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ABSTRACT OF THE DISSERTATION

Stationary-Action Stochastic Control Representation of the Schrödinger Initial Value Problem

by

Ruobing Zhao

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2019

Professor William M. McEneaney, Chair
Professor Ruth J. Williams, Co-Chair

Hamilton-Jacobi partial differential equations (HJ PDEs) arise in many scientific fields

and applications, especially in mechanics and optimal control. Solutions to second order

Hamilton-Jacobi partial differential equations (HJ PDEs) have controlled diffusion process

representations. Of particular interest is the diffusion representation of an action functional

associated with the solution of Schrödinger initial value problems (IVPs). In existing work that

connects stochastic control problems to Schrödinger IVPs, one searches for the minimum of

an action functional which is the payoff of the control problem. Issues arise, however, as the

action functional loses convexity over longer time durations. The time duration where such

xi



representation is valid is in fact infinitesimal when the system dimension is infinite. In this

dissertation, we present an approach inspired by the Principle of Stationary Action in physics that

removes this limitation, which leads to exceptional computational benefits. Instead of searching

for local minima of the action functional as in traditional optimal control problems, we look for

its stationary values instead.

We introduce the “staticization” operator and stationary-action control problems. A

stationary-action stochastic control representation for the dequantized Schrödinger IVP in a

non-inertial frame where the potential field is a polynomial is given. A solution approximation

as a series expansion in a small parameter is obtained through the use of complex-valued

diffusion-process representations.

Following this, the staticization operator is studied in detail. A new approach to solving

conservative dynamical systems (e.g. paths of objects in gravitational or Coulomb potential

field) using stationary-action control-theoretic methods with promising computational benefits

is introduced. Two examples of application, the N-body problem and the Schrödinger IVP, are

given.

Lastly, we demonstrate the existence of strong solutions of a class of degenerate stochastic

differential equations (SDEs) that arises in the stationary-action stochastic control representation

of Schrödinger IVPs with the Coulomb potential, which is non-smooth and has branch cuts in the

complex range. The SDEs we consider have drift terms that have discontinuities and singularities

along some manifolds, and diffusion coefficients that are degenerate, and there is no previously

existing results regarding the existence of strong solutions for such SDEs.

xii



Chapter 1

Introduction

Hamilton-Jacobi partial differential equations (HJ PDEs) arise in many scientific fields

and applications, especially in mechanics and optimal control. Solutions to second order

Hamilton-Jacobi partial differential equations (HJ PDEs) have controlled diffusion process

representations. Of particular interest is the diffusion representation of an action functional

associated with the solution of Schrödinger initial value problems (IVPs) of the following form:

0 = ih̄ψt(s,x)+ h̄2

2m∆xψ(s,x)−ψ(s,x)V̄ (x), (s,x) ∈ [0, t)×Rn,

ψ(0,x) = ψ0(x), x ∈ Rn.

Namely, one defines the functional S from a logarithmic transform ψ = exp{ i
h̄S}, where ψ is the

solution of the Schrödinger IVP, i is the imaginary unit, and h̄ is the Planck’s constant. In existing

work that connects stochastic control problems to Schrödinger IVPs, cf. [1, 5, 4, 12, 9, 30, 29],

the action functional S defined above is the payoff function of the control problem, where one

seeks the minimum of the action functional. Issues arise, however, as the action functional

loses convexity over longer time durations. The time duration where such representation is

valid is in fact infinitesimal when the system dimension is infinite. In this dissertation, we

present an approach inspired by the Principle of Stationary Action in physics that removes

this limitation, which leads to exceptional computational benefits. Instead of searching for

local minima of the action functional as in traditional optimal control problems, we look for

1



its stationary values instead. We introduce the stat operator in analogy to min and max, and

define argstat in analogy to argmin and argmax. Let F denote either the real or complex field.

Suppose U is a normed vector space (over F ) with A ⊆U , and suppose G : A →F . We say

ū ∈ argstatu∈A G(u) .
= argstat{G(u) |u ∈A } if ū ∈A and either

limsup
u→ū,u∈A \{ū}

|G(u)−G(ū)|
|u− ū|

= 0, (1.1)

or there exists δ > 0 such that A ∩Bδ (ū) = {ū} (where Bδ (ū) denotes the ball of radius δ around

ū). We shall refer to the search for stationary values as ”staticization”. Unlike minimization

or maximization, staticization not only applies to functions taking values in R but also to

those taking values in Banach spaces. This allows us to obtain a stochastic representation

for the Schrödinger action functional using a diffusion process with complex-valued diffusion

coefficient. Moreover, we find that the gravitational potential and the Coulomb potential,

which both take the form −V (x) = µ/|x|, where x ∈ Rn\{0} and µ is a contant, may be

written as the stationary value of a polynomial in x and a new variable α . That is, we have

−V (x) = (3
2)

3/2 statα>0[α− α3|x|2
2 ]. This leads to a new approach to studying dynamical systems

in a conservative field with promising computational benefits, where upon introducing a new

time-varying process α·, the stationary value of the action functional has an iterated stat form.

In particular, for a Newtonian particle of mass m moving in a potential field V , we can define

the action functional J(t,x,u) .
=
∫ t

0
1
2m|ur|2−V (ξr)dr, where ξr

.
= x+

∫ t
0 usds is the path of

the particle with velocity u. By the Principle of Stationary Action, the true trajectory of the

particle is one for which the action functional is stationary; in other words, one solves for the

stationary-action control problem, statu J(t,x,u). After introducing the process α·, the problem

becomes statu statα J̃(t,x,u,α), where J̃(t,x,u,α)
.
=
∫ t

0
1
2m|ur|2 +(3

2)
3/2[αr− α3

r |ξr|2
2 ]dr. If one

is able to reorder the stat operators, the inner stat functional can be obtained from solutions

of α-indexed differential Riccati equations (DREs), which can be solved much like a linear

quadratic (LQ) control problem, but again, one searches for the stationary value rather than a

2



minimum or maximum.

In Chapter 2, a particular class of Schrödinger IVPs is considered, wherein a classical

point mass rotates around a charged nucleus in the central field under electrostatic forces. The

Schrödinger IVP is converted to an HJ PDE for the action functional S. We introduce a non-

inertial frame centered at the rotating point mass and approximate the potential field in the

vicinity of the point mass as a series expansion in a small parameter, ε̂ , similar to a quantum

harmonic oscillator. A numerical method for computing the solution of the wave equation

is developed, where a solution approximation as a series expansion in ε̂ is obtained, and the

approximate solutions have Feynman-Kac type representations in terms of a complex-valued

diffusion process. The approximate solutions (as a series expansion up to a finite order) can be

computed for arbitrarily long time duration using the finite moments of the diffusion process, and

the computation is purely analytical. Under a smoothness assumption, the series of approximate

solutions converges to the exact solution. The quantum harmonic oscillator is recovered from the

approximate solutions up to quadratic terms.

In Chapter 3, we take a detour, and study the staticization operator and its properties.

In particular, we are interested in the problem of iterated staticization. As mentioned earlier,

certain HJ PDEs that arise in conservative dynamical systems problems may be solved like

stationary-action LQ control problems by introcing a time-varying process α·, and a key step in

that is to be able to reorder the stat operators. A general condition under which the stat operators

can be reordered is obtained. We also considered some specific cases including certain kinds

of semi-quadratic functionals and uniformly Morse functionals. Some possible applications of

these results in physics are given. One important application is the two-point boundary value

problem (TPBVP) associated with the N-body problem in astrodynamics. One may also employ

a similar technique to obtain fundamental solutions of the Schrödinger IVP associated with

Coulomb potential.

In Chapter 4, we discuss a class of stochastic differential equations (SDEs) with degen-

erate diffusion coefficients that arises in the stationary-action stochastic control representation

3



of Schrödinger IVPs with the Coulomb potential. Unlike the quadratic potential associated

with the quantum harmonic oscillator, the Coulomb potential poses significant difficulty. To

allow complex-valued state processes, the domain of the potential field −V (x) = µ/|x| is ex-

tended from Rn to Cn. The extended domain potential field −V (x) = µ/
√

xT x, where x ∈ Cn,

has a branch cut in the complex range, which leads to discontinuity in the drift term of the

underlying diffusion process on a manifold of codimension 1. In addition, the drift term of the

diffusion process may have singularities along a manifold of codimension 2. In existing work

on the existence of strong solutions of SDEs where the drift term may have singularities (cf.

[26, 55]), the diffusion coefficient of diffusion processs is assumed to be non-degenerate. The

underlying diffusion process of our control representation of Schrödinger IVPs, however, is a

2m-dimensional state process with 2m×m degenerate diffusion coefficient. In this chapter, we

first demonstrate the existence of weak solutions of the SDE, which is obtained through passing

to the limit of a sequence of diffusion processes with C1 drifts. After that, the existence of a

strong solution follows from pathwise uniqueness property of the process.

4



Chapter 2

Diffusion process representations for a
scalar-field Schrödinger equation solution
in rotating coordinates

2.1 Introduction

Diffusion representations have long been a useful tool in solution of second-order

Hamilton-Jacobi partial differential equations (HJ PDEs), cf. [13, 21] among many others.

The bulk of such results apply to real-valued HJ PDEs, that is, to HJ PDEs where the coeffi-

cients and solutions are real-valued. The Schrödinger equation is complex-valued, although

generally defined over a real-valued space domain, which presents difficulties for the develop-

ment of stochastic control representations. In [31, 32], a representation for the solution of a

Schrödinger-equation initial value problem over a scalar field was obtained as a stationary value

for a complex-valued diffusion process control problem. Although there is substantial existing

work on the relation of stochastic processes to the Schrödinger equation (cf. [16, 25, 45, 46, 56]),

the approach considered in [31, 32] is along a slightly different path, closer to [4, 5, 9, 12, 24, 30].

However, the representation in [31, 32] employs stationarity of the payoff [38] rather than

optimization of the payoff, where stationarity can be used to overcome the limited-duration

constraints of methods that use optimization of the payoff.

Here we discuss a particular problem class, and use diffusion representations as a tool

5



for approximate solution of the Schrödinger equation. We will consider a specific type of

weak field problem. Suppose we have a particle in a scalar field centered at the origin, but

in the special case where the particle is sufficiently far from the origin that the distribution

associated to the corresponding Schrödinger equation has negligible density near the origin.

More specifically, let the particle mass be denoted by m, and let h̄ denote Planck’s constant. The

simplest scalar-field example, which can be instructive if only purely academic, is the quadratic-

field case, generating the quantum harmonic oscillator. Of somewhat more interest is the case

where one has the potential energy generated by the field interacting with the particle taking

the form V̄ (x) =−c̄/|x|. Let the solution of the Schrödinger equation at time, t, and position,

x, be denoted by ψ(t,x), and consider the associated distribution given by P̃(t,x) .
= [ψ∗ψ](t,x).

Formally speaking, when h̄/m is sufficiently small, one expects that P̃(t, ·) can be approximated

in some sense by a Dirac-delta function centered at ξ (t), where mξ̈ (t) =−∇xV̄ (ξ (t)). We will

consider a non-inertial frame where the origin will be centered at ξ (t) for all t. In particular, we

consider a case where ξ (t) follows a circular orbit with constant angular velocity. That is, we

consider ξ (t) = δ̂
(

cos(ωt),sin(ωt)
)

where δ̂ ∈ (0,∞). (In the interests of space and reduction

of clutter, where it will not lead to confusion, we will often write (x1,x2) in place of (x1,x2)
T ,

etc.) Although such motion can be generated by a two-dimensional harmonic oscillator, we will

focus mainly on the V̄ (x) =−c̄/|x| class, in which case ω
.
= [c̄/(mδ̂ 3)]1/2. We suppose that δ̂ is

sufficiently large such that P̃(t,x)� 1 for |x|< δ̂/2, and thus that one may approximate V̄ in the

vicinity of ξ (t) by a finite number of terms in a power series expansion centered at ξ (t). We will

use a set of complex-valued diffusion representations to obtain an approximation to the resulting

Schrödinger equation solution. If the solution is holomorphic in x and a small parameter, then

the approximate solution converges as the number of terms in the set of diffusion representations

approaches infinity.

The analysis will be carried out only in the case of a holomorphic field approximation.

As our motivation is the case where δ̂ is large relative to the associated position distribution, one

expects that the case of a −c̄/|x| potential may be sufficiently well-modeled by a finite number
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of terms in a power series expansion. However, an analysis of the errors induced by such an

approximation to a −c̄/|x| potential is beyond the scope of this already long paper, and may

be addressed in a later effort; the focus here is restricted to the diffusion-representation based

method of solution approximation method given such an approximation to the potential. We

remark that in the case of a quadratic potential, we recover the quantum harmonic oscillator

solution. Also, in the case of V̄ (x) =−c̄/|x|, as δ̂ → ∞, the solution approaches that of the free

particle case. The computations required for solution up to any finite polynomial-in-space order

may be performed analytically.

In Section 2.2, we review the Schrödinger initial value problem, and the dequantized

form of the problem. The solution to the dequantized form of the problem will be approximated

through the use of diffusion representations; the solution to the originating Schrödinger initial

value problem is recovered by a simple transformation. As it is used in Section 2.2, we briefly

recall the stat operator in Section 2.3.1. In Section 2.3.2, the dequantized form will be converted

into a form over a rotating and translating reference frame centered at the position of a classical

particle following a circular trajectory generated by the central field. Then, in Section 2.3.3,

we discuss equivalent forms over a complex space domain, and over a double-dimension real-

valued domain. Classical existence, uniqueness and smoothness results will be applied to the

problem in this last form. These will then be transferred to the original form as a complex-valued

solution over a real space domain. In Section 2.4, we indicate the expansion of the solution

in a small parameter related to the inverse of the distance to the origin of the field. A power

series representation will be used, where this will be over both space and the small parameter. In

particular, we will assume that at each time, the solution will be holomorphic over space and

the small parameter. The functions in the expansion are solutions to corresponding HJ PDEs,

where these are also indicated here. The HJ PDE for the first term, say k = 0, has a closed-form

solution, and this is given in Section 2.5. Then, in Section 2.6, it is shown that for k ≥ 1, given

the solutions to the preceding terms, the HJ PDE for the kth term takes a linear parabolic form,

with a corresponding diffusion representation. It is shown that diffusion representation may be
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used to obtain the solution of the k+1 HJ PDE given the solutions to the k-and-lower HJ PDE

solutions. The required computations may be performed analytically. In Section 2.7, this method

is applied to obtain the next term in the expansion in the case of a cubic approximation of the

classic 1/r type of potential, and additional terms may be obtained similarly.

2.2 Dequantization

We recall the Schrödinger initial value problem, given as

0 = ih̄ψt(s,x)+ h̄2

2m∆xψ(s,x)−ψ(s,x)V̄ (x), (s,x) ∈D , (2.1)

ψ(0,x) = ψ0(x), x ∈ Rn, (2.2)

where initial condition ψ0 takes values in C, ∆x denotes the Laplacian with respect to the space

(second) variable, D
.
= (0, t)×Rn, and subscript t will denote the derivative with respect to

the time variable (the first argument of ψ here) regardless of the symbol being used for time

in the argument list. We also let D̄
.
= [0, t)×Rn. We consider the Maslov dequantization of

the solution of the Schrödinger equation (cf. [29]), which similar to a standard log transform,

is S : D̄ → C given by ψ(s,x) = exp{ i
h̄S(s,x)}. Note that ψt =

i
h̄ψSt , ψx =

i
h̄ψSx and ∆xψ =

i
h̄ψ∆xS− 1

h̄2 ψ|Sx|2c where for y∈Cn, |y|2c
.
=∑

n
j=1 y2

j . (We remark that notation | · |2c is not intended

to indicate a squared norm; the range is complex.) We find that (2.1)–(2.2) become

0 =−St(s,x)+ ih̄
2m∆xS(s,x)+H0(x,Sx(s,x)), (s,x) ∈D , (2.3)

S(0,x) = φ̄(x), x ∈ Rn, (2.4)

where H : Rn×Cn→ C is the Hamiltonian given by

H0(x, p) =−
[ 1

2m |p|
2
c +V̄ (x)

]
= stat

v∈Cn

{
v · p+ m

2 |v|
2
c−V̄ (x)

}
, (2.5)
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and stat is defined in Section 2.3.1. We look for solutions in the space

S
.
= {S : D̄ → C |S ∈C1,2

p (D)∩C(D̄)}, (2.6)

where C1,2
p denotes the space of functions which are continuously differentiable once in time and

twice in space, and which satisfy a polynomial-growth bound.

2.3 Preliminaries

In this section, we collect condensed discussions of relevant classical material as well as

some recently obtained results and definitions.

2.3.1 Stationarity definitions

Recall that classical systems obey the stationary action principle, where the path taken

by the system is that which is a stationary point of the action functional. For this and other

reasons, as in the definition of the Hamiltonian given in (2.5), we find it useful to develop

additional notation and nomenclature. Specifically, we will refer to the search for stationary

points more succinctly as staticization, and we make the following definitions. Suppose (Y , | · |)

is a generic normed vector space over C with G ⊆ Y , and suppose F : G → C. We say

ȳ ∈ argstat{F(y) |y ∈ G } if ȳ ∈ G and either limsupy→ȳ,y∈G \{ȳ} |F(y)−F(ȳ)|/|y− ȳ| = 0, or

there exists δ > 0 such that G ∩Bδ (ȳ) = {ȳ} (where Bδ (ȳ) denotes the ball of radius δ around

ȳ). If argstat{F(y) |y ∈ G } 6= /0, we define the possibly set-valued stats operator by

stats
y∈G

F(y) .
= stats{F(y) |y ∈ G } .

=
{

F(ȳ)
∣∣ ȳ ∈ argstat{F(y) |y ∈ G }

}
.

If argstat{F(y) |y ∈ G } = /0, statsy∈G F(y) is undefined. We will also be interested in a single-

valued stat operation. In particular, if there exists a ∈ C such that statsy∈G F(y) = {a}, then

staty∈G F(y) .
= a; otherwise, staty∈G F(y) is undefined. At times, we may abuse notation by

9



writing ȳ= argstat{F(y) |y∈G } in the event that the argstat is the set {ȳ}. For further discussion,

we refer the reader to [38]. The following is immediate from the above definitions.

Lemma 1. Suppose Y is a Hilbert space, with open set G ⊆ Y , and that F : G → C is Fréchet

differentiable at ȳ ∈ G with Riesz representation Fy(ȳ) ∈ Y Then, ȳ ∈ argstat{F(y) |y ∈ G } if

and only if Fy(ȳ) = 0.

2.3.2 The non-inertial frame

As noted in the introduction, we suppose a central scalar field such that a particular solu-

tion for the motion of a classical particle in the field takes the form ξ (t) = δ̂
(

cos(ωt),sin(ωt)
)

where δ̂ ,ω ∈ (0,∞). In particular, we concentrate on the potential V̄ (x) = −c̄/|x|, in which

case ω
.
= [c̄/(mδ̂ 3)]1/2. We consider a two-dimensional space model and a non-inertial frame

centered at ξ (t) for all t ∈ (0,∞), with the first basis axis in the positive radial direction and the

second basis vector in the direction of the velocity of the particle. Let positions in the non-inertial

frame be denoted by z ∈ R2, where the transformation between frames at time t ∈ R is given by

z =

z1

z2

= Gωtx−

 δ̂

0

 .
=

 cos(ωt) sin(ωt)

−sin(ωt) cos(ωt)


x1

x2

−
 δ̂

0

 . (2.7)

We will denote this transformation as z = z∗(x), with its inverse denoted similarly as x = x∗(z),

where x∗(z) = (Gωt)
T (z+(δ̂ ,0)T ).

For z ∈ R2, define V (z) .
= V̄ (x∗(z)) and φ(z) .

= φ̄(x∗(z)). Then, S̃ f : D̄ → C defined by

S̃ f (s,z) .
= ˆ̂S f (s,x∗(z)) is a solution of the forward-time dequantized HJ PDE problem given by

0 =−St(s,z)+ ih̄
2m∆zS(s,z)− (A0z+b0)

T Sz(s,z)− 1
2m |Sz(s,z)|2c−V (z), (s,z) ∈D , (2.8)

S(0,z) = φ(z), z ∈ R2, where A0
.
= ω

 0 1

−1 0

 and b0
.
=−ωδ̂

0

1

 , (2.9)
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if and only is ˆ̂S f is a solution of (2.3)–(2.4). (We remark that one may see [52] for further

discussion of non-inertial frames in the context of the Schrödinger equation.) In order to apply

the diffusion representations as an aid in solution, we will find it helpful to reverse the time

variable, and hence we look instead, and equivalently, at the Hamilton-Jacobi partial differential

equation (HJ PDE) problem given by

0 = St(s,z)+ ih̄
2m∆zS(s,x)− (A0z+b0)

T Sz(s,z)− 1
2m |Sz(s,z)|2c−V (z), (s,z) ∈D , (2.10)

S(t,z) = φ(z), z ∈ Rn. (2.11)

In this last form, we will fix t ∈ (0,∞), and allow s to vary in (0, t].

2.3.3 Extensions to the complex domain

Various details of extensions to the complex domain must be considered prior to the

development of the representation. This material is rather standard, but it is required for the

main development. Models (2.1)–(2.2), (2.3)–(2.4) and (2.10)–(2.11) are typically given as

HJ PDE problems over real space domains. However, as in Doss et al. [1, 4, 5], we will find

it convenient to change the domain to one where the space components lie over the complex

field. We also extend the domain of the potential to C2, i.e., V : C2→ C, and we will abuse

notation by employing the same symbol for the extended-domain functions. Throughout, for

k ∈ N, and z ∈ Ck or z ∈ Rk, we let |z| denote the Euclidean norm. Let DC
.
= (0, t)×C2 and

DC = (0, t]×C2, and define

SC
.
={S : DC→ C|S is continuous on DC, continuously differentiable in time on

DC, and holomorphic on C2 for all r ∈ (0, t]}, (2.12)

S p
C

.
={S ∈SC | S satisfies a polynomial growth condition in space,

uniformly on (0, t]}. (2.13)
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The extended-domain form of problem (2.10)–(2.11) is

0 = St(s,z)+ ih̄
2m∆zS(s,z)− (A0z+b0)

T Sz(s,z)− 1
2m |Sz(s,z)|2c−V (z), (s,z) ∈DC, (2.14)

S(t,z) = φ(z), z ∈ C2. (2.15)

Remark 1. We remark that a holomorphic function on C2 is uniquely defined by its values

on the real part of its domain. In particular, S̃ : D̄ → C uniquely defines its extension to a

time-indexed holomorphic function over complex space, say S̄ : DC→ C, if the latter exists.

Consequently, although (2.10)–(2.11) form an HJ PDE problem for a complex-valued solution

over real time and real space, (2.14)–(2.15) is an equivalent formulation, under the assumptions

that a holomorphic solution exists and one has uniqueness for both.

The following result by McEneaney (cf. [32]) provides a stochastic control verification

theorem for the Schrödinger IVP.

Theorem 1. The extended domain Schrödinger IVP is

0 = St(t,x)+ ih̄
2m∆S(t,x)+ stat

v∈Cn
{vT Sx(t,x)+ m

2 |v|
2
c−V (x)} (t,x) ∈ (0, t)×Cn

S(t,x) = φ(x), x ∈ Cn

Let dξt
.
= utdt +

√
h̄

2m
1+i√

2
dBt . Then S(t,x) = statuE{

∫ t
0

m
2 |ur|2c−V (ξr)dr+φ(ξt)}.

Throughout the remainder, we will assume the following.

V,φ : C2→ C are holomorphic on C2.
(A.1)

Remark 2. The assumption on V requires a remark. Recall that we are interested here in a class

of problems where δ̂ is large in the sense that the distribution associated to the solution of the

Schrödinger initial value problem has only very small probability mass outside a ball of radius

less than δ̂ . If V̄ is of the c̄/|x| form, one would use only a finite number of terms in the power

series expansion around z = 0. The focus here is on a diffusion-representation based method for
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approximate solution of the Schrödinger initial value problem given a holomorphic potential.

The errors introduced by the use of a truncated power series for a c̄/|x|-type potential for large

δ̂ are outside the scope of the discussion.

