measured RAA in central collisions (0–10% and 10–20% cen-
trality classes). The Djordjevic model [73,74], which implements 
energy loss for gluons, light and heavy quarks, including both ra-
diative and collisional processes and considering dynamical scat-
tering centres in the medium, provides a good description of the 
RAA of electrons from heavy-flavour hadron decays within uncer-
tainties in both centrality intervals for pT > 4 GeV/c.

In a simple approach, the average energy loss depends on the 
density of scattering centres, which is proportional to the energy 
density, and on the path length of partons in the medium [78]. The 
energy density can be estimated from the average charged-particle 
multiplicity density per transverse area [47,79]. The path-length 
dependence of the energy loss is predicted to be linear for elastic 
(collisional) processes and quadratic for inelastic (radiative) pro-
cesses [80]. Consequently, the study of the system-size dependence 
of the production of leptons from heavy-flavour hadron decays is 
an important tool to investigate the path-length dependence of the 
in-medium parton energy loss in a hot and dense medium and to 
distinguish between different energy loss mechanisms [30].

The nuclear modification factor of muons from heavy-flavour 
hadron decays in the 10% most central Xe–Xe collisions at 

√
sNN =

5.44 TeV is compared in Fig. 4 with that measured in Pb–Pb col-
lisions at 

√
sNN = 5.02 TeV for the 0–10% and 10–20% centrality 

classes [24,81] in the left and right panel, respectively. Compar-
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isons with the PHSD and MC@sHQ+EPOS2 transport models [71,72]
are also shown. In both collision systems, the pT-differential RAA
of muons from heavy-flavour hadron decays in central Xe–Xe col-
lisions at 

√
sNN = 5.44 TeV shows a similar evolution as a function 

of pT when compared to the measured RAA in Pb–Pb collisions 
at 

√
sNN = 5.02 TeV for the same centrality class [24]. However, a 

systematic difference between the two sets of RAA results is vis-
ible, which tends to indicate that the suppression is stronger in 
Pb–Pb collisions for the same centrality class. The pT-integrated 
RAA values, in the range 3-8 GeV/c, differ by about 2.5 standard 
deviations. Such a behaviour may result from the difference in the 
system size. Both the MC@sHQ+EPOS2 and PHSD models predict a 
slightly larger suppression in Pb–Pb than in Xe–Xe collisions, as 
observed in the data. The MC@sHQ+EPOS2 model describes the 
suppression seen in the data for both central (0–10%) Pb–Pb and 
Xe–Xe collisions. The PHSD calculations underestimate the mea-
sured suppression over the entire pT interval in these two collision 
systems.

When the RAA measured in Xe–Xe and Pb–Pb collisions are 
compared for classes of events associated with a similar aver-
age charged-particle multiplicity density [46,47], such as 0–10% 
for Xe–Xe collisions and 10–20% for Pb–Pb collisions [24,81], as 
in the right panel of Fig. 4, a remarkable agreement between the 
two collision systems is found. A similar effect was reported for 
high-pT charged particles measured at midrapidity by the ALICE 
collaboration [34]. These similarities between the RAA of muons 
from heavy-flavour hadron decays in Xe–Xe and Pb–Pb collisions 
at comparable average charged-particle multiplicity density are in 
agreement with results from the study of the fractional momen-
tum loss of high-pT partons at the RHIC and LHC [82]. While the 
MC@sHQ+EPOS2 calculations show a close similarity of the sup-
pression pattern for Pb–Pb and Xe–Xe collisions over the whole 
pT interval, the PHSD model, with only collisional energy loss pro-
cesses implemented, predicts here a larger suppression in Xe–Xe 
collisions compared to Pb–Pb collisions, in particular at high pT. 
The MC@sHQ+EPOS2 calculations are in fair agreement with the 
measured RAA over the whole pT interval, both for Xe–Xe and 
Pb–Pb collisions. As already reported, the PHSD model tends to 
overestimate the measured RAA in central (0–10% centrality class) 
Xe–Xe collisions. In central (10–20% centrality class) Pb–Pb colli-
sions, the PHSD calculations also systematically underestimate the 
measured suppression over the whole pT interval. Therefore, the 
study of the production of muons from heavy-flavour hadron de-
cays at forward rapidity provides new constraints for the treatment 
of the path-length dependence of the different parton energy loss 
mechanisms in transport model calculations.

6. Summary and conclusions

In summary, the first measurements of the nuclear modifica-
tion factor RAA of muons and electrons from heavy-flavour hadron 
decays in Xe–Xe collisions at 

√
sNN = 5.44 TeV, performed with 

the ALICE detector at the LHC, are presented. A strong suppression, 
reaching a factor of about 2.5 in central collisions, is observed at 
both central and forward rapidity. The study of Xe–Xe collisions 
provides an opportunity to further test the evolution of the in-
medium parton energy loss with the system size. The RAA results 
in central Xe–Xe collisions show a smaller suppression than in Pb–
Pb collisions when the measurements are performed in the same 
centrality class. In contrast, the measured RAA in central Xe–Xe 
collisions at forward rapidity is in agreement with that in Pb–
Pb collisions, when these are compared for classes of events with 
similar charged-particle multiplicity density. The comparison of the 
RAA in the two collision systems as well as the RAA measurements 
in Xe–Xe collisions at central and forward rapidity for different 

centrality classes can shed more light on the path-length depen-
dence of the in-medium parton energy loss.
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