We will refer to a linear space over the complex [real] field as a complex [real] space.

Although (2.14)–(2.15) form an HJ PDE problem for a complex-valued solution over real time

and complex space, there is an equivalent formulation as a real-valued solution over real time and

a double-dimension real space. We will find such formulations to be helpful in the analysis to

follow. Further, although it is natural to work with complex-valued state processes in this problem

domain, in order to easily apply many of the existing results regarding existence, uniqueness

and moments, we will also find it handy to use a “vectorized” real-valued representation for the

complex-valued state processes. We begin from the standard mapping of the complex plane

into R2, denoted here by V00 : C→ R2, with V00(z)
.
= (x,y)T , where x = Re(z) and y = Im(z).

This immediately yields the mapping V0 : C2→ R2n given by V0(x+ iy) .
= (xT ,yT )T , where

component-wise, (x j,y j)
T = V00(x j) for all j ∈]1,n[ , where throughout, for integer a≤ b, we

define ]a,b[= {a,a+ 1, . . .b}. Also in the interests of a reduction of cumbersome notation,

we will henceforth frequently abuse notation by writing (x,y) in place of (xT ,yT )T when the

meaning is clear. Lastly, we may decompose any function in SC, say F ∈SC, as

(R̄(r,V0(z)), T̄ (r,V0(z)))T .
= V00(F(r,z)), (2.16)

where R̄, T̄ : D2
.
= (0, t]×R2n→R, and we also let D2

.
= (0, t)×R2n. For later reference, it will

be helpful to recall some standard relations between derivative components, which are induced

by the Cauchy-Riemann equations. For all (r,z) = (r,x+ iy) ∈ (0, t)×C2 and all j,k, ` ∈]1,n[ ,

and suppressing the arguments for reasons of space we have

Re[Fz j,zk ] = R̄x j,xk =−R̄y j,yk = T̄y j,xk = T̄x j,yk , (2.17)

Im[Fz j,zk ] =−R̄x j,yk =−R̄y j,xk =−T̄y j,yk = T̄x j,xk . (2.18)
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2.4 An expansion

We now reduce our problem class to the two-dimensional space case (i.e., n = 2). We

will expand the desired solutions of our problems, and use these expansions as a means for

approximation of the solution. First, we consider holomorphic V in the form of a finite or infinite

power series. In the simple example case where V̄ generates the quantum harmonic oscillator,

one may take V̄ (x) = c̄q

2 [x
2
1 + x2

2], in which case

V (z) =
c̄q

2
δ̂

2 + c̄q
δ̂ z1 +

c̄q

2
[z2

1 + z2
2].

The scalar field of most interest takes the form −V̄ (x) = c̄/|x|, yielding −V (z) = c̄/|z+(δ̂ ,0)|.

In this case, recalling that this effort focuses on the case where δ̂ is large relative to the radius of

the “non-negligible” portion of the probability distribution associated to the solution, we consider

only a truncated power series, and let V̆ K(z) denote the partial sum containing only terms up to

order K +2 < ∞ in z. We will be interested in the dependence of the potential and the resulting

solutions in the parameter ε̂
.
= 1/δ̂ . We also recall from Section 2.3.2 that ω

.
= [c̄/(mδ̂ 3)]1/2, or

c̄ = mω2δ̂ 3. We explicitly indicate the expansion up to the fourth-order term in z and the form

of higher-order terms. One finds,

−V̆ 2(z) =−
2

∑
k=0

ε̂
kV̂ k(z), (2.19)

−V̂ 0(z) = mω
2[

δ̂
2− δ̂ z1 +(z2

1− z2
2/2)

]
,

−V̂ 1(z) = mω
2[− z3

1 +3z1z2
2/2
]
, −V̂ 2(z) = mω

2[z4
1−3z2

1z2
2 +3z4

2/8
]
,

and more generally, for k > 1, −V̂ k(z) = mω2
[

∑
k+2
j=0 cV

k+2, jz
j
1zk− j

2

]
, for proper choice of coeffi-

cients cV
k, j.

Here, we find it helpful to explicitly consider the dependence of S̃ and S̄ (solutions of

(2.10)–(2.11) and (2.14)–(2.15), respectively) on ε̂ , where for convenience of exposition, we also
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allow ε̂ to take complex values. Abusing notation, we let S̃ : D̄×C→ C and S̄ : DC×C→ C,

and denote the dependence on their arguments as S̃(s,z, ε̂) and S̄(s,z, ε̂). We let D̆
.
=D×C, ¯̆D .

=

D̄×C, D̆C
.
= DC×C and ¯̆DC

.
= DC×C, where we recall that the physical-space components

are now restricted to the two-dimensional case. We also let

S̆C
.
={S : ¯̆DC→ C|S is continuous on ¯̆DC, continuously differentiable in time on

D̆C, and S(r, ·, ·) is holomorphic on C2×C for all r ∈ (0, t]}, (2.20)

S̆ p
C

.
={S ∈ S̆C | S satisfies a polynomial growth condition in space,

uniformly on (0, t]}. (2.21)

We will make the following assumption throughout the sequel.

There exists a unique solution, S̄ ∈ S̆C, to (2.14)–(2.15).
(A.2)

We also let the power series expansion for φ be arranged as

φ(z) =
∞

∑
k=0

ε̂
k
φ

k(z) .
= φ

0(z)+
∞

∑
k=1

ε̂
k

∞

∑
l=0

∞

∑
j=0

bφ

k+2,l, jz
j
1zl− j

2 , (2.22)

where φ 0(z) is quadratic in z. We consider the following terminal value problems. The zeroth-

order problem is

0 = S0
t +

ih̄
2m∆zS0−

(
A0z+b0

)T S0
z − 1

2m |S
0
z |2c−V̂ 0, (s,z) ∈DC, (2.23)

S0(t,z) = φ
0(z), z ∈ C2. (2.24)

For k ≥ 1, the kth terminal value problem is

0 = Sk
t +

ih̄
2m∆zSk−

(
A0z+b0 +

1
mS0

z
)T Sk

z − 1
2m

k−1

∑
κ=1

(
Sκ

z )
T Sk−κ

z −V̂ k, (s,z) ∈DC, (2.25)

Sk(t,z) = φ
k(z), z ∈ C2. (2.26)
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Note that for k≥ 1, given the Ŝκ for κ < k, (2.25) is a linear, parabolic, second-order PDE, while

zeroth-order case (2.23) is a nonlinear, parabolic, second-order PDE. Also note that (2.23) is

(2.25) in the case of k = 0, but as its form is different, it is worth breaking it out separately. It is

also worth noting here that if the Sk are all polynomial in z of order up to k, then the right-hand

side of (2.25) is polynomial in z of order up to k, as is the right-hand side of (2.26).

Theorem 2. Assume there exists a unique solution, Ŝ0, in S̆C to (2.23)–(2.24), and that for each

k ≥ 1, there exists a unique solution, Ŝk, in S̆C to (2.25)–(2.26). Then, S̄ = ∑
∞
k=0 ε̂kŜk.

Remark 3. It is worth noting here that if the Sk are all polynomial in z of order up to k+ 2,

then for each k, the right-hand side of (2.25) is polynomial in z of order up to k + 2, as is

the right-hand side of (2.26). That is, with the expansion in powers of ε̂ = δ̂−1, the resulting

constituent HJ PDE problems indexed by k are such that one might hope for polynomial-in-z

solutions of order k+2, and this hope will be realized further below.

Proof. Let N̄ .
= N∪{0}. By Assumption (A.2), S̄ has a unique power series expansion on ¯̆DC,

which we denote by

S̄(s,z, ε̂) =
∞

∑
k=0

ε̂
kc̃k(s,z) .

=
∞

∑
k=0

ε̂
k

∞

∑
l=0

∞

∑
j=0

˜̃ck,l, j(s)z
j
1zl− j

2 ,

where the ˜̃ck,l, j(·) : (0, t]→ C form a time-indexed set of coefficients, and obviously, the c̃k(·, ·) :

DC → C are given by c̃k(s,z) = ∑
∞
l=0 ∑

∞
j=0

˜̃ck,l, j(s)z
j
1zl− j

2 for all k ∈ N̄. For all k ∈ N̄, define

the notation c̃−k(·, ·) .
= ∑

∞
j=k+1 ε̂ j−(k+1)c̃ j(·, ·). Also define V−k .

= ε̂−(k+1)[V −∑
k
j=0 ε̂ jV̂ j] and

φ−k .
= ∑

∞
j=k+1 ε̂ j−(k+1)φ j = ε̂−(k+1)[φ −∑

k
j=0 ε̂ jφ j] for all k ∈ N̄. Recall that S̄ is the unique

solution in S̆C of (2.14)–(2.15). By (2.15),

c̃k(t,z) = φ
k(z) and c̃−k(t,z) = φ

−k(z) ∀z ∈ C2. (2.27)
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Separating the c̃0 and c̃−0 components of S̄ in (2.14) yields

0 =c̃0
t +

ih̄
2m∆zc̃0− (A0z+b0)

T c̃0
z − 1

2m |c̃
0
z |2c−V̂ 0 (2.28)

+ ε̂

{
c̃−0

t + ih̄
2m∆zc̃−0− (A0z+b0 +

1
m c̃0

z )
T c̃−0

z − ε̂

2m |c̃
−0
z |2c−V−0

}
.

Now, note that as S̄(s, ·, ·) is holomorphic for all s ∈ (0, t], we have S̄z(s, ·, ·) and ∆zS̄(s, ·, ·)

holomorphic for all s ∈ (0, t]. Further, by standard results on the composition of holomorphic

mappings, noting that g : C2 → C given by g(z) .
= |z|2c = zT z is holomorphic, we see that

|S̃z(s, ·, ·)|2c = g
(
S̃z(s, ·, ·)

)
is holomorphic for all s ∈ (0, t]. Combining these insights, we see that

with S = S̄ all terms on the right-hand side of (2.14), with the exception of St are holomorphic

in (z, ε̂), which implies that S̄t(s, ·, ·) is holomorphic for all s ∈ (0, t]. Consequently, for any

s ∈ (0, t], the right-hand side of (2.14) with S = S̄ has a unique power series expansion. This

implies that, as (2.28) is satisfied for all ε̂ ∈ C, we must have

0 = c̃0
t +

ih̄
2m∆zc̃0− (A0z+b0)

T c̃0
z − 1

2m |c̃
0
z |2c−V̂ 0, (2.29)

0 = c̃−0
t + ih̄

2m∆zc̃−0− (A0z+b0 +
1
m c̃0

z )
T c̃−0

z − ε̂

2m |c̃
−0
z |2c−V−0. (2.30)

By (2.27), (2.29) and the assumptions, c̃0 = Ŝ0.

Next, separating the c̃1 and c̃−1 components, (2.30) implies

0 =c̃1
t +

ih̄
2m∆zc̃1− (A0z+b0 +

1
m c̃0

z )
T c̃1

z −V̂ 1 (2.31)

+ ε̂

{
c̃−1

t + ih̄
2m∆zc̃−1− (A0z+b0 +

1
m c̃0

z )
T c̃−1

z −V−1− ε̂

2m |c̃
−1
z |2c

}
.

Similar to the k = 0 case, as (2.31) is satisfied for all ε̂ ∈ C, we have

0 = c̃1
t +

ih̄
2m∆zc̃1− (A0z+b0 +

1
m c̃0

z )
T c̃1

z −V̂ 1, (2.32)

0 = c̃−1
t + ih̄

2m∆zc̃−1− (A0z+b0 +
1
m c̃0

z )
T c̃−1

z −V−1− 1
2m

0

∑
κ=1

(
c̃κ

z )
T c̃k−κ

z − ε̂

2m |c̃
−1
z |2c , (2.33)
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where the zero-valued penultimate term on the right-hand side of (2.33) is included because

analogous terms will appear with non-zero value in higher-order expansion equations. By (2.27),

(2.32) and the assumptions, c̃1 = Ŝ1. Proceeding inductively, one finds c̃k = Ŝk for all k ∈ N̄,

which yields the assertion.

2.4.1 An alternate assumption

It may be worth noting the following reformulation and assumption. Let g̃
δ̂

: C2 →

C2 and ĝ
δ̂

: R→ R be given by g̃
δ̂
(z) .

= (1/δ̂ )z and ĝ
δ̂
(s) .

= s/δ̂ 2. Let s̃ .
= ĝ

δ̂
(s) = s/δ̂ 2

and z̃ .
= g̃

δ̂
(z) = (1/δ̂ )z. Note that under this change of variables, the angular rate becomes

ω̂ = dθ

dŝ = dθ

ds
ds
ds̃ = δ̂ 2ω , and where the units of h̄ are such that the resulting scaling is the

identity. Let ˜̄S(s̃, z̃) .
= S̄(ĝ−1

δ̂
(s̃), g̃−1

δ̂
(z̃)) = S̄(ĝ−1

δ̂
(s̃), g̃−1

δ̂
(z̃), ε̂) for all (s,z) ∈ D̄ , where we

recall the abuse of notation regarding explicit inclusion of the third argument in S̄. Note that

˜̄Ss̃(s̃, z̃) = S̄s(ĝ−1
δ̂
(s̃), g̃−1

δ̂
(z̃))

ĝ−1
δ̂

(s̃)
ds̃ = δ̂ 2S̄s(s,z), with similar expressions for the space derivatives.

The HJ PDE problem for ˜̄S, corresponding to (2.14)–(2.15) for S̄, is

0 = Ss̃(s̃, z̃)+ ih̄
2m∆z̃S(s̃, z̃)− ω̂(Ā0z̃+ b̄0)

T Sz̃(s̃, z̃)− 1
2m |Sz̃(s̃, z̃)|2c

−Ṽ (z̃), (s̃, z̃) ∈ (0, t̃)×C2, (2.34)

S(t̃, z̃) = φ̃(z̃), z̃ ∈ C2, Ā0
.
=

 0 1

−1 0

 , b̄0
.
=−

0

1

 , (2.35)

t̃ = t/δ̂ 2, φ̃(z̃) .
= φ(g̃−1

δ̂
(z̃)) and 1

δ̂ 2Ṽ (z̃) .
=V (g̃−1

δ̂
(z̃)) =V (z).

Note that in the case of a truncated expansion of a potential of form −V̄ (x) = c̄/|x|, one

obtains −Ṽ (z̃) =−∑
K
k=0

ˆ̃V k(z̃) − ˆ̃V 0(z̃) = mω̂2[1− z̃1 +(z̃2
1− z̃2

2/2)
]

and

− ˆ̃V k(z̃) = mω̂
2

k+2

∑
j=0

cV
k+2, j z̃

j
1z̃k+2− j

2 for k ≥ 1.

In particular, one should note that the change of variables leads to a lack of ε̂k in the expansion
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of the potential. With this reformulation in hand, consider the following assumption, where we

note that S̆C in (A.2) is replaced by SC in (A.2′).

There exists a unique solution, ˜̄S ∈SC to (2.34)–(2.35). (A.2′)

Corollary 1. Assume (A.2′) in place of (A.2). Assume there exists a unique solution, Ŝ0, in S̆C to

(2.23)–(2.24), and that for each k ≥ 1, there exists a unique solution, Ŝk, in S̆C to (2.25)–(2.26).

Then, S̄ = ∑
∞
k=0 ε̂kŜk.

Proof. Let ˜̄S satisfy (A.2′). Fix an arbitrary s̃ ∈ (0, t̃), and let D > 0. Let P(D) denote the

polydisc in C2 of multiradius D̄ .
= (D,D). By standard results (cf.[51]), for all z̃ ∈P(D),

˜̄S(s̃, z̃) =
∞

∑
l=0

l

∑
j=0

˜̄Sz j
1zl− j

2
(s̃,0)

j!(l− j)!
z̃ j

1z̃l− j
2 ,

which through application of the Cauchy integral formula,

=
∞

∑
l=0

l

∑
j=0

1
(2πi)2

∫
∂P(D)

˜̄S(s̃,ζ1,ζ2)

ζ
j+1

1 ζ
l− j+1
2

dζ1 dζ2z̃ j
1z̃l− j

2 ∀(s̃, z̃) ∈ (0,∞)×C2, (2.36)

where ∂P(D)
.
= {ζ ∈ C2 | |ζ1|= D, |ζ2|= D}. For each s̃ ∈ (0, t̃), we may express the Taylor

series representation for ˜̄S as ˜̄S(s̃, z̃) = ∑
∞
l=0 ∑

l
j=0 ˜̄cl, j(s̃)z̃

j
1z̃l− j

2 for all z̃ ∈ C2. Let 0≤ j ≤ l < ∞.

Then, by (2.36) and the uniqueness of the Taylor expansion, we see that

˜̄cl, j(s̃) =
1

(2πi)2

∫
∂P(D)

˜̄S(s̃,ζ1,ζ2)

ζ
j+1

1 ζ
l− j+1
2

dζ1 dζ2,

and the right-hand side is independent of D ∈ (0,∞). Further, letting ζκ = Deiθk for κ ∈ {1,2}

and ζ ∈ ∂P(D), this becomes

˜̄cl, j(s̃) =
1

(2πi)2

∫ 2π

0

∫ 2π

0

− ˜̄S(s̃,Deiθ1,Deiθ2)

Dl exp{i[( j+1)θ1 +(l− j+1)θ2]}
dθ1 dθ2.

Let {s̃n}⊂ (0, t̃) be a sequence such that s̃n→ s̃∈ (0, t̃). By the Bounded Converegence Theorem,
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for any 0≤ j ≤ l < ∞,

lim
n→∞

˜̄cl, j(s̃n) =
1

(2πi)2 lim
n→∞

∫ 2π

0

∫ 2π

0

− ˜̄S(s̃n,Deiθ1,Deiθ2)

Dl exp{i[( j+1)θ1 +(l− j+1)θ2]}
dθ1 dθ2

=
1

(2πi)2

∫ 2π

0

∫ 2π

0

− ˜̄S(s̃,Deiθ1,Deiθ2)

Dl exp{i[( j+1)θ1 +(l− j+1)θ2]}
dθ1 dθ2 = ˜̄cl, j(s̃),

and we see that each ˜̄cl, j(·) is continuous.

Similarly, for 0≤ j ≤ l < ∞,

lim
h→0

˜̄cl, j(s̃+h)− ˜̄cl, j(s̃)
h

= lim
h→0

1
(2πi)2

∫ 2π

0

∫ 2π

0

−1
Dl exp{i[( j+1)θ1 +(l− j+1)θ2]}

·
˜̄S(s̃+h,Deiθ1,Deiθ2)− ˜̄S(s̃,Deiθ1,Deiθ2)

h
dθ1 dθ2.

Recalling that ˜̄S is continuously differentiable on (0, t̃), we find that the integrand is bounded,

and another application of the Bounded Convergence Theorem yields

lim
h→0

˜̄cl, j(s̃+h)− ˜̄cl, j(s̃)
h

=
1

(2πi)2

∫ 2π

0

∫ 2π

0

− ˜̄St(s̃,Deiθ1,Deiθ2)

Dlei[( j+1)θ1+(l− j+1)θ2]
dθ1 dθ2,

and we see that ˜̄cl, j ∈C1(0, t̃).

Now, let S̄(s,z) .
= ˜̄S(ĝ

δ̂
(s), g̃

δ̂
(z)) for all (s,z) ∈ (0, t]×C2, and let ε̂ = 1/δ̂ . By

Theorem 2, it is sufficient to show that S̄ satisfies Assumption (A.2). We have S̄(s,z) =

∑
∞
l=0 ∑

l
j=0 ˜̄cl, j(s)ε̂ lz j

1zl− j
2 for all (s,z)∈ (0, t]×C2. Letting Ŝl(s,z) .

= ∑
l
j=0 ˜̄cl, j(s)z

j
1zl− j

2 for l ∈N,

the smoothness assertions of the corollary then follow directly from the above and the composi-

tion of analytic functions. The existence and uniqueness are also easily demonstrated, and the

steps are omitted.
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2.5 Periodic Ŝ0 solutions

In order to begin computation of the terms in the expansion of Theorem 2, we must

obtain a solution of the complex-valued, second-order, nonlinear HJ PDE problem given by

(2.23)–(2.24). We note that we continue to work with the case of dimension n = 2 here. We will

choose the initial condition, φ 0, such that the resulting solution will be periodic with frequency

that is an integer multiple of ω , where we include the case where the multiple is zero (i.e., the

steady-state case). We also note that we are seeking periodic solutions, Ŝ0 that are themselves

clearly physically meaningful.

Recall that the original, forward-time solution, S̃ f , of (2.8)-(2.9) is a solution of the

dequantized version of the original Schrödinger equation. Let ψ̃ f (s,z) .
= exp

{ i
h̄ S̃ f } for all

(s,z) ∈ D̄ f .
= [0, t)×R2. Recall also that for physically meaningful solutions, at each s ∈

[0, t), P̃ f (s, ·) : R2 → R given by P̃(s, ·) .
=
[
ψ∗ψ

]
(s, ·) represents an unnormalized density

associated to the particle at time s. Let R̃ f , T̃ f : D̄ f → R be given by R̃ f (s,z) .
= Re[S̃ f (s,z)] and

T̃ f (s,z) .
= Im[S̃ f (s,z)] for all (s,z) ∈ D̄ f . Then, P̃ f (s,z) = exp

{−2
h̄ T̃ f (s,z)

}
for all (s,z) ∈ D̄ f .

This suggests that we should seek S̃ f such that exp
{−2

h̄ T̃ f (s, ·)
}

represents an unnormalized

probability density for all s ∈ [0, t).

Although the goal in this section is to generate a set of physically meaningful periodic

solutions to the zeroth-order term, we do not attempt a full catalog of all possible such solutions.

Let Ŝ0, f (s,z) .
= Ŝ0(t− s,z) for all (s,z) ∈ D̄ f . As we seek Ŝ0(t− s, ·) that are quadratic, we let

the resulting time-dependent coefficients be defined by

Ŝ0, f (s,z) = 1
2zT Q(s)z+Λ

T (s)z+ρ(s). (2.37)

It should be noted here that the condition that exp
{−h̄

2 T̃ f (s, ·)
}

represent an unnormalized

density implies that the imaginary part of Q(s) should be nonnegative definite for all s ∈ [0, t),

which is a significant restriction on the set of allowable solutions.
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As Ŝ0, f (s, ·) is quadratic, its values over C2 are fully defined by its values over R2, and

hence it is sufficient to solve the problem on the real domain. The forward-time version of

(2.23)–(2.24), with domain restricted to D̄ f is

0 =−S0, f
t + ih̄

2m∆zS0, f −
(
A0z+b0

)T S0, f
z − 1

2m |S
0, f
z |2c−V̂ 0, (s,z) ∈ (0, t)×R2, (2.38)

S0, f (0,z) = φ
0(z) ∀z ∈ R2. (2.39)

Remark 4. It is worth noting that any solution of form (2.37) to (2.38)–(2.39) is the unique

solution in S p
C , and in particular, where this uniqueness is obtained through a controlled-

diffusion representation [31, 32].

Substituting form (2.37) into (2.38), and collecting terms, yields the system of ordinary

differential equations (ODEs) given as

d
ds

Q(s) =−
(
AT

0 Q(s)+Q(s)A0
)
− 1

mQ2(s)+mω
2TV , (2.40)

d
ds

Λ(s) =−
(
AT

0 + 1
mQ(s)

)
Λ+ωδ̂Q(s)u2−mω

2
δ̂u1, (2.41)

d
ds

ρ(s) = ih̄
2m tr[Q(s)]+ωδ̂ (u2)T

Λ(s)− 1
2mΛ

T (s)Λ(s)+mω
2
δ̂

2, (2.42)

TV =

2 0

0 −1

 , u1 .
=

1

0

 , u2 .
=

0

1

 , (2.43)

where Q : [0, t)→ C2×2, Λ : [0, t)→ C2 and ρ : [0, t)→ C. Throughout, we assume that Q(s) is

symmetric for all s ∈ [0, t). Note that if Q(s) is nonsingular for all s ∈ [0, t), then (2.37) may also

be written as

Ŝ0, f (s,z) = 1
2

(
z+Q−1(s)Λ(s)

)T Q(s)
(
z+Q−1(s)Λ(s)

)
+ρ(s)−Λ

T (s)Q−1(s)Λ(s),

where we see that −Q−1(s)Λ(s) may be interpreted as a mean of the associated distribution at

each time s. Consequently, we look for solutions with −Q−1(s)Λ(s) ∈ R2 for all s.
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One may use a Bernoulli-type substitution as a means for seeking solutions of (2.40).

That is, suppose Q(s) =W (s)U−1(s), where U(s) is nonsingular for all s ∈ [0, t). Then, without

loss of generality, we may take W (0) = Q(0), U(0) = I2×2. The resulting system of ODEs is

d
ds

U

W

= B

U

W

 , B
.
=



0 ω 1/m 0

−ω 0 0 1/m

2mω2 0 0 ω

0 −mω2 −ω 0


.

Employing the Jordan canonical form, one obtains the solution as

(
U(s)T ,W (s)T)T

= RPeJωsP−1R−1 (I2×2,Q(0))T , (2.44)

where

P =



0 2 −i i

−3 0 2 2

3 0 −1 −1

0 −1 i −i


, P−1 =



0 1/3 2/3 0

1 0 0 1

−i/2 1/2 1/2 −i

i/2 1/2 1/2 i


,

eJωs =



1 ωs 0 0

0 1 0 0

0 0 exp{iωs} 0

0 0 0 exp{−iωs}


, R =



1 0 0 0

0 1 0 0

0 0 mω 0

0 0 0 mω


.

We remark that, as our goal here is the generation of periodic solutions that may be used as

a basis for the expansion to follow, and as this work is already of substantial length, we will

not discuss the question of stability of the above solutions, to perturbations within the class of

physically meaningful Q =U−1W .
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Note that we seek solutions that generate periodic densities P̃ f (s, ·), and that the (1,2)

entry of eJωs has secular behavior. Examining (2.44), we see that a sufficient condition for avoid-

ance of secular growth/decay of Q, is that entries in the second row of P−1R−1 (I2×2,Q(0))T be

zero. One easily sees that this corresponds to Q2,1(0) =−mω and Q2,2(0) = 0, and considering

here only symmetric Q, we take Q1,2(0) =−mω . That is, we have

Q(0) =

k̄0imω −mω

−mω 0

 , (2.45)

for some k̄0 ∈ C. Propagating the resulting solutions, we find that the imaginary part of k̄0

being nonnegative is necessary and sufficient for satisfaction of the condition that Im[Q(s)]

be nonnegative-definite for all s. We also note that with such initial condition, Q1,2,Q2,1,Q2,2

remain constant for all s, while the real and imaginary parts of Q1,1 are periodic. That is, Q(s)

takes the form

Q(s) =

imω p(s) −mω

−mω 0

 ∀s ∈ [0, t), (2.46)

where p(s) = [k̄+1 e2iωs + k̄−1 ]/[k̄
+
1 e2iωs− k̄−1 ] with k̄+1

.
= k̄0 +1 and k̄−1

.
= k̄0−1.

One may seek steady-state solutions by substitution of form (2.45) into the right-hand

side of (2.40), and setting this to be zero. One easily finds that the unique steady state solution

(among those with Im[k̄0]≥ 0) is

Q(s) = Q̄0 .
=

 imω −mω

−mω 0

 ∀s ∈ [0, t). (2.47)

Next we consider the linear term in Ŝ0, f , where this satisfies (2.41). We focus on the
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steady-state Q case of (2.47). Substituting (2.47) into (2.41) yields

Λ̇ =

−iω 2ω

0 0

Λ−2mω
2
δ̂u1.

This has a steady-state solution in the case that −iΛ1(0)+2Λ(0) = 2mωδ̂ , or equivalently, the

one-parameter set of steady-state solutions given by Λ(s) = Λ̄0 .
=
(
id,mωδ̂ −d/2

)T for d ∈ C.

This includes, in particular, the cases Λ̄0 = (0,mωδ̂ )T (i.e., d = 0) and Λ̄0 = mωδ̂ (−2i,2)T (i.e.,

d =−2mωδ̂ ), where this latter case is obtained if one requires (Q̄0)−1Λ̄0 to be real valued. We

also remark that more generally, the solution is given for all s ∈ [0, t) by

Λ(s) =

−iexp{−iωs} 2i[exp{−iωs}−1]

0 0

Λ(0)+2i[1− exp{−iωs}]mωδ̂u1.

Lastly, we turn to the zeroth-order term. Note that the one may allow secular growth in

the real part of ρ(·) with no effect on the associated probability distribution, as is standard in

solutions of the quantum harmonic oscillator. Continuing to focus on the steady-state solution, but

allowing a real-valued secular zeroth-order term, we substitute the above steady-state quadratic

and linear coefficients into (2.42). This yields

ρ̇ =
−h̄ω

2
+mω

2
[

3δ̂ 2

2
+

3d2

4(mω)2

]
.
= c̄1(d),

and we see that this is purely real if and only if d ∈ R, and we have

Λ(s) = Λ̄
0 .
=
(
id,mωδ̂ −d/2

)T
, ρ

0(s) = ρ
0(0)+ c̄1(d)s ∀s ∈ [0, t). (2.48)

We will restrict ourselves to the simple, steady-state case (modulo the real part of ρ0) given

by (2.47),(2.48) with k̄0 = 1, d = 0, for our actual computations of succeeding terms in the
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expansion. However, the theory will be sufficiently general to encompass the periodic case as

well.

2.6 Diffusion representations for succeeding terms

As noted above, we will use diffusion representations to obtain the solutions to the HJ

PDEs (2.25)–(2.26) that define the succeeding terms in the expansion, i.e., to obtain the Ŝk for

k ∈ N. In order to achieve this goal, we need to define the complex-valued diffusion dynamics

and the expected payoffs that will yield the Ŝk. The representation result naturally employs

the Itô integral rule. As the dynamics are complex-valued, we need an extension of the Itô

rule to that process domain. In a similar fashion to that of Section 2.3.3, we use the Itô rule

for the double-dimension real case to obtain the rule for the complex case. Once the Itô rule

is established, the proof of the representation is straightforward. However, additional effort is

require to generate the machinery by which the the actual solutions are computed, where the

machinery relies mainly on computation of moments for the diffusion process.

2.6.1 The underlying stochastic dynamics

We let (Ω,F ,P) be a probability triple, where Ω denotes a sample space, F denotes a

σ -algebra on Ω, and P denotes a probability measure on (Ω,F ). Let {Fs |s ∈ [0, t]} denote a

filtration on (Ω,F ,P), and let B· denote an F·-adapted Brownian motion taking values in Rn.

We will be interested in diffusion processes given by the linear stochastic differential equation

(SDE) in integral form

ζr = ζ
(s,z)
r = z+

∫ r

s
−
(
A0ζρ +b0 +

1
m Ŝ0

z (ρ,ζρ)
)

dρ +
√

h̄
m

1+i√
2

∫ r

s
dBρ

.
= z+

∫ r

s
λ (ρ,ζρ)dρ +

√
h̄
m

1+i√
2

B∆
r ∀r ∈ [s, t], (2.49)
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where z ∈ C2, s ∈ [0, t), B∆
r
.
= Br−Bs for r ∈ [s, t), and

λ (ρ,z) .
=−[A0z+b0 +

1
mS0

z (ρ,z)] =−[A0z+b0 +
1
mQ(ρ)z+ 1

mΛ(ρ)]

.
=−A>0(ρ)z−b>0(ρ). (2.50)

Let f̄ : [0, t]×C2→C2, and suppose there exists K f̄ < ∞ such that | f̄ (s,z1)− f̄ (s,z2)| ≤

K f̄ |z1− z2| for all (s,z1),(s,z2) ∈DC. For (s,z) ∈DC, consider the complex-valued diffusion,

ζ· ∈Xs, given by

ζr = ζ
(s,z)
r = z+

∫ r

s
f̄ (ρ,ζρ)dρ +

∫ r

s

1+i√
2

σ dBρ , (2.51)

where σ ∈ Rn×n, and note that this is a slight generalization of (2.49). For s ∈ (0, t], let

Xs
.
= {ζ : [s, t]×Ω→ C2 |ζ is F·-adapted, right-continuous and such that

E sup
r∈[s,t]

|ζr|m < ∞ ∀m ∈ N}. (2.52)

We supply Xs with the norm ‖ζ‖Xs
.
= maxm∈]1,M̄[

[
Esupr∈[s,t] |ζr|m

]1/m. It is important to note

here that complex-valued diffusions have been discussed elsewhere in the literature; see for

example, [54] and the references therein.

We also define the isometric isomorphism, V : Xs→X v
s by [V (ζ )]r

.
= [V (ξ + iν)]r

.
=

(ξ T
r ,νT

r )
T for all r ∈ [s, t] and ω ∈Ω, where

X v
s

.
= {(ξ ,ν) : [s, t]×Ω→ R2n |(ξ ,ν) is F·-adapted, right-continuous and (2.53)

such that E sup
r∈[s,t]

[|ξr|m + |νr|m]< ∞ ∀m ∈ N},

‖(ξ ,ν)‖X v
s

.
= max

m∈]1,M̄[

[
E sup

r∈[s,t]
(|ξr|m + |νr|m)

]1/m
. (2.54)
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Under transformation by V , (2.51) becomes

ξr

νr

=

x

y

+
∫ r

s
f̂ (ρ,ξρ ,νρ)dρ +

∫ r

s

1√
2
σ̂ dBρ ∀r ∈ [s, t], (2.55)

where f̂ (ρ,ξρ ,νρ)
.
=
(
(Re[ f̄ (ρ,ξρ +iνρ)])

T ,(Im[ f̄ (ρ,ξρ +iνρ)])
T)T and σ̂

.
=(1,1)T . Through-

out, concerning both real and complex stochastic differential equations, typically given in integral

form such as in (2.56), solution refers to a strong solution, unless specifically cited as a weak

solution. The following are easily obtained from existing results; see [32, 48].

Lemma 2. Let s ∈ [0, t), z ∈C2 and (x,y) = V0(z). There exists a unique solution, (ξ ,ν) ∈X v
s ,

to (2.55).

Lemma 3. Let s ∈ [0, t), z ∈ C2 and (x,y) = V0(z). ζ ∈Xs is a solution of (2.51) if and only if

V (ζ ) ∈X v
s is a solution of (2.55).

Lemma 4. Let s ∈ [0, t) and z ∈ C2. There exists a unique solution, ζ ∈Xs, to (2.51).

We remark that one may apply Lemmas 2–4 to the specific case of (2.49) in order to

establish existence and uniqueness. In particular, for the dynamics of (2.49), the corresponding

process (ξ ,ν) = V (ζ ) satisfies

ξr

νr

=

x

y

+
∫ r

s
−


Ar

>0(ρ) −Ai
>0(ρ)

Ai
>0(ρ) Ar

>0(ρ)


ξr

νr

+

br
>0(ρ)

bi
>0(ρ)


 dρ

+
√

h̄
2m

In×n

In×n

B∆
r

.
=

x

y

+
∫ r

s
−Ā>0(ρ)

ξr

νr

− b̄>0(ρ)dρ +
√

h̄
2m Ī B∆

r ∀r ∈ [s, t], (2.56)

where Ar
>0(ρ)

.
=Re(A>0(ρ)), Ai

>0(ρ)
.
= Im(A>0(ρ)),

(
(br

>0(ρ))
T ,(bi

>0(ρ))
T)T .

=V0(b>0(ρ))
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for all ρ ∈ [0, t).

2.6.2 Itô’s rule

The representation results will rely on a minor generalization of Itô’s rule to the specific

complex-diffusion dynamics of interest here. It might be worthwhile to note that the complex-

valued diffusions considered here belong to a very small subclass of complex-valued diffusions,

and this is somehow related to the specific nature of the complex aspect of the Schrödinger

equation. The following complex-case Itô rule is similar to existing results (cf., [54]).

Lemma 5. Let ḡ ∈SC and (s,z) ∈ DC, and suppose diffusion process ζ· is given by (2.51).

Then, for all r ∈ [s, t],

ḡ(r,ζr) =ḡ(s,z)+
∫ r

s
ḡt(ρ,ζρ)+ ḡT

z (ρ,ζρ) f̄ (ρ,ζρ)dρ +
∫ r

s

1+i√
2

ḡT
z (ρ,ζρ)σ dBρ

+ 1
2

∫ r

s
tr
[
ḡzz(ρ,ζρ)(σσ

T )
]

dρ. (2.57)

Proof. Let (gr(s,x,y),gi(s,x,y)) .
= V00

(
ḡ(s,V −1

0 (x,y))
)
,

( f r(s,x,y), f i(s,x,y)) .
= V0

(
f̄ (s,V −1

0 (x,y))
)

for all (s,x,y) ∈ D2, and note that it is trivial to

show that ḡt(r,z) = gr
t (r,x,y)+ igi

t(r,x,y), for all (x,y) = V0(z), (r,z) ∈ DC. Also, using the

Cauchy-Riemann equations,

ḡT
z (r,z) f̄ (r,z) =

[
(gr

x)
T f r +(gr

y)
T f i](r,x,y)+ i

[
(gi

x)
T f r +(gi

y)
T f i](r,x,y),

for all (x,y) = V0(z), (r,z) ∈DC. Defining the derivative notation

gr
x2(s,x,y)

.
=
(
(gr

x)
T ,(gr

y)
T)T

(r,x,y) and vector notation f̂ (r,x,z) .
=
(
( f r)T ,( f i)T)(r,x,y) for all

(r,x,y) ∈D2, this becomes

ḡT
z (r,z) f̄ (r,z) =

(
gr

x2(r,x,y))T f̂ (r,x,y)+ i
(
gi

x2(r,x,y))T f̂ (r,x,y), (2.58)
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for all (x,y) = V0(z), (r,z) ∈DC. Similarly, letting σ̂
.
=
(
σT ,σT)T ,

ḡT
z (r,z)

1+i√
2

σ = 1√
2

[(
gr

x2(r,x,y)
)T

σ̂ + i
(
gi

x2(r,x,y)
)T

σ̂
]
, (2.59)

for all (x,y) = V0(z), (r,z) ∈DC.

Next, let ā .
=
(1+i√

2

)2
σσT and (ar

j,l,a
i
j,l)

.
=V00(ā j,l) for all j, l ∈]1,n[ . Using (2.17),(2.18),

we find

ḡz j,zl ā j,l = gi
x j,yl

ar
j,l +gr

x j,yl
ai

j,l + i
[
−gr

x j,yl
ar

j,l +gi
x j,yl

ai
j,l
]
∀ j, l ∈]1,n[ . (2.60)

Also, by the definition of ā, we see that ar = 0 and ai = σσT . Applying these in (2.60) yields

ḡz j,zl ā j,l = gr
x j,yl

[σσ
T ] j,l + igi

x j,yl
[σσ

T ] j,l ∀ j, l ∈]1,n[ . (2.61)

Considering (2.58), (2.59) and (2.61), and letting (ξr,νr)
.
= V0(ζr) for all r ∈ (0, t], a.e.

ω ∈ Ω we see that (2.57) is equivalent to a pair of equations for the real and imaginary parts,

where the real-part equation is

gr(r,ξr,νr) =gr(s,x,y)+
∫ r

s
gr

t (ρ,ξρ ,νρ)+(gr
x2)

T (ρ,ξρ ,νρ) f̂ (ρ,ξρ ,νρ) (2.62)

+ 1
2

n

∑
j,l=1

gr
x j,yl

(ρ,ξρ ,νρ)[σσ
T ] j,l dρ + 1√

2

∫ r

s
(gr

x2)
T (ρ,ξρ ,νρ)σ̂ dBρ ,

with an analogous equation corresponding to the imaginary part.

On the other hand, applying Itô’s rule to real functions gr and gi separately, and then

applying (2.17), (2.18), we find

gr(r,ξr,νr) =gr(s,x,y)+
∫ r

s
gr

t (ρ,ξρ ,νρ)+(gr
x2)

T (ρ,ξρ ,νρ) f̂ (ρ,ξρ ,νρ)

+ 1
4

n

∑
j,l=1

[
gr

x j,xl
+gr

x j,yl
+gr

y j,xl
+gr

y j,yl

]
(ρ,ξρ ,νρ)[σσ

T ] j,l dρ
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+ 1√
2

∫ r

s
(gr

x2)
T (ρ,ξρ ,νρ)σ̂ dBρ ,

=gr(s,x,y)+
∫ r

s
gr

t (ρ,ξρ ,νρ)+(gr
x2)

T (ρ,ξρ ,νρ) f̂ (ρ,ξρ ,νρ) (2.63)

+ 1
2

n

∑
j,l=1

gr
x j,yl

(ρ,ξρ ,νρ)[σσ
T ] j,l dρ + 1√

2

∫ r

s
(gr

x2)
T (ρ,ξρ ,νρ)σ̂ dBρ ,

with a similar equation for the imaginary part. Comparing (2.63) with (2.62), and similarly for

the imaginary parts, one obtains the result.

We apply this result to the particular case of interest here.

Lemma 6. Let Ŝ ∈SC and (s,z) ∈DC, and suppose ζ satisfies (2.49). Then, for all r ∈ (s, t],

Ŝ(r,ζr) =Ŝ(s,z)+
∫ r

s
Ŝt(ρ,ζρ)− ŜT

z (ρ,ζρ)
[
A>0(ρ)ζρ+b>0(ρ)

]
+ ih̄

2m∆zŜ(ρ,ζρ)dρ

+
√

h̄
m

1+i√
2

∫ r

s
ŜT

z (ρ,ζρ)dBρ . (2.64)

Proof. Dynamics (2.49) have form (2.51) with f (r,z) = A>0(r)z+b>0(r) and σ =
√

h̄
mIn×n.

In this case, 1
2 tr
[
Ŝzz(r,z)(σσT )

]
= ih̄

2m∆zŜ(r,z) for all (r,z) ∈SC, which yields the result.

Theorem 3. Let k ∈ N. Let Ŝκ ∈S p
C satisfy (2.25)–(2.26) for all κ ∈]1,k[ . Let (s,z) ∈DC, and

let ζ ∈Xs satisfy (2.49). Then,

Ŝk(s,z) = E
{∫ t

s
− 1

2m

k−1

∑
κ=1

[
Sκ

z (r,ζr)]
T Sk−κ

z (r,ζr)−V̂ k(ζr)dr+φ
k(ζt)

}
.

Proof. Taking expectations in (2.64), and using the martingale property (cf., [11, 15]), we have

Ŝk(s,z) = E
{
−
∫ t

s
Ŝt(r,ζr)− ŜT

z (r,ζr)
[
A>0(r)ζr +b>0(r)

]
+ ih̄

2m∆zŜ(r,ζr)dr

+ Ŝk(t,ζt)

}
.

Combining this with (2.25)–(2.26) yields the result.
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2.6.3 Moments and Iteration

Note that Theorem 3 yields an expression for the kth term in our expansion for S̄, Ŝk,

from the previous terms, Ŝκ for κ < k. We now examine how this generates a computationally

tractable scheme. It is heuristically helpful to examine the first two iterates. For (s,z) ∈DC, we

have

Ŝ1(s,z) = E
{∫ t

s
−V̂ 1(ζr)dr+φ

1(ζt)

}
= E

{∫ t

s
mω

2
(
− [ζr]

3
1 +(3/2)[ζr]1[ζr]

2
2

)
dr+

3

∑
l=0

l

∑
j=0

bφ

3,l, j[ζt ]
j
1[ζt ]

l− j
2

}
, (2.65)

Ŝ2(s,z) = E
{∫ t

s
− 1

2m

∣∣Ŝ1
z (r,ζr)

∣∣2
c−V̂ 2(ζr)dr+φ

2(ζt)

}
= E

{∫ t

s
− 1

2m

∣∣Ŝ1
z (r,ζr)

∣∣2
c +mω

2
(
[ζr]

4
1−3[ζr]

2
1[ζr]

2
2 +(3/8)[ζr]

4
2

)
dr

+
4

∑
l=0

l

∑
j=0

bφ

4,l, j[ζt ]
j
1[ζt ]

l− j
2

}
. (2.66)

Note that the right-hand side of (2.65) consists of an expectation of a polynomial in ζt and an

integral of a polynomial in ζ·, and further, that the dynamics of ζ are linear in the state variable.

Thus, we may anticipate that Ŝ1(s, ·) may also be polynomial. Applying this anticipated form on

the right-hand side of (2.66) suggests that the polynomial form will be inherited in each Ŝk. This

will form the basis of our computational scheme.

The computation of the expectations that generate the Ŝk for k ≥ 1 will be obtained

through the moments of the underlying diffusion process. Thus, the first step is solution of

(2.49). We let the state transition matrices for deterministic linear systems ẏr = −A>0(r)yr

and ẏ(2)r = −Ā>0(r)y
(2)
r be denoted by Φ(r,s) and Φ(2)(r,s), respectively. More specifically,

with initial (or terminal) conditions, ys = ȳ and y(2)s = ȳ(2), the solutions at time r are given by

yr = Φ(r,s)ȳ and y(2)r = Φ(2)(r,s)ȳ(2), respectively. The solutions of our SDEs are given by the

following.
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Lemma 7. Linear SDE (2.49) has solution given by ζr = µr +∆r, where

µr = Φ(r,s)z+
∫ r

s
Φ(r,ρ)

(
−b>0(ρ)

)
dρ, ∆r =

√
h̄
m

1+i√
2

∫ r

s
Φ(r,ρ)dBρ

for all r ∈ [s, t]. Linear SDE (2.56) has solution given by X (2)
r = µ

(2)
r +∆

(2)
r , where

µ
(2)
r = Φ

(2)(r,s)x(2)+
∫ r

s
Φ

(2)(r,ρ)
(
− b̄>0(ρ)

)
dρ,

∆
(2)
r =

√
h̄

2m

∫ r

s
Φ

(2)(r,ρ)Ī dBρ

for all r ∈ [s, t], where x(2) .
= (xT ,yT )T .

Proof. The case of (2.56) is standard,cf., [23]. We sketch the proof in the minor variant case

of (2.49), where this uses the Itô-rule approach, but for the complex-valued diffusion case. For

0≤ s≤ r ≤ t, let αr
.
= Φ(s,r)ζr = Φ−1(r,s)ζr. By Lemma 5,

αr =
∫ r

s
Φ
−1(ρ,s)[−b>0(ρ)]dρ +

√
h̄
m

1+i√
2

∫ r

s
Φ
−1(ρ,s)dBρ ,

which implies ζr =
∫ r

s Φ(r,ρ)[−b>0(ρ)]dρ +
√

h̄
m

1+i√
2

∫ r
s Φ(r,ρ)dBρ .

Lemma 8. For all r ∈ [s, t], X (2)
r and ζr have normal distributions.

Proof. The case of X (2)
r is standard, cf. [22], and then one notes ζr = V0(X

(2)
r ).

Lemma 9. For all r ∈ [s, t], µr is the mean of ζr, and ∆r is a zero-mean normal random variable

with covariance given by E
[
∆r∆

T
r
]
= ih̄

m
∫ r

s Φ(r,ρ)ΦT (r,ρ)dρ , where further, E
[
(ζr−µr)(ζr−

µr)
T ]= E

[
∆r∆

T
r
]
.

Proof. That ∆r has zero mean is immediate from its definition. Given Lemmas 7 and 8, it is

sufficient to obtain the expression for E
[
∆r∆

T
r
]
. By Lemma 7,

E
[
∆r∆

T
r
]
= ih̄

mE
{[∫ r

s Φ(r,ρ)dBρ

][∫ r
s Φ(r,ρ)dBρ

]T}
,
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where the term inside the expectation is purely real, and consequently by standard results (cf.,

[22]), one obtains the asserted representation.

As noted above, we will perform the computations mainly in the simpler, steady-state

case of k̄0 = 1. In this case, we have

−A>0 = ω

−i 0

2 0

 , and −b>0 =
d

2m

−2i

1

 . (2.67)

In the case d = 0, we have −b>0 = 0, while in the case d = −2mωδ̂ , we have −b>0 =

ωδ̂ (2i,−1)T .

Theorem 4. In the case k̄0 = 1, for all r ∈ [s, t], ζr is a normal random variable with mean and

covariance given by, with d̂ .
= d/(mω),

µr =

µ1
r

µ2
r

 and Σ̃r
.
=

Σ̃
1,1
r Σ̃

1,2
r

Σ̃
2,1
r Σ̃

2,2
r

 , where

µ
1
r = e−iω(r−s)z1 + d̂(e−iω(r−s)−1),

µ
2
r = 2i[e−iω(r−s)−1]z1 + z2 + d̂

[
2i((e−iω(r−s)−1)−3ω(r− s)/2

]
,

Σ̃
1,1
r = h̄

mω

1
2

(
1− e−2iω(r−s)),

Σ̃
1,2
r = Σ̃

2,1
r = h̄

mω
i
[
2
(
e−iω(r−s)−1

)
−
(
e−2iω(r−s)−1

)]
,

Σ̃
2,2
r = h̄

mω

[
2
(
e−2iω(r−s)−1

)
−8
(
e−iω(r−s)−1

)
−3iω(r− s)

]
.

Proof. The expression for µr is immediate from Lemma 7. To obtain the expression for the

covariance, we evaluate the integral in Lemma 9. Letting Σ̃r
.
= E

[
∆r∆

T
r
]
, component-wise, that

integral is

Σ̃
1,1
r = ih̄

m

∫ r

s
e−2iω(r−ρ) dρ, Σ̃

1,2
r = Σ̃

2,1
r = ih̄

m

∫ r

s
2i
[
e−2iω(r−ρ)− e−iω(r−ρ)

]
dρ,
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Σ̃
2,2
r = ih̄

m

∫ r

s
−4
[
e−2iω(r−ρ)− e−iω(r−ρ)

]2
+1dρ.

Evaluating these, one obtains the asserted expression for the covariance.

Theorem 5. For (s,z) ∈ DC, Ŝ1(s,z) = ∑
3
l=0 ∑

l
j=0 ĉ1

l, j(s)z
j
1zl− j

2 , where the time-indexed coef-

ficients, ĉ1
l, j(·) are obtained by the evaluation of linear combinations of moments of up to

third-order of the normal random variables ζr and closed-form time-integrals. For k > 1 and

(s,z) ∈ DC, the Ŝk also take the similar forms, Ŝk(s,z) = ∑
k+2
l=0 ∑

l
j=0 ĉk

l, j(s)z
j
1zl− j

2 . Given the

coefficient functions ĉκ
l, j(s) for κ < k, the time-indexed coefficients ĉk

l, j(s) are obtained by the

evaluation of linear combinations of moments of up to (k+ 2)th-order of the normal random

variables ζr and closed-form time-integrals.

Proof. By Fubini’s Theorem and Theorem 3,

Ŝk(s,z) =
∫ t

s
− 1

2m

k−1

∑
κ=1

E
{[

Sκ
z (r,ζr)]

T Sk−κ
z (r,ζr)

}
(2.68)

+mω
2

k+2

∑
j=0

cV
k+2, jE

{
[ζr]

j
1[ζr]

k+2− j
2

}
dr+

k+2

∑
l=0

l

∑
j=0

bφ

k+2,l, jE
{
[ζt ]

j
1[ζt ]

l− j
2
}
.

In particular,

Ŝ1(s,z) =
∫ t

s
mω

2
[
E
{
− [ζr]

3
1
}
+ 3

2E
{
[ζr]1[ζr]

2
2
}]

dr+
3

∑
l=0

l

∑
j=0

bφ

3,l, jE
{
[ζt ]

j
1[ζt ]

l− j
2
}
. (2.69)

We see that (2.69) immediately yields the assertions regarding Ŝ1. If for κ < k, the Ŝκ(s,z) are

polynomials in z of order at most κ +2, then the products-of-derivatives, [Sκ
z (r,ζr)]

T Sk−κ
z (r,ζr),

in (2.68) are of order at most k+2 in ζr, and the asserted form follows.

2.7 The Ŝ1 term

In Section 2.5, steady-state and periodic solutions for the zeroth-order term in the

expansion were computed. Here, we proceed an additional step, computing S̆1 .
= Ŝ0 + 1

δ̂
Ŝ1. We
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perform the actual computations for Ŝ1 only in the steady-state case of k̄0 = 1. For (s,z) ∈DC,

we may obtain Ŝ1(s,z) from (2.69), using the expressions for the mean and variance of normal

ζr given in Theorem 4. We see that we must evaluate integrals of the moments E
{
[ζr]

3
1
}

and

E
{
[ζr]1[ζr]

2
2
}

as well as the general moments E
{
[ζt ]

j
1[ζt ]

l− j
2
}

for j ∈ ]0, l[ , l ∈ ]0,3[ . There are

well-known expressions for all moments of normal random variables. In particular,

E
{
[ζr]

3
1
}
= [µr]

3
1 +3[µr]1Σ̃

1,1
r ,

E
{
[ζr]1[ζr]

2
2
}
= [µr]1[µr]

2
2 +[µr]1Σ̃

2,2
r +2[µr]2Σ̃

1,2
r .

This implies that for the integral term in (2.69), we must evaluate the integrals of moments given

by
∫ t

s [µr]
3
1 dr,

∫ t
s [µr]1Σ̃

1,1
r dr,

∫ t
s [µr]1[µr]

2
2 dr,

∫ t
s [µr]1Σ̃

2,2
r dr, and

∫ t
s [µr]2Σ̃

1,2
r dr. We note that, as

our interest is in the solution of the original forward-time problem, it is sufficient to take s = 0.

Further, as our interest will be in periodic-plus-drift solutions, we take t = τ
.
= 2π/ω . With

assiduous effort, one eventually finds

E
{∫ τ

0
−V̂ 1(ζr)dr

}
=
∫

τ

0
mω

2
[
E
{
− [ζr]

3
1
}
+ 3

2E
{
[ζr]1[ζr]

2
2
}]

dr

= mω
2
{

3π d̂
ω

[z2
1 + iz1z2− z2

2]+ c1(τ)(1,2i)z+ c2(τ)
}
, (2.70)

where

c1(τ) = (3π/ω)
[
d̂2(1−3iπ)/2− h̄/(mω)

]
,

c2(τ) =
π d̂h̄
mω2 (18iπ−9/2)+ 3π d̂3

2ω

(
(1/3)−3iπ−6π

2).
From (2.70), we see that the expected value, E

∫
τ

0 −V̂ 1(ζr)dr has at most quadratic terms in z.

(In contrast, for typical t 6= τ , this integral is cubic in z.) Consequently, it may be of interest

to take terminal cost, φ 1 to be quadratic rather than the more general hypothesized cubic form.

Suppose we specifically take

φ
1(z) .

= 1
2zT Q1z, (2.71)
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where Q1 has components Q1
j,k. Noting that we are seeking a solution of form S̆1 = Ŝ0 + 1

δ̂
Ŝ1,

we find it helpful to now allow general d ∈ C with corresponding Λ̄0 given by (2.48). Also, note

from Theorem 4 that

µτ = z−
(
0, 3πd

mω

)T
, Σ̃

1,1
τ = Σ̃

1,1
τ = 0, Σ̃

2,2
τ = −6iπ h̄

mω
. (2.72)

Combining (2.69) and (2.70)–(2.72), we find

Ŝ1(τ,z) = 1
2zT (Q1 +Q∆)z+bT z+ρ

1(τ), (2.73)

where

Q∆ = 6πd

 1 i/2

i/2 −1

 , b =
[
k̃1
(
Q1 +Q∆

)
+ k̃2Q∆

]0

1

 , (2.74)

ρ
1(τ) = k̃1

[ k̃1
2 + ih̄

d

]
Q1

2,2 +
πdh̄
mω

(18iπ−9/2)+ 3πd3

2m2ω2

(
(1/3)−3iπ−6π

2), (2.75)

k̃1 =
−3πd
mω

, k̃2 =
ih̄
d + d

2mω
(3π− i). (2.76)

Recalling that Ŝ0(τ,z) = 1
2zT Q̄0z+(Λ̄0)T z+ρ0(τ), we find

S̆1(τ,z) = Ŝ0(τ,z)+ 1
δ̂

Ŝ1(τ,z)

= 1
2zT [Q̄0 + 1

δ̂

(
Q1 +Q∆

)]
z+
[
Λ̄

0 + 1
δ̂

b
]T z+ρ

0(τ)+ 1
δ̂

ρ
1(τ) (2.77)

In the S̆1 solution given by (2.77), the Q1 complex matrix coefficient, as well as complex

d coefficient are free. Other potentially free parameters include the k̄0 parameter in Ŝ0 and terms

that are not purely quadratic in the possible cubic φ 1.
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Chapter 3

Staticization and Iterated Staticization

3.1 Introduction

Staticization maps a function into its values at stationary points (i.e., critical points).

More specifically, the set-valued “stat” operator has as its range the set of such values, and if

there is a unique such value, then that value is the output of the (single-valued) stat operator.

This operator is obviously a generalization of the minimization and maximization operators

for appropriate classes of differentiable functionals, and is also valid for functions with range

other than the reals, including complex-valued functionals. The stat operator is at the heart of

a new approach to solution of two-point boundary value problems (TPBVPs) in conservative

dynamical systems [6, 7, 38, 40], as well as to solution of the Schrödinger equation [33, 35, 37].

A key component in this development is the theory that allows one to reorder stat operators under

certain conditions, and that theory is the focus of the effort here. In order to motivate the theory,

first let us indicate the application domain a bit further.

Recall that conservative dynamical systems propagate as stationary points of the action

functional over the possible paths of the system. This stationary-action formulation has recently

been found to be quite useful for generation of fundamental solutions to TPBVPs for conservative

dynamical systems, cf. [6, 7, 38, 40]. To obtain a sense of this application domain, consider a

finite-dimensional action-functional formulation of such a TPBVP. Let the path of the conserva-

tive system be denoted by ξr for r ∈ [0, t] with ξ0 = x̄, in which case the action functional, with
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an appended terminal cost, may take the form

J(t, x̄,u) .
=
∫ t

0
T (ur)−V (ξr)dr+φ(ξt), (3.1)

where ξ̇ = u, u ∈ U
.
= L2(0, t), T (·) denotes the kinetic energy associated to the momentum

(specifically taken to be T (v) .
= 1

2vT M v throughout, with M positive-definite and symmetric),

and V (·) denotes a potential energy field. If, for example, one takes φ(x) .
=−v̄T M x, a stationary-

action path satisfies the TPBVP with ξ0 = x̄ and ξ̇t = v̄; if one takes φ to be a min-plus delta

function centered at z, then a stationary-action path satisfies the TPBVP with ξ0 = x̄ and ξt = z,

cf. [7]. In the early work of Hamilton, it was formulated as the least-action principle [17], which

states that a conservative dynamical system follows the trajectory that minimizes the action

functional. However, this is typically only the case for relatively short-duration cases, cf. [14]

and the references therein. In such short-duration cases, optimization methods and semiconvex

duality are quite useful [6, 7, 40]. However, in order to extend to indefinitely long duration

problems, it becomes necessary to apply concepts of stationarity [38].

It is worth noting that if one defines statx∈X φ(x) to be the critical value of φ (defined

rigorously in Section 3.2.1), then a gravitational potential given as V (x) = −µ/|x| for x 6= 0

and constant µ > 0, has the representation V (x) =−(3
2)

3/2µ statα>0{α− α3|x|2
2 }, where we note

that the argument of the stat operator is polynomial, [18, 40]. The Schrödinger equation in the

context of a Coulomb potential may be similarly addressed. In that case, it is particularly helpful

to consider an extension of the space variable to a vector space over the complex field, say

x ∈ Cn rather than x ∈ Rn. More specifically, for x ∈ Cn, this representation takes a general form

V (x) =−(3
2)

3/2µ̂ statα∈A R{α− α3xT x
2 }, where A R .

={α = r[cos(θ)+ isin(θ)] ∈ C |r ≥ 0, θ ∈

(−π

2 , π

2 ]} [33]. In the simple one-dimensional case, the resulting function on C has a branch cut

along the negative imaginary axis, and this generalizes to higher-dimensional cases in the natural

way.

Although stationarity-based representations for gravitational and Coulomb potentials are
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inside the integral in (3.1), they may be moved outside through the introduction of α-valued

processes, cf. [18, 40]. In particular, not only does one seek the stationary path for action J,

but the action functional itself can be given as a stationary value of an integral of a polynomial,

leading to an iterated-stat problem formulation for such TPBVPs. This may be exploited in the

solution of TPBVPs in such systems, cf. [18, 38, 40], which will be discussed further in Section

3.5.

It has also been demonstrated that this stationary-action approach may be applied to

TPBVPs for infinite-dimensional conservative systems described by classes of lossless wave

equations, see for example [6, 7]. There, stat is used in the construction of fundamental solution

groups for these wave equations by appealing to stationarity of action on longer horizons.

Lastly, it has recently been demonstrated that stationarity may be employed to obtain a

Feynman-Kac type of representation for solutions of the Schrödinger initial value problem (IVP)

for certain classes of initial conditions and potentials [37]. As with the conservative-system cases

above, these representations are valid for indefinitely long duration problems, whereas with only

the minimization operation, such representations are valid only on time intervals such that the

action remains convex, which is always a bounded duration and potentially zero.

In all of these examples, one obtains the stationary value of an action functional where

the action functional itself takes the form of a stationary value of a functional that is quadratic

in the momentum (the u· in put in (3.1)) and cubic in the newly introduced potential energy

parameterization variable (a time-dependent form of the α parameter above). That is, the overall

stationary value is obtained from iterated staticization operations, where the outer stat is over

a variable in which the functional is quadratic. Thus, if one can invert the order of the of the

stat operations, then the inner stat operation results in a functional that is obtained as a solution

of a differential Riccati equation (DRE). (It should be noted that this DRE must typically be

propagated past escape times, where this propagation may be efficiently performed through the

use of what has been termed “stat duality”, cf. [34].) Hence, after inversion of the order of

the iterated stat operations, the problem may be reduced to a single stat operation such that the
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argument takes the form of a linear functional operating on a set of DRE solutions. Consequently,

an issue of fundamental importance regards conditions under which one may invert the order of

stat operations in an iterated staticization.

In Section 3.2, the stat operator will be rigorously defined, and a general problem class

along with some corresponding notation will be indicated. Then, in Section 3.3, a somewhat

general condition will be indicated, and it will shown that one may invert the order of staticization

operations under that condition. This will be demonstrated by obtaining an equivalence between

iterated staticization and full staticization over both variables together. Section 3.4 will present

several classes of problems for which the general condition of Section 3.3 holds. Finally, in

Section 3.5, a stationary-action application in astrodynamics will be discussed.

3.2 Problem and Stationarity Definitions

Before the issue to be studied can be properly expressed, it is necessary to define

stationarity and the stat operator.

3.2.1 Stationarity definitions

As noted above, the motivation for this effort is the computation and propagation of

stationary points of payoff functionals, which is unusual in comparison to the standard classes

of problems in optimization (although one should note for example, [8]). In analogy with the

language for minimization and maximization, we will refer to the search for stationary points

as “staticization”, with these points being statica, in analogy with minima/maxima, and a single

such point being a staticum in analogy with minimum/maximum. One might note that here that

the term staticization is being derived from a Latin root, staticus (presumably originating from

the Greek, statikós), in analogy with the Latin root, maximus, of “maximization”. We note that

Ekeland [8] employed the term “extremization” for what is largely the same notion that is being

referred to here as staticization, but with a very different focus. We make the following definitions.

Let F denote either the real or complex field. Suppose U is a normed vector space (over F )
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with A ⊆U , and suppose G : A →F . We say ū ∈ argstatu∈A G(u) .
= argstat{G(u) |u ∈A }

if ū ∈A and either

limsup
u→ū,u∈A \{ū}

|G(u)−G(ū)|
|u− ū|

= 0, (3.2)

or there exists δ > 0 such that A ∩Bδ (ū) = {ū} (where Bδ (ū) denotes the ball of radius δ

around ū). If argstat{G(u) |u ∈A } 6= /0, we define the possibly set-valued stats operation by

stats
u∈A

G(u) .
= stats{G(u) |u ∈A } .

=
{

G(ū)
∣∣ ū ∈ argstat{G(u) |u ∈A }

}
. (3.3)

If argstat{G(u) |u ∈ A } = /0, then statsu∈A G(u) is undefined. Where applicable, we are also

interested in a single-valued stat operation (note the absence of superscript s). In particular, if

there exists a∈F such that statsu∈A G(u) = {a}, then statu∈A G(u) .
= a; otherwise, statu∈A G(u)

is undefined. At times, we may abuse notation by writing ū = argstat{G(u) |u ∈A } in the event

that the argstat is the single point {ū}.

In the case where U is a Banach space and A ⊆ U is an open set, G : A →F is

Fréchet differentiable at ū ∈A with continuous, linear DG(ū) ∈L (U ;F ) if

lim
w→0, ū+w∈A \{ū}

|G(ū+w)−G(ū)− [DG(ū)]w|
|w|

= 0. (3.4)

The following is immediate from the above definitions.

Lemma 10. Suppose U is a Banach space, with open set A ⊆ U , and that G is Fréchet

differentiable at ū ∈A . Then, ū ∈ argstat{G(y) |y ∈A } if and only if DG(ū) = 0.

3.2.2 Problem definition

Throughout, let U ,V be Banach spaces with norm on U denoted by | · |U , and similarly

for V . When U is also Hilbert, let the inner product be denoted by 〈·, ·〉U , and similarly for V .

Let the resulting norms and inner products on U ×V be denoted by | · |U ×V and 〈·, ·〉U ×V . Let

A ⊆U and B ⊆ V be open. Throughout, we assume
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G ∈C2(A ×B;F ). (A.1)

Then, for each u∈A , let g1,u ∈C2(B;F ) be given by g1,u(v) .
= G(u,v) for all v∈B. Similarly,

for each v ∈B, let g2,v ∈C2(A ;F ) be given by g2,v(u) .
= G(u,v) for all u ∈A . Further, let

AG
.
=
{

u ∈A
∣∣ stat

v∈B
g1,u(v) exists

}
and BG

.
=
{

v ∈B
∣∣ stat

u∈A
g2,v(u) exists

}
. (3.5)

Given u∈AG, let M 1(u) .
= argstatv∈B g1,u(v), and given v∈BG, let M 2(v) .

= argstatu∈A g2,v(u).

Next, define Ḡ1 : AG→F and Ḡ2 : BG→F by

Ḡ1(u) .
= stat

v∈B
g1,u(v) ∀u ∈AG and Ḡ2(v) .

= stat
u∈A

g2,v(u) ∀v ∈BG.

Finally, let

ˆAG
.
= argstat

u∈AG

Ḡ1(u) and B̂G
.
= argstat

v∈BG

Ḡ2(v).

We will discuss conditions under which

stat
u∈AG

Ḡ1(u) = stat
(u,v)∈A×B

G(u,v) = stat
v∈BG

Ḡ2(v). (3.6)

We will generally be concerned only with the left-hand equality in (3.6); obviously the right-hand

equality would be obtained analogously. We refer to the left-hand object in (3.6) as iterated stat

operations, while the center object will be referred to as a full stat operation. Although in some

results, the existence of both the iterated and full stat operations are obtained, many of the results

will assume the existence of one or both of these objects. We list the two potential assumptions

below. In each result to follow, we will indicate when one or both of these is utilized. The

full-stat assumption is as follows.

Assume stat(u,v)∈A×BG(u,v) exists (and let (ū, v̄) ∈ argstat(u,v)∈A×B G(u,v)).
(A.2 f )

44



Note that under Assumption (A.2 f ),

ū ∈AG, v̄ ∈BG, v̄ ∈M 1(ū), and ū ∈M 2(v̄). (3.7)

The iterated-stat assumption is as follows.

Assume statu∈AGḠ1(u) exists (and let ū ∈ ˆAG).
(A.2i)

Note that under Assumption (A.2i),

∃ v̄ ∈M 1(ū), and stat
u∈AG

Ḡ1(u) = g1,ū(v̄) = G(ū, v̄). (3.8)

We will first obtain (3.6) under some general assumptions. After that, we will demonstrate

that these assumptions are satisfied under certain other sets of assumptions, where the latter sets

describe more commonly noted classes of functions (specifically, quadratic, semi-quadratic and

Morse functions). Again, we mainly address only the left-hand equality of (3.6); the right-hand

equality is handled similarly.

3.3 The General Case

Given C ⊆ V and v̂ ∈ V , we let d(v̂,C )
.
= infv∈C |v− v̂|, and use this distance notation

more generally throughout. In addition to (A.1), we assume the following throughout this section.
There exist δ = δ (ū, v̄)> 0 and K =K(ū, v̄)<∞ such that d(v̄,M 1(u))≤

K |ū−u| for all u ∈AG∩Bδ (ū).
(A.3)

We note that (A.3) is trivially satisfied in the case that there exists δ > 0 such that Bδ (ū)∩AG = /0.

It may be helpful to also note that (A.3) is satisfied under the possibly more heuristically

appealing, following assumption.
For every ũ ∈ AG and every ṽ ∈M 1(ũ), there exist δ = δ (ũ, ṽ) > 0

and K = K(ũ, ṽ)< ∞ such that d(ṽ,M 1(u))≤ K |ũ−u| for all u ∈AG∩

Bδ (ũ).
(A.3′)
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Lemma 11. Assume (A.2 f ). Then, ū ∈ ˆAG and G(ū, v̄) ∈ statsu∈AG
Ḡ1(u).

Proof. Let (ū, v̄) be as in (A.2 f ). Let R .
= d
(
(ū, v̄),(A ×B)c). By Assumption (A.3), there

exist δ ∈ (0,R/2) and K < ∞ such that for all u ∈ AG∩Bδ (ū) and all ε ∈ (0,1), there exists

v ∈M 1(u) such that

|v− v̄| ≤ (K + ε)|u− ū| ≤ (K + ε)δ . (3.9)

Let ũ ∈AG∩Bδ/(K+1)(ū). By (3.7),

|stat
v∈B

g1,ũ(v)− stat
v∈B

g1,ū(v)|= |stat
v∈B

g1,ũ(v)−G(ū, v̄)|,

and by (3.9), there exists ṽ ∈ Bδ (v̄) such that this is

= |G(ũ, ṽ)−G(ū, v̄)|. (3.10)

Let f ∈C∞
(
(−3/2,3/2);A ×B

)
be given by f (λ ) =

(
ū+λ (ũ− ū), v̄+λ (ṽ− v̄)

)
for

all λ ∈ (−3/2,3/2). Define W 0(λ ) = [G ◦ f ](λ ) for all λ ∈ (−3/2,3/2), and note that by

Assumption (A.1) and standard results, W 0 ∈ C2((−3/2,3/2);F
)
. Similarly, let W 1(λ ) =

[(Gu,Gv) ◦ f ](λ ) =
(
Gu( f (λ )),Gv( f (λ ))

)
. By Assumption (A.1) and standard results, W 1 ∈

C1((−3/2,3/2);U ×V
)
. Then, by the Mean Value Theorem (cf. [2, Th. 12.6]), there exists

λ0 ∈ (0,1) such that

|G(ũ, ṽ)−G(ū, v̄)|= |W 0(1)−W 0(0)| ≤
∣∣∣ dG
d(u,v)

( f (λ0))
∣∣∣ ∣∣∣d f

dλ
(λ0)

∣∣∣
=
∣∣(Gu(u0,v0),Gv(u0,v0)

)∣∣ ∣∣(ũ− ū, ṽ− v̄)
∣∣,

where (u0,v0)
.
= f (λ0), and which by (3.9),

≤
∣∣(Gu(u0,v0),Gv(u0,v0)

)∣∣√1+(K +1)2|ũ− ū|. (3.11)

Similarly, there exists λ1 ∈ (0,λ0) such that

∣∣(Gu(u0,v0),Gv(u0,v0)
)
−
(
Gu(ū, v̄),Gv(ū, v̄)

)∣∣= |W 1(λ0)−W 1(0)|
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≤
∣∣∣ d2G

d(u,v)2 ( f (λ1))
∣∣∣ ∣∣∣d f

dλ
(λ1)

∣∣∣ |λ1| ≤
∣∣∣ d2G

d(u,v)2 (u1,v1)
∣∣∣ ∣∣(u1− ū,v1− v̄)

∣∣,
where (u1,v1)

.
= f (λ1), and this is

≤
∣∣∣ d2G

d(u,v)2 ( f (λ1))
∣∣∣√1+(K +1)2|ũ− ū|.

Recalling (ū, v̄) ∈ argstat(u,v)∈A×B G(u,v), this implies

∣∣(Gu(u0,v0),Gv(u0,v0)
)∣∣≤ ∣∣∣ d2G

d(u,v)2 ( f (λ1))
∣∣∣√1+(K +1)2|ũ− ū|. (3.12)

Combining (3.11) and (3.12) yields

|G(ũ, ṽ)−G(ū, v̄)| ≤
∣∣∣ d2G

d(u,v)2 ( f (λ1))
∣∣∣[1+(K +1)2] |ũ− ū|2.

Let K1
.
=
∣∣ d2G

d(u,v)2 (ū, v̄)
∣∣. By (A.1), there exists δ̂ ∈ (0,δ/(K + 1)) such that for all (u,v) ∈

B
δ̂
(ū, v̄),

∣∣ d2G
d(u,v)2 (u,v)

∣∣≤ K1 +1. Hence, there exists C̄ < ∞ such that

|G(ũ, ṽ)−G(ū, v̄)| ≤ C̄|ũ− ū|2 ∀ ũ ∈AG∩B
δ̂/(K1+1)(ū). (3.13)

Combining (3.10) and (3.13) one has |statv∈B g1,ũ(v)− statv∈B g1,ū(v)| ≤ C̄|ũ− ū|2, which upon

recalling that ũ ∈AG∩B
δ̂/(K+1)(ū) was arbitrary, yields the assertions.

Theorem 6. Assume (A.2 f ). Then

stat
u∈AG

Ḡ1(u) = G(ū, v̄) = stat
(u,v)∈A×B

G(u,v).

Proof. The assertions follow directly from the assumption, (A.2 f ) and Lemma 11.

3.4 Some Specific Cases

We examine several classes of functionals that fit within the general class above.
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3.4.1 The Quadratic Case

Throughout this section, we take A = U and B = V , where U ,V are Hilbert. Let

G(u,v) = c
2 + 〈w,u〉U + 〈y,v〉V + 1

2〈B̄1u,u〉U + 〈B̄2v,u〉U + 1
2〈B̄3v,v〉V

= c
2 + 〈w,u〉U + 〈y,v〉V + 1

2〈B̄1u,u〉U + 〈B̄′2u,v〉V + 1
2〈B̄3v,v〉V , (3.14)

for all u ∈ U and v ∈ V , where B̄1 ∈ L (U ;U ), B̄2 ∈ L (V ;U ), B̄3 ∈ L (V ;V ), w ∈ U ,

y ∈ V and c ∈F , where L (·, ·) generically denotes a space of bounded linear operators, and

B̄1, B̄3 are self-adjoint and closed. We present results under both the cases of (A.2 f ) and (A.2i).

When the full staticization is known to exist

We suppose (A.2 f ). This subcase is fully covered in [34], and hence we will mainly

only indicate an additional approach. More specifically, in [34], it is directly shown that under

Assumption (A.2 f ), in the case of (3.14), we have the following.

Theorem 7. Assume (A.2 f ). Then, statu∈AG Ḡ1(u) exists, and

stat
u∈AG

Ḡ1(u) = G(ū, v̄) = stat
(u,v)∈A×B

G(u,v). (3.15)

Here however, we show that Assumption (A.3) is satisfied for G given by (3.14), and

hence that assertions (3.15) of Theorem 7 follow as a special case of Theorem 6. We begin by

noting the following, which follows directly from (3.14) and Lemma 10.

Lemma 12. Let û ∈A . Then v̂ ∈M 1(û) if and only if B̄′2û+ B̄3v̂+ y = 0.

We now indicate the key result of this section.

Proposition 1. Assumption (A.3) is satisfied.

Proof. We suppose AG 6= {ū}; otherwise the result is trivial. Let û ∈ AG \ {ū}. By Lemma

12, v̂ ∈M 1(û) if and only if B̄′2û+ B̄3v̂+ y = 0. However, by (3.7), v̄ ∈M 1(ū), and hence by
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Lemma 12, B̄′2ū+ B̄3v̄+ y = 0. Combining these two inequalities, we see that v̂ ∈M 1(û) if

and only if B̄′2(û− ū)+ B̄3(v̂− v̄) = 0. We take v̂ .
= v̄− B̄#

3B̄′2(û− ū), where the # superscript

indicates the Moore-Penrose pseudo-inverse, where existence follows by the closedness of B̄3,

cf. [3, 53]. Then, v̂ ∈M 1(û) and |v̂− v̄| ≤ |B̄#
3||B̄′2||û− ū|, where the induced norms on the

operators are employed, which yields the desired assertion.

By Proposition 1, we may apply Theorem 6 to obtain the leftmost assertion of (3.15) in

Theorem 7, if statu∈AG Ḡ1(u) exists. The existence of statu∈AG Ḡ1(u) given (A.2 f ) is obtained in

[34], and the proof is not repeated here.

When the iterated staticization is known to exist

We suppose (A.2i). We will find that stat(u,v)∈A×B G(u,v) exists, and obtain the equiva-

lence between full and iterated staticization. We begin with a lemma (which is similar to Lemma

10 of [34]).

Lemma 13. Given any ũ ∈AG, M 1(ũ) is an affine subspace, and further, G(ũ, ·) is constant on

M 1(ũ).

Proof. Let ũ ∈AG. By Lemma 12, v ∈M 1(ũ) if and only if B̄3v =−(B̄′2ũ+ y), which yields

the first assertion. Suppose ṽ, v̂ ∈M 1(ũ). Then, using (3.8),

G(ũ, ṽ)−G(ũ, v̂) = 〈B̄′2ũ+ y, ṽ− v̂〉V + 1
2〈B̄3ṽ, ṽ〉V − 1

2〈B̄3v̂, v̂〉V ,

= 〈−1
2(B̄3ṽ+ B̄3v̂), ṽ− v̂〉V + 1

2〈B̄3ṽ, ṽ〉V − 1
2〈B̄3v̂, v̂〉V = 0.

Theorem 8. Assume (A.2i), and let v̄ be as given in (3.8). Then, stat(u,v)∈A×B G(u,v) exists,

and stat(u,v)∈U ×V G(u,v) = G(ū, v̄) = statu∈AG Ḡ1(u).
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Proof. Assume (A.2i), and let v̄ be as given in (3.8). First, note that the assertion that G(ū, v̄) =

statu∈AG Ḡ1(u) will follow from the other assertions and (3.8). By Lemma 12, v ∈M 1(ū) if and

only if B̄′2ū+ B̄3v+ y = 0. For u ∈AG, let

v̆(u) .
= v̄− B̄#

3
[
B̄′2u+ y− (B̄′2ū+ y)

]
, (3.16)

and note that

v̆(ū) = v̄. (3.17)

Let ṽ .
=−B̄#

3[B̄
′
2ū+ y], and note that as v̄ and ṽ are both in M 1(ū), by Lemma 12,

0 = B̄3[v̄− ṽ] = B̄3
[
v̄+ B̄#

3(B̄
′
2ū+ y)

]
. (3.18)

Then, using (3.16) and (3.18), we see that for u ∈AG,

B̄3v̆(u)+ B̄′2u+ y = B̄3
[
v̄− B̄#

3(B̄
′
2u− B̄′2ū)

]
+ B̄′2u+ y

= B̄3
[
− B̄#

3(B̄
′
2u+ y)

]
+ B̄′2u+ y,

which by definition of the pseudo-inverse and the fact that B̄′2ū+ y ∈ Range(B̄3) for u ∈AG,

= 0.

Hence, v̆(u) ∈M 1(u) ∀u ∈AG, and consequently,

Ḡ1(u) = G(u, v̆(u)) ∀u ∈AG. (3.19)

Then, by (A.2i) and the choice of ū,

0 =
dḠ1

du
(ū),

which by (3.16), (3.19), (A.1) and the chain rule,
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= Gu(ū, v̆(ū))+Gv(ū, v̆(ū))
dv̆
du

(ū),

which by (3.17) and our choice of v̄,

= Gu(ū, v̄)+Gv(ū, v̄)
dv̆
du

(ū) = Gu(ū, v̄).

From this and the choice of v̄, we see that

(ū, v̄) ∈ argstat
(u,v)∈A×B

G(u,v) and G(ū, v̄) ∈ stats
(u,v)∈A×B

G(u,v). (3.20)

Now suppose there exists (û, v̂) ∈ argstat(u,v)∈A×B G(u,v)\{(ū, v̄)}. This implies

Gu(û, v̂) = 0, and Gv(û, v̂) = 0, (3.21)

and consequently,

v̂ ∈M 1(û), and Ḡ1(û) = G(û, v̂).

Let

v̆ ′(u) .
= v̂− B̄#

3
[
B̄′2u+ y− (B̄′2û+ y)

]
∀u ∈AG, (3.22)

and note that

v̆ ′(û) = v̂. (3.23)

Let ˆ̂v .
=−B̄#

3(B̄
′
2û+ y), and note that v̂, ˆ̂v ∈M 1(û). Similar to the above, we see that

0 = B̄3(v̂− ˆ̂v) = B̄3
[
v̂+ B̄#

3(B̄
′
2û+ y)

]
. (3.24)

Then, again similar to the above, using (3.24) and the definition of the pseudo-inverse and
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B̄′2ū+ y ∈ Range(B̄3), we see that

B̄3v̆ ′(u)+ B̄′2u+ y = B̄3
[
v̂− B̄#

3
(
B̄′2u+ y− (B̄′2û+ y)

)]
+ B̄′2u+ y

= B̄3
[
v̂− B̄#

3(B̄
′
2u+ y)

]
+ B̄′2u+ y = 0,

which implies that v̆ ′(u) ∈M 1(u) for all u ∈AG. Hence,

Ḡ1(u) = G(u, v̆ ′(u)) ∀u ∈AG. (3.25)

By (3.22), (3.25), (A.1) and the chain rule,

dḠ1

du
(û) = Gu(û, v̆ ′(û))+Gv(û, v̆ ′(û))

dv̆ ′

du
(û),

which by (3.21) and (3.23),

= Gu(û, v̂)+Gv(û, v̂)
dv̆ ′

du
(û) = 0,

which implies that û ∈ ˆAG. Using this, (3.20) and (A.2i), we see that G(û, v̂) = G(ū, v̄). As

(û, v̂) ∈ argstat(u,v)∈A×B G(u,v)\{(ū, v̄)} was arbitrary, we have the desired result.

3.4.2 The Semi-Quadratic Case

Throughout this section, we take A ⊆U and B = V , with V being Hilbert. Let

G(u,v) .
= f1(u)+ 〈 f2(u),v〉V + 1

2〈B̄3(u)v,v〉V , (3.26)

for all u ∈A and v ∈ V , where f1 ∈C2(A ;F ), f2 ∈C2(A ;V ) and B̄3 ∈C2(A ;L (V ,V )),

and B̄3(u) is self-adjoint and closed for all u ∈A . For each u ∈A , let B̄#
3(u)

.
= [B̄3(u)]# denote

the Moore-Penrose pseudo-inverse of B̄3(u). Assume that there exists a constant D > 0 such that

|B̄#
3(u)| ≤ D for all u ∈AG. Similar to Lemma 12, the next lemma follows directly from (3.26)

and Lemma 10.
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Lemma 14. Let û ∈A . Then v̂ ∈M 1(û) if and only if f2(û)+ B̄3(û)v̂ = 0.

When the full staticization is known to exist

Lemma 15. Assume (A.2 f ). Then assumption (A.3) is satisfied.

Proof. The result is trivial for AG = {ū}. Suppose AG 6= {ū}. Choose any δ > 0 such that

AG ∩ (Bδ (ū)\{ū}) 6= /0. Let û ∈ [AG ∩Bδ (ū)] \ {ū}. Let v̂ = v̄− B̄#
3(û) f2(û)− B̄#

3(û)B̄3(û)v̄.

Note that as f2(û) ∈ Range(B̄3(û)),

B̄3(û)v̂+ f2(û) = B̄3(û)[v̄− B̄#
3(û) f2(û)− B̄#

3(û)B̄3(û)v̄]+ f2(û)

= B̄3(û)v̄− f2(û)− B̄3(û)v̄+ f2(û) = 0.

Therefore, v̂ ∈M 1(û) by Lemma 14. We have

|v̂− v̄|=
∣∣B̄#

3(û) f2(û)+ B̄#
3(û)B̄3(û)v̄

∣∣,
and noting that by Lemma 14, B̄3(ū)v̄+ f2(ū) = 0, this is

=
∣∣B̄#

3(û)[ f2(û)− f2(ū)− B̄3(ū)v̄+ B̄3(û)v̄]
∣∣

≤ |B̄#
3(ū)| | f2(û)− f2(ū)+(B̄3(û)− B̄(ū))v̄|,

and letting K f = maxλ∈[0,1]
∣∣d f2

du (λ û+(1−λ )ū)
∣∣ and KB = maxλ∈[0,1]

∣∣dB̄3
du (λ û+(1−λ )ū)

∣∣, this

is

≤ D
[
K f |û− ū|+KB|v̄||û− ū|

]
,

which yields (A.3).

Theorem 9. Assume (A.2 f ). Then statu∈AG Ḡ1(u) exists, and

stat
u∈AG

Ḡ1(u) = G(ū, v̄) = stat
(u,v)∈A×B

G(u,v).

Proof. This follows immediately from Lemma 15 and Theorem 6.
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When the iterated staticization is known to exist

The case where the iterated staticization is known to exist appears to require a substantial

additional assumption.

Theorem 10. Assume (A.2i). Also assume that f2(u) ∈ Range[B̄3(u)] for all u ∈ AG. Then

stat(u,v)∈A×B G(u,v) exists, and

stat
u∈AG

Ḡ1(u) = G(ū, v̄) = stat
(u,v)∈A×B

G(u,v).

Proof. Note that by assumption and Lemma 14, AG = A . Let ū ∈ ˆAG, and let v̄ be as in (3.8),

which implies

Gv(ū, v̄) = 0. (3.27)

Suppose Gu(ū, v̄) 6= 0. Then there exists ε > 0, sequence {un} with elements un ∈A \{ū} and

un→ ū, and ñ = ñ(ε) ∈ N such that

|G(uñ, v̄)−G(ū, v̄)|> ε|un− ū| ∀n≥ ñ. (3.28)

Let

vn
.
= v̄− B̄#

3(un)[ f2(un)+ B̄3(un)v̄] ∀n ∈ N. (3.29)

Then, using Lemma 14,

|vn− v̄| ≤ |B̄#
3(un)|

∣∣ f2(un)+ B̄3(un)v̄− f2(ū)− B̄3(ū)v̄
∣∣,

which by assumption,

≤ D
(
| f2(un)− f2(ū)|+ |B̄3(un)− B̄3(ū)||v̄|

)
. (3.30)
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Now, by the Mean value Theorem (cf. [2]), for each n ∈ N, there exist λn, λ̂n ∈ [0,1] such that

| f2(un)− f2(ū)| ≤
∣∣∣d f2

du
(λnun +(1−λn)ū)

∣∣∣|un− ū|,

|B̄3(un)− B̄3(ū)| ≤
∣∣∣dB̄3

du
(λnun +(1−λn)ū)

∣∣∣|un− ū|,

and hence by the smoothness of f2, B̄3 and (3.30), there exist K < ∞ and n̂ ∈ N such that

|vn− v̄| ≤ DK(1+ |v̄|)|un− ū| ∀n≥ n̂. (3.31)

Also, using (3.29),

B̄3(un)vn + f2(un) = B̄3(un)
[
v̄− B̄#

3(un) f2(un)− B̄#
3(un)B̄3(un)v̄

]
+ f2(un),

which by assumption and the properties of the pseudo-inverse,

= B̄3(un)v̄− f2(un)− B̄3(un)v̄+ f2(un) = 0, (3.32)

and hence, vn ∈M1(un) for all n ∈ N. Hence, by (A.2i), there exists n̄ = n̄(ε) such that for all

n≥ n̄,

|G(un,vn)−G(ū, v̄)|= |Ḡ1(un)− Ḡ1(ū)|< ε

2
|un− ū|,

which implies

|G(un,vn)−G(un, v̄)+G(un, v̄)−G(ū, v̄)|< ε

2
|un− ū|,

and hence

|G(un, v̄)−G(ū, v̄)|< ε

2
|un− ū|+ |G(un,vn)−G(un, v̄)| ∀n≥ n̄. (3.33)

Now by (3.26),

G(un, v̄)−G(un,vn) = 〈 f2(un), v̄− vn〉V + 1
2〈B̄3(un)v̄, v̄〉V − 1

2〈B̄3(un)vn,vn〉V ,
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which by (3.29),

= 〈 f2(un), B̄#
3(un)[ f2(un)+ B̄3(un)v̄]〉V + 1

2〈B̄3(un)v̄, v̄〉V − 1
2〈B̄3(un)vn,vn〉V ,

and by Lemma 14 and the self-adjointness of B̄3, this is,

= 〈−B̄3(un)vn, B̄#
3(un)B̄3(un)(v̄− vn)]〉V + 1

2〈B̄3(un)v̄, v̄〉V − 1
2〈B̄3(un)vn,vn〉V ,

= 〈B̄3(un)(v̄− vn),(v̄− vn)〉V . (3.34)

Applying (3.31) in (3.34), we see that there exists K1 < ∞ such that |G(un, v̄)−G(un,vn)| ≤

K1|un− ū|2 for all n≥ n̂, and consequently, there exists n̄1 = n̄1(ε) ∈ (n̂,∞) such that

|G(un, v̄)−G(un,vn)|<
ε

2
|un− ū| ∀n≥ n̄1. (3.35)

By (3.33) and (3.35),

|G(un, v̄)−G(ū, v̄)|< ε|un− ū| ∀n≥ n̄∧ n̄1. (3.36)

However, (3.36) contradicts (3.28), and consequently,

Gu(ū, v̄) = 0. (3.37)

By (3.27) and (3.37),

(ū, v̄) ∈ argstat
(u,v)∈A×B

G(u,v) and G(ū, v̄) ∈ stats
(u,v)∈A×B

G(u,v).

Now suppose there exists (û, v̂) ∈ argstat(u,v)∈A×B G(u,v)\{(ū, v̄)}. This implies

Gu(û, v̂) = 0, Gv(û, v̂) = 0, v̂ ∈M 1(û), and Ḡ1(û) = G(û, v̂). (3.38)
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Similar to (3.29), let

v̆(u) .
= v̂− B̄#

3(u) f2(u)− B̄#
3(u)B̄3(u)v̂ ∀u ∈A ,

and note that v̆(û) = v̂. Also, similar to (3.32), we see that

B̄3(u)v̆(u)+ f2(u) = B̄3(u)v̂− f2(u)− B̄3(u)v̂+ f2(u) = 0,

which implies that v̆(u) ∈M 1(u) for all u ∈A . Hence, Ḡ1(u) = G(u, v̆(u)) for all u ∈A . Note

that

|Ḡ1(u)− Ḡ1(û)|= |G(u, v̆(u))−G(û, v̂)|

≤ |G(u, v̆(u))−G(u, v̂)|+ |G(u, v̂)−G(û, v̂)|,

and note that by (3.38), given ε > 0, there exists δ̂1 = δ̂1(ε)> 0 such that for all |u− û|< δ̂1,

≤ ε

2
|u− û|+ |G(u, v̆(u))−G(u, v̂)|. (3.39)

Also, similar to the estimate (3.35), we find that there exists δ̂2 = δ̂2(ε)> 0 such that

|G(u, v̆(u))−G(u, v̂)|< ε

2
|u− û| ∀ |u− û|< δ̂2.

Using this in (3.39), we see that

|Ḡ1(u)− Ḡ1(û)|< ε|u− û| ∀ |u− û|< δ̂1∧ δ̂2. (3.40)

Hence, dḠ1

du (û) = 0, which implies that û ∈ ˆAG. Using this and (A.2i), we see that G(û, v̂) =

G(ū, v̄). As (û, v̂) ∈ argstat(u,v)∈A×B G(u,v)\{(ū, v̄)} was arbitrary, we have the desired result.
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3.4.3 The Uniformly Locally Morse Case

Throughout this section, we will assume that G is uniformly locally Morse in v in the

following sense. We assume that for all (û, v̂) ∈ A ×B such that Gv(û, v̂) = 0, there exist

ε̃ = ε̃(û, v̂) > 0 and K̃ = K̃(û, v̂) < ∞ such that Gvv(u,v) is invertible with
∣∣[Gvv(u,v)]−1

∣∣ ≤ K̃

for all (u,v) ∈ Bε̃(û, v̂). We also assume that Guv(u,v) is bounded on bounded sets. Under these

assumptions and (A.1), we will find that Assumption (A.3′) holds (and consequently, (A.3) ).

Hence, one may apply Theorem 6. We present results under both the cases of (A.2 f ) and (A.2i).

When the full staticization is known to exist

We suppose (A.2 f ). We will find that statu∈AG Ḡ1(u) exists, and obtain the equivalence

between full and iterated staticization.

Lemma 16. Assume (A.2 f ). There exist ε,δ > 0 and v̆ ∈ C1(Bε(ū);B ∩ Bδ (v̄)) such that

Bε(ū)⊆AG, v̆(ū) = v̄, Gv(u, v̆(u)) = 0 and dv̆
du(u) =−

[
Gvv(u,v)

∣∣
(u,v̆(u))

]−1Guv(u,v)
∣∣
(u,v̆(u)) for

all u ∈ Bε(ū).

Proof. The first two assertions are simply the implicit mapping theorem, cf. [28]. The final

assertion then follows from an application of the chain rule, that is, noting that Gv(u, v̆(u)) = 0

on Bε(ū),

0 =
dGv(u, v̆(u))

du
= Guv(u,v)

∣∣
(u,v̆(u))+Gvv(u,v)

∣∣
(u,v̆(u))

dv̆
du

(u) ∀u ∈ Bε(ū).

By Lemma 16 and the definition of AG,

Ḡ1(u) = stat
v∈B

g1,u(v) = G(u, v̆(u)) ∀u ∈ Bε(ū)⊆AG. (3.41)
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Then, by (3.41), the chain rule, (A.1) and Lemma 16,

Ḡ1(·) ∈C1(Bε(ū);F ). (3.42)

Lemma 17. Assume (A.2 f ). Then, there exists K < ∞ and δ ∈ (0,ε) such that |v̆(u)− v̆(ū)|=

|v̆(u)− v̄| ≤ K|u− ū| for all u ∈ Bδ (ū)⊆AG.

Proof. By Lemma 16, dv̆
du(·) is continuous on Bε(ū) ⊆ AG. Further, by the final assertion of

Lemma 16, the uniformly locally Morse assumption and the boundedness assumption of the

lemma, ∣∣∣dv̆
du

(u)
∣∣∣= ∣∣[Gvv(u,v)

∣∣∣
(u,v̆(u))

]−1∣∣ ∣∣Guv(u,v)
∣∣∣
(u,v̆(u))

∣∣≤ K̃K̂,

where K̂ is a bound on
∣∣Guv(u, v̆(u))

∣∣∣
(u,v̆(u))

∣∣ over Bδ (ū). Hence, by an application of the mean

value theorem, we obtain the asserted bound.

Note that Lemma 17 implies that Assumption (A.3) is satisfied, and hence one may

apply Theorem 6, which implies that the equivalence of stat and iterated stat holds under the

assumption of existence of the latter.

Lemma 18. Assume (A.2 f ). Then, statu∈AG Ḡ1(u) exists.

Proof. Note first that by (3.41), (3.42) and the chain rule,

d
du

Ḡ1(u)
∣∣
u=ū =

d
du

G(u, v̆(u))
∣∣
u=ū = Gu(ū, v̆(ū))+Gv(ū, v̆(ū))

dv̆
du

(ū),

which by (A.2 f ) and Lemma 16,

= 0.

Consequently,

ū ∈ argstat
u∈AG

Ḡ1(u) and Ḡ1(ū) ∈ stats
u∈AG

Ḡ1(u). (3.43)
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Suppose û 6= ū is such that

û ∈ argstat
u∈AG

Ḡ1(u). (3.44)

Then, by (A.2 f ), there exists v̂ ∈M 1(û). Recalling that G is uniformly locally Morse in

v, and applying the implicit mapping theorem again, we find that there exists ε ′ > 0 and

v̆ ′ ∈C1(Bε ′(û);B) such that Bε ′(û)⊆AG and

v̆ ′(û) = v̂ and Gv(u, v̆ ′(u)) = 0 ∀u ∈ Bε ′(û)⊆AG. (3.45)

Then, by (3.44), another application of the chain rule and (3.45),

0 =
d
du

Ḡ1(u)
∣∣
u=û = Gu(û, v̆ ′(û))+Gv(û, v̆ ′(û))

dv̆ ′

du
(û) = Gu(û, v̂). (3.46)

By (3.45) and (3.46), (û, v̂) ∈ argstat(u,v)∈A×B G(u,v), and hence by (A.2 f ),

G(û, v̂) = G(ū, v̄). (3.47)

Recalling from (3.7) that v̂ ∈ argstatv∈B g1,û(v), and using (3.47), we have

Ḡ1(û) = g1,û(v̂) = G(û, v̂) = G(ū, v̄).

As û ∈ argstatu∈AG
Ḡ1(u)\{ū} was arbitrary, we have the desired result.

Theorem 11. Assume (A.2 f ). Then, statu∈AG Ḡ1(u) exists, and

stat
u∈AG

Ḡ1(u) = G(ū, v̄) = stat
(u,v)∈U ×V

G(u,v).

Proof. The assertion of the existence of statu∈AG Ḡ1(u) is simply Lemma 18. Then, noting that

Lemma 17 implies that Assumption (A.3) is satisfied, one may apply Theorem 6 to obtain the
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second assertion of the theorem.

When the iterated staticization is known to exist

We suppose (A.2i). We will find that stat(u,v)∈A×B G(u,v) exists, and obtain the equiva-

lence between full and iterated staticization.

Lemma 19. Assume (A.2i). Then, stat(u,v)∈A×B G(u,v) exists.

Proof. By (A.2i), (3.8), the uniform Morse property and the implicit mapping theorem, there

exists δ > 0 and v̆ ∈C1(Bδ (ū);B) such that Bδ ⊆AG,

v̆(ū) = v̄ and Gv(u, v̆(u)) = 0 ∀u ∈ Bδ (ū). (3.48)

By the differentiability of v̆, (A.1) and the chain rule,

dḠ1

du
(ū) = Gu(ū, v̆(ū))+Gv(ū, v̆(ū))

dv̆
du

(ū) = Gu(ū, v̄)+Gv(ū, v̄)
dv̆
du

(ū).

Using (A.2i) and (3.8), this implies 0 = Gu(ū, v̄), and hence (ū, v̄) ∈ argstat(u,v)∈A×B G(u,v).

Now suppose there exists (û, v̂) ∈ argstat(u,v)∈A×B G(u,v)\{(ū, v̄)}, which implies

Gu(û, v̂) = 0 and Gv(û, v̂) = 0. (3.49)

By (3.49), (A.1), the uniform Morse property and the implicit mapping theorem, there exists

δ ′ > 0 and v̆ ′ ∈C1(Bδ ′(û);B) such that Bδ ′(û)⊆AG,

v̆ ′(û) = v̂ and Gv(u, v̆ ′(u)) = 0 ∀u ∈ Bδ ′(û). (3.50)

Further, combining the definition of AG and (3.50), we see that

Ḡ1(u) = stat
v∈B

g1,u(v) = G(u, v̆ ′(u)) ∀uBδ ′(û). (3.51)
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Then, by (3.50), (3.51), (A.1) and the chain rule,

dḠ1(û)
du

(û) = Gu(û, v̆ ′(û))+Gu(û, v̆ ′(û))
dv̆ ′

du
(û),

which by (3.49) and the definition of v̆ ′(u),

= 0.

That is, û ∈ argstatu∈AG
Ḡ1(u), and using (A.2i), this implies Ḡ1(û) = Ḡ1(ū). Combining this

with (3.50) and (3.51), we see that

G(û, v̂) = Ḡ1(û) = Ḡ1(ū).

and then by the definition of Ḡ1 and (3.8), this is

= g1,ū(v̄) = G(ū, v̄).

As (û, v̂) ∈ argstat(u,v)∈A×B was arbitrary,

G(û, v̂) = G(ū, v̄) for all (û, v̂) ∈ argstat
(u,v)∈A×B

G(u,v).

By Lemma 19 and Theorem 11 we have the following.

Theorem 12. Assume (A.2i). Then, argstat(u,v)∈A×B G(u,v) exists, and

stat
(u,v)∈U ×V

G(u,v) = G(ū, v̄) = stat
u∈AG

Ḡ1(u).
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3.5 Application to Astrodynamics

As noted in the introduction, there are two classes of problems in dynamical systems that

have motivated the above development. The first class consists of TPBVPs in Astrodynamics,

and we discuss that here. Specifically, one may obtain fundamental solutions to TPBVPs in

astrodynamics through a stationary-action based approach [18, 19, 38, 40]. We briefly recall

the case of the n-body problem. In this case, the action functional with an appended terminal

cost (cf. [40]) takes the form indicated in (3.1), where now x =
(
(x1)T ,(x2)T , . . .(xn)T)T , where

each x j ∈ R3 denotes a generic position of body j for j ∈N
.
= {1,2, . . .n}, and ξ·, u· of (3.1)

are similarly constructed. The kinetic-energy term is T (ur)
.
= 1

2 ∑
n
j=1 m j|u j

r |2, where m j is the

mass of the jth body.

Suppose xi 6= x j for all i 6= j. Then, the additive inverse of the potential is given by

−V (x) = ∑
(i, j)∈I ∆

Γmim j

|xi− x j|
= max

α∈M(0,∞)
∑

(i, j)∈I ∆

(3
2

)3/2
Γmim j

[
αi, j−

α3
i, j|xi− x j|2

2

]
.
= max

α∈M(0,∞)

[
−Ṽ (x,α)

]
=−Ṽ (x, ᾱ), (3.52)

where Γ is the universal gravitational constant, I ∆ .
= {(i, j)∈N 2 | j > i}, M(0,∞) denotes the set

of arrays indexed by (i, j)∈I ∆ with elements in (0,∞), and ᾱi, j = ᾱi, j(x) =
[
2/(3|xi−x j|2)

]1/2

for all (i, j) ∈I ∆; see [40]. Recalling the discussion in Section 3.1, we note that solutions of

stationary-action problems with these kinetic and potential energy functions will yield solutions

of TPBVPs for the n-body dynamics. Letting U0,t
.
= L2

(
(0, t);R3n), one finds that the problem

becomes that of finding the stationary-action value function given by

W (t,x) = stat
u∈B

J0(t,x,u), (3.53)

where

J0(t,x,u) .
=
∫ t

0
T (ur)−V (ξr)dr+φ(ξt) =

∫ t

0
T (ur)+ max

α∈M(0,∞)

[
−Ṽ (x,α)

]
dr+φ(ξt),
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B ⊆ {u ∈U0,t | ∀(i, j) ∈I ∆, for a.e. r ∈ (0, t), |ξ i
r−ξ

j
r | 6= 0}. (3.54)

Remark 5. Throughout the discussion to follow, we assume that W (t,x) given by (3.53)

exists. In particular, we assume that B is open, and that there exists ū ∈ B such that

argstatu∈B J0(t,x,u) = {ū}. In the case where the problem corresponds to a TPBVP, this amounts

to an assumption that if there are multiple solutions to the TPBVP, then the solutions are isolated,

cf. [18, 19, 40].

Let ˜A(0,t)
.
=C

(
(0, t);M(0,∞)

)
and ˜A B

(0,t)
.
=C

(
(0, t);MR

)
, where MR denotes the set of

arrays indexed by (i, j) ∈I ∆ with elements in R, and where we note that the former is a subset

of the latter, which is a Banach space.

Lemma 20. Let x ∈ R3n, t ∈ (0,∞) and B ⊆U0,t . Then,

W (t,x) = stat
u∈B

stat
α̃∈ ˜A(0,t)

J(t,x,u, α̃),

where

J(t,x,u, α̃)
.
=
∫ t

0
T (ur)−Ṽ (ξr, α̃r)dr+φ(ξt). (3.55)

Further, if A ⊂ ˜A(0,t) is open and such that ¯̃α i, j ∈ A where ¯̃α i, j
r = ᾱi, j(ξr) for all (i, j) ∈

I ∆ and a.e. r ∈ (0, t), where ξr = x+
∫ r

0 uρ dρ , then W (t,x) = statu∈B statα̃∈A J(t,x,u, α̃) =

statu∈B J(t,x,u, ¯̃α).

Proof. Let x ∈ R3n, t ∈ (0,∞), u ∈B ⊆U0,t and A = ˜A(0,t). By [40, Theorem 4.7], we find

J0(t,x,u) = maxα̃∈A J(t,x,u, α̃), where J(t,x,u, α̃) is given by (3.55). Noting that J(t,x,u, ·) is

differentiable and strictly convex then yields J0(t,x,u) = statα̃∈A J(t,x,u, α̃). Combining this

with (3.53) yields the first assertion. The second assertion then follows by noting the argmax of

(3.52).

If one is able to reorder the stat operations, then the stat representation of Lemma 20 may
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be decomposed as

W (t,x) .
= stat

α̃∈A
W̃ (t,x, α̃), (3.56)

W̃ (t,x, α̃)
.
= stat

u∈B

{∫ t

0
T (ur)−Ṽ (ξr, α̃r)dr+φ(ξt)

}
. (3.57)

Further, suppose φ is a quadratic form, say

φ(x) = φ(x;z) .
= 1

2(x− z)T P0(x− z)+ γ0, (3.58)

where z ∈R3n and P0 is symmetric, positive-definite. Then, the argument of stat in (3.57) will be

quadratic in u, and we will have

W̃ (t,x, α̃) = 1
2(x

T Pα̃
t x+ xT Qα̃

t z+ zT Qα̃
t x+ zT Rα̃

t z+ γ
α̃
t ), (3.59)

where Pα̃
· ,Q

α̃
· ,R

α̃
· may be obtained from solution of α̃-indexed DREs, and γ α̃

t is obtained from

an integral [34, 40]. It will now be demonstrated that in the case of quadratic φ , we may reorder

the stat operators.

Remark 6. We remark that different forms of φ may be used such that payoffs (3.55) (which will

be shown to be equivalent to (3.56)) correspond to different TPBVPs for the n-body problem;

see Section 3.1 and [40]. The means by which this may be utilized for efficient generation of

fundamental solutions is indicated in [18, 19, 40].

Remark 7. It can be shown that for sufficiently short time intervals, J0(t,x, ·) is convex and

coercive, and one then has W (t,x) = minu∈B maxα̃∈A J(t,x,u, α̃) for appropriate A ,B. In that

case, one also finds that W (t,x) = maxα̃∈A minu∈B J(t,x,u, α̃), and one proceeds similarly to

the case here. That is, one again has (3.59), where the coefficients satisfy DREs. See [40] for the

details. Here, we will employ the reordering of iterated stat operations to obtain W (t,x) in a

similar form, i.e., in the form (3.56).
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Lemma 21. Let x ∈ R3n, t ∈ (0,∞) and α̃ ∈ ˜A(0,t). Suppose φ has the form (3.58). Then,

J(t,x,u, α̃)
.
= f1(α̃)+ 〈 f2(α̃),u〉U0,t +

1
2〈B̄3(α̃)u,u〉U0,t ∀u ∈U0,t ,

where f1(α̃) ∈ R, f2(α̃) ∈U0,t and B̄3(α̃) ∈L (U0,t ;U0,t).

Proof. Using (3.52) and (3.55), we see that

J(t,x,u, α̃) =
∫ t

0

1
2

n

∑
j=1

m j|u j
r |2 + ∑

(i, j)∈I ∆

(3
2

)3/2
Γmim j

[
α̃

i, j
r −

(
α̃

i, j
r
)3|ξ i

r−ξ
j

r |2

2

]
dr+φ(ξt).

(3.60)

Note that for the kinetic-energy term, we have the Riesz representation

∫ t

0

1
2

n

∑
j=1

m j|u j
r |2dr = 1

2〈Q1u,u〉U0,t , (3.61)

where the operator Q1 ∈L (U0,t ;U0,t) is given by [Q1u]r
.
= Q̄1ur for all r ≥ 0, and Q̄1 is the

3n×3n block-diagonal matrix with blocks m1I3,m2I3, . . .mnI3.

Let Γ̂
.
=
(3

2

)3/2
Γ. Similarly, we have find that the potential term in J may be decomposed

as

Γ̂ ∑
(i, j)∈I ∆

mim j

∫ t

0

[
α̃

i, j
r −

(
α̃

i, j
r
)3 |ξ i

r−ξ
j

r |2

2

]
dr

= Γ̂ ∑
(i, j)∈I ∆

−mim j

∫ t

0

[(
α̃

i, j
r
)3 |

∫ r
0 ui

ρdρ|2 + |
∫ r

0 u j
ρdρ|2−2

(∫ r
0 ui

ρdρ
)T ∫ r

0 u j
τdτ

2

]
dr

+ Γ̂ ∑
(i, j)∈I ∆

−mim j

∫ t

0

(α̃ i, j
r
)3 2(xi− x j)T

(∫ r
0 ui

ρdρ

)
+2(x j− xi)T(∫ r

0 u j
ρdρ

)
2

 dr

+ Γ̂ ∑
(i, j)∈I ∆

mim j

∫ t

0

[
α̃

i, j
r −

(
α̃

i, j
r
)3 |xi|2 + |x j|2−2(xi)T x j

2

]
dr (3.62)

.
= 1

2〈Q2(α̃)u,u〉U0,t + 〈R2(α̃),u〉U0,t +S2(α̃) ∀u ∈U0,t ,
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where we will obtain explicit expressions for Q2(α̃)∈ L(U0,t ;U0,t), R2(α̃)∈U0,t and S2(α̃)∈R.

Considering a single generic component inside the first summation on the right-hand side of

(3.62), note that

∫ t

0

(
α̃

i, j
r
)3
(∫ r

0
ui

ρdρ

)T ∫ r

0
u j

τdτ dr =
∫ t

0

∫ t

0

∫ t

0
I(0,r)(ρ)I(0,r)(τ)

(
α̃

i, j
r
)3(ui

ρ

)T u j
τ dρ dτ dr,

where generically, IC denotes the indicator function on set C , and that this is

=
∫ t

0

∫ t

0

∫ t

0
I(ρ,t)(r)I(τ,t)(r)

(
α̃

i, j
r
)3(ui

ρ

)T u j
τ dr dρ dτ,

=
∫ t

0

(
ui

ρ

)T
{∫ t

0

[∫ t

ρ∨τ

(
α̃

i, j
r
)3 dr

]
u j

τ dτ

}
dρ

Combining all these generic terms and rearranging our choice of dummy variables, we find that

for all u ∈U0,t , [Q2(α̃)u]r =
∫ t

0[Q̄2(α̃)](r,τ)uτ dτ , where [Q̄2(α̃)](r,τ) is given as follows. For

i, j ∈ ]1,n[ such that i 6= j, let

[Q̂2(α̃)](r,τ)]i, j
.
= Γ̂mim j

∫ t

τ∨r

(
α̃

i, j
σ

)3
dσ ,

and for i ∈]1,n[, let

[Q̂2(α̃)](r,τ)]i,i
.
=− ∑

j∈ ]1,n[, j 6=i
[Q̂2(α̃)](r,τ)]i, j.

Then, [Q̄2(α̃)](r,τ) = [Q̂2(α̃)](r,τ)]⊗ I3, where ⊗ denotes the Konecker product here.

Proceeding similarly, we find that R2(α̃) ∈U0,t has the Riesz representation

R2(α̃) =
(
([R̂2(α̃)(r)]1)T ,([R̂2(α̃)(r)]2)T , . . .([R̂2(α̃)(r)]n)T)T

where for i ∈ ]1,n[,

[R̂2(α̃)(r)]i =−Γ̂ ∑
j 6=i

mim j

∫ t

r

(
α̃

i, j
τ

)3 dτ (xi− x j).
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For the zeroth order in the expansion of the integral of the potential term, we have

S2(α̃) = ∑
(i, j)∈I ∆

Γ̂mim j

∫ t

0

[
α̃

i, j
r −

(
α̃

i, j
r
)3]dr

|xi|2 + |x j|2−2(xi)T x j

2
.

Now, we turn to the terminal cost. Recalling (3.58), we have

φ(ξt) =
1
2

( t
∫
0

uρdρ

)T
P0

( t
∫
0

uρdρ

)
+
(
x− z

)T P0

( t
∫
0

uρdρ

)
+ 1

2(x− z)T P0(x− z)+ γ0

.
= 1

2〈Q3u,u〉U0,t + 〈R3,u〉U0,t +S3,

where Q3 ∈L (U0,t ;U0,t), R3 ∈ U0,t and S3 ∈ R. In particular, we have [Q3u]r = P0
∫ t

0 uρ dρ

and [R3]r = P0(x− z) for all r ∈ (0, t), and S3 =
1
2(x− z)T P0(x− z)+ γ0. Combining the terms,

we have the asserted form for J(t,x,u, α̃), where

f1(α̃) = S2(α̃)+S3, f2(α̃) = R2(α̃)+R3, and B̄3(α̃) = Q1 +Q2(α̃)+Q3.

That B̄3(α̃) ∈L (U0,t ;U0,t) and f2(α̃) ∈U0,t is easily seen from the above expressions.

Theorem 13. Let t ∈ (0,∞) and x∈R3n. Suppose W (t,x) given by (3.53) exists. Let ¯̃α i, j ∈ ˜A(0,t)

be as in Lemma 20, and D > |B̄#
3(

¯̃α)|. Let A
.
= {α̃ ∈ ˜A(0,t)||B̄#

3(α̃)|< D}. Then,

W (t,x) = stat
u∈B

stat
α̃∈A

J(t,x,u, α̃) = stat
(u,α̃)∈B×A

J(t,x,u, α̃) = stat
α̃∈A

stat
u∈B

J(t,x,u, α̃).

Proof. Fix t ∈ (0,∞) and x ∈ R3n. Note that by the conditions of Remark 5, B is open.

By Lemma 21, B̄3(α̃) ∈ L (U0,t ;U0,t) for all α̃ ∈ ˜A(0,t), where this implies that all such

B̄3(α̃) are closed operators, and hence [B̄#
3(α̃)] ∈L (U0,t ;U0,t) exists for all α̃ ∈ ˜A(0,t). Let

g : L (U0,t ;U0,t) → L (U0,t ;U0,t) be given by g(B) .
= B# for all B ∈ L (U0,t ;U0,t). Let

D be as given and D̂ ∈ (D,∞). Let the open ball of radius D be denoted by DD
.
= {B ∈

L (U0,t ;U0,t) | |B|< D}, and similarly for D̂. Let QD
.
= g−1(DD) and QD̂

.
= g−1(DD̂), and note
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that g is continuous on QD̂ [20, 50]. Hence, QD is open, and as B̄3(·) is continuous, we find that

A = (B̄3)
−1(QD) is open. The first asserted equality then follows from Lemma 20. Further, this

implies that Assumption (A.2i) is satisfied by the expression on the right-hand side of the first

equality. Hence, if the conditions of Section 3.4.3 are met, then Theorem 12 will yield the second

equality. In this case here, the Morse condition of Section 3.4.3 is that for all (α̃,u) ∈A ×B,

D2
α̃

J(t,x,u, α̃) ∈L ( ˜A B
(0,t);

˜A B
(0,t)) is invertible with locally bounded inverse. From Lemma 27,

the differential D2
α̃

J(t,x,u, α̃)γ for γ ∈A B
(0,t) has representation with components given by

[∇2
α̃J(t,x,u, α̃)γ]i, jr =−3Γ̂mim jα̃

i, j
r |ξ i

r−ξ
j

r |2γ
i, j
r ∀(i, j) ∈I ∆, a.e. r ∈ (0, t).

As α̃
i, j
r , |ξ i

r − ξ
j

r | > 0 for all (i, j) ∈ I ∆ and r ∈ (0, t), one finds that operator D2
α̃

J(t,x,u, α̃)

is indeed invertible with locally bounded inverse for all (α̃,u) ∈ A ×B. Lastly, noting the

representation given in Lemma 28, one may easily show that D2
u,α̃J(t,x,u, α̃) is bounded on

bounded sets. Hence, the conditions of Section 3.4.3 are met, and one may apply Theorem 12 to

obtain the second equality.

Note that the second equality also implies that the expression on the right-hand side of

that equality satisfies Assumption (A.2 f ). If the conditions of Theorem 9 are satisfied, we will

have the final equality. It is sufficient to show that, as a function of (α̃,u) ∈A ×B, J(t,x,u, α̃)

satisfies the conditions of Section 3.4.2. That is, suppressing the dependence on (t,x), we must

have

J(t,x,u, α̃) = f1(α̃)+ 〈 f2(α̃),u〉U0,t +
1
2〈B̄3(α̃)u,u〉U0,t ,

with f1, f2, B̄3 satisfying the conditions indicated there. From Lemma 21, we see that f1, f2, B̄3

are C2, and B̄#
3(α̃) exists and is uniformly bounded over A . The result follows from Theorem

9.

Remark 8. It should be noted that the assertions of Theorem 13 allow the staticization problem

of (3.53) to be reduced to staticization over the set of DRE solutions and integrals, P
.
=
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{(Pα̃
t ,Qα̃

t ,R
α̃
t ,γ

α̃
t ) | α̃ ∈A }, as noted in (3.59). In cases where the terminal cost, φ , (indexed

by z) has been constructed so that the staticization problems correspond to TPBVPs, the set P

provides a fundamental solution object for a set of TPBVPs. One may see [18, 19, 40] for more

detailed discussions regarding the calculations.

3.6 Schrödinger IVPs

We indicate that application to Schrödinger IVPs. The general outline is similar to that

of the previous subsection, but where the dynamics are now stochastic and complex-valued. In

order to simplify matters, in this case we consider only the problem of a single particle in a

central Coulomb field. The Schrödinger IVP is

0 = ih̄ψt(s,y)+ h̄2

2m∆ψ(s,y)−ψ(s,y)V (y), (s,y) ∈D ,

ψ(0,y) = ψ0(y), y ∈ Rn,

where m ∈ (0,∞) denotes particle mass, h̄ denotes the Planck constant, initial condition ψ0

takes values in C, V denotes the Coulomb potential function, ∆ denotes the Laplacian with

respect to the space (second) variable, D
.
= (0, t)×Rn, and subscript t will denote the derivative

with respect to the time variable (the first argument of ψ here) regardless of the symbol being

used for time in the argument list. We consider what is sometimes referred to as the Maslov

dequantization of the solution of the Schrödinger equation (cf. [29]), which is S : D̄ → C given

by ψ(s,y) = exp{ i
h̄S(s,y)}. We also extend the space from Rn to Cn, and reverse the time

variable. The resulting transformed problem is given by [33, 35, 37]

0 = St(s,x)+ ih̄
2m∆S(s,x)+H(x,Sx(s,x)),(s,x) ∈DC

.
= (0, t)×Cn, (3.63)

S(t,x) = φ(x), x ∈ Cn, (3.64)

where H : Cn×Cn→ C is the Hamiltonian given by
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H(x, p) .
=−

[ 1
2m |p|

2
c +V (x)

]
= stat

u0∈Cn

{
(u0)T p+ m

2 |u
0|2c−V (x)

}
,

where for x ∈ Cn, |x|2c
.
= ∑

n
j=1 x2

j . (We remark that notation | · |2c is not intended to indicate a

squared norm; the range is complex.) We fix t ∈ (0,∞), and allow s to vary in (0, t].

Under certain conditions, the solution of this dequantized form of the Schrödinger IVP

has a representation in the form of the value function of staticization controlled diffusion equation

[37]. In particular, we suppose the solution satisfies |Sxx| ≤C(1+ |x|2q) for some q ∈ N. We let

(Ω,F ,P) be a probability triple, where Ω denotes a sample space, F denotes a σ -algebra on

Ω, and P denotes a probability measure on (Ω,F ). Let {Fs |s ∈ [0, t]} denote a filtration on

(Ω,F ,P), and let B· denote an F·-adapted Brownian motion taking values in Rn. For s ∈ [0, t],

let

Us
.
= {u : [s, t]×Ω→ Cn |u is F·-adapted, right-continuous and such that

E
∫ t

s |ur|m dr < ∞ ∀m ∈ N}.

We supply Us with the norm ‖u‖Us
.
= maxm∈{1,...M̄}

[
E
∫ t

s |ur|m dr
]1/m, where M̄ ≥ 8q. We will

be interested in diffusion processes given by

ξr = ξ
(s,x)
r = x+

∫ r

s
uρ dρ +

√
h̄
m

1+i√
2

∫ r

s
dBρ

.
= x+

∫ r

s
uρ dρ +

√
h̄
m

1+i√
2

B∆
r ,

where x ∈ Cn, s ∈ [0, t], u ∈Us, and B∆
r
.
= Br−Bs for r ∈ [s, t]. For s ∈ (0, t) and h̄ ∈ (0,1], we

define payoff J(s, ·, ·) : Cn×Us→ C and stationary value, S̄ : DC→ C by

J(s,x,u) .
= E

{∫ t

s

m
2 |ur|2c−V (ξr)dr+φ(ξt)

}
,

S(s,x) .
= stat

u∈Us
J(s,x,u) ∀(s,x) ∈DC.
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The Coulomb potential generated by a point charge in the central field takes the form of

V̄ (x) =−µ̂/|x|, ∀x ∈Rn, where µ̂ is a constant. This may be extended to the complex domain

as (abusing notation)

V (x) .
=−µ̂/

√
|x|2c =−c̄ stat

ᾱ∈A R
{α− ᾱ3|x|2c

2 } ∀x ∈ Cn

where c̄ .
= (3

2)
3/2µ̂ and A R .

={ᾱ = r[cos(θ)+ isin(θ)] ∈ C |r ≥ 0, θ ∈ (−π

2 , π

2 ]}.

Lemma 22. Let A
.
= L2(Ω;L2([s, t];A R)). Then

stat
α∈A

E
{∫ t

s

m
2 |ur|2c + c̄[αr−

α3
r |ξ2|2c

2
]dr+φ(ξt)

}
= E

{∫ t

s

m
2 |ur|2c + c̄ stat

ᾱ∈A R
[ᾱ− ᾱ3|ξ2|2c

2
]dr+φ(ξt)

}
.

The problem of solving for S(s,x) then becomes that of finding the stationary-action

value function given by

S(s,x) .
= stat

u∈Us
stat

α∈A
E
{∫ t

s

m
2 |ur|2c + c̄[αr−

α3
r |ξ2|2c

2
]dr+φ(ξt)

}
∀(s,x) ∈DC.

which may be decomposed as

S(t,x) .
= stat

α∈A
S̃(t,x, α̃),

S̃(t,x,α)
.
= stat

u∈Us
E
{∫ t

s

m
2 |ur|2c−Ṽ (ξr,αr)dr+φ(ξt)

}

where Ṽ (ξr,αr)
.
=−c̄[αr− α3

r |ξ2|2c
2 ]. Again, the problem becomes that of interchanging the order

of the staticization operators, where we note that the functional is semi-quadratic in u and

uniformly Morse in α̃ . Once that is achieved, one has

S(t,x) .
= stat

α∈A
S̃(t,x, α̃),

S̃(t,x,α)
.
= stat

u∈Us
E
{∫ t

s

m
2 |ur|2c−Ṽ (ξr,αr)dr+φ(ξt)

}
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where Ṽ (ξr,αr)
.
=−c̄[αr− α3

r |ξ2|2c
2 ]. As the S̃ value function is that of a linear-quadratic problem

for each α̃ , it may be solved through solution of a set of associated DREs. We specifically require

the following.

Theorem 14. The functional given by E
{∫ t

s
m
2 |ur|2c + c̄[αr− α3

r |ξ2|2c
2 ]dr+φ(ξt)

}
is twice Fréchet

differentiable in α .

For x and u taking values in R3, we have the following results.

Theorem 15. E
{∫ t

s
m
2 |ur|2dr+

∫ t
s

c̄√
|ξr|2c

dr+φ(ξt)

}
is differentiable with respect to u every-

where.

This theorem follows from the following lemmas.

Lemma 23. There exists a probability measure Q such that Q and P are mutually absolutely

continuous, and dξs =
√

h̄
m

1+i√
2

dB̂s, where B̂· is a Q−Brownian motion.

Proof. This follows from the Girsanov Theorem.

Theorem 16. Let X be an open subset of C, and Ω be a measure space. Let f : X×Ω satisfy

(1) f (x,ω) is Lebesgue integrable in ω for each x ∈ X.

(2) For a.e. ω , fx(x,ω) exists for a.e. x.

(3) There exists θ : Ω→ C s.t. | fx(x,ω)| ≤ θ(ω) ∀x ∈ X, a.e. ω .

Then d
dx
∫

Ω
f (x,ω)dω =

∫
Ω

fx(x,ω)dω .

Lemma 24. The function

f (x̄) .
=
∫

∞

−∞

∫
∞

−∞

∫
∞

−∞

1√
(2π)3|σ |

exp
(
− x2+y2+z2

2σ2

)
√
(x− x̄)2 + y2 + z2

dxdydz

is differentiable with respect to x̄.
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Proof. After changing to a spherical coordinates centered at x̄, the result follows from an

application of the Leibniz rule for Lebesgue integrals.

Lemma 25. For each r ∈ [s, t], f (r,u) .
= E

{
1√
|ξr|2c

}
is differentiable with respect to u.

Proof. Without loss of generality, we consider x = (x,0,0) ∈ R3. After a change of measure as

in lemma 23, we have f (r,u) = EQ
{

1/

√
|x+

√
h̄
m

1+i√
2

B̂r|2c
}

. Let x̄ .
=−x. By lemma 24, the chain

rule, and noting that x+
∫ r

s uρdρ is an affine functional of u, we have f (r,u) is differentiable in

u.

Note that so far we’ve only proved that E
{∫ t

s
m
2 |ur|2c + c̄[αr− α3

r |ξ2|2c
2 ]dr+φ(ξt)

}
is C1

in u. Further work is needed in order to apply the results that follow from (A.1), where the

functional is C2 in both variables.

The authors thank Profs. Marianne Akian and Stephane Gaubert for helpful discussions

regarding Morse functions.

3.7 Appendix: Calculation of Derivatives

We begin by indicating some notation, and recalling standard results, cf. [2]. Let

f : U0,t × ˜A B
(0,t)→ R satisfy f (u, ·) ∈C2( ˜A B

(0,t);R), f (·, α̃) ∈C2(U0,t ;R) for all u ∈U0,t , α̃ ∈

˜A B
(0,t). Let Du f : U0,t× ˜A B

(0,t)→L (U0,t ;R) and Dα̃ f : U0,t× ˜A B
(0,t)→L ( ˜A B

(0,t);R) denote the

Fréchet derivatives with respect to u and α̃ , respectively. Note that we have [Du f (u, α̃)]δu ∈

R, [Dα f (u, α̃)]δα̃ ∈ R, ∀δu ∈ U0,t , δα̃ ∈ ˜A B
(0,t). By the Riesz representation theorem, for

each û ∈ U0,t and ˆ̃α ∈ ˜A B
(0,t), there exists unique ∇u f (û, ˆ̃α) ∈ U0,t such that Du f (û, ˆ̃α)δu =

〈δu,∇u f (û, ˆ̃α)〉U0,t ∀δu ∈U0,t .

For L∈ L2((0, t);MR) and γ ∈ ˜A B
(0,t), define the continuous, bilinear functional 〈L,γ〉2 =

〈γ,L〉2
.
= ∑(i, j)∈I ∆

∫ t
0 Li, j

r γ
i, j
r dr. Note that ∇α̃ f (û, ˆ̃α) : U0,t× ˜A B

(0,t)→ ˜A B
(0,t), is a representation

of Dα f (û, ˆ̃α)δα̃ everywhere in U0,t × ˜A B
(0,t) if 〈∇α̃ f (û, ˆ̃α),δα̃〉2 = Dα f (û, ˆ̃α)δα̃ for all δα̃ ∈

˜A B
(0,t), (û, ˆ̃α) ∈U0,t× ˜A B

(0,t).
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Let D2
α̃

f : U0,t× ˜A B
(0,t)→L ( ˜A B

(0,t),L ( ˜A B
(0,t),R)) denote the second Fréchet derivative

with respect to α̃ . Note that for each δα̃ ∈ ˜A B
(0,t) and pair (û, ˆ̃α), we have D2

α̃
f (û, ˆ̃α)δα̃ ∈

L ( ˜A B
(0,t);R). Further, D2

α̃
f (û, ˆ̃α) is the second Fréchet derivative with respect to α̃ at (û, ˆ̃α) if

D2
α̃

f (û, ˆ̃α) = Dα̃ [Dα̃ f ](û, ˆ̃α). Analogous definitions hold for second derivatives with respect to

u.

We now proceed to obtain certain derivatives and Riesz representations employed in

the proof of Theorem 13. Let J : (0, t)×R3n×U0,t × ˜A(0,t) be given by (3.55) with quadratic

terminal cost (3.58).

Lemma 26. For any t ∈ (0,∞), x ∈ R3n and u ∈U0,t , J(t,x,u, ·) is Fréchet differentiable over

˜A B
(0,t), and the Fréchet derivative has Riesz representation ∇α̃J(t,x,u, α̃), where ∇α̃J(t,x,u, α̃)

acting on γ ∈ ˜A B
(0,t) is given by 〈∇α̃J(t,x,u, α̃),γ〉2, and

[∇α̃J(t,x,u, α̃)]i, jr = Γ̂mim j

[
1−

3
(
α̃

i, j
r
)2|ξ i

r−ξ
j

r |2

2

]
∀(i, j) ∈I ∆,r ∈ (0, t). (3.65)

Proof. Let γ ∈ ˜A B
(0,t), and let L denote object indicated by the right-hand side of (3.65). With a

small amount of algebra, one finds

|J(t,x,u, α̃ + γ)− J(t,x,u, α̃)−〈L,γ〉2|

=

∣∣∣∣Γ̂ ∑
(i, j)∈I ∆

∫ t

0

−mim j

2
[
3α̃

i, j
r
(
γ

i, j
r
)2

+
(
γ

i, j
r
)3]|ξ i

r−ξ
j

r |2 dr
∣∣∣∣

≤ Γ̂ ∑
(i, j)∈I ∆

mim j

2

∫ t

0

(
1+3α̃

i, j
r
)
|ξ i

r−ξ
j

r |2 dr sup
r∈(0,t)

[∣∣γ i, j
r
∣∣2 + ∣∣γ i, j

r
∣∣3],

which for appropriate choice of K0(t,x,u, α̃)< ∞ and |γ| ≤ 1,

≤ K0(t,x,u, α̃)|γ|2,

which implies that the Fréchet derivative Dα̃J(t,x,u, α̃) exists, and has the indicated Riesz

representation.
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Lemma 27. For any t ∈ (0,∞), x ∈ R3n and u ∈ U0,t , the second order Fréchet derivative

D2
α̃

J(t,x,u, α̃) exists for all α̃ ∈A(0,t), and the differential has representation ∇2
α̃

J(t,x,u, α̃)γ ,

which for all γ ∈ ˜A B
(0,t), is given by

[∇2
α̃J(t,x,u, α̃)γ]i, jr =−3Γ̂mim jα̃

i, j
r |ξ i

r−ξ
j

r |2γ
i, j
r ∀(i, j) ∈I ∆, a.e. r ∈ (0, t).

Proof. Recalling the above discussion, we obtain the second-derivative representation by exam-

ining the Fréchet derivative of ∇α̃J(t,x,u, α̃). Let t,x,u be as specified, and take α̃ ∈A(0,t). Let

γ ∈ ˜A B
(0,t), and let [T γ]

i, j
r

.
= −3Γ̂mim jα̃

i, j
r |ξ i

r − ξ
j

r |2γ
i, j
r for all i, j ∈ ]1,n[ and r ∈ (0, t), where

ξ i
r = xi +

∫ r
0 uρ dρ . Note that

|∇α̃J(t,x,u, α̃ + γ)−∇α̃J(t,x,u, α̃)− [T γ]|

=

[
∑

(i, j)∈I ∆

∫ t

0

∣∣∣∣[∇α̃J(t,x,u, α̃ + γ)]i, jr − [∇α̃J(t,x,u, α̃)]i, jr +3Γ̂mim jα̃
i, j
r |ξ i

r−ξ
j

r |2γ
i, j
r

∣∣∣∣2dr
]1/2

,

which by (3.65),

=

[
Γ̂ ∑
(i, j)∈I ∆

∫ t

0

∣∣∣−3
2

mim j
[
2α̃

i, j
r γ

i, j
r +(γ i, j

r )2]∣∣ξ i
r−ξ

j
r
∣∣2 +3mim jα̃

i, j
r |ξ i

r−ξ
j

r |2γ
i, j
r

∣∣∣2dr
]1/2

=

[
Γ̂ ∑
(i, j)∈I ∆

9
4

m2
i m2

j

∫ t

0

∣∣∣(γ i, j
r )2∣∣ξ i

r−ξ
j

r
∣∣2∣∣∣2dr

]1/2

≤ Γ̂ ∑
(i, j)∈I ∆

9
4

m2
i m2

j

(∫ t

0

∣∣ξ i
r−ξ

j
r
∣∣4 dr

)1/2
sup

r∈(0,t)

∣∣γ i, j
r
∣∣2 ≤ K1|γ|2,

for appropriate choice of K1 = K1(t,x,u)< ∞, and this yields the result.

The following is obtained in a similar manner to Lemma 26, and the proof is not included.

Lemma 28. For any t ∈ (0,∞) and x∈R3n, J(t,x, ·, ·) : U0,t× ˜A(0,t)→R has a mixed second par-

tial Fréchet derivative, and this derivative, evaluated at (u, α̃) ∈U0,t× ˜A(0,t), D2
u,α̃J(t,x,u, α̃),

has a representation comprised of the Riesz representations of the derivatives of [∇α̃J(t,x,u, α̃)]
i, j
·
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with respect to u for (i, j) ∈I ∆. More specifically, for δu ∈U0,t and δα̃ ∈ ˜A(0,t),

[
D2

u,α̃J(t,x,u, α̃)δα̃

]
δu =

〈
∇

2
u,α̃J(t,x,u, α̃)δα̃ ,δu

〉
U0,t

= ∑
k∈N

∫ t

0

[
∇

2
u,α̃J(t,x,u, α̃)δα̃

]k
ρ
[δu]

k
ρ dρ,

where[
∇

2
u,α̃J(t,x,u, α̃)δα̃

]k
ρ
= ∑

(i, j)∈I ∆

∫ t

0

[
[∇α̃,uJ(t,x,u, α̃)]i, jr

]k
ρ
[δα̃ ]

i, j
r dr ∀k ∈N , ρ ∈ (0, t),

[
[∇α̃,uJ(t,x,u, α̃)]i, jr

]k
ρ

.
=


−3Γ̂mim j(α̃

i, j
r )2(ξ i

r−ξ
j

r )I(0,r)(ρ) if k = i,

3Γ̂mim j(α̃
i, j
r )2(ξ i

r−ξ
j

r )I(0,r)(ρ) if k = j,

0 otherwise

for all r,ρ ∈ (0, t), k ∈N and (i, j) ∈I ∆, and we recall that I(0,r)(·) denotes the indicator

function on set (0,r).
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Chapter 4

Strong Solutions for a Class of Degenerate
SDEs

4.1 Introduction

Diffusion processes have long been a useful tool in the study of Hamilton-Jacobi partial

differential equations (HJ PDEs). Recently, the use of stationary-action controlled diffusion

process representation has been proved useful in solving the Schrödinger initial value problems

(IVPs), cf. [32, 35, 43]. In this paper, we will prove the existence of strong solutions for a class of

degenerate stochastic differential equations (SDEs) that arises in the staticization based diffusion

representation for the solution of Schrödinger IVP associated with the Coulomb potential. In

existing work on the existence of strong solutions of SDEs, the drift term may have singularities,

but the diffusion coefficient of diffusion processs is assumed to be non-degenerate (cf. [26, 55]).

The SDEs we consider in this paper have 2m×m degenerate diffusion coefficients and may

have discontinuities in the drift term on a manifold of codimension 1 and singularities along a

manifold of codimension 2. We first demonstrate the existence of weak solutions of the SDE,

which is obtained through passing to the limit of a sequence of diffusion processes with C1 drifts.

After that, the existence of a unique strong solution follows from pathwise uniqueness property

of the process. The class of SDEs we will consider are of the form

dηt = F(ηt ,ζt)dt +dBt , (4.1)
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dζt = G(ηt ,ζt)dt, t ∈ [0,T ], (4.2)

η0 = y0 ∈ Rm, ζ0 = z0 ∈ Rm, l .
= 2m. (4.3)

where F , G are continuous functions outside a bounded region in Rl but have discontinuities

inside the region. More specifically, for δ ≥ 0, let Gδ ⊂ Rl be such that Gδ1 ⊆ Gδ2 for all

0≤ δ1 ≤ δ2, and limδ↓0 Gδ = G0. Let h0,h1 ∈C(Rm;R), and

H0
.
= {(y,z) ∈ Rl|h0(y)−h1(z) = 0}. (4.4)

We assume the following.

F,G ∈C1([G0∪H0]
c).

For each δ > 0, F and G are bounded on G c
δ

.

For each δ > 0, ∇(y,z)F and ∇(y,z)G are bounded on [Gδ ∪H0]
c.

(A.1)

If for sample point ω ∈Ω, each component, say [η·] j(ω) for 1≤ j ≤ m,

of sample path η·(ω) has infinite total variation on [a,b] ⊆ [0,T ], then

h0(η·(ω)) has infinite total variation on [a,b].
(A.2)

Let L̄ denote the space of nonsingular m×m matrices, and let Im×m ∈ L̄ denote the identity

matrix.
Let I

.
= [0,1], and let p ∈C1(I 0;Rm)∩C(I ;Rm). Let ē ∈ Rm \ {0}.

Let J ∈C2(Rm \ {0};L̄ ) be given by J(z) = (1/|z|)Γ(z) where Γ(z) is

orthonormal for all z ∈ Rm \ {0}, and such that J(z)z = ē for all z ∈

Rm \ {0}, [J(ē)]−1 = Im×m, and dJ
dz is bounded on Rm \ Bδ (0) for all

δ > 0. Finally, suppose G0 = {(y,z)∈Rl |y∈ G̃0(z)}where for all z∈Rm,

G̃0(z)
.
= {y ∈ Rm |∃λ ∈I s.t. y = [J(z)]−1 p(λ )}.

(A.3)
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An additional assumption will appear in Section 4.3, after some additional definitions,

and it will be the final assumption.

Remark 9. The above structure for G0, which may at first seem unusual, was chosen for the

case where the singular set is defined in terms of ηt relative to ζt . A motivational example

where these assumptions are satisfied is given in Section 4.2. In that case, m = 3, H0 = {(y,z) ∈

Rl | |y|2− |z|2 = 0} and G0 = {(y,z) ∈ Rl | |y|2− |z|2 = 0, and yT z = 0}. In that case, one

may take ē to be (1,0,0)T and p(·) to be a parameterization of the unit circle in the plane

perpendicular to ē.

Remark 10. The assumptions may be weakened to allow for a finite number of both discontinuity

and singularity manifolds, with no fundamental change in the proofs. For clarity of exposition,

we do not include the details.

4.2 Motivation from the Schrödinger Initial Value Problem

We briefly discuss how the SDEs of (4.1)- (4.3) are related to the Schrödinger IVP. Recall

that the Schrödinger IVP has the form

0 = ih̄ψt(s,y)+
h̄2

2m
∆ψ(s,y)−ψ(s,y)V (y), (s,y) ∈DR. (4.5)

ψ(0,y) = ψ0(y), y ∈ Rm, (4.6)

where i is the imaginary unit, h̄ is the Planck’s constant, m > 0 denotes mass, DR .
= (0, t)×

(Rm\{0}), ψ , ψ0 take values in C, the subscript t denotes derivative with respect to the time

(first) variable regardless of what letter is used for the variable, and ∆ denotes the Laplacian

of ψ in space (second) variables. We also let D̄R .
= (0, t]× (Rm\{0}). Employing the Maslov

dequantization ψ(s,y) .
= exp{ i

h̄S(s,y)} and reversing the time variable,we find that the equations
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(4.5), (4.6) become the equivalent HJ PDE backward dynamic programming problem:

0 = St(r,x)+ ih̄
2m∆S(r,x)+ stat

v∈Cn
[Sx(r,x)T v+ m

2 |v|
2
c−V (x)] (r,x) ∈DR (4.7)

S(t,x) = φ(x), x ∈ Rm, (4.8)

where the stat operator denotes the search for stationary values. Namely, Let F denote either

the real or complex field, and suppose U is a normed vector space (over F ) with A ⊆ U ,

Ḡ : A →F . We say ū ∈ argstatu∈A Ḡ(u) .
= argstat{Ḡ(u) |u ∈A } if ū ∈A and either

limsup
u→ū,u∈A \{ū}

|Ḡ(u)− Ḡ(ū)|
|u− ū|

= 0, (4.9)

or there exists δ > 0 such that A ∩Bδ (ū) = {ū} (where Bδ (ū) denotes the ball of radius δ

around ū). Since S(s,y) takes value in C, to allow complex-valued state processes, we find it

convenient to extend the domain of the problem from Rm to Cm. Consider the case when m = 3.

The Coulomb potential generated by a charge at the origin has the form −V (y) = C/|y|, for

y ∈ R3\{0}, where C is a constant. Let

C1
.
= {x ∈ C3|∃r ∈ (0,∞),ω ∈ (−π,π], s.t. |x|2c

.
= r2e2iw}

A q .
= {α ∈ C|∃rα ∈ (0,∞),θα ∈ (−π,π], s.t. α = rαeiθα},

where |x|2c
.
= ∑

m
j=1 x2

j for x ∈ Cm. We have (cf. [39]) for x ∈ C1,

−V (y) = Ĉ stat
α∈A q

[
α− α3|x|2c

2
]
, (4.10)

where Ĉ .
= (3

2)
(3/2)C. Extending the domain to Cm, the equations (4.7), (4.8) become

0 =St(r,x)+ ih̄
2m∆S(r,x)+ stat

v∈Cn
[Sx(r,x)T v+ m

2 |v|
2
c−V (x)] (r,x) ∈D1 (4.11)
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S(t,x) = φ(x), x ∈ C1, (4.12)

where D1
.
= {(0, t)×C3}. One may check that the function S0 : [0,∞)×C3→ C given by

S0(t,x) =
−c2

1
2m

t + ic1
√

xT x,

is a solution of (4.11), (4.12), where
√

x .
= exp{1

2 log(x)}, log(x) .
= Log(r)+ iθ for r ∈ (0,∞),

θ ∈ (−π,π]. We remark that S0 is derived from the solution of the Schrödinger IVP for the

lowest energy shell ([10]).

The dynamics of the diffusion process generating the solution as the associated stationary

value function are given by [39] dξr = (−1/m̄)S0
x(r,ξr)dr+

√
h̄/m̄1+i√

2
dBr with ξ0 = x. One

may separate the three-dimensional complex state, ξr, into its real and imaginary parts as

ξr = η̂r + iζ̂r. Similarly, letting S0(r,x) = R0(r, ŷ, ẑ)+ iT 0(r, ŷ, ẑ) with x = ŷ+ iẑ, and employing

the Cauchy-Riemann equations, the SDE system becomes

dη̂r = (−1/m̄)R0
y(r, η̂r, ζ̂r)dr+

√
h̄

2m̄ dBr, η̂0 = ŷ,

dζ̂r = (1/m̄)R0
z (r, η̂r, ζ̂r)dr+

√
h̄

2m̄ dBr, ζ̂0 = ẑ.

Performing the change of coordinates ηr = (1/
√

2)[η̂r + ζ̂r], ζr = (1/
√

2)[−η̂r + ζ̂r] yields

dηr = (1/
√

2m̄)[−R0
y +R0

z ](r,
ηr−ζr

2 , ηr+ζr
2 )dr+

√
h̄
m̄ dBr,

dζr = (1/
√

2m̄)[R0
y +R0

z ](r,
ηr−ζr

2 , ηr+ζr
2 )dr,

with η0 = y0 .
= (1/

√
2)[ŷ+ ẑ] and ζ0 = z0 .

= (1/
√

2)[−ŷ+ ẑ]. Using the specific form of S0 in

this example, this reduces to

dηr = F(ηr,ζr)dr+σ dBr (4.13)
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.
=

c1

m̄
√

R̃r
[sin(θ̃r)ηr− cos(θ̃r)ζr]dr+

√
h̄
m̄ dBr,

dζr = G(ηr,ζr)dr (4.14)

.
=
−c1

m̄
√

R̃r
[cos(θ̃r)ηr + sin(θ̃r)ζr]dr,

where R̃r
.
= R̄(ηr,ζr)

.
=
[
(−2ηT

r ζr)
2 +(|ηr|2− |ζr|2)2]1/2, cos(2θ̃r) =

−2ηT
r ζr

R̃r
and sin(2θ̃r) =

|ηr|2−|ζr|2
R̃r

with θ̃r ∈ (−π/2,π/2].

In this case, H0 corresponds to the branch cut induced by
√

xT x, which is at |ŷ|2−|ẑ|2 < 0,

ŷT ẑ= 0, or equivalently, at yT z> 0, |y|2−|z|2 = 0. That is, H0 = {(y,z)∈Rl | |y|= |z|, yT z> 0}.

In particular, one may take h0(y) = |y| and h1(z) = |z|. From this, one may easily verify

Assumption (A.2). Also, we see that the singularities occur on

G0 = {(y,z) ∈ Rl | R̄(y,z) = 0}= {(y,z) ∈ Rl |yT z = 0 and |y|= |z|}.

If Gδ is defined to be the set of points in Rl whose distance from G0 is at most δ , one easily finds

that Assumption (A.1) is satisfied. Lastly, to see that Assumption (A.3) is satisfied, note that

one may take G̃0(z)
.
= {y ∈ Rm |yT z = 0 and |y|= |z|}. Note that if z = (1,0,0)T , then G̃0(z)

is the unit circle in the (z2,z3)–plane. Hence, one may take p(λ ) .
= (0,cos(2πλ ),sin(2πλ )) and

ē = (1,0,0)T . Then, for z ∈ Rm \{0}, one may then let

Γ(z) .
=


uT

vT

wT

 where u .
=

z
|z|

, ek denotes the kth standard basis vector in R3,

v̂ .
=

2

∑
k=1

u× ek, v =
v̂
|v̂|

and w .
=

u× v
|u× v|

.

One may then easily verify Assumption (A.3).
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We remark that another example, again associated to a classical energy shell, is given by

S1(t,x) .
=
−c2

1,1
2m t + ic1,1

√
xT x− ih̄ log(x1),

where c1,1
.
= mC

2h̄ . In this case there are additional discontinuity and singularity manifolds.

In particular, in addition to H0 and G0 from the S0, we also have H0,1
.
= {(y,z) ∈ Rl |z1 =

0 and y1 < 0} and G0,1
.
= {(y,z) ∈ Rl |y1 = z1 = 0}.

4.3 The δ > 0 Prelimit

We smooth the dynamics as follows. For δ > 0, let gδ , g̃δ/4,δ ∈C∞(R) be given by

gδ (ρ)
.
=


1− exp

{ 1
δ 2 +

1
ρ2−δ 2

}
if |ρ| ∈ [0,δ ],

1 if |ρ|> δ ,
(4.15)

g̃δ/4,δ (ρ)
.
=


0 if |ρ| ∈ [0,δ/4],

g3δ/4(|ρ|−δ/4) if |ρ|> δ/4.
(4.16)

Defining R̂(y,z) .
= d
(
(y,z),G0

)
, we let

Fδ (y,z) .
= gδ (R̂(y,z))F(y,z), and Gδ (y,z) .

= g̃δ/4,δ (|z|)gδ (R̂(y,z))G(y,z) (4.17)

for all (y,z) ∈ Rl . Note that

Fδ = F and Gδ = G on G c
δ

(4.18)

Our final assumption is that for each δ > 0,
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Fδ ,Gδ ∈C1(H c
0 ), Fδ and Gδ are bounded on Rl,

and ∇(y,z)F
δ and ∇(y,z)G

δ are bounded on H c
0 .

(A.4)

Note that (A.4) holds for the examples given in Section 4.2, and that it will hold more generally

when the dynamics are bounded by the the multiplicative inverse of appropriate polynomial

forms.

Suppose (y0,z0) 6∈ G0. Consider the system with modified dynamics given in integral

form as

η
δ
t = y0 +

∫ t

0
Fδ (ηδ

r ,ζ
δ
r )dr+Bt , (4.19)

ζ
δ
t = z0 +

∫ t

0
Gδ (ηδ

r ,ζ
δ
r ), dr (4.20)

for t ∈ [0,T ]. We demonstrate existence and uniqueness of a strong solution via application

of the Girsanov transform approach to first obtain existence of a weak solution, followed by a

demonstration of pathwise uniqueness to then obtain the strong-solution assertion.

Lemma 29. Suppose ηδ is a brownian motion on probability space (Ω,F̄ , P̂) where Ω, F̄

and P̂ denote a sample space, σ -algebra and probability measure, and with filtration denoted

by F·. Let ζ δ be continuous and of bounded variation on [0,T ]. Then, for a.e. ω ∈ Ω,

µ({t ∈ [0,T ] |(ηδ
t ,ζ

δ
t ) ∈H0}) = 0, where µ denotes Lebesgue measure.

Proof. Let ηδ ,ζ δ be as given. Let ηδ (ω) denote a sample path of the brownian motion. By

Assumption (A.2), for ω ∈Ω0 with P̂(Ω0) = 1, the total [linear] variation of h0(η
δ (ω)) on any

interval [t1, t2] ∈ [0,T ] with t2 > t1 is T̄ (ηδ (ω); t1, t2) = ∞. Let A (ω)
.
= {t ∈ (0,T ) |h0(η

δ
t )−

h1(ζ
δ
t ) = 0}, which implies that A c(ω) = {t ∈ (0,T ) |h0(η

δ
t )−h1(ζ

δ
t ) ∈ [(−∞,0)∪ (0,∞)]}

is open. Then, A c(ω) is a countable collection of open intervals, say (c j,d j) for j ∈J . One

then easily finds that [0,T ]\A c(ω) is a countable collection of closed intervals. Suppose there
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exists one such closed interval, say [dk,cl] such that dk < cl . Then, T̄ (h0(η
δ (ω);dk,cl)) =

T̄ (h1(ζ
δ (ω));dk,cl) < ∞, which is a contradiction. Hence, dk = cl for all closed intervals in

[0,T ]\A c(ω).

Lemma 30. For a.e. ω ∈Ω, There exists absolutely continuous, unique ζ δ
· (ω) satisfying (4.20).

Proof. The proof follows the standard successive approximations approach. We indicate the

main steps. By Assumption (A.4), there exists L < ∞ such that |∇(y,z)Gδ (y,z)| ≤ L for all

(y,z) ∈H c
0 . Let 0 = t0 < t1 < .. . tJ = T where t j+1− t j ∈ (0,1/(2L)) for all j. Fix ω ∈ Ω0,

where Ω0 is defined in the proof of Lemma 29. Suppose we have a unique, absolutely continuous

solution, ζ δ
· (ω), up to t j (where j may be zero), and let z j = ζ δ

t j
(ω). We extend the solution to

[t j, t j+1]. Let ζ̃ δ ,0 be absolutely continuous (and hence of bounded variation) on [t j, t j+1], with

ζ̃ δ ,0(t j) = z j. For k ≥ 0, let

ζ̃
δ ,k+1
t

.
= z j +

∫ t

t j

Gδ (ηδ
r (ω), ζ̃ δ ,k

r )dr ∀ t ∈ [t j, t j+1].

Noting Assumption (A.4), we find that ζ̃ δ ,k is absolutely continuous for all k ≥ 0. Letting

A k(ω)
.
= {t ∈ [t j, t j+1] |(ηδ

t (ω), ζ̃ δ ,k
t ) ∈H0}, we see by Lemma 29 that µ(A k(ω)) = 0 for all

k. Then, ‖ζ δ ,k+1− ζ δ ,k‖L∞(t j,t j+1) ≤
1
2 . Application of the Banach Fixed Point Theorem then

yields a unique, absolutely continuous extension of the solution, ζ δ
· (ω), to [0, t j+1].

Lemma 31. Let δ > 0. There exists a weak solution to (4.19)–(4.20).

Proof. Let ηδ be a brownian motion as in Lemma 29, and let ζ δ be the corresponding solution

of (4.20) given by Lemma 30. Let νδ
t (ω)

.
= Fδ (ηδ

t ,ζ
δ
t ) for all ω ∈Ω0 (indicated in the proof of

Lemma 29) and all t ∈ [0,T ]. By Assumption (A.4), there exists D1 < ∞ such that |νδ
t (ω)| ≤D1

for all ω ∈ Ω0 and t ∈ [0,T ]. Let Bδ
t

.
= ηδ

t −
∫ t

0 νδ
r dr for all ω ∈ Ω0 and t ∈ [0,T ]. We note

that the Novikov condition is satisfied, and letting P(C )
.
= E

∣∣
P{IC ZT (ν

δ )} for C ∈FT , with

Zt(ν
δ )

.
= 1+∑

3
j=1
∫ t

0 Zr(ν
δ )[νδ

r ] j d[νδ
r ] j, Bδ is a brownian motion on (Ω,F̄ ,P), with filtration

87



F·. Then (ηδ ,ζ δ ) forms a solution to (4.19)–(4.20) with brownian motion Bδ and probability

space (Ω,F̄ ,P).

Theorem 17. Let δ > 0. There exists a unique strong solution to (4.19)–(4.20).

Proof. The strong solution will follow from a demonstration of pathwise uniqueness (cf. [22, Cor.

5.3.23]). Let γδ
t

.
= (ηδ

t
T
,ζ δ

t
T
)T for all t ∈ [0,T ], Hδ .

= ([Fδ ]T , [Gδ ]T )T and γ̄0 .
= ([y0]T , [z0]T )T ,

in which case,

γ
δ
t = γ̄

0 +
∫ t

0
Hδ

r dr+

Im×m

0

Bδ
t ∀ t ∈ [0,T ]. (4.21)

Letting γδ and γ̃δ be two solution of (4.21), one sees from Assumption (A.4) that there exists

L̄ < ∞ such that

|γδ
t − γ̃

δ
t | ≤ L̄

∫ t

0
|γδ

r − γ̃
δ
r |dr ∀ t ∈ [0,T ].

Hence, by the Gronwall inequality, γδ = γ̃δ , and we have pathwise uniqueness.

4.4 Taking δ ↓ 0

We obtain the limit result in the case where the dimension satisfies m≥ 3. This restriction

is related to the form of G̃0, which takes the form of a curve in Rm. It is expected that in the case

where G̃0 is a point, the result would follow for m≥ 2.

Fix a probability space, say (Ω,F̄ , P̄), and brownian motion, B·, with filtration F·

generated by B·. Again, let (y0,z0) 6∈ G0, and note that there exists δ̄ > 0 such that (y0,z0) 6∈ Gδ

for all δ ∈ [0, δ̄ ]. Let δn ↓ 0 with δ1 ∈ (0, δ̄ ). Let the corresponding strong solutions of (4.19)–

(4.20) be denoted by (ηn,ζ n). Note that Gδn(y,z) = 0 for all z ∈ Bδn/4(0), and hence

|ζ n
t | ≥ δn/4 ∀ t ∈ [0,T ], ω ∈Ω, n ∈ N. (4.22)
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For n ∈ N, let

An
.
= {ω ∈Ω | 6 ∃t ∈ [0,T ] s.t. (ηn

t ,ζ
n
t ) ∈ Gδn ∪ [R

m×Bδn/4(0)]}. (4.23)

Recalling that Fδ = F on G c
δ

and Gδ = G on G c
δ
∩Bδ/4(0)c, we see that

(ηm,ζ m) = (ηn,ζ n) ∀ω ∈An and m≥ n≥ 1. (4.24)

Lastly, let

η̃
n
t = J(ζ n

t )η
n
t , (4.25)

ζ̃
n
t = J(ζ n

t )ζ
n
t = ē, (4.26)

for all t ∈ [0,T ].

Lemma 32. (ηn
t ,ζ

n
t ) ∈ G0 if and only if (η̃n

t , ζ̃
n
t ) ∈ G0 if and only if η̃n

t ∈ G̃0(ζ̃
n
t ) if and only if

there exists λ n
t (ω) ∈I such that η̃n

t = p(λ n
t ).

Proof. Recalling Assumption (A.3) and (4.26), note that (η̃n
t , ζ̃

n
t )∈ G0 if and only if η̃n

t ∈ G̃0(ζ̃
n
t )

if and only if there exists λ n
t (ω) ∈I such that η̃n

t = [J(ζ̃ n
t )]
−1 p(λ n

t ) = [J(ē)]−1 p(λ n
t ) = p(λ n

t ).

Noting (4.25), we see that this is equivalent to J(ζ n
t )η

n
t = p(λ n

t ), or ηn
t = [J(ζ n

t )]
−1 p(λ n

t ), which

by definition, is true if and only if ηn
t ∈ G̃0(ζ

n
t ).

Lemma 33. For each n ∈ N, there exists a probability measure, Pn, mutually absolutely continu-

ous with respect to P̄, such that ηn is a brownian motion with respect to Pn.

Proof. By the boundedness of Fδn and (4.19), one finds that the Novikov condition is satisfied,

and hence the assertion follows from the Girsanov theorem, cf. [22].
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Let

ˆAn
.
= {ω ∈Ω | 6 ∃t ∈ [0,T ] s.t. either η̃

n
t ∈ G̃0(ē) or ζ̃

n
t ∈ Bδn/4(0)}, (4.27)

˜An
.
= {ω ∈Ω | 6 ∃t ∈ [0,T ] s.t. η̃

n
t ∈ G̃0(ē)}. (4.28)

Using Lemma 32 and (4.22), we see that

An = ˆAn = ˜An. (4.29)

Lemma 34. There exists a probability measure, P̆n, mutually absolutely continuous with respect

to Pn, such that

dη̃
n
t = J(ζ n

t )dη̆
n
t ,

where η̆n
t is a brownian motion under P̆n.

Proof. Applying Itô’s rule to η̃n, and noting that d〈[ζ n]k, [ζ
n] j〉t ≡ 0 for all k, j ∈ ]1,m[ , one

sees that

dη̃
n
t = F̄n(η̃n

t ,ζ
n
t )dt + J(ζ n

t )dη
n
t = J(ζ n

t )
[
(J(ζ n

t ))
−1F̄n(η̃n

t ,ζ
n
t )dt + dη

n
t

]
, (4.30)

where, component-wise,

F̄n
k (η̃

n
t ,ζ

n
t ) =

m

∑
j=1

( m

∑
l=1

[ ∂J
∂ z j

(ζ n
t )
]

k,l[η̃
n
t ]l

)[
Gδn
(
[J(ζ n

t )]
−1

η̃
n
t ,ζ

n
t
)]

j (4.31)

for all k ∈ ]1,m[ . We examine F̄n. By Assumption (A.4), there exists M1
n < ∞ such that

|Gδn
(
[J(ζ n

t )]
−1

η̃
n
t ,ζ

n
t
)
| ≤M1

n ∀ t ∈ [0,T ], ω ∈Ω. (4.32)

Also, by (4.22) and Assumption (A.3), there exists M2
n < ∞ such that

|J(ζ n
t )|,

∣∣ ∂J
∂ z j

(ζ n
t )
∣∣≤M2

n ∀ j ∈ ]1,m[ , t ∈ [0,T ], ω ∈Ω. (4.33)
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Lastly, by (4.20), (4.32) and Assumption (A.3) one sees that

|(J(ζ n
t ))
−1|= |ζ n

t | ≤ |z0|+M1
nT .

= M3
n < ∞ ∀ t ∈ [0,T ], ω ∈Ω. (4.34)

By (4.31)–(4.34), we see that there exists M̄n < ∞ such that

|(J(ζ n
t ))
−1F̄n(η̃n

t ,ζ
n
t )| ≤ M̄n|η̃n

t | ∀ t ∈ [0,T ], ω ∈Ω. (4.35)

For integers 0≤ k ≤ K < ∞, let ∆K
.
= T/K and tk

.
= k∆K . By (4.35),

E
{

exp
[1

2

tk+1
∫
tk
|(J(ζ n

t ))
−1F̄n(η̃n

t ,ζ
n
t )|2 dt

]}
≤ E

{
exp
[1

2M̄2
n∆K

∣∣ sup
t∈[tk,tk+1]

η̃
n
t
∣∣2 + 1

2M̄2
n∆K

∣∣ inf
t∈[tk,tk+1]

η̃
n
t
∣∣2]}

≤ E
{

exp
[
M̄2

n∆K
(

sup
t∈[tk,tk+1]

|η̃n
t |2
)]}1

2E
{

exp
[
M̄2

n∆K
(

inf
t∈[tk,tk+1]

|η̃n
t |2
)]}1

2

for all 0≤ k≤K < ∞ and n∈N. However, recalling that η̃n is a brownian motion on measure Pn,

by the reflection principle, this is finite for sufficiently large K. Hence, a weak Novikov condition

is satisfied, cf. [22, Cor. 3.5.14], and we may apply a Girsanov transformation, yielding measure

P̆n, mutually absolutely continuous with respect to Pn, given by dP̆n
.
= µ̃n

T dPn, where

µ̃
n
T

.
= exp

[
−

T
∫
0
(vn

t )
T dη

n
t − 1

2

T
∫
0
|vn

t |2 dt
]
,

with vn
t
.
= (J(ζ n

t ))
−1F̄n(η̃n

t ,ζ
n
t ), and such that under P̆n, the process η̆n

t
.
=
∫ t

0 vn
r dr +ηn

t is a

brownian motion. Recalling (4.30), we have dη̃n
t = J(ζ n

t )dη̆n
t .

Lemma 35. There exists a random-time process, αn
t , and 0≤ α ≤ ᾱ < ∞ such that αn

t+r−αn
t ∈

[αr, ᾱr ] for all 0 ≤ t,r < ∞, and such that ˜̃ηn
t

.
= η̃n

αn
t

is a P̆n brownian motion, with filtration

˜̃Ft
.
= Fαt .
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Proof. Note that J(ζ n
t )J

T (ζ n
t ) = |ζ n

t |−2Im×m| for all t ∈ [0,T ], ω ∈ Ω. Define processes cn
t
.
=

|ζ n
t |−2, β n

t
.
=
∫ t

0 cn
r dr and αn

t
.
= inf{r ∈ [0,∞) |β n

r > t}. The asserted bounds on αn
· then follow

from Assumption (A.3), (4.22) and (4.34). The second assertion is a direct application of

well-known result [47, Th. 8.15].

Lemma 36. Let m≥ 3. Pn(A c
n ) = 0 for all n ∈ N.

Proof. For T̄ ∈ [0,∞), let ˘A T̄
n

.
= {ω ∈Ω | 6 ∃t ∈ [0,T ] s.t. η̃n

αn
t
∈ G̃0(ē)}. Noting that η̃n

αn
t
= ˜̃ηn

t

is a P̆n brownian motion, by classical results (see Appendix 4.5) P̆
(
( ˘A T̄

n )c)= 0 for all T̄ ∈ [0,∞).

As this is true for all such T̄ , by (4.28), one finds that P̆
(
( ˜An)

c)= 0. Noting Lemmas 33 and 34,

this yields P̄
(
( ˜An)

c)= 0. Combining this with (4.29), one has the asserted result.

Let ¯A
.
=
⋂

n∈NAn. By Lemma 36 we immediately obtain the following.

Lemma 37. P̄( ¯A ) = 1.

For any n ∈ N, consider (4.1)–(4.2) with (y0,z0) /∈ G0 up to the stopping time τδn

.
=

inf{t ≥ 0;(ηt ,ζt) ∈ Gδn ∪ [R
m×Bδn/4(0)]}. Clearly, there exists a strong solution, (ητδn

,ζτδn
),

up to the stopping time τδn . On the other hand, for all ω ∈ ¯A c, there exists n̄ = n̄(ω) ∈ N such

that ω /∈An̄. For ω ∈ ¯A c, let

(η̄ , ζ̄ )(ω)
.
= (η n̄,ζ n̄)(ω).

However, by (4.18), (η n̄,ζ n̄)(ω) satisfies (4.1)–(4.2) for all ω ∈An̄, and hence (η̄ , ζ̄ ) satisfies

(4.1)–(4.2) on An̄ for all n≥ n̄, which implies (η̄ , ζ̄ ) satisfies (4.1)–(4.2) on ¯A . We have

(ητδn
,ζτδn

)
d
= (η̄t , ζ̄t).
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Let τ0
.
= inf{t ≥ 0;(ηt ,ζt) ∈ G0}. Noting Lemma 37, we have

P̄(τ0 ≤ T )≤ lim
δn→0

P̄(τδn ≤ T ) = lim
δn→0

Pn(τδn ≤ T ) = 0.

Following this, we have the next result.

Theorem 18. Let m≥ 3. There exists a strong solution to (4.1)–(4.2) for t ∈ [0,T ], (y0,z0) /∈ G0.

4.5 Appendix: Results from Potential Theory

In this section we briefly summarize some standard results from classical potential theory.

We refer to [27] and [49] for more details.

4.5.1 Hitting Distribution

Let B. be a Brownian motion in Rn and Px be the unique probability distribution cor-

responding to the Brownian motion starting at x ∈ Rn. We denote by S the collection of Fσ

sets in Rn. Note that every closed set is in S . For S ∈S , let τS be the hitting time of S by the

Brownian motion, that is τS
.
= inf{t > 0 : Bt ∈ S}, and set τS = ∞ if Bt /∈ S for all t > 0. We make

the following definition of polar sets. A set S ∈S is said to be polar if Px(τS < ∞) = 0 for all

x ∈ Rn.

Let S ∈S . By Blumenthal’s zero-one law for each x ∈ Rn, Px(τS = 0) equals zero or

one. The point x is called regular if Px(τS = 0) = 1 and irregular if Px(τS = 0) = 0. The set of

points which are regular for S is denoted by Sr. If S is polar, the set Sr is clearly empty.

4.5.2 Newtonian Potential, Equilibrium Measure, and Polar Sets

The Newtonian potential kernel g on Rn, n≥ 3, is defined by

g(x) .
=

Γ(n/2−1)
2πn/2 |x|2−n.
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Let g(x,y) .
= g(y− x) for x,y ∈ Rn. The Newtonian potential of a measure µ is defined by

gµ(x) .
=
∫

Rn
g(x,y)µ(dy), for x ∈ Rn.

Let S ∈S be bounded. There is at most one measure on Rn that is concentrated on Sr, the set of

regular points for S, and has newtonian potential 1 on Sr. If such a measure exists, it is called the

equilibrium measure of S and is denoted by µS. The capacity of S is defined by

C(S) .
= µS(Rn),

and the Newtonian potential gµS is called the equilibrium potential.

The following lemma (cf. [49]) connects Newtonian capacity to polar sets of Brownian

motion in Rn, n≥ 3.

Lemma 38. Let S ∈S be bounded. Then S is polar if and only if C(S) = 0.

Lemma 39. Any curve in R3 of bounded variation has zero capacity and hence is polar for

3-dimensional Brownian motion.
